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Recent years have seen a growing interest among both academics and practi-
tioners in the field of supply chain management. With that has come a growing 
body of work on supply chain contracts. Few firms are so large and few prod-
ucts so simple that one organization can manage the entire provision of the 
good. Rather, most supply chains require the coordination of independently 
managed entities who seek to maximize their own profits. Issues of who con-
trols what decisions and how parties will be compensated become critical. An 
understanding of contractual forms and their economic implications is therefore 
an important part of evaluating supply chain performance. 

The literature on supply chain contracts can be roughly split into two classes. 
The first takes a particular contract and determines what optimal actions are 
assuming that the contract terms are fixed. Some attention may be given 
to the impact of contract parameters on agents' profits or costs, but there is 
generally no attempt to establish systematically whether the contract allows 
the decentralized system to perform as well as a centralized one (i.e., whether 
the contract can coordinate the system). Eppen and Iyer (1997) and Brown 
and Lee (1997) are two recent examples that fall within this class. 

The second class takes agents' optimal policies under a contract as given 
and considers whether the terms of trade can be adjusted to at least improve, 
if not coordinate, the supply chain. Generally, one supposes that a player may 
propose the specific terms within a contractual form and asks what contract 
she would offer. This line of work is closely related to the work on vertical re-
straints in the economics literature (Mathewson and Winter, 1984) and channel 
coordination in marketing (Jeuland and Shugan, 1983; Moorthy, 1987). In this 
chapter, we essentially ignore the first class of papers and focus on a subset of 
the second. Our basic model is a one period setting in which a manufacturer 
sells to a retailer facing a newsvendor problem. 

Most stochastic inventory models rest in part on intuition gained from the 
single period newsvendor problem. It is our contention that the same holds true 
for supply chain contracting under stochastic demand. Under the contracts we 
consider here, the fundamental inventory problem remains sufficiently simple 
that one can characterize its solution with some precision. Because the solution 
to the inventory problem is well understood, we can develop a detailed analysis 
of the economic incentives the contracts provide. In particular, we will show 
that contracting on excess inventory in the form of returns policies can greatly 
improve channel performance. Returns policies allow for the parties to place 
"bets" on how realized demand compares to the chosen stocking level. Improved 
channel performance follows from the manipulation of these wagers. 

In what follows, we first present the basic assumptions of the model and 
evaluate the performance of the integrated channel. Section 8.2 presents the 
simplest terms of trade, a price-only contract. Subsequent sections examine 
richer contractual forms that allow the channel to be coordinated. Section 
8.3 considers buy back contracts while section 8.4 analyzes quantity flexibility 
contracts. Section 8.5 briefly discusses other coordination schemes found in 
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the literature. Section 8.6 offers concluding remarks and directions for future 
research. 

8.1 MODEL ASSUMPTION AND INTEGRATED CHANNEL 
PERFORMANCE 

We consider a one-period setting in which a manufacturer sells to a retailer 
facing demand from consumers. If the channel fails to provide sufficient stock, 
unmet demand is lost. The retail price is fixed at r per unit regardless of the 
terms the manufacturer offers. The manufacturer can produce the good at a 
constant marginal cost c. Any unsold inventory can be salvaged at a value v 

per unit. To avoid trivial problems, assume r > c> v. Obviously, the setting 
can be characterized as a newsvendor problem. 

We assume that demand e has a continuous distribution P (e) on the non-
negative reals with density f (e). In addition it will be convenient to assume 
that P (e) is invertible and that f (e) has a continuous derivative f' (e). Also 
let P (e) = 1 - P (e). The demand distribution, as well as all cost and revenue 
information, are common knowledge. 

It is straightforward to verify that the profits of an integrated firm (Le., one 
that controls both manufacturing and sales to the pUblic) for stocking level Y 

are: 

IIr (y) = (r - c) y - (r - v) loy P (e) cLe· (8.1) 

The problem is concave in the stocking level, and the optimal solution is given 
by: 

Yr=P- --1 (r -c) 
r-v 

where p-1 is the inverse of the cumulative distribution. Denote the maximum 
system profits by IIj = IIr (Yr). Note that system profits are completely deter-
mined by the stocking level. Looking ahead to when we consider contracting 
between independent parties below, we can prove that terms coordinate the 
channel if we can show that they induce the choice of the centralized system's 
optimal stocking level, Yr. 

As we consider contracting in this environment, we assume the manufacturer 
acts as a Stackelberg leader. She offers the terms of trade as a take-it-or-Ieave-it 
proposition to the retailer, which he can only accept or reject. We assume he 
accepts the terms if they allow him to earn a non-negative return (perhaps net of 
some opportunity cost). Clearly, this is a gross simplification; it would be more 
natural to assume that the parties negotiate over the terms. Unfortunately, 
properly modeling bargaining is sufficiently complex that no consensus exists 
regarding the appropriate equilibrium concept (Salanie, 1997). We skirt the 
issue by assigning all the bargaining power to one player. Where appropriate, 
we will comment on how the results would differ if the retailer were able to 
offer the terms of trade. 
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8.2 PRICE-ONLY CONTRACTS 

Here we consider price-only contracts; the manufacturer offers the good at 
a per unit wholesale price w, and the retailer retains possession of any excess 
stocie We first examine the retailer's problem under a price-only contract before 
turning to the manufacturer's problem. We present sufficient conditions for the 
manufacturer's profits to be unimodal and characterize the optimal wholesale 
price (where "optimal" should be interpreted as maximizing the manufacturer's 
profits). We show that whenever the manufacturer proposes the terms of trade, 
a price-only contract fails to coordinate the channel. We close the section with 
a brief discussion of standard remedies from economics for improving channel 
performance. 

8.2.1 The retailer's problem 

The retailer faces a problem analogous to that of the integrated channel given 
in (8.1). The principal difference is that the retailer must buy stock at price w 

instead of producing it at cost c. If we assume that the retailer has the same 
salvage opportunities as the integrated channel, we then have: 

llR(y)=(r-w)y-(r-v) loy 

Clearly, llR (0) = 0 and llk (0) > 0 if w < r. Thus if we normalize the 
retailer's opportunity cost to zero, he will accept any contract such that the 
wholesale price is less than the retail price and order a positive quantity from 
the manufacturer.1 The retailer's problem is concave and the optimal solution 
is given by: 

y(w) = p-1 __ . 
(

r-w) 

r-v 

8.2.2 The manufacturer's problem 

Acting as a Stackelberg leader, the manufacturer correctly anticipates how the 
retailer will order for any wholesale price. She therefore anticipates facing a 
demand curve y(w), yielding a profit function of: 

llM(w) (w - c)y (w) (8.2) 

(w-c)p- -- . 1 (r -w) 

r-v 

There are a few points worthy of mention from (8.2). First, under a price-only 
contract, the manufacturer's profits are deterministic. She knows exactly what 
the retailer will order at every wholesale price and bears no responsibility for 

lThis will not necessarily hold if there is a positive stock out penalty. See Lariviere and 
Porteus, 1997. 
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the goods once the retailer takes possession. All uncertainty regarding channel 
profits is foisted onto the retailer. The richer contracts we consider in subse-
quent sections differ from price-only contracts by allowing the manufacturer to 
assume some of the risk arising from random demand. 

A second observation is that (8.2) is simply not the most convenient ex-
pression with which to work. We would like to develop conditions for the 
manufacturer's profit function to be well behaved. When, for example, is it 
unimodal? Answering such questions could be exceedingly difficult since we 
lack general statements about the inverse of the cumulative density function. 
We would be forced to evaluate (8.2) distribution by distribution. 

To allow for broader statements, we follow Lariviere and Porteus (1998) to 
develop an alternative expression for manufacturer profits. First, instead of 
working with the demand curve y (w), we work with the inverse demand curve 
w (y), where 

w (y) = (r - v)F (y) + v. 

The change may be interpreted as follows. Previously, we had assumed the 
manufacturer chose her wholesale price while anticipating selling the most the 
retailer would freely take at that price. Now, we are assuming that manufac-
turer chooses how much she wants to sell anticipating receiving the most per 
unit that the retailer would freely pay to take all of the offered stock. In a 
competitive setting, choosing quantities instead of price can lead to markedly 
different outcomes. Here, however, the approaches are equivalent since the 
manufacturer holds a monopoly position. 

The second change we make is to alter the costing conventions. Let w = w-v 
and r = r - v. The inverse demand curve can now be written as: 

w (y) = f F (y) . (8.3) 

Under the revised accounting structure, the retailer immediately credits himself 
for salvaging the goods upon receipt, thus lowering the effective wholesale price. 
To keep himself from booking deceptively high profits, he must also lower the 
retail price.2 While in what follows we will refer to wand f as the wholesale 
and retail prices, respectively, one should keep in mind that they are, in fact, 
mark ups over the salvage value. 

