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NORWEGIAN UNIVERSITY
OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF TELECOMMUNICATIONS

Contact during examination:
Name: Magne H. Johnsen
Tel.: 73 59 26 78/930 25 534

EXAMINATION IN COURSE TTT4120 DIGITAL SIGNAL
PROCESSING

Date: Monday Desember 10th, 2012
Time: 09.00 - 13.00

Permitted aids: D–No printed or handwritten material allowed.
Specified, simple calculator allowed..

INFORMATION

• The examination consists of 4 problems.

– Problem 1 concerns analysis of digital filters.
– Problem 2 concerns rational process models.
– Problem 3 concerns fixed point implementation.
– Problem 4 concerns multirate systems
– A list of formulas can be found in the appendix.
– Task weighting is given in parenthesis. Total amount of points is 70.

• All answers should be justified!

• The teacher will visit you twice, the first time around 10.00 and the second time
around 11.45.
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Problem 1 (3+3+5+4 = 15 points)

1a) A stable and causal LTI system is given by the following transfer function :

H(z) = H0(z)H1(z)H2(z) where (1)

H0(z) = 1 +
5

3
z−1

H1(z) =
1

(1 + 1
2
z−1)

H2(z) =
1

(1− 2
3
z−1)

Show that the difference equation for the filter is given by :

y(n)− 1

6
y(n− 1)− 1

3
y(n− 2) = x(n) +

5

3
x(n− 1), n = −∞,∞ (2)

Answer:

H(z) =
Y (z)

X(z)
=

1 + 5
3
z−1

(1 + 1
2
z−1)(1− 2

3
z−1)

=
1 + 5

3
z−1

1− 1
6
z−1 − 1

3
z−2

⇒

Y (z)− 1

6
Y (z)z−1 − 1

3
Y (z)z−2 = X(z) +

5

3
X(z)z−1

Eq. 2 is easily derived by the inverse Z-transform.

1b) State the reason for your answers on the following:

• What is the region of convergence (ROC) for the filter in subtask 1a?

• Does the filter have linear phase?



• Does the filter have minimum phase?

Answer:

• max[|p1|, |p2|] = max[1
2
, 2
3
] = 2

3
⇒ ROC : |z| > 2

3

• The filter does not have linear phase since it has poles.

• Minimum phase is only possible if both poles and zeros are inside the unit circle.
Here we have a zero at |z| = | − 5

3
| > 1, i.e. not minimum phase.
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1c) Show that the unit pulse response of the filter is given by :

h(n) = −h1(n) + 2h2(n) (3)

where

h1(n) =

{
(−1

2
)n n ≥ 0

0 n < 0

h2(n) =

{
(2
3
)n n ≥ 0

0 n < 0

Answer :

H(z) =
1 + 5

3
z−1

(1 + 1
3
z−1)(1− 2

3
z−1)

=
A

1 + 1
2
z−1

+
B

1− 2
3
z−1

⇒

H(z) =
A+B − (2A

3
− B

2
)z−1

(1 + 1
2
z−1)(1− 2

3
z−1)

A+B = 1

(
2A

3
− B

2
)z−1 = −5

3
z−1 ⇒ 4A− 3B = −10

4(1−B)− 3B = 4− 7B = −10 ⇒ B = 14/7 = 2 og A = 1−B = −1



Thus we have :

H(z) = −H1(z) + 2H2(z) = − 1

1 + 1
2
z−1

+ 2
1

1− 2
3
z−1

⇒

h(n) = −h1(n) + 2h2(n) =

{
−(−1

2
)n + 2(2

3
)n n ≥ 0

0 n < 0

1d) Sketch the following two structures of the filter H(z) :

• Direct form 2 (DF2)
• Parallel structure where the branch gain G2 = 2 in equation 2 is placed before

the feedback.

