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Problem 1 (3+4+5+5+3=20): Basics of filter theory and design 

 

A causal filter is given by the following difference equation 

𝑦[𝑛] = 𝑎𝑦[𝑛 − 1] − 𝑎𝑥[𝑛] + 𝑥[𝑛 − 1] 

where 𝑎 is a finite real-valued constant. 

1a) Provide the system function corresponding to 𝑦[𝑛] in the form 

𝐻1(𝑧) =
𝑏0 + 𝑏1𝑧−1

1 + 𝑎1𝑧−1
 

 and justify whether the filter is of type FIR or IIR 

1b) Draw the pole-zero plot and sketch the region of convergence (ROC). For which values of 

the coefficient 𝑎 is the filter stable? Can the filter have minimum phase? 

1c) Set 𝑎 =
1

2
 and show that 𝐻1(𝑧) is an allpass filter, i.e., |𝐻1(𝑓)|2 = 1. 

1d) Given a stable causal filter of the form 𝐻(𝑧) = 𝐻1(𝑧) ⋅ 𝐻2(𝑧) = 𝐻3(𝑧) + 𝐻4(𝑧), where 

𝐻1(𝑧) is given above, with 𝑎 =
1

2
, and 𝐻2(𝑧) is given as 

𝐻2(𝑧) =
1

1 +
1
2 𝑧−1

 

Show that the unit impulse response ℎ[𝑛] = 𝒵−1{𝐻(𝑧)} can be expressed as 

ℎ[𝑛] =
3

4
(

1

2
)

𝑛

𝑢[𝑛] −
5

4
(−

1

2
)

𝑛

𝑢[𝑛] 

1e) Define the following properties of a system ℎ[𝑛] as a function of the input signal 𝑥[𝑛] and 

the output signal 𝑦[𝑛]: 

 Stability 

 Causality 

 Time invariance 
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Problem 2 (6+6+6=18): Filter structures and implementations 

The filter in Problem 1d) is implemented using fixed-point representation with 𝐵 + 1 bits and 

dynamic range [−1,1). Rounding is performed after each multiplication and the rounding error 

𝑒[𝑛] can be modeled as white noise with variance 𝜎𝑒
2. Consequently, each multiplier in the fixed-

point implementation is modeled as  

𝑄(𝑎𝑦[𝑛 − 𝑘]) = 𝑎𝑦[𝑛 − 𝑘] + 𝑒[𝑛]  
 

which is equivalent to adding noise sources after multipliers in the infinite-precision realization. 

Rounding noise sources combine into an equivalent noise signal 𝑧[𝑛] at the filter output with 

variance 𝜎𝑧
2 (see hint below).   

2a) Draw the cascade-structure, 𝐻(𝑧) = 𝐻1(𝑧)𝐻2(𝑧), with noise sources due to rounding 

included. Determine the variance of the round-off noise at the filter output. Filter 𝐻1(𝑧) is 

implemented in direct-form structure II (DF-II). Remember that 𝐻1(𝑧) is allpass and use hint 

below. 

2b) Draw the parallel-structure, 𝐻(𝑧) = 𝐻3(𝑧) + 𝐻4(𝑧), with noise sources due to rounding 

included. Determine the variance of the round-off noise at the filter output. You may put the 

multipliers, obtained from the residue calculus in Problem 1d, at the output of the structure. 

2c) Find the necessary scaling factor at the input of the parallel structure in 2b) so that overflow 

is avoided. You may put the multipliers, obtained from the residue calculus in Problem 1d, 

wherever you may find suitable to simplify the problem (e.g., at the input of the filters). 