An immediate observation following from (8.3) is that the "market-clearing" 
wholesale price w (y) is proportional to the retail price f. Another consequence 
is a simpler expression for manufacturer profits: 

IIM(y) Y (w (y) - c) (8.4) 

= y(fF(Y)-c) 

where c = c - v. Expressing the marginal cost of production as a mark up over 
the salvage value assures that (8.2) and (8.4) yield the same results for a given 

2The interpretation requires an obvious modification if v is negative and the retailer pays to 
dispose of stock. 
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(y, tV (y)) pair (or, equivalently, a (tV, y (tV)) pair). We also have an alternative 
statement of the manufacturer's problem: Choose y to maximize IIM(Y)· 

8.2.3 Characterizing the optimal solution 

In examining the manufacturer's problem, a few points are obvious. First, she 
will never sell more than YI since that would necessitate a wholesale price below 
the marginal cost of production. Second, if > 0 for all > 0, she will 
choose a sales quantity strictly between 0 and YI which will result in a wholesale 
price between c and r. The optimal sales quantity will be an interior solution, 
and first order conditions must hold.3 

But are first order conditions sufficient? Is it possible for the manufacturer's 
problem to have multiple local maxima? Alternatively, is it possible that there 
is no solution to the manufacturer's problem? Both are possible; the manu�
facturer's first order conditions may have multiple or no solution. To see the 
former, consider the following density defined for E (0,1): 

f = Cos + 1. (8.5) 

The corresponding profit function exhibits multiple local maxima and minima. 
While first order conditions must hold at the optimal solution, they may hold 
at multiple points, some of which may be local minima. 

For an example of a distribution for which first order conditions never hold, 
consider the Pareto distribution with f = k(}k for (). The corre�
sponding inverse demand curve, 

is isoelastic with elasticity 11k. For the manufacturer's profits to be concave 
we require that the elasticity be greater than one or, equivalently, that k < 1. 
However, for k < 1, the mean of the Pareto, and hence the retailer's problem, is 
undefined. One can show that for any problem with finite expected demand the 
manufacturer's problem is convex; she will charge tV = r and sell the minimum 
quantity (). 

The density given in (8.5) is admittedly perverse and an unrealistic model 
of demand. The Pareto example is a little more troubling; while not commonly 
used as a demand distribution, it is not a completely absurd choice for a mod�
eler. It forces one to question what other distributions fail to yield sensible 
solutions to the manufacturer's problem. 

3There are two exceptions to note. If F (e) = 0 for all e E [o,e] , the manufacturer may sell e 

units at a wholesale price of r. We cannot rule out the possibility that she prefers the comer 
solution of extracting all profits on the certain sales of e. In addition, if the retailer has 
a positive opportunity cost that exceeds his profits under the manufacturer's optimal retail 
price, the manufacturer will deviate from the price found from the first order conditions. 
It is straightforward to show that the manufacturer prefers cutting her wholesale price to 
charging the unconstrained price and paying a lump sum to gain participation (Lariviere and 
Padmanabhan, 1997). 
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In order to assure that the manufacturer's first order conditions have a 
unique solution, we must place limits on the demand distribution that rule 
out the likes of (8.5) and the Pareto. To that end, define h (e) as the failure, 
or hazard, rate function of the demand distribution. 

h(e) = 
F(e) 

In our setting, h (e) de may be interpreted as the probability that demand will 
lie in the interval fe, e + de] given that demand is at least e. A distribution is 
said to have an increasing failure rate (IFR) if h' (e) > 0 for all e· 

Define 9 (e) = eh (e) as the generalized failure rate. We say that a distri-
bution has an increasing generalized failure rate (IGFR) if g' (e) > 0 for all 
e. Clearly, a distribution that is IFR is also IGFR, but the distinction is not 
vacuous. Consider the Weibull distribution, 

for k > 0 and () > 0, or the gamma distribution, 

for k > 0 and () > O. Both are IFR for a restricted set of parameters (Le., k > 1) 
but are IGFR for all parameters. IGFR distributions offer additional flexibility 
over IFR ones that are particularly relevant in our setting. For example, IFR 
distributions must have a coefficient of variation of less than one (Barlow and 
Proschan, 1965) while IGFR distributions are not similarly restricted. 

The following theorem shows that an IGFR demand distribution is also 
sufficient for manufacturer profits to be well-behaved.4 

Theorem 1 Let v (e) denote the own-price elasticity of the retailer's orders to 

the manufacturer, and let yl be the smallest value of e such that 9 (e) = 1. If 

no such e exists, let yl = 00. 

1. The elasticity of retailer's orders is given by 

(8.6) 

2. The manufacturer's first order conditions may be written as 

w (y) (1 - 1/v (y)) = c. (8.7) 

4This and most of the results in the current section are from Lariviere and Porteus, 1998. 
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3. If the demand distribution is IGFR,· then the manufacturer's profits are 

unimodal on [0, 00), concave on [0, yl], and strictly decreasing on [yl, 00). 
Any solution to (8.7) is a unique global maximum and must lie in the 

interval [0, yl]. 

Proof: For the first part of the theorem, note that /J is defined as 
/J = - The result is then immediate from the definition of w 

The second part follows from a standard microeconomic result (Kreps, 1990). 
Differentiating revenue, yw (y), yields marginal revenue, M R (y): 

M R (y) = f P (y) - yf f (y) = f P (y) (1 - 9 (y)) . 

The condition (8.7) thus reduces to setting marginal revenue equal to marginal 
cost. For the final part of the theorem, note that IGFR implies that P (y) 
and 1 - 9 (y) are decreasing on [0,00). Both are positive on [0, yl] so marginal 
revenue is positive and decreasing there. Hence revenue and profits are concave 
on [0, yl]. As MR (yl) = 0, any solution to (8.7) mustlie in [0, yl] and from 
concavity must be unique. Profits are falling on [yl, 00) because revenue is 
strictly decreasing while costs are strictly increasing over this region. 0 

Note that /J is the elasticity of the orders the retailer places with the 
manufacturer, not the elasticity of end consumer demand. We have not mod-
eled consumer behavior and, indeed, have assumed a fixed retail price. On 
the other hand, by modeling the retailer's ordering policy, we have defined an 
induced demand curve (and the equivalent induced inverse demand curve) that 
the manufacturer faces. /J measures the percent change in the retailer's or-
ders for a percent change in the wholesale price. Thus, if /J > 1, a wholesale 
price cut is offset by such an increase in volume that total revenue increases. 
Conversely, if /J < 1, a price increase will boost total revenue. An imme-
diate consequence of the theorem is the standard result that the optimal sales 
quantity will lie on the elastic portion of the demand curve (i.e., /J > 1). 

The relationship between the elasticity of orders and the generalized fail-
ure rate captured by (8.6) offers some intuition for why IGFR is the correct 
sufficient condition for a well-behaved profit function. IGFR implies that the 
elasticity of orders falls monotonically with the sales quantity. If the elasticity 
of orders falls monotonically, then marginal revenue falls monotonically and 
can equal the marginal cost of production at only one point. 

The two poorly-behaved examples we considered above fail to be IGFR. 
The generalized failure rate for the density in (8.5) is not monotonic since 
the density itself drops to zero periodically. The Pareto, on the other hand, 
has a constant generalized failure rate. For meaningful parameter values, the 
generalized failure rate is greater than one and marginal revenue is everywhere 
negative. 

While the theorem limits the distributions that one can be assured are well-
behaved, the IGFR class is broad enough to capture most of the distribution 
a modeler would choose to employ. In addition to the distributions discussed 
above, the uniform and the normal are both IFR and hence IGFR. In addi-
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tion to assuring a well behaved profit function, IGFR gives us some additional 

attractive properties. 

Theorem 2 If the demand distribution is IGFR, then the optimal sales quan�

tity y* is increasing r and decreasing in c. Additionally, 'Ii! (y*) 'Ii! (yl). 

Proof: The first part follows immediately from noting that IGFR is suf-

ficient for marginal revenue to be monotonically decreasing on [0, yl]. The 

second part follows from the fact that y* must lie in [0, yl]. 0 

Thus an IGFR distribution assures that the optimal sales quantity changes 

as one would expect with respect to cost and revenue parameters. The lower 

bound on the manufacturer's profit maximizing wholesale price 'Ii! (y*) given by 

her revenue maximizing price 'Ii! (yl) is useful since yl may be found simply 

from the generalized failure rate. For example, the generalized failure rate for 

the Wei bull is g (') = Bke. Solving for the sales quantity such that v (y) = 1 

yields yl = Uk) 11k. The lower bound on the wholesale price is then 

(8.8) 

We are consequently able to conclude that the optimal wholesale price for the 

Weibull goes to the retail price as the parameter k goes to infinity. 

8.2.4 Special cases 

The preceding results give a general characterization of the optimal solution. 