Answer :
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Problem 2 (4+7+3+4 = 18 points)

2a) The crosscorrelation sequence of two sequences y(n) and x(n), both with finite energy,
is given by

ryx(m) =
∞∑

n=−∞

y(n+m)x(n) m ≥ 0

ryx(m) = rxy(−m) m < 0

Show that the crosscorrelation sequence of h1(n) and h2(n) in subtask 1c is given by

rh1h2(m) =


3
4
(−1

2
)|m| = 3

4
(−1

2
)m m ≥ 0

3
4
(2
3
)|m| = 3

4
(3
2
)m m < 0

(4)

Answer:

rh1h2(m) =
∞∑

n=−∞

h1(n+m)h2(n) m ≥ 0

rh1h2(m) =
∞∑
n=0

(−1

2
)n+m(

2

3
)n m ≥ 0

rh1h2(m) = (−1

2
)m

∞∑
n=0

(−1

3
)n m ≥ 0

rh1h2(m) = (−1

2
)m

1

1 + 1
3

=
3

4
(−1

2
)m

Correspondingly for rh2h1(m) :

rh2h1(m) =
∞∑
n=0

(
2

3
)n+m(−1

2
)n m ≥ 0

x = y

rh2h1(m) = (
2

3
)m

1

1 + 1
3

=
3

4
(
2

3
)m

As rh1h2(m) = rh2h1(−m) for m < 0 eq 4 is proved!



2b) Show that the unit pulse responses h1(n), h2(n) and h(n) in task 1 has the following
autocorrelation sequences for m ≥ 0:

rh1h1(m) =
4

3
(−1

2
)m

rh2h2(m) =
9

5
(
2

3
)m

rhh(m) = −1

6
(−1

2
)m +

57

10
(
2

3
)m

In addition the autocorrelation sequences are symmetric around m = 0.

Answer :
The two autocorrelation sequences for respectively h1(n) and h2(n) are :

rh1h1(m) =
∞∑
n=0

(−1

2
)n+m(−1

2
)n m ≥ 0

rh1h1(m) = (−1

2
)m

∞∑
n=0

(
1

4
)n m ≥ 0

rh1h1(m) = (−1

2
)m

1

1− 1
4

=
4

3
(−1

2
)m m ≥ 0

rh2h2(m) =
∞∑
n=0

(
2

3
)n+m(

2

3
)n m ≥ 0

rh2h2(m) = (
2

3
)m

∞∑
n=0

(
4

9
)n m ≥ 0

rh2h2(m) = (
2

3
)m

1

1− 4
9

=
9

5
(
2

3
)m m ≥ 0

(5)

Inserting h(n) = −h1(n) + 2h2(n) we get

rhh(m) =
∞∑

n=−∞

h(n+m)h(n) thus

rhh(m) = rh1h1(m)− 2rh1h2(m)− 2rh2h1(m) + 4rh2h2(m)

From subtask 2a we use the expressions for the cross correlations and arrange terms



with identical exponents

(
4

3
− 2

3

4
)(−1

2
)m =

(8− 9)

6
(−1

2
)m = −1

6
(−1

2
)m

(4
9

5
− 2

3

4
)(

2

3
)m =

(144− 30)

20
(
2

3
)m =

57

10
(
2

3
)m

which correspond to the two terms in rhh(m)..

Figure 1 shows a chosen cascade structure for H(z)

Figure 1: Chosen cascade structure

2c) White noise w(n) with power σ2
w = 1 is input to the cascade structure.

Which kind of parametric processes are respectively the output signal and the in-
ternal signals in the structure? State the reason for your answer!

Answer :
We have two internal signals in the cascade structure, namely the outputs of the two
first summation nodes. Delays do not modify the statistical properties of signals
The first node has the transfer function H1(z). The filter is a first order allpole type
(single pole), which gives an AR[1]-process. The second summation nodehas the trans-
fer function H0(z)H1(z), corresponding to an ARMA[1,1]-process. The filter output
is of course described by the transfer function H(z). From subtask 1a we see that the
filter has a zero and two poles, i.e an ARMA[1,2]-process.



2d) White noise w(n) with power σ2
w = 1 is input to the filter H(z).

Find, by using linear prediction (i.e. the Yule-Walker or Normal equations), the
filter coefficient a1 of the best AR[1]-model for the filter output signal y(n).

Show that the prediction error power, σ2
f , always fulfills : σ2

f ≤ γyy(0)
where σ2

y = γyy(0) is the signal power of y(n).