 

[Hint:]  Assuming noise source 𝑒𝑖[𝑛] with variance 𝜎𝑒𝑖
2  acts as input to (sub-)filter ℎ𝑖[𝑛] that 

terminates at the output. The variance of the noise signal 𝑧𝑖[𝑛], due to 𝑒𝑖[𝑛], is given by  

𝜎𝑧𝑖
2 = 𝜎𝑒𝑖

2 𝑟ℎ𝑖ℎ𝑖
[0] = 𝜎𝑒𝑖

2 ∑ ℎ𝑖
2[𝑘]

𝑘

= 𝜎𝑒𝑖
2 ∫ |𝐻𝑖(𝑓)|2𝑑𝑓

1

0
 

 

𝑒𝑖[𝑛] 
𝐻𝑖(𝑧) 

𝜎𝑒𝑖
2 = 𝐸{𝑒𝑖

2[𝑛]} 

𝑧𝑖[𝑛] 

𝜎𝑧𝑖
2 = 𝐸{𝑧𝑖

2[𝑛]} 
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Problem 3 (6+6+6=18): Parametric modeling and Wiener filtering 

 

A wide-sense stationary (WSS) stochastic process 𝑋[𝑛] is generated by filtering a white noise 

process 𝑊[𝑛], with autocorrelation sequence 𝛾𝑊𝑊[𝑙] = 𝜎𝑊
2 𝛿[𝑙], through the causal and stable 

filter 𝐻(𝑧) = 𝐻1(𝑧)𝐻2(𝑧) from Problem 1d), as depicted in Fig. 1. The autocorrelation sequence 

and spectrum of 𝑋[𝑛] is obtained from  

𝛾𝑋𝑋[𝑙] = {
𝜎𝑊

2 ∑ ℎ[𝑛]ℎ[𝑛 + 𝑙]

∞

𝑛=0

, 𝑙 ≥ 0

𝛾𝑋𝑋[−𝑙], 𝑙 < 0

 

Γ𝑋𝑋(𝑓) = |𝐻(𝑓)|2Γ𝑊𝑊(𝑓) 

3a) Provide answers (with motivations) to the following two questions: 

 What type of process, AR(𝑝), MA(𝑞), or ARMA(𝑝, 𝑞), can 𝑋[𝑛] be modeled as when 

the noise is filtered by 𝐻(𝑧) in Problem 1d for the case of 𝒂 =
𝟏

𝟐
? Provide the model 

order and the spectrum of 𝑋[𝑛]. 

Hint: Remember that 𝐻1(𝑧) is an allpass filter and make use of the above formula 

for Γ𝑋𝑋(𝑓). 

3b) You are to model the output signal 𝑋[𝑛] above as an AR(p) process using linear prediction. 

Find the best AR(1) model and the corresponding prediction error power 𝜎𝑓
2. You can use 

the following result for the autocorrelation sequence of 𝑋[𝑛] 

𝛾𝑋𝑋[𝑙] = 𝜎𝑊
2

(−0.5)|𝑙|

1 − 0.52
 

       with 𝜎𝑊
2 = 1. Can you also say which model order that is optimal for the problem at hand? 

3c)  Explain the general principle behind Wiener filtering, preferably by using a block diagram. 

You may consider the case of signal estimation (noise reduction) wherein the input signal to 

the filter is 𝑋[𝑛] = 𝑆[𝑛] + 𝑊[𝑛], with 𝑆[𝑛] being the signal of interest and 𝑊[𝑛] is 

uncorrelated white noise with power 𝜎𝑊
2 . 

  

𝑊[𝑛] 
𝐻(𝑧) 

𝛾𝑊𝑊[𝑙] 

𝑋[𝑛] 

Γ𝑊𝑊(𝑓) 

𝛾𝑋𝑋[𝑙] 

Γ𝑋𝑋(𝑓) 

Fig. 1: Filtering of stochastic processes 
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Problem 4 (2+6+6+4=18): Sampling, rate-conversion and DFT 

 

Let 𝑥𝑎(𝑡) be a bandlimited continuous-time signal whose spectrum 𝑋𝑎(𝐹) is shown in Fig. 2. 

Signal 𝑥𝑎(𝑡) is sampled at every 𝑇𝑥 = 0.125 ms to generate sequence 𝑥[𝑛] = 𝑥𝑎(𝑡)|𝑡  =𝑛𝑇𝑥
.  

4a) Sketch spectrum of the discrete-time sequence 𝑥[𝑛], i.e., 𝑋(𝑓) = ∑ 𝑥[𝑛]𝑒−𝑗2𝜋𝑓𝑛∞
𝑛=−∞  with 

𝑓 = 𝐹𝑇𝑥 being the normalized frequency.  