Further assumptions regarding the demand distribution allow some additional 

analysis. First we require some definitions. We say a distribution is from a 

"scaled" family if the distribution depends on a parameter B and there exists 

an increasing, positive function T (B) such that 

We immediately have that for scaled families f ('IB) = r(o) f ( rfoy 11), h ('IB) = 

rfo>h ( rfoy 11), and g WB) = g (rfoy 11). The most obvious examples of scaled 

families are uniform [0, BJ random variables or exponential random variables 

with mean B. Less obvious examples are the Weibull and gamma distributions. 

We say that a family of distributions is "shifted" if, for some parameter 

B 0, 

FWB) = F(, - BIO). 

This implies that f WB) = f (' - BIO), h WB) = h (' - BIO), and 9 WB) > 
9 (' - BIO). The normal distribution with mean B and fixed standard deviation 

(J' is an example of a shifted family. 

Theorem 3 Suppose that the demand distribution F WB) is IGFR for all val�

ues of B. 
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1. If F (9) is from a scaled family, the optimal order quantity is propor�

tional to T (9) and the resulting wholesale price is independent of 9. That 

is: 
y* (9) = T (9) y* (1) and w* (9) = w* (1) 

where y* (9) and w* (9) are the optimal values of y and w given 9. 

2. If F (9) is a shifted family, then for > 0 : 

y* (9 < y* (9) + and w* (9) < w* (9 

If in addition F (eI9) is IFR, then y* (9) < y* (9 + 

Proof: For the first part, the manufacturer's first order conditions for an 
arbitrary value of 9 can then be written as: 

fF(y* (9) 19)(1- g(y* (9) 19» = 

fF (y* (9) IT (9) 11) (1- 9 (y* (9) IT (9) 11» = c. (8.9) 

However, for 9 = 1, first order conditions are: 

fF (y* (1) 11) (1 - 9 (y* (1) 11» = c. 

Thus (8.9) must be satisfied by y* (9) = T (9) y* (1). The corresponding whole-
sale price is found from: 

w* (9) = fF (y* (9) 19) = fF (T (9) y* (1) 11) = w* (1). 
T (9) 

For the second part, we first show that y* (9 < y* (9) Since F is a 
shifted family: 

F (y* (9) + = F (y* (9) - (10) = F (y* (9) 19) 

h (y* (9) + = h (y* (9) - (10) = h (y* (9) 19) 

which gives that 9 (y* (9) + > 9 (y* (9) 19). We then have: 

fF (y* (9) + (1 - 9 (y* (9) + 
< fF (y* (9) 19) (1- 9 (y* (9) 19» = c. 

The final equality follows from the definition of y* (9). That y* (9 < 
y* follows from the IGFR property which implies that marginal revenue 
is a decreasing function. That w* (9) < w* (9 + immediately follows from 
y* (9 + < y* (9) + 

For y* (9) < y* (9 + note that 

F (y* (9) 19 = F (y* (9) - (9 10) > F (y* (9) - (10) = F (y* (9) 19) 
h (y* (9) 19 = h (y* (9) - (9 10) < h (y* (9) - (10) = h (y* (9) 19) , 
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The second inequality follows from the IFR assumption and implies that 

9 (y* (0) 10 < 9 (y* (0) 10) . 

The remainder of the proof is essentially the reverse of the previous case. 0 
The first part of the theorem states that for many distributions the optimal 

wholesale price never depends on some distribution parameter. For example, 
the same wholesale price is optimal for all markets with exponential demand. 
More generally, one can show that a scaled family has a constant coefficient of 
variation, and it is the coefficient of variation that determines the optimal price 
when demand is gamma or Weibull. 

An alternative interpretation of the result is that the manufacturer induces 
the retailer to serve the same fraction of demand for all distributions in the 
family. Recall that the elasticity of retailer lJ (e) gives the percentage change in 
retailer's orders for a percentage change in the wholesale price. With a scaled 

family we have lJ (eIO) = lJ The responsiveness of retailer orders to a 

price change at a given fractile of the demand distribution is the same for all 
members of the family. Thus the optimum is always found at the same fractile. 

The second part of the theorem relates the optimal sales quantity and whole-
sale price to an additive parameter. As with a scaled distribution, a higher 0 
for a shifted family corresponds to a larger market, and the manufacturer re-
sponds to an increased market size by increasing her sales quantity (although 
the increase is less than the increase in the market size). Unlike a scaled family, 
a shifted distribution leads to the manufacturer charging a higher price. These 
observations immediately give the following. 

Theorem 4 If the demand distribution F WO) is from either a shifted or a 
scaled family, then the manufacturer's profits are increasing in O. 

Note that for a shifted family, varying 0 changes the mean but has no impact 
on the variance of the distribution. Thus while scaled families have constant 
coefficients of variations, shifted families have coefficients of variations that 
decrease as 0 increases. Further, the optimal price is higher for lower coefficients 
of variation. This logic yields the following: 

Theorem 5 Suppose demand is normally distributed. The optimal wholesale 
price is determined by the coefficient of variation and the manufacturer charges 
more the smaller the coefficient of variation is. 

Proof: We first show that the normal can be expressed as a scaled family. 
Let 0 denote the mean, "( denote the coefficient of variation (giving a standard 
deviation of O"(), and f WO, O"() denote the density. We have: 

J(eIO,O"() = 1m:: exp [- (e - 0)2 /2"(202] 
0"(y211" 

= 1m:: exp [- (e/O - 1)2 /2"(2] 
O"(Y 211" 

1 
= {/ (eIOll, "() . 
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The normal is therefore a scaled family, and the optimal wholesale price de-

pends only on the coefficient of variation. To see that the wholesale price must 

decrease in the coefficient of variation, consider two markets, one with mean 

one and coefficient of variation '1'1 and the other with mean '1'1/'1'2 and coef-

ficient of variation '1'2. Assume '1'1 > '1'2. The demand distributions are now 

from a shifted family since they have the same standard deviation but different 

means. As '1'1h2 > 1, market two must have the higher price, but it is also the 

market with the smaller coefficient of variation. 0 
We derived a similar result for the Weibull using the lower bound on the 

optimal wholesale price given in (8.8) above. The coefficient of variation for 

the Weibull is decreasing in the parameter k while the lower bound increases 

in k. To gain some intuition to support these results, suppose the coefficient 

of variation were zero and demand were known with certainty. The retailer's 

order is then completely inelastic for any wholesale price less than or equal to 

the retail price. The manufacturer responds by pushing the wholesale price up 

to f, capturing all channel profits for herself. This observation suggests if the 

optimal wholesale price is monotonic in the coefficient of variation (as it is for 

the normal), it must fall as variability increases. 

8.2.5 Supply chain performance 

While we have determined the best the manufacturer can do for herself, we 

must acknowledge that it will not be the best outcome for the supply chain as 

a whole. The manufacturer will always choose to sell a quantity less than Yr 

(or, equivalently, will always charge a wholesale price above the marginal cost 

of production). Total profits in the decentralized system will thus be less than 

the profits of a centralized system. 

This phenomenon of double marginalization has long been known in the 

study of industrial organization (Spengler, 1950). The standard presentation 

has a manufacturer selling to a retailer facing a known, downward-sloping de-

mand curve. By selling at a wholesale price above her marginal cost of produc-

tion, the manufacturer induces the retailer to set a retail price above what an 

integrated firm would charge. Sales, and system profits, are thus below what 

an integrated channel could achieve. In our setting, the retail price is fixed. 

Double marginalization consequently appears as inadequate stocking levels. In-

sufficient inventories, not overly high retail prices, are the source of the problem. 

In an applied setting, this issue is explored by Pasternack (1980). 

Economists have suggested a number of possible remedies to improve sup-

ply chain petformance. These generally fall under the heading of "vertical 

restraints." The most common suggestions are franchising, quantity forcing, 

resale price maintenance (RPM) and exclusive territories. Tirole (1988) pro-

vides an introduction to the topic while Mathewson and Winter (1984) evaluate 

their relative merits in a number of environments. 

RPM (i.e., allowing the manufacturer to dictate the retail price) and exclu-

sive territories provide little help in our setting. We have explicitly assumed 

that the retail price is fixed regardless of the terms offered and have implicitly 
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assumed that the retailer already enjoys a local monopoly. The impact of RPM 
when the market size is uncertain and the retailer has control over the retail 
price is considered in Deneckere, Marvel, and Peck (1996 and 1997) and Butz 
(1997). A comparison of RPM and exclusive territories in such a setting is 
offered by Rey and Tirole (1986). 

On the other hand, franchising and quantity forcing are capable of coor-
dinating our system. That is, allowing the decentralized system to earn the 
same profits as a centralized one. Further, both allow for an arbitrary split of 
the system's profits. Under franchising, the manufacturer charges an upfront 
fee A to carry the product (regardless of the stocking level) and then sells the 
product at a wholesale price of w. 5 Since the size of the lump sum payment is 
independent of the order quantity, the retailer will willingly pay any quantity 
such that 

A IIR (w) - K" 

where IIR(w) = IIR(y(w)) and K, 0 is the retailer's opportunity cost for 
carrying the product. It is straightforward to show that IIR (w) is decreasing 
in w. The largest fee the manufacturer can extract without subsidizing the 
retailer (i.e., selling the product at a loss) is 

She can thus capture all channel profits except for the minimum amount the 
retailer requires to participate in the system. Note that system profits are 
independent of A. It is transferring at marginal cost that eliminates double 
marginalization; the franchise fee serves only to redistribute profits and conse-
quently enables an arbitrary split of profits. 