Answer:
For time lag m = 1 and the prediction error power (m = 0) we have :

a1γyy(0) = −γyy(1) m = 1

σ2
f = γyy(0) + a1γyy(1) m = 0

Further γyy(m) = σ2
wrhh(m), i.e. given σ2

w = 1 we get

γyy(0) = −1

6
(−1

2
)0 +

57

10
(
2

3
)0 = −1

6
+

57

10
=

57 ∗ 6− 10

60
=

332

60

γyy(1) = −1

6
(−1

2
)1 +

57

10
(
2

3
)1 =

1

12
+

19

5
=

19 ∗ 12 + 5

60
=

233

60

Thus a1 = −γyy(1)/γyy(0) = −233/332 ≈ −0.7

We can further rewrite theprediction error power : σ2
f = γyy(0)(1 + a1γyy(1)/γyy(0)).

The quotient in the last term corresponds to the filter coefficient, thus we have σ2
f =

γyy(0)(1− a21). For all stable filters we have |a1| < 1, thus σ2
f ≤ γyy(0). The quotient

γyy(0)/σ2
f = 1/(1− a21) ≈ 1/(1− (0.7)2) ≈ 2 is called the prediction gain.



Problem 3 (4+4+7+4 = 19 points)

The discrete filter in task 1 is to be implemented in fixed point representation using B+ 1
bits and dynamic range [−1, 1). Rounding (quantization) is performed after each multi-
plication and the corresponding rounding error, e(n), can be regarded as white noise with
power σ2

e = 2−2B

12
. Together, all the rounding noise sources result in a noise signal z(n) at

the output with a total power of σ2
z .

3a) Find the resulting noise power σ2
z at the output of the cascade structure as a function

of σ2
e .

Answer :
In the cascade structure we have three multiplications/roundings and thus three white
noise sources. The sources at respectively 5/3 and 2/3 can both be moved in front
of the last summation node. The corresponding unit pulse response is h2(n) for both
sources. The source at −1/2 can be moved in front of the first summation node and
sees the unit pulse response h(n).
Thus we get: σ2

z = (rhh(0) + 2 ∗ rh2h2(0))σ2
e =

(332/60 + 2 ∗ 9/5)σ2
e = ((332 + 216)/60)σ2

e = (548/60)σ2
e ≈ 9σ2

e

3b) Also find the resulting noise power σ2
z at the output of the parallel structure in subtask

1d.
Note that the minus sign in front of h1(n) in equation 2 is implemented as an arith-
metic operation (negation) and thus not as a multiplication!!

Answer :
We can ignore the gain of G1 = −1. The sources at respectively 2 and 2/3belong to
branch nr. 2. Both can be moved in front of the corresponding summation node and
sees therefore h2(n). The source at −1/2 can correspondingly be moved in front of its
summation node; thus it sees h1(n)
Thus we get: σ2

z = (2 ∗ rh2h2(0) + rh1h1(0))σ2
e = (2 ∗ 9/5 + 4/3)σ2

e = ((54 + 20)15)σ2
e =

(74/15)σ2
e ≈ 5σ2

e

Consequently the (unscaled) parallel structure is superior wrt. noise power at the
output. The filter input x(n) has full dynamic range, i.e xmax = max

n
|x(n)| = 1.



3c) Show that one has to scale the input by 3/16 (downscaling by 16/3) in order to avoid
overflow in the cascade structure used in subtask 3a.

Further show that the parallel structure used in subtask 3b requires a scaling by
1/6 (downscaling by 6).

