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Problem 1 (2+6+5+5=18): Basics of filter theory and design 

A causal filter is given by the following difference equation 

𝑦[𝑛] = 𝑥[𝑛] + 𝛼2𝑦[𝑛 − 2] 

where 𝛼 is a finite real-valued constant. 

1a) Provide the system function corresponding to 𝑦[𝑛] in the form 

𝐻(𝑧) =
1

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2
 

1b) Express the filter as a cascade of two filters, i.e. 

𝐻(𝑧) = 𝐻1(𝑧) ⋅ 𝐻2(𝑧) =
1

(1 − 𝑝1𝑧−1)
⋅

1

(1 − 𝑝2𝑧−1)
 

where 𝑝1 and 𝑝2 denote the poles of the filter. Based on your findings, determine the range 

of 𝛼 that yields a stable filter. Draw the pole-zero plot and sketch the region of convergence 

(ROC) for a stable filter realization. 

1c) Express the filter in its parallel form 

𝐻(𝑧) = 𝐻3(𝑧) + 𝐻4(𝑧) =
𝐴1

(1 − 𝑝1𝑧−1)
+

𝐴2

(1 − 𝑝2𝑧−1)
 

and provide the unit impulse response ℎ[𝑛] = 𝒵−1{𝐻(𝑧)}.  

1d) Provide answers to the following questions (justify the answers):  

 Find the causal inverse filter 𝐻𝐼(𝑧) such that 𝐻(𝑧)𝐻𝐼(𝑧) = 1.  

 Find the ROC for 𝐻𝐼(𝑧) and sketch the pole-zero plot. 

 For 𝛼 = 1, discuss what type of filter 𝐻𝐼(𝑧) is (lowpass, highpass, bandpass, allpass). 

 Determine the range for 𝛼 for which 𝐻𝐼(𝑧) is a minimum-phase filter. 

 Does filter 𝐻𝐼(𝑧) have linear phase? 
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Problem 2 (6+6+6+2=20): Filter structures and implementations 

The filter in Problem 1a) with 𝜶 = 𝟎. 𝟓 is implemented using fixed-point representation with 

𝐵 + 1 bits and dynamic range [−1,1). Rounding is performed after each multiplication and the 

rounding error 𝑒[𝑛] can be modeled as white noise with variance 𝜎𝑒
2  = 2−2𝐵/12. Consequently, 

each multiplier in the fixed-point implementation is modeled as  

𝑄(𝑎𝑦[𝑛 − 𝑘]) = 𝑎𝑦[𝑛 − 𝑘] + 𝑒[𝑛]  
 

which is equivalent to adding noise sources after multipliers in the infinite-precision realization. 

Rounding noise sources combine into an equivalent noise signal 𝑧[𝑛] at the filter output with 

variance 𝜎𝑧
2 (see hint below).   

2a) Draw the direct-form structure II (DF-II) of  𝐻(𝑧) with noise sources due to rounding 

included. Determine the variance of the round-off noise at the filter output.  

2b) Draw the cascade-structure, 𝐻1(𝑧)𝐻2(𝑧), with noise sources due to rounding included. 

Determine the variance of the round-off noise at the filter output. 

2c) Draw the parallel-structure, 𝐻3(𝑧) + 𝐻4(𝑧), with noise sources due to rounding included. 

Determine the variance of the round-off noise at the filter output. You may put the 

multiplier(s) 𝐴1 and 𝐴2, obtained from the residue calculus in Problem 1c, at the output of 

the structure. 

2d) Which of the three implementations above suffers the most from rounding noise? Which 

implementation suffers the least? Justify your answers.  

 

[Hint:]  Assuming noise source 𝑒𝑖[𝑛] with variance 𝜎𝑒𝑖
2  acts as input to (sub-)filter ℎ𝑖[𝑛] that 

terminates at the output. The variance of the noise signal 𝑧𝑖[𝑛], due to 𝑒𝑖[𝑛], is given by  

𝜎𝑧𝑖
2 = 𝜎𝑒𝑖

2 𝑟ℎ𝑖ℎ𝑖
[0] = 𝜎𝑒𝑖

2 ∑ ℎ𝑖
2[𝑘]

𝑘

 

 

𝑒𝑖[𝑛] 
𝐻𝑖(𝑧) 

𝜎𝑒𝑖
2 = 𝐸{𝑒𝑖

2[𝑛]} 

𝑧𝑖[𝑛] 

𝜎𝑧𝑖
2 = 𝐸{𝑧𝑖

2[𝑛]} 
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Problem 3 (2+6+6=14): Parametric modeling 

 

A wide-sense stationary (WSS) stochastic process 𝑋[𝑛] is generated by filtering a white noise 

process 𝑊[𝑛], with autocorrelation sequence 𝛾𝑊𝑊[𝑙] = 𝜎𝑊
2 𝛿[𝑙], through a causal and stable filter 

𝐻(𝑧), as depicted in Fig. 1. The autocorrelation sequence and spectrum of 𝑋[𝑛] is obtained from  

𝛾𝑋𝑋[𝑙] = {
𝜎𝑊

2 ∑ ℎ[𝑛]ℎ[𝑛 + 𝑙]

∞

𝑛=0

, 𝑙 ≥ 0

𝛾𝑋𝑋[−𝑙], 𝑙 < 0

 

Γ𝑋𝑋(𝑓) = |𝐻(𝑓)|2Γ𝑊𝑊(𝑓) 

3a) Provide answers (with motivations) to the following two questions: 

 What type of process, AR(𝑝), MA(𝑞), or ARMA(𝑝, 𝑞), is 𝑋[𝑛] when the noise is 

filtered by 𝐻(𝑧) in Problem 1a for the case of 𝜶 = 𝟎. 𝟓? Provide the model order.  