Franchising works by eliminating distorted incentives that affect the retailer's 
choice. Quantity forcing works by simply eliminating the retailer's choice. The 
manufacturer offers the product a wholesale price of wand insists that the 
retailer take some quantity Q. Clearly, if Q = YI, inventory in the system is 
equal to the integrated channel's quantity, so system profits must equal IIj. It 
is now the wholesale price that serves no purpose in coordination and is freed 
to redistribute profits.6 The retailer's profits are 

IIj - (w - c) YI. 

Hence he accepts any contract such that 

II* - K, w < _1 __ +c. 
- YI 

Quantity forcing is therefore also able to support an arbitrary split of profits 
and, in particular, can be structured to drive the retailer to indifference. 

5Note that here and for the rest of the chapter we return to our original costing convention. 
6See Cachon and Lariviere (1997) for ways in which this pricing flexibility can be exploited. 



247 

8.3 RETURNS POLICIES: BUY BACK CONTRACTS 

The nostrums economists favor for improving supply chain performance have 
generally been developed for settings in which demand is deterministic. Con-
sequently, no sale is ever lost and no unit ever goes unsold. That is not so in 
our setting, and that change allows for the consideration of some additional 
contracts. In this and the next section we focus on returns policies. See Pad-
manabhan and Png (1995) for a managerial discussion of such programs. 

Given a stocking level, some demand realizations will result in excess stock. 
We show that by judiciously assigning responsibility for that surplus the system 
can be coordinated. Accountability can be adjusted through a price mechanism 
(buy backs) or a quantity scheme (quantity flexibility contracts). Further, 
either approach can support an arbitrary split of profits without any ancillary 
payments. Surprisingly, a player's profits are increasing in the burden she 
bears for excess stock. Either method is consequently capable of performing as 
well as franchising or quantity forcing without being as heavy-handed as those 
schemes. 

Here we consider buy back contracts, postponing quantity flexibility until the 
next section. We first present the basics of the contract, the retailer's optimal 
policy under the contract and some properties of the resulting manufacturer's 
profits. We then determine the coordinating contract and demonstrate the 
flexibility of buy backs by considering the various settings in which they have 
been applied. 

8.3.1 Contract basics 

We now assume that in addition to posting a wholesale price w, the manufac-
turer stands ready to buy back any unsold stock from the retailer at a per unit 
rate b < w. If realized demand Ä is less than the order quantity y, the retailer 
receives b (y - Ä). Restricting b to be less than w ensures that the manufac-
turer does not create an arbitrage opportunity for the retailer, allowing him 
to buy stock in order to return it for a profit. Additionally, for the deal to be 
attractive to the retailer, b must be greater than what the retailer can achieve 
by salvaging the stock himself, which raises an important issue: To evaluate 
the effectiveness of such contracts, we must make some assumption about the 
salvage opportunities open to the players. It will obviously be impossible to 
replicate the outcome of the integrated channel if our buy back scheme results 
in some stock being salvaged at unfavorable terms. 

There are a number of assumptions that will prevent this outcome. First we 
can assume that the manufacturer can salvage the product at the integrated 
channel rate v while the retailer can only salvage the product for an amount 
less than or equal to v. Offering a buy back of b to the retailer costs the 
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manufacturer b - v per unit. 7 If, on the other hand, only the retailer can 
salvage at the integrated channel level, we can assume that the manufacturer 
can verify the retailer's excess inventory. The manufacturer can then pay the 
retailer b - v per unit, leaving the retailer with an effective salvage rate of b. 

We shall see that the power of returns policies is that they allow payments that 
are conditional on both the chosen stocking level and realized demand. This 
second assumption recognizes that these payments can be divorced from the 
actual movement of goods as long as the parties can verify that the payments 
are warranted. 

Both alternatives must be recognized as simplifications of reality. Moreover, 
they both rest on a larger assumption: Imposing a returns policy on the de-
centralized channel introduces no additional cost beyond that incurred by the 
centralized system. Thus in the first case, returning stock to the manufacturer 
requires no transportation or handling costs that the centralized system could 
avoid. In the second, verifying the retailer's excess inventory must be costless. 

8.3.2 The retailer's problem 

With these assumptions, we can write the retailer's objective as: 

IIR (y) = (r - w) y - (r - b) loy F 

The retailer still faces a newsvendor problem. The optimal solution is now 

-1 (r-w) 

y(w,b)=F r-b. 

It is straightforward to verify that the retailer's optimal order quantity and 
profits for a fixed wholesale price are increasing in b. Holding the manufacturer's 
wholesale price constant, he prefers a generous returns policy. 

8.3.3 The manufacturer's problem 

Under price only contracts, the manufacturer's profits were deterministic. For 
any wholesale price, she knew exactly what she would sell, and the retailer's 
presence sheltered her from market uncertainty. With a buy back contract, she 
is now exposed to the possibility of a poor demand outcome. Her profits are 
given by: 

r(W,b) 

IIM(w,b)=(w-c)y(w,b)-(b-v) Jo 

(8.10) 

7Note that b does not have to be positive. For example, the retailer may pay the manufacutrer 
to take excess stock off his hands as long as b is less costly than his next-best disposal 
opportunity. 
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For price-only contracts, we could develop sufficient conditions on the de-
mand distribution for the manufacturer's problem to be well-behaved. AB the 
following shows, buy backs are more complicated, and her objective is never 
well-behaved. 

Theorem 6 The Hessian ofIIM (w, b) is nowhere negative definite. Thus sec-
ond order conditions for a local maximum are never satisfied. 

Proof: For second order conditions to be satisfied, the Hessian must be neg-
ative definite, which requires that its determinant be positive. Its determinant, 
however, is 

(r (w - c) + v (r - w) - b (r - c))2 
(r - b)6 f (y (w, b))2 

which is always negative. 0 
For price only contracts we could place limits on the demand distribution 

that assured that first order conditions were sufficient to determine the optimal 
contract. While intuitively appealing, that approach will not work here. We 
require an alternative approach to determine the equilibrium contract. 

8.3.4 Coordinating contracts 

While we cannot identify the optimal contract through standard optimization 
approaches, some form of returns policy is beneficial to the system. Paster-
nack (1985) shows that having the manufacturer accept no returns leads to 
a suboptimal outcome for the system. Similarly a policy of full returns (i.e., 
fully refunding the wholesale price on all unsold items) is also suboptimal. An 
intermediary policy, however, results in channel coordination, as the following 
theorem (from Pasternack, 1985) shows. 

Theorem 7 Suppose that the manufacturer offers a contmct (w(c), b(c)) for 
c E (0, r - c] where 

c(r - v) 
w(c) = r - c and b(c) = r - . 

r-c 

1. The retailer orders the integmted channel quantity (i.e., y(w(c), b(c)) = 
YI) and system profits are equal to the integmted channel profits. 

2. Retailer profits are increasing in c. Specifically, IIR (w(c), b(c)) = 

3. Manufacturer profits are decreasing in c. Specifically, IIM (w(c),b(c)) = 
( 1 - IIj. 

Proof: Note that for all allowed c, r > w (c) > b (c) v. So the contract 
is feasible even if the retailer may salvage excess items at rate v. Next observe 
that for all c: 

r-w(c) r-c 
r-b(c) r-v 
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The retailer faces the same critical fractile as the integrated channel and thus 
orders the same amount. Ai> channel profits only depend on the total stock 
in the system, the decentralized system's profits must equal integrated system 
profits. To determine retailer profits, we have: 

y. 

IIR(w(c),b(c)) = (r-w(c))y*-(r-b(c))l F(x)dx 

= _c_ ((r - c) y* - (r - v) l Y

• F(X)dX) 

r-c 0 

_c_II* 
r - c !. 

System profits are fixed, so the manufacturer earns (1 - r':'c) IIi. 0 

The coordinating contract is therefore not unique. Rather a continuum of 
contracts exists. Possible contracts differ in how they divide the channel prof-
its. A few observations add insight to this outcome. First, if the manufacturer 
wishes to sell at a price above the marginal cost of production, the retailer faces 
a higher acquisition cost than the integrated channel does. Double marginal-
ization suggests that the retailer will order less than the integrated channel 
unless the manufacturer can simultaneously raise the retailer's marginal rev-
enue. Granting a higher payout in low demand states accomplishes this. Not 
surprisingly, the higher the wholesale price, the more the manufacturer must 
compensate the retailer in the event of low demand. 