Answer:
The cascade structure has two internal summation nodes and one at the output.
The structure in subtask 3a is given by figure 1. The first node is described by the
unit pulse response h1(n). The other internal node sees h3(n) = h0(n) ∗ h1(n) =
(−1/2)nu(n) + 5/3(−1/2)nu(n − 1). The third node corresponds to the output, i.e.
h(n). Note that h(n) ≥ 0 for all n.
Thus we get :

∑
n

|h(n)| =
∞∑
n=0

(2(
2

3
)n − (−1

2
)n) = 2

1

1− 2
3

− 1

1 + 1
2

= 2 ∗ 3− 2/3 = 16/3

∑
n

|h1(n)| =
∞∑
n=0

(
1

2
)n =

1

1− 1
2

= 2

h3(n) = (−1

2
)nu(n) +

5

3
(−1

2
)n−1u(n− 1) ⇒

h3(0) = 1

h3(n) = (−1

2
)n +

5

3
(−1

2
)n−1 n > 0 ⇒

h3(n) = (−1

2
)n − 10

3
(−1

2
)n = −7

3
(−1

2
)n n > 0 ⇒∑

n

|h3(n)| = 1 +
7

3

∞∑
n=1

(
1

2
)n = 1− 7

3
+

7

3

∞∑
n=0

(
1

2
)n ⇒

∑
n

|h3(n)| = −4

3
+

7

3
(

1

1− 1
2

) = −4

3
+ 2

7

3
=

10

3

As 16/3 > 10/3 > 2 we must choose a scaling by 3/16.

The parallel structure also has two internal nodes (one in each branch) and the output
node. The unit pulse responses of the output node and the lower branch node h1(n)
are derived for the cascade structure. The upper branch has a unit pulse response
from input equal to 2h2(n) .

∑
n

|2h2(n)| =
∞∑
n=0

(2(
2

3
)n =

2

1− 2
3

= 3 ∗ 2 = 6. (6)

As 6 > 7/3 > 2 we must choose a scaling of 1/6.



3d) Which of the two scaled structures have the best signal_to_noise_ratio (SNR =
σ2
y/σ

2
z) at the output ?

Answer :
Let us name the signal power at the output without scaling for σ2

y . After scaling the
signal output power is S2σ2

y while the noise power at the output is unchanged (all the
roundings are after the scaling). Thus the SNR of the two scaled structures are given
by S2σ2

y/σ
2
z . As σ2

y is the same for the two structures the quotient S2/σ2
z can be used

. Thus we get:

SNRkask ≈ (
3

16
)2/(9σ2

e) =
9

256

1

σ2
e

SNRpar ≈ (
1

6
)2/(5σ2

e) ≈
1

180

1

σ2
e

Thus after scaling the cascade structure is the best choice.
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Problem 4 (5+4+4+5 = 18 points)

Figure 2 shows a system for conversion of sampling rate from F1 to F2 where I and
D are integers.

x (n)1 DI h(l) 2x (m)v(l) w(l)

Figure 2: System for sampling rate conversion

4a) Shortly describe the three parts of and give the bandwidth and sampling rate of the
internal signals v(l) og w(l).

Answer :
The first block inserts I−1 zeros between each sample. this will increase the sampling
rate to Fv = IF1and produce I − 1 repetitions of the spectrum in the range F1/2 til
Fv/2 = IF1/2. The ideal LP-filter h(l) operates on the sampling rate of Fv and has
a cutoff frequency of Fg = Fv/max[D, I]. This corresponds to half the sampling rate
of the lowest of F1 og F2. The last block pick every D sample which corresponds to
reduce the sampling rate to F2 = Fv/D = F1 ∗ (I/D).

4b) Derive a time domain expression for the output signal x2(m) as a function of the input
signal x1(n), the filter h(l) and I og D.

Answer:
The two signals w(l) og v(l) are related by linear convolution, i.e. w(l) =

∑
k v(k)h(l−

k). The output is thus given by x2(m) = w(mD) =
∑

k v(k)h(mD − k). But only
every L sample of v(k) is different from zero, thus v(kI) = x1(k) for k = −∞, . . . ,∞.
This results in x2(m) =

∑
k x1(k)h(mD − kI)



4c) Discuss the operation of the system when I > D and vice versa.

Answer :
When I > D the final sampling rate is increased. Thus no frequency content is lost,
but the range over F1/2 , dvs. [F1/2, F2/2] is without content. The cut off frequency
of the filter is given by Fg = F1/2.
When I < D the final sampling rate is decreased. The filter must then remove the
frequency content over F2/2, i.e.. [F2/2, F1/2] to avoid aliasing. The cut off frequency
must therefore be chosen as fg = F2/2.