4b) You have stored the sampled sequence 𝑥[𝑛] in a file on your computer, but would also like 

to send a copy of it to your email account. However, the file is too large so you decide to 

create two new sequences 𝑦1[𝑚] = 𝑥[2𝑚] and 𝑦2[𝑚] = 𝑥[4𝑚]. Sketch the spectra 𝑌1(𝑓) 

and 𝑌2(𝑓) and justify whether one or both can serve as a replacement for the original 

sequence 𝑥[𝑛]? Which sequence will you send as backup to your email account? 

4c) You face the awful, but not uncommon, reality that your computer crashes and your precious 

sequence 𝑥[𝑛] from Problem 4a is lost forever. Luckily you have a copy of sequence 

𝑦1[𝑚] = 𝑥[2𝑚] in your email. Is it possible to restore the original sequence 𝑥[𝑛] from 

𝑦1[𝑚]? Explain how to solve this interpolation problem using upsampling and filtering. 

4d) Finally, 𝑀 = 1090 samples of 𝑥[𝑛] are passed through a causal lowpass FIR filter, ℎLP[𝑛], 
having 𝐿 = 52 coefficients, to obtain output sequence 𝑦[𝑛]. What are the minimum sizes  

required of the discrete Fourier transforms (DFTs) to uniquely represent 𝑥[𝑛], ℎ[𝑛], and 

𝑦[𝑛] in frequency domain (i.e., 𝑁𝑥, 𝑁ℎ, and 𝑁𝑦)?  Also provide the most suitable length for 

computing the radix-2 FFT of 𝑦[𝑛].

𝑋𝑎(𝐹) 

𝐹 [kHz] 
2 −2 1 −1 

1 

Fig. 2: Spectrum 𝑋𝑎(𝐹) of continuous-time signal 𝑥𝑎(𝑡) 



 Appendix: TTT4120 Table of formulas A1 (A2) 

Appendix: TTT4120 Table of formulas, 2017 

A. Sequences: 

 ∑ 𝛼𝑛𝑁−1
𝑛=0 =

1−𝛼𝑁

1−𝛼
 

 |𝛼| < 1 ⇒ ∑ 𝛼𝑛∞
𝑛=0 =

1

1−𝛼
 and − ∑ 𝛼𝑛−∞

𝑛=−1 =
1

1−𝛼
   

∑ (𝑛 + 1)𝛼𝑛𝑁−1
𝑛=0 =

1−𝛼𝑁

(1−𝛼)2
−

𝑁𝛼𝑁

1−𝛼
 ; 𝛼 ≠ 1 

|𝛼| < 1 ⇒ ∑ (𝑛 + 1)𝛼𝑛∞
𝑛=0 =

1

(1−𝛼)2  

B. Linear convolution: 

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛] = ∑ ℎ[𝑘]𝑥[𝑛 − 𝑘]∞
𝑘=−∞ = ∑ 𝑥[𝑘]ℎ[𝑛 − 𝑘]∞

𝑘=−∞   

𝑌(𝑧) = 𝐻(𝑧)𝑋(𝑧) 

𝑌(𝑓) = 𝐻(𝑓)𝑋(𝑓) 

𝑌(𝑘) = 𝐻(𝑘)𝑋(𝑘), 𝑘 = 0,1, … , 𝑁 − 1 where 𝑌(𝑘) = 𝑌(𝑓𝑘) with 𝑓𝑘 = 𝑘/𝑁  

C. Transforms: 

Z-transform: 𝐻(𝑧) = ∑ ℎ[𝑛]𝑧−𝑛∞
𝑛=−∞  

DTFT:  𝐻(𝑓) = ∑ ℎ[𝑛]𝑒−𝑗2𝜋𝑓𝑛∞
𝑛=−∞  

DFT:  𝐻(𝑘) = ∑ ℎ[𝑛]𝑒−𝑗2𝜋𝑓𝑛𝑘/𝑁𝑁−1
𝑛=0  𝑘 = 0,1, … , 𝑁 − 1 

IDFT:  ℎ[𝑛] =
1

𝑁
∑ 𝐻(𝑘)𝑒𝑗2𝜋𝑓𝑛𝑘/𝑁𝑁−1

𝑘=0  𝑛 = 0,1, … , 𝑁 − 1 

D. Sampling theorem: 

Given an analog signal 𝑥𝑎(𝑡) sampled at 𝐹𝑠 = 1/𝑇. The DTFT of the resulting discrete-time 