Second, what the retailer orders depends on a single value, the critical frac-
tile. Under price only contracts, the manufacturer has a single contract para-
meter that affects the fractile, and the only way to coordinate the channel is 
to transfer at marginal cost. With a buy back contract, on the other hand, 
she may manipulate two parameters to have one value come out correctly. The 
system is under-determined, and a continuum of solutions exists. 

This observation together with the third part of the theorem suggests why 
Theorem 6 holds. The manufacturer would prefer to push c as low as possible 
and capture all channel profits. However, she cannot set c to zero since this 
would result in a full returns policy which Pasternack (1985) has shown to 
be suboptimal. She consequently does not have an optimal contract; for any 
feasible, coordinating contract she will prefer to cut c even further to grab a 
larger share of the profits. 

The coordinating contracts have a number of additional properties. First, it 
is good to be responsible. Either party would prefer to take greater responsi-
bility for excess stock as this leads to higher profits. This holds despite the fact 
that for any fixed wholesale price, the retailer would prefer the manufacturer 
offer an easy returns policy. But there is, of course, a difference between being 
easy and being cheap. Under coordinating contracts, generous return rates are 
paired with high wholesale prices. The price hikes are more than enough to 
offset any gains from the higher buy back rate. The manufacturer is in essence 
bundling insurance with the physical good. The more generous the insurance 
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is, the higher the bundle is priced. The retailer, however, is risk neutral and 
would not pay for the indemnity if it were offered separately. It is the bargain-
ing power we hav.e assigned to the manufacturer that allows her to force the 
retailer to purchase the bundle. 

Another interesting feature is that the coordinating contracts (W(e), b(e» are 
independent of the demand distribution. If the manufacturer were to contract 
with a second retailer who faced a different demand distribution but had an 
identical cost structure, she could offer the same contract and capture the same 
fraction of total channel profits. While this independence is generally useful, 
one must be careful in interpreting the result. For example, one might be 
tempted to infer that the manufacturer does not need to know the demand 
distribution to design a coordinating contract; as long as the retailer knows the 
demand distribution, the correct actions will be taken. Mathematically, this is 
true, but it makes little economic sense. If the manufacturer does not know 
the demand distribution, she cannot know IIi. We must then suppose that 
a rational agent is willing to enter into a transaction even though she cannot 
estimate her expected profits from the deal. Further, if the retailer were willing 
to take any contract the manufacturer might propose, we must infer that he has 
no opportunity cost. If more realistically the retailer has a positive opportunity 
cost I'i., the manufacturer would want to offer a contract that assure acceptance 
without leaving any excess rents for the retailer. That is, she would choose e 
such that: 

I'i.(r - c) 
e = 11* . 

I 

Clearly to define an acceptable contract, she must have enough information 
to calculate IIi. Note that the presence of a positive retailer opportunity cost 
resolves the indeterminacy inherent in Theorem 7. Where before we said that 
for any positive e the manufacturer could find a better contract, we now have 
a specific value of e defining the best she can do for herself. 

A final property to note is that different contracts result in the parties having 
wildly different variability in their profits. If e equals r - c, the manufacturer 
transfers at cost and has profits that are identically zero. As e falls to zero, 
both her profits and the variability of her earnings increase. The outcomes are 
reversed for the retailer. Again, the result should be evaluated with care. Both 
players are assumed to be risk neutral; they are concerned only with their mean 
earnings and not the variance of those earnings. A buy back contract is not a 
risk-sharing device in the economic sense. Risk sharing is usually interpreted as 
a means of maximizing some measure of the total utility of a group of risk averse 
agents. Common results are, for example, that if one agent is risk neutral he 
should bear all the risk (see Kreps, 1990, or Salanie, 1997). Here, both players 
are risk neutral and we seek to maximize the sum of their profits. From a social 
welfare perspective, all of the coordinating contracts lie on the Pareto frontier 
and are equally effective. Shifting the variability in profits is just a second-
order consequence of using the terms of trade to both assure the stocking of 
the system-optimal quantity and allocate profits among the players. 
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8.3.5 Applications of buy backs 

The coordinating contracts of Pasternack (1985) are surprisingly general and 
robust. The result can be interpreted as saying that if a setting can be manip�
ulated to look like a newsvendor problem, it can be successfully decentralized 
through a system of linear prices. The usefulness of this approach can be seen 
by the number of researchers who have applied or extended the result. In gen�
eral, a returns policy can have a significant impact on system performance even 
if it fails to replicate the outcome of the integrated firm. 

Kandel (1996) covers much of the same ground as Pasternack (1985) but 
from an economist's perspective. In particular, he emphasizes the incentive 
for a manufacturer to implement a consignment policy. He also notes that if 
the demand distribution depends on the retail price, coordination cannot be 
achieved through buy backs unless the manufacturer can impose resale price 
maintenance. Although he does not formally model them, he does consider risk 
aversion and the provision of promotional effort and customer service. 

Donohue (1996) considers two settings. In the first, the manufacturer has 
two production technologies and the retailer learns additional information prior 
to the demand realization. The first production technology has a low marginal 
cost but a long lead time while the second has a high marginal cost but short 
lead time. The retailer's additional information allows for a better estimate of 
realized demand but is learned at point at which only the high cost technology 
is feasible. She shows that the system can be coordinated by allowing the 
retailer to place a supplemental order after observing the information. The 
wholesale price for items purchased in the supplemental order is higher than 
for those purchased in the initial order, but any leftover stock may be returned 
at a single return rate. Again, a continuum of coordinating contracts exists 
and is independent of the demand distribution. 

In her second model, there is a single production opportunity which may be 
initiated after the retailer has gained his information but production requires a 
specific component with a long lead time; there is no substitute for the compo�
nent available after the retailer learns his refined information. Thus the total 
production quantity is limited by the amount of the component purchased. The 
coordinating contract now includes an option. The retailer pays the manufac�
turer 0 per unit to reserve the production of a finished good but must pay w 

per unit when exercising the option. The manufacturer again offers a buy back 
rate b. Once more we have a continuum of contracts that is independent of the 
demand distribution that will coordinate the system. 

Note that in both models, there are two decisions that must be coordinated. 
In the first, it is the production quantities for the two technologies. In the 
second, it is the amount of the component to purchase and the final production 
quantity. The contracts consequently have three parameters. The extra degree 
of flexibility allows for the coordination of both actions. 

Emmons and Gilbert (1998) also have a system in which two decisions must 
be made. Their model is similar to what we have considered here except that 
the retailer sets both the stocking level and the retail price. The demand 
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distribution is a function of the retail price. Its density f Wr) satisfies 

1 A ( ) = D(r/ D(r) , 

where D (r) is a decreasing function of the retail price and i is a probabil-
ity density with mean one. While buy back contracts cannot coordinate the 
channel, there does exist a range of wholesale prices such that for any price 
in that range, the manufacturer and the retailer are both better off when the 
manufacturer offers a positive buy back rate. 

In Ha (1998), a supplier proposes a contract to a manufacturer for the sup-
ply of a component. The manufacturer incurs a cost to turn the component 
into a finished good and must choose the number of units to produce as well 
as the retail price. The retail price affects demand in an additive fashion. For 
a given retail price r, demand is given by D (r) where D (r) is a decreasing 
function and is a mean zero random variable. If the supplier knows the manu-
facturer's cost to complete production, the system can be coordinated through 
franchising, quantity forcing, or resale price maintenance combined with a buy 
back policy. Obviously, the latter reduces to our setting. If there is asym-
metric information regarding the manufacturer's cost, the supplier can design 
a menu of incentive compatible contracts. For each possible cost realization, 
the manufacturer chooses a unique contract. The menu relies on resale price 
maintenance and a non-linear price schedule. The supplier is worse offer under 
asymmetric information since she must leave higher returns for manufacturers 
with lower costs to induce self revelation. 

Cachon and Lariviere (1997) also consider alternative information structures. 
Like Ha (1998), they have a manufacturer contracting with an upstream sup-
plier except now it is the manufacturer who proposes the contract. They show 
that the effectiveness of different contractual forms depends on the system's 
enforcement mechanism and information structure. If the supplier is obliged 
to cover the manufacturer's order and there is symmetric information, then 
offering to pay a termination fee for each item in the original order not taken 
allows the manufacturer to coordinate the system. It is the quantity forcing 
aspect of the enforcement mechanism that produces the result, not the mar-
ginal incentives of the price and termination fee. If enforcement is not possible, 
the manufacturer never offers a termination fee under full information. How-
ever, if the manufacturer is privately informed about the demand distribution, 
a manufacturer expecting a large market offers a termination fee to signal her 
information to the supplier. The fee plays only an information role. A high 
wholesale price is still required to induce the supplier to provide adequate ca-
pacity. 