3b) For filter 𝐻(𝑧) specified in 3a) and 𝝈𝑾
𝟐 = 𝟏, show that the respective autocorrelation 

sequence and spectrum of 𝑋[𝑛] are given by  

𝛾𝑋𝑋[𝑙] = {
16

15
⋅

1

2|𝑙|
, 𝑙 even

0, 𝑙 odd
 

Γ𝑋𝑋(𝑓) =
1

17
16 −

1
2 cos 4𝜋𝑓

 

3c) You are given the task to design a second-order predictor to model 𝑋[𝑛]. That is, you form 

an estimate of 𝑋[𝑛], denoted �̂�[𝑛], through the following linear combination �̂�[𝑛] =
𝑎1𝑋[𝑛 − 1] + 𝑎2𝑋[𝑛 − 2]. 

 Find the optimal values of 𝑎1 and 𝑎2that minimize the prediction error power.  

Hint: Use the values 𝛾𝑋𝑋[−2] through 𝛾𝑋𝑋[2] from 3b) together with the Normal 

equations, see Section H in the Table of formulas attached to the exam.   

 Find the resulting prediction error power 𝜎𝑓
2 when using the optimal coefficients. 

 Comment on your results. 

  

𝑊[𝑛] 
𝐻1(𝑧) 

𝛾𝑊𝑊[𝑙] 

𝑋[𝑛] 
𝐻2(𝑧) 

𝑍[𝑛] 

Γ𝑊𝑊(𝑓) 

𝛾𝑋𝑋[𝑙] 

Γ𝑋𝑋(𝑓) 

𝛾𝑍𝑍[𝑙] 

Γ𝑍𝑍(𝑓) 

Fig. 1: Filtering of stochastic processes 
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Problem 4 (6+2+6=14): Sampling and rate-conversion 

 

Let 𝑥𝑎(𝑡) be a continuous-time signal whose spectrum 𝑋𝑎(𝐹) is shown in Fig. 2. Signal 𝑥𝑎(𝑡) is 

sampled at rate 𝐹𝑥 =
1

𝑇𝑥
= 16 kHz to generate sequence 𝑥[𝑛] = 𝑥𝑎(𝑡)|𝑡  =𝑛𝑇𝑥

. We would now like 

to design a system that changes the sampling frequency of signal 𝑥[𝑛] in digital domain from 𝐹𝑥 

to 𝐹𝑦 =
1

𝑇𝑦
= 12 kHz. Let 𝑦[𝑚] be the resulting output signal. The conversion should not 

introduce any distortion due to aliasing.  

4a) Sketch the block diagram of the digital system that implements the sampling rate conversion. 

Explain the function of each individual block along with the specifications that arise from 

the rate conversion at hand (e.g., upsampling/downsampling factors, filter bandwidths, etc.).  

4b) Will the rate conversion above incur any loss of information? That is, can 𝑥𝑎(𝑡) be perfectly 

reconstructed from 𝑦[𝑚]?  

4c) Sketch the spectra of all the signals in the rate-conversion system. 

𝑋𝑎(𝐹) 

𝐹 [Hz] 
8000 −8000 

Fig. 2: Spectrum 𝑋𝑎(𝐹) of continuous-time signal 𝑥𝑎(𝑡) 



 Appendix: TTT4120 Table of formulas A1 (A2) 

Appendix: TTT4120 Table of formulas, 2017 

A. Sequences: 

 ∑ 𝛼𝑛𝑁−1
𝑛=0 =

1−𝛼𝑁

1−𝛼
 

 |𝛼| < 1 ⇒ ∑ 𝛼𝑛∞
𝑛=0 =

1

1−𝛼
 and − ∑ 𝛼𝑛−∞

𝑛=−1 =
1

1−𝛼
   

∑ (𝑛 + 1)𝛼𝑛𝑁−1
𝑛=0 =

1−𝛼𝑁

(1−𝛼)2
−

𝑁𝛼𝑁

1−𝛼
 ; 𝛼 ≠ 1 

|𝛼| < 1 ⇒ ∑ (𝑛 + 1)𝛼𝑛∞
𝑛=0 =

1

(1−𝛼)2  

B. Linear convolution: 

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛] = ∑ ℎ[𝑘]𝑥[𝑛 − 𝑘]∞
𝑘=−∞ = ∑ 𝑥[𝑘]ℎ[𝑛 − 𝑘]∞

𝑘=−∞   

𝑌(𝑧) = 𝐻(𝑧)𝑋(𝑧) 