4d) Given an analogue signal x(t) = s(t) + sin(2πF0t) where s(t) has bandwidth ±B =
5000Hz and F0 = 4000Hz. The signal is sampled by a rate F1 = 10000Hz, i.e.
x1(n) = xa(nT1) hvor T1 = 1/F1.
Further, we have given a notch filter with a zero of fn = 0.25.

How can one use the system in figure 2 together with the notch filter to remove
the harmonic component (F0) in x1(n)?

Answer :
Using the original sampling rate results in that the harmonic component is placed at
f01 = F0/F1 = 4000/10000 = 0.4. This is another normalized frequency than the zero
of fn = 0.25 of the notch filter. The sampling rate must therefore be changed such
that f02 = F0/F2 = fn, i.e. F2 = F0/fn = 4000/0.25 = 16000 This corresponds to a
sampe rate change of 16000/10000 = 8/5. This is implemented by using the system
in figure 2 with I = 8 og D = 5 and thereafter use the notch filter.
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Some basic equations and formulas.

A. Sequences :

∞∑
n=0

αn =
1

1− α
⇐⇒ |α| < 1

N−1∑
n=0

αn =
1− αN

1− α

B. Linear convolution :

y(n) = h(n) ∗ x(n) =
∑
k

h(k)x(n− k) =
∑
k

x(k)h(n− k)

Y (z) = H(z)X(z)⇒ Y (f) = H(f)X(f)⇒

Y (fk) = H(fk)X(fk) fk = k/N for k = 0, . . . , N − 1 where we write Y (k) = Y (fk)

C. Transforms :

H(z) =
∑
n

h(n)z−n ⇒ H(f) =
∑
n

h(n) e−j2πnf

DFT : H(k) =
L−1∑
n=0

h(n) e−j2πnk/N k = 0, ..., N − 1

IDFT : h(n) =
1

N

N−1∑
k=0

H(k) ej2πnk/N n = 0, ..., L− 1
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D. The sampling (Nyquist) theorem :

Given an analog signal xa(t) with bandwidth ±B which is sampled by Fs = 1/Ts :

x(n) = x(nTs) = xa(t)|t=nTs n = −∞, ....,∞

X(f) = X(F/Fs) = Fs
∑
k

Xa[(f − k)Fs]

xa(t) can be recovered from x(n) ⇔ Fs ≥ 2B (7)

E. Autocorrelation, energy spectrum and Parsevals theorem :

Given a sequence h(n) with finite energy Eh :

Autocorrelation : rhh(m) =
∑
n

h(n)h(n+m) m = −∞, ....,∞

Energy spectrum : Shh(z) = H(z)H(z−1)⇒ Shh(f) = |H(f)|2

Parsevals theorem: Eh = rhh(0) =
∑
n

h2(n) =

∫ 2π

0

|H(f)|2df

F. Multirate formulaes :

Decimation where Tsy = DTsx :

v(mTsy) =
∑
k

h[(mD − k)Tsx] x(kTsx) m = −∞, ....,∞

Upsampling where Tsx = UTsy :

y(lTsy) =
∑
n

h[(l − nU)Tsy] x(nTsx) l = −∞, ....,∞

Interpolation where Tsy = DTsv =
D

U
Tsx :

y(lTsy) =
∑
m

h[(lD −mU)Tsv] x(mTsx) l = −∞, ....,∞
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G. Autocorrelation, power spectrum and Wiener-Khintchin theorem :

Given a stationary, ergodic sequence x(n) with infinite energy :

Autocorrelation : γxx(m) = E[x(n)x(n+m)] m = −∞, ....,∞

Power spectrum: Γxx(z) = Z[γxx(m)] ⇒

Wiener-Khintchin : Γxx(f) = DTFT [γxx(m)] =
∑
m

γxx(m) e−j2πmf

H. The Yule-Walker and Normal equations where a0 = 1 :

Yule-Walker equations :
P∑
k=0

akγxx(m− k) = σ2
f δ(m) m = 0, ..., P

Normal equations:
P∑
k=1

akγxx(m− k) = −γxx(m) m = 1, ..., P