Narayanan and Raman (1997) note that most retailers carry multiple prod-
ucts in each category. Thus while a manufacturer loses sales following a stock 
out, the retailer might capture sales of a competing good. They consider a 
manufacturer selling to a retailer who also carries another product (say, a pri-
vate label) that is never out of stock. If the manufacturer's good stocks out, 
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a fraction of its customer p switch to the other good. In addition, the man-
ufacturer can exert effort to increase demand for the product. They consider 
three channel management structures: retailer managed inventory (similar to 
our price-only contacts); vendor managed inventory (in which the manufacturer 
sets the stocking level of her product); and contracting on unsold inventory 
(similar to our buy back contracts). They show that double marginalization 
will result in too little stock and too little effort relative to the integrated chan-
nel when retail managed inventory is used. Vendor managed inventory results 
in the integrated channel effort level but too much stock since the vendor does 
not internalize the sales of the other product. Which management structure 
leads to better channel performance depends on the parameters of the prob-
lem. When the manufacturer implements a buy back, the channel outperforms 
simple retailer managed inventory although it does not perfectly coordinate the 
channel. How buy backs stack up to vendor managed inventory depends on the 
parameters of the problem. 

While Narayanan and Raman (1997) have one retailer carrying two com-
peting products, Padmanabhan and Png (1997) have two competing retailers 
carrying one product that must be purchased from the same manufacturer. The 
retailers face a linear demand curve with an uncertain intercept. The sequence" 
of play has the manufacturer posting the terms of trade and the retailers or-
dering. Only after ordering do the retailers observe the realized intercept and 
determine which price to charge. Absent a returns policy, the retailers will have 
so much stock that they will engage in intense competition when the demand 
realization is low. Fearing a disastrous outcome in a small market, they will or-
der relatively little stock and not be able to take full advantage of large market 
realizations. By offering a returns policy, the manufacturer mitigates "exces-
sive" competition in small markets and encourages higher stocking levels that 
allow the channel to take advantage of large market outcomes.s The authors 
limit the analysis to full returns policies, so in some instances the manufacturer 
may prefer a price-only contract. Intuitively, allowing for partial returns should 
make returns more attractive. 

Finally, a pair of papers suggest decentralization schemes related to buy 
backs for multiechelon inventory systems similar to Clark and Scarf (1960). 
Chen (1997) supposes that the supply chain is owned by a principal who hires 
a manager to run each echelon. The echelons are run as cost centers evaluated 
on long run average costs. If the costs charged to each echelon are based on 
accounting inventory (which measures what net inventory would have been 
if the upstream supply had been perfectly reliable), each manager's problem 
reduces to setting a base stock level to a critical fractile. By setting the holding 
and back order cost for each echelon appropriately (the solution is not unique), 
the principal can induce each manager to set the system optimal base stock 
level for his echelon. 

8Deneckere, Marvel, and Peck (1996 and 1997) present related arguments for resale price 
maintenance. 
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Cachon and Zipkin (1997) consider a two echelon supply chain in which the 
upstream manufacturer and the downstream retailer set their base stock levels 
in a competitive fashion. They consider the difference in outcome if the players 
choose local or echelon base stock levels and show that the system optimal 
solution is rarely a Nash equilibrium. They also show that a simple linear 
payment scheme can result in the competitive system matching the performance 
of the centralized. Under this system, the manufacturer subsidizes the retailer's 
holding of inventory and pays a penalty when she is back ordered. The retailer, 
on the other, pays a penalty to the manufacturer when he is back ordered. 
Again, the coordinating contract is not unique. As in Donohue (1996) two 
decisions must be coordinated, and the contract must involve three parameters. 

Together, these last two papers show the power of buy back contracts. In 
comparison to other decentralized schemes that have been suggested for mul-
tiechelon systems (e.g., Lee and Whang, 1996), these are simple and intuitive. 
The Chen approach is somewhat more robust. The resulting equilibrium un-
der his scheme is supported by iterated dominance; for the manager of the 
n-th echelon, picking the system optimal is a dominant strategy assuming that 
all managers below him follow the optimal policy. In contrast, Cachon and 
Zipkin cannot rule out that the existence of multiple Nash equilibria under a 
coordinating contract. The robustness of Chen's scheme, however, comes at 
a significant cost: All managers must contract individually with a principal, 
which essentially limits the approach to intrafirm transactions. In Cachon and 
Zipkin, the parties contract directly with each other, which potentially allows 
for greater applicability. 

8.4 RETURNS POLICIES: QUANTITY FLEXIBILITY CONTRACTS 

As the previous section has shown, a returns policy in the form of a buy back 
rate can coordinate a system in which a manufacturer sells to a retailer facing 
a newsvendor problem. We now examine an alternative way of implementing 
returns, quantity flexibility (QF) contracts. QF contracts are frequently used 
for components in the electronics and computer industry and have occasion-
ally been used in the automotive industry. They also bear some resemblance 
to "take-or-pay" contracts used in natural resource markets. Tsay and Love-
joy (1998) provides a discussion of these points and a detailed analysis of the 
contract in a multiperiod setting. 

Here we limit the analysis to a single period, so our newsvendor model ap-
plies. A QF contract is specified by three parameters: a wholesale price w, a 
downward adjustment parameter d E [0,1), and an upward adjustment para-
meter u O. The sequence of play has the manufacturer offering the terms of 
trade and the retailer placing an initial order y. The manufacturer commits 
to providing y (1 + u) units to the system. If realized demand, is between 
y (1 - d) and y (1 + u), the retailer buys' units at price w from the manu-
facturer to sell to the market. The manufacturer thus provides an "upside" 
coverage to the retailer of u-percent above his initial order. The QF contract 
also requires a "downside" commitment from the retailer in the form of a mini-
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mum purchase requirement; he may cancel d-percent of his order but must take 
the remainder.9 If realized demand is below y (1 - d), the retailer must take 
y (1 - d) units at a wholesale price of w, filling demand and salvaging the rest. 

It will be convenient to define X = Since total channel stock will be 
y (1 + u), X represents the fraction of channel stock for which the supplier is 
responsible and is thus a measure of the flexibility offered the retailer with lower 
values of X reflecting greater flexibility. 

To see that relationship between QF contracts and buy backs, suppose that 
under a QF contract the retailer had to pay for all y (1 + u) units up front 
but could still cancel his commitment down to y (1 - d) units. For each unit 
canceled, the manufacturer would refund the wholesale price. Interpreted this 
way, a QF contract allows the retailer to cancel or return a fraction of his order 
for a full refund of the wholesale price. In contrast, a buy back contract allows 
the retailer to cancel his full order for a fractional refund of the wholesale price. 

In the remainder of this section, we first present the retailer's problem and 
then consider coordinating contracts. We close with a comparison of QF con-
tracts with buy backs. 

8.4.1 The retailer's problem 

The retailer's objective under a QF contract is given by: 

l Y

(1+1J.) 

IIR(y) = (r - w)y(l + u) - (r - w) F(x)dx 

y(l-d) 
(8.11) 

r(l-d) 
-(r - v) Jo F(x)dx. 

The first term represents the retailer's profits if he were to sell everything. The 
subsequent terms represent adjustments for lower demand realizations. If de-
mand falls between y(l - d) and y(l + u), he loses revenue of r but saves w. 

However, when demand is below y(l-d), he only saves v since demand is below 
his minimum purchase commitment and he is obliged to salvage some units. 
Note that for a fixed y and w, the retailer's profits are increasing in d and u. 

That is, if at a given order quantity and fixed wholesale price the manufacturer 
offers greater upside coverage or demands less downside commitment, the re-
tailer is better off. The following theorem (largely from Tsay, 1997), establishes 
some properties of the IIR (y) and the optimal retailer order y*. 

Theorem 8 Suppose that the manufacturer offers a QF contmct with pamme-

ters (w, d, u). 

9Many of the result of this section go through if the total stock in the system is given by 
y + '11 and the retailer's minimum purchase is y - J. Such terms would allow the retailer a 
fixed range (d. + '11) of flexibility instead of a fixed percentage of flexibility. The QF formu-
lation is preferable since a percentage commitment will always be positive while an additive 
commitment will not if y < d. 
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1. The retailer's profits IIR (y) are concave in y. 

2. The retailer's optimal order y* unique and is implicitly defined by 

(y*) = (r - w)(1 + u)F(y*(1 + u)) 

(8.12) 

-(w - v)(1 - d)F(y*(1 - d)) = O. 

3. The retailer's optimal order y* is decreasing in the wholesale price and 

increasing in the downward adjustment parameter d. It is increasing in 

the upward adjustment parameter u if 

g (y* (1 + u)) < 1, (8.13) 

where g is the generalized hazard rate of the demand distribution. 