sequence 𝑥[𝑛] = 𝑥𝑎(𝑡)|𝑡=𝑛𝑇  is given by 

𝑋(𝑓) = 𝑋(𝐹/𝐹𝑠) = 𝐹𝑠 ∑ 𝑋([𝑓 − 𝑘]𝐹𝑠)∞
𝑘=−∞   

E. Autocorrelation, energy spectrum and Parseval: 

Given a sequence ℎ[𝑛] with finite energy 𝐸ℎ 

Autocorrelation: 𝑟ℎℎ[𝑙] = ∑ ℎ[𝑛]ℎ[𝑛 + 𝑙]∞
𝑛=−∞   𝑙 ∈ ℤ 

Energy spectrum: 𝑆ℎℎ(𝑧) = 𝐻(𝑧)𝐻(𝑧−1) ⇒ 𝑆ℎℎ(𝑓) = |𝐻(𝑓)|2  

Parseval’s theorem: 𝐸ℎ = 𝑟ℎℎ[0] = ∑ ℎ2[𝑛]∞
𝑛=−∞ = ∫ |𝐻(𝑓)|2𝑑𝑓

1

0
 

  



 Appendix: TTT4120 Table of formulas A2 (A2) 

F. Multirate: 

Decimation (downsampling) where 𝑇𝑦 = 𝐷𝑇𝑥 

𝑣(𝑚𝑇𝑦) = ∑ ℎ[(𝑚𝐷 − 𝑘)𝑇𝑥]𝑥(𝑘𝑇𝑥)∞
𝑘=−∞   𝑚 ∈ ℤ 

Interpolation (upsampling) where 𝑇𝑦 = 𝑇𝑥/𝐼 

𝑦(𝑙𝑇𝑦) = ∑ ℎ[(𝑙 − 𝑛𝐼)𝑇𝑦]𝑥(𝑛𝑇𝑥)∞
𝑛=−∞   𝑙 ∈ ℤ 

Rate conversion where 𝑇𝑦 = 𝐷𝑇𝑣 =
𝐷

𝐼
𝑇𝑥 

𝑦(𝑙𝑇𝑦) = ∑ ℎ[(𝑙𝐷 − 𝑚𝐼)𝑇𝑣]𝑥(𝑚𝑇𝑥)∞
𝑚=−∞   𝑙 ∈ ℤ 

G. Autocorrelation, power density spectrum and Wiener-Khintchin: 

Given a wide-sense stationary and ergodic sequence 𝑋[𝑛] with infinite energy 

Autocorrelation: 𝛾𝑋𝑋[𝑙] = 𝐸{𝑋[𝑛]𝑋[𝑛 + 𝑙]}  𝑙 ∈ ℤ 

Power spectrum: 𝛤𝑋𝑋(𝑧) = 𝒵{𝛾𝑋𝑋[𝑙]} ⇒  

Wiener-Khintchin: 𝛤𝑋𝑋(𝑓) = DTFT{𝛾𝑋𝑋[𝑙]} = ∑ 𝛾𝑋𝑋[𝑙]𝑒−𝑗2𝜋𝑓𝑙∞
𝑙=−∞   

H. Yule-Walker and Normal equations where 𝒂𝟎 = 𝟏: 

Autocorrelation: ∑ 𝑎𝑘𝛾𝑋𝑋[𝑛 − 𝑘]𝑃
𝑘=0 = 𝜎𝑓

2𝛿[𝑛] 𝑛 = 0, … , 𝑝 

Normal equations: ∑ 𝑎𝑘𝛾𝑋𝑋[𝑛 − 𝑘]𝑃
𝑘=1 = −𝛾𝑋𝑋[𝑛] 𝑛 = 1, … , 𝑝 

I. Some common z-transform pairs: 

 