𝑌(𝑓) = 𝐻(𝑓)𝑋(𝑓) 

𝑌(𝑘) = 𝐻(𝑘)𝑋(𝑘), 𝑘 = 0,1, … , 𝑁 − 1 where 𝑌(𝑘) = 𝑌(𝑓𝑘) with 𝑓𝑘 = 𝑘/𝑁  

C. Transforms: 

Z-transform: 𝐻(𝑧) = ∑ ℎ[𝑛]𝑧−𝑛∞
𝑛=−∞  

DTFT:  𝐻(𝑓) = ∑ ℎ[𝑛]𝑒−𝑗2𝜋𝑓𝑛∞
𝑛=−∞  

DFT:  𝐻(𝑘) = ∑ ℎ[𝑛]𝑒−𝑗2𝜋𝑓𝑛𝑘/𝑁𝑁−1
𝑛=0  𝑘 = 0,1, … , 𝑁 − 1 

IDFT:  ℎ[𝑛] =
1

𝑁
∑ 𝐻(𝑘)𝑒𝑗2𝜋𝑓𝑛𝑘/𝑁𝑁−1

𝑘=0  𝑛 = 0,1, … , 𝑁 − 1 

D. Sampling theorem: 

Given an analog signal 𝑥𝑎(𝑡) sampled at 𝐹𝑠 = 1/𝑇. The DTFT of the resulting discrete-time 

sequence 𝑥[𝑛] = 𝑥𝑎(𝑡)|𝑡=𝑛𝑇  is given by 

𝑋(𝑓) = 𝑋(𝐹/𝐹𝑠) = 𝐹𝑠 ∑ 𝑋([𝑓 − 𝑘]𝐹𝑠)∞
𝑘=−∞   

E. Autocorrelation, energy spectrum and Parseval: 

Given a sequence ℎ[𝑛] with finite energy 𝐸ℎ 

Autocorrelation: 𝑟ℎℎ[𝑙] = ∑ ℎ[𝑛]ℎ[𝑛 + 𝑙]∞
𝑛=−∞   𝑙 ∈ ℤ 

Energy spectrum: 𝑆ℎℎ(𝑧) = 𝐻(𝑧)𝐻(𝑧−1) ⇒ 𝑆ℎℎ(𝑓) = |𝐻(𝑓)|2  

Parseval’s theorem: 𝐸ℎ = 𝑟ℎℎ[0] = ∑ ℎ2[𝑛]∞
𝑛=−∞ = ∫ |𝐻(𝑓)|2𝑑𝑓

2𝜋

0
 

  



 Appendix: TTT4120 Table of formulas A2 (A2) 

F. Multirate: 

Decimation (downsampling) where 𝑇𝑦 = 𝐷𝑇𝑥 

𝑣(𝑚𝑇𝑦) = ∑ ℎ[(𝑚𝐷 − 𝑘)𝑇𝑥]𝑥(𝑘𝑇𝑥)∞
𝑘=−∞   𝑚 ∈ ℤ 

Interpolation (upsampling) where 𝑇𝑦 = 𝑇𝑥/𝐼 

𝑦(𝑙𝑇𝑦) = ∑ ℎ[(𝑙 − 𝑛𝐼)𝑇𝑦]𝑥(𝑛𝑇𝑥)∞
𝑛=−∞   𝑙 ∈ ℤ 

Rate coversion where 𝑇𝑦 = 𝐷𝑇𝑣 =
𝐷

𝐼
𝑇𝑥 

𝑦(𝑙𝑇𝑦) = ∑ ℎ[(𝑙𝐷 − 𝑚𝐼)𝑇𝑣]𝑥(𝑚𝑇𝑥)∞
𝑚=−∞   𝑙 ∈ ℤ 

G. Autocorrelation, power density spectrum and Wiener-Khintchin: 

Given a wide-sense stationary and ergodic sequence 𝑋[𝑛] with infinite energy 

Autocorrelation: 𝛾𝑋𝑋[𝑙] = 𝐸{𝑋[𝑛]𝑋[𝑛 + 𝑙]}  𝑙 ∈ ℤ 

Power spectrum: 𝛤𝑋𝑋(𝑧) = 𝒵{𝛾𝑋𝑋[𝑙]} ⇒  

Wiener-Khintchin: 𝛤𝑋𝑋(𝑓) = DTFT{𝛾𝑋𝑋[𝑙]} = ∑ 𝛾𝑋𝑋[𝑙]𝑒−𝑗2𝜋𝑓𝑙∞
𝑙=−∞   

H. Yule-Walker and Normal equations where 𝒂𝟎 = 𝟏: 

Autocorrelation: ∑ 𝑎𝑘𝛾𝑋𝑋[𝑛 − 𝑘]𝑃
𝑘=0 = 𝜎𝑓

2𝛿[𝑛] 𝑛 = 0, … , 𝑝 

Normal equations: ∑ 𝑎𝑘𝛾𝑋𝑋[𝑛 − 𝑘]𝑃
𝑘=1 = −𝛾𝑋𝑋[𝑛] 𝑛 = 1, … , 𝑝 

I. Some common z-transform pairs: 

 