4. The total amount of stock in the system y* (1 + u) is increasing in u. 

Proof: Differentiating IIR (y) twice yields 

= -(r - w)(1 + u)2 f(y(1 + u)) - (w - v)(1 - d)2 f(y(1 - d)), 

which is always negative. As profits are concave, first order conditions are 
sufficient for a unique solution. The third part of the theorem follows from 
applying the implicit function theorem to (8.12). In particular we have: 

ay* 
au 

= -(r - w) (F(y*(1 + u)) - (1 + u)y* f (y*(1 + u))) 

= -(r - w)F(y*(1 + u)) (1 - g (y* (1 + u))) 

As is negative, we require that 1 - g (y* (1 + u)) be positive for y* to 
be increasing in u. The final part of the theorem follows from differentiating 
y* (1 + u) and using the expression for ¥u-. 0 

Note that if d = u = 0, than the retailer's problem reduces to a newsvendor 
problem. Otherwise it will not be generally possible to determine an explicit 
solution to (8.12) even if F is easily invertible. In the standard newsvendor 
problem, one balances the chance of being over and under realized demand at 
one point. Under a QF contract, that balance must be struck at two distinct 
points. One point corresponds to the manufacturer's upside commitment and 
the other to the retailer's downside minimum purchase. An explicit solution is 
hence not readily possible unless either F or F is a homogeneous function 
so that either F = ,xp F or F = ,xP F for ,x > 0 and some p. For 
example, if F is homogeneous, the solution to (8.12) has a modified critical 
fractile structure: 

F( *)= (r-w)(l+u) 

y (r - w)(1 + u)p+l + (w - v)(1 - d)P+l' 

The alternative case has similar results. It is straightforward to show that F 
is homogeneous for the uniform and that F is homogeneous for the Pareto 
distribution. 
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The comparative statics are largely as one would expect. The retailer orders 
less when he has a slimmer margin. Increasing d lowers both the absolute 
level of the minimum purchase requirement and the marginal rate at which the 
minimum purchase obligation is increasing. Hence he orders more. The case 
for the upward adjustment is not as clear. On the one hand as u increases, the 
retailer has greater upside coverage for any order level. He could reduce his 
current order, lower his minimum purchase requirement, and still enjoy a larger 
upside coverage. On the other hand, the rate at which an increase in his order 
extends his upside coverage has increased - arguing for a boost in his order. 

The outcome depends on how likely an incremental increase of upside cov-
erage is going to be used. That, in turn, depends on the generalized hazard 
rate. Note that (8.13) corresponds to the elasticity of orders under a price-only 
contract being greater than one, which will be so under the optimal price-only 
contract. Consequently, if a manufacturer moves from the optimal price-only 
contract to a QF contract with upside flexibility without changing the whole-
sale price, the retailer's order will increase. If F is IGFR, however, the 
retailer's order will at some point be decreasing in u. The final part of the 
theorem establishes that even if the retailer reduces his order in response to an 
increase in the upward adjustment parameter, he does not reduce it so much 
that the total amount of stock in the system falls. 

8.4.2 Coordinating contracts 

We now seek coordinating contracts similar to those we had for buy backs. To 
begin, note that if we want the system to stock YI units, we must induce the 
retailer to order Following Tsay (1997), we substitute i':f:u for yin (8.12) 
and perform a few manipulations to yield: 

(r - v) (1 + u) 
= v+ v 

(1 + u) + (1- d)F 

w*(d,u) 

= v+ c v (). 
r=v + XF XYI 

c-v 

(8.14) 

Note that for the allowed ranges of d and u, 0 < XF (XYI) $ which in turn 
implies that c $ w* (d, u) < r. The contract is thus economically sensible. The 
optimal wholesale price depends on the adjustment parameters only through 
the ratio X, the fraction of the total system inventory for which the retailer is 
ultimately responsible. Although a QF contract generally has three parameters, 
a coordinating QF contract in reality only has two: the wholesale price and the 
flexibility offered the retailer, X. For simplicity we will write the coordinating 
wholesale price simply as a function of X, i.e., w* (X). 

Given our restrictions on d and u, it must be that 0 < X $ 1. We again 
have that a continuum of coordinating contracts exists, and they differ in the 
flexibility they offer the retailer. As before, if the retailer is given no flexibility, 
the product must be transferred at marginal cost (w" (1) = c). At the other 
extreme, the retailer cannot be offered complete flexibility. He must remain 
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responsible for some fraction (even if trivially small) of the system's inventory. 

It is simple to show that the coordinating wholesale price is decreasing in the 

flexibility parameter X and that the limiting price as X goes to zero is the retail 

price r. 
The remaining issue is how system profits are divided. We again have that 

both parties would prefer to bear greater responsibility for excess stock. 

Theorem 9 If the manufacturer offers a coordinating contract (w· (X) ,X), the 
retailer's profits IIR (w· (X) ,X) are increasing in X. 

Proof: Under a coordinating contract, the derivative of the retailer's profits 

with respect to X can be written as: 

OIIR (w· (X) , X) 
OX 

= 

-w·' (X) (YI - i:: F - YIF (XYI) (w· (X) - v) 

(w· (X) - v) 
c-v + F ( ) ((F (XYI) + Xyrf (XYI)) 
;:=:;; X XYI 

(YI - i:: -yIF(XYI) +XF(XYI))) ' 

where the second equality follows from noting that: 

w·' (X) = (w· (X) - v) ((F (XYI) + Xyrf (XYI))) 

+ XF (XYI)) 

To prove the result, it is sufficient to show that 

This follows from noting that 

l YI 
(c V ) l YI 

YI- = +XF(XYI) +YI 
XYI r v XYI 

where we use the fact that F (YI) = 0 
With the theorem, we have that QF contracts are almost as flexible as buy 

backs. Under either, a range of coordinating contracts exists, and the more flex-

ibility the manufacturer offers, the higher the wholesale price and manufacturer 

profits are. The only reason to qualify the comparison is that the under QF con-

tracts, the coordinating wholesale price depends on the demand distribution. 

The manufacturer can no longer rely on one contract to coordinate all markets. 

This is hardly surprising since the retailer's optimal order balances overage and 

underage costs at two distinct points of the demand distribution. It is also as 

we argued above not that dramatic a shortcoming since it often makes no eco-

nomic sense to assume that the manufacturer is uninformed about the demand 
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distribution. Nevertheless, one can show that for some demand distributions 
the coordinating contract is independent of some parameter. 

Theorem 10 If F (el0) is from a scaled family, the coordinating wholesale 

price w* (xIO) is independent of 0 for all values of X. That is: 

w* (xIO) = w* (XiI) . 

Proof: For a scaled family, we have that YI (0) = T (0) YI (1) and thus that 
F (XYI (0) 10) = F (XYI (1) 11). Therefore, w* (xIO) = w* (XiI). 0 

The theorem immediately suggests that the same coordinating contract can 
be used in multiple markets if the demand distribution for each market is from 
the same scaled family. In particular, if demand in each market is normal with 
the same coefficient of variation, then one coordinating QF contract suffices. 

8.4.3 Quantity flexibility vs. buy backs 

The remaining issue to consider is whether a manufacturer offering a returns 
policy has any reason to favor a QF contract over a buy back. Relatively little 
research has been done on QF contracts, but there are reasons to believe that 
they will generally prove as useful as buy backs. For example, Tsay (1997) 
has extended their application to a setting similar to Donohue (1996). Further, 
it is simple to show that QF contracts, like buy backs, will fail to coordinate 
the channel when the demand distribution depends on the retail price as in 
Emmons and Gilbert (1998). 

Hence, the sole reason we have established for favoring buy backs is that 
coordinating buy back contracts do not depend on the demand distribution. 
Even this property is arguably over-valued, and the QF dependence on the 
distribution can be relaxed for some distributional families. Indeed, one may 
argue that the distributional dependence benefits QF contracts since the man-
ufacturer cannot induce self selection through coordinating buy back contracts. 

To see this point, consider a manufacturer selling to two retailers who face 
different demand distributions and have positive opportunity costs. The man-
ufacturer knows that each market is characterized by one of two demand distri-
butions but cannot verify a particular market's prevailing distribution. Ideally, 
the manufacturer would like to offer a menu of contracts that induces retailers 
with different demand distributions to choose different contracts for themselves. 
Further, she would like to avoid sacrificing any channel profits and grab as large 
a share of profits as possible. Coordinating buy backs simply cannot do this. 
Because the coordinating contracts are independent of the demand distribu-
tion, all retailers will prefer the one that offers the least flexibility regardless 
of their demand distribution. Self selection necessarily requires deviating from 
the coordinating contract and sacrificing channel profits. In any given setting, 
self selection through coordinating QF contracts might also require sacrificing 
coordination, but there is at least a possibility of achieving both goals. 
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8.5 ALTERNATIVE CONTRACTS 

Returns policies are an effective means of improving system performance, but 
other possibilities exists. Here we consider two. The first approach can be 
classified as penalty schemes. In lieu of offering a safety net to the retailer, 
the manufacturer brandishes a stick. The second contract is the standard-
setting scheme of Atkinson (1979). Unlike returns policies, both penalties and 
standards are best suited for intrafirm coordination. 

8.5.1 Penalty methods 

Suppose that the manufacturer offers the good to the retailer at a wholesale 
price w with no return policy but with a demand for a payment of p per unit 
for any missed sales. The retailer's objective becomes: 

and his optimal order is: 

y{w,p) = p-l (r +p - w) . 

r+p-v 

It is straightforward to show that if the manufacturer imposes a penalty of 

() (w - c)(r - v) 

p w = 
c-v 

with a wholesale price of w then the retailer orders the integrated channel 
quantity (Le., y (w,p{w)) = YI). 

It is straightforward to see that p ( c) = 0 and that p ( w) is increasing in w. 

We also have that the retailer's profits are decreasing in w since this decreases 
his expected revenue and increases his expected penalty payments. Conse-
quently, the manufacturer can capture all channel profits at a wholesale price 
strictly below the retail price. If she were to push the wholesale price to the 
retail price (as she can under returns policies), the retailer would rationally 
refuse the contract since it would saddle him with an uncompensated loss. 

Where a returns policy works by manipulating the consequence of having 
excess stock, a penalty method alters the consequences of being short. As 
such, its implementation may be difficult. In particular, it must be possible 
to observe lost sales. This can be relaxed slightly. Suppose that instead of 
imposing a linear payment rate, the manufacturer charges a lump sum in the 
event of a stock out and offers the retailer a menu of contracts in which the 
lump sum depends on the retailer's initial order. In particular suppose that for 
a given wholesale price w, the penalty payment is 
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For a stocking level of y, the retailer incurs the penalty with probability F (y), 
and his objective becomes equivalent to that under the linear payment scheme. 

The quantity J; F dE. / F (y) is known as the mean residual life in the 
reliability literature (Barlow and Proschan, 1965) and may be interpreted here 
as the expected number of items short given that demand is greater than the 
stocking level. Instead of basing the charges on the realized shortfall, the 
manufacturer exploits the retailer's risk neutrality and bases the charges on 
the expected shortfall given the stocking level. The information requirements 
have been significantly reduced. The manufacturer does not have to observe 
how many sales were lost, only that a stock out occurred. 

Implementation may still be difficult. Under a returns policy, the retailer has 
an incentive to cooperate and allow the manufacturer to audit his sales since 
demand information is tied to his receiving compensation in a down market. 
Here, demand information is tied to being penalized and the retailer has every 
reason to make the auditing process difficult. Consequently, a penalty scheme 
may be more suitable for use within a firm instead of between firms since 
verifying information would hopefully be simpler in an intrafirm setting. 

Intrafirm coordination through an alternative penalty scheme is considered 
by Celikbas, Shanthikumar, and Swaminathan (1997). Here, marketing pro-
vides a forecast of demand to manufacturing who must then produce the good 
prior to the realization of demand. The two functions are run by separate man-
agers. They propose coordinating the system by evaluating manufacturing as 
a cost center and having the manufacturing manager pay a per unit penalty 
to the principal if the production quantity is less than both realized demand 
and marketing's forecast. The penalty induces manufacturing to internalize 
the cost of a lost sale. The marketing manager is sold the rights to the market 
but must pay a per unit penalty to the principal for each unit that his forecast 
exceeds the demand. As excess inventory remains on the books of manufactur-
ing, the penalty forces the marketing manager to internalize the cost of excess 
production. 

The scheme is somewhat more complicated than establishing an internal 
pricing or returns policy between the functions since it requires the parties 
to contract with the principal instead of each other. Also note that the data 
point marketing provides is not what one would usually term a "forecast." 
For the scheme to work, the complete demand distribution must be common 
knowledge so the data transferred from marketing does not lead anyone to alter 
their beliefs regarding the market. The forecast plays no informational role but 
is a useful contracting device for manipulating incentives. 

8.5.2 Standard setting 

Atkinson (1979) also considers intrafirm coordination but has a more classical 
principal-agent format. A risk neutral principal hires a risk averse agent to set 
the stocking level in a newsvendor problem. He shows that if the agent and the 
principal have the same evaluation of the demand distribution, the agent will 
set the stocking level below what the principal would choose. 
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He further argues that the manager through greater involvement in the daily 
operations of the business may have information about market demand unavail-
able to the principal. That is, between the time the parties enter into their con-
tract and the time at which the stocking decision must be made, the manager is 
able to revise his estimate of the demand distribution but the principal is not. 
This leads to a standards-based contract. The principal offers a fixed wage w 

and a gains sharing parameter ¢ (assumed to be between zero and one) while 
posting a standard Yo. Letting 71" (y) represent realized system profits when the 
initial stocking level is y, the retailer's total compensation can be written as 

w + ¢ (71" (y) - 71" (yo)) 

The agent receives w for certain and shares in a fraction of the gains or loss 
that result from deviating from the principal's standard. 

Suppose the principal sets the standard optimally given her initial informa-
tion (i.e., so that Yo is the critical fractile of the initial distribution). Atkinson 
shows that the agent only deviates from the standard if his revised information 
leads him to believe the critical fractile has shifted. Further, the stock level 
moves in the correct direction; the agent's choice always lies between the stan-
dard and what the risk neutral principal would have chosen given the agent's 
revised beliefs. If the players start with a common prior and update beliefs in 
a Bayesian fashion, the principal is better off implementing the standard based 
scheme than paying a fixed wage and insisting on implementing Yo. 

The standard scheme is intended to be used within a firm and is not neces-
sarily optimal. Dealing with a risk averse agent is going to impose some loss 
on the system, and there is no guarantee that this scheme minimizes that loss. 
Nonetheless, the paper is of interest. Contracting with a risk averse manager 
is an important topic to consider, and the proposed contract is simple and in-
tuitive. It manages to balance the need for risk sharing (by providing a fixed 
wage) with the need to induce the manager to act on his revised information. 

8.6 SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH 

We have reviewed a series of results related to perhaps the simplest supply 
chain contracting model with stochastic demand: a manufacturer selling to a 
newsvendor. We have presented conditions for the manufacturer's problem un-
der price-only contracts to be well-behaved and shown that the optimal whole-
sale price is closely related to a generalization of the failure rate of the demand 
distribution. We have also shown that returns policies of various forms are a 
powerful tool for improving supply chain performance. Returns policies allow 
for payments that are conditional on how realized demand compares to the cho-
sen stocking level. As such, they alter the marginal incentive to hold inventory 
and can reduce - or eliminate - the impact of double marginalization. 

Given the apparent power of returns policies, it is not surprising that they are 
common in industries such as publishing. Indeed, one may wonder why they are 
not even more common. Relatively little work has examined this issue, but the 
fact that returns policies are not ubiquitous suggests that in some environments 
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one or more of our assumptions fail to hold. Two obvious considerations are 
enforceability and cost. To begin with the latter, we assumed that offering 
a returns policy imposed no additional costs on the system relative to the 
integrated channel. That is obviously a simplification; merely accounting for 
the amount returned and providing compensation adds some costs. If system 
performance under a price-only contract is sufficiently good, it may not be 
worth incurring the additional cost of running a returns policy. Lariviere and 
Porteus (1998) offer some evidence that performance under price-only contracts 
improves as the coefficient of variation falls. It may be that demand in some 
markets is not sufficiently variable to warrant a returns policy. 

The relevance of contract enforceability is best illustrated by quantity flexi-
bility contracts. A manufacturer who offers a QF contract leaves herself facing a 
newsvendor with demand distributed between y (1 - d) and y (1 + u). Building 
sufficient stock to cover all demand is not necessarily optimal if the manufac-
turer can freely choose her production quantity. If the retailer anticipates that 
the manufacturer is not committed to providing the full upside coverage, his 
optimal order will change. Thus our analysis of QF contracts implicitly assumes 
an unmodeled enforcement mechanism that compels the manufacturer to fulfill 
her contractual obligation. Cachon and Lariviere (1997) show that absent such 
a mechanism returns policies can collapse under symmetric information. 

An alternative explanation for not employing returns is offered by Marvel 
and Peck (1995). They note that there are two forms of market uncertainty: 
how many customers will show up and how a typical customer will value the 
product. The problem we have considered here is an extreme representation 
with the number of arrivals unknown but every arrival's valuation known to 
be r. As we have seen, returns are valuable in this setting. At the other 
extreme with the number of arrivals certain but the price they are willing to 
pay unknown, returns can hurt the manufacturer; the retailer sets a higher 
price in the presence of a returns policy and sales fall. In most markets, the 
manufacturer must balance both concerns. 

While exploring the limits on the applicability of returns policy is one pos-
sible research direction, another fruitful avenue is to extend the lessons learned 
here to other settings. We argued in the introduction that the basic model 
we have studied provides an intuitive foundation for designing contracts to im-
prove the performance of more complicated supply chains. This contention is 
supported by work such as Donohue (1996) and especially Chen (1997) and 
Cachon and Zipkin (1997), which develop schemes for multiechelon inventory 
systems. 

An important extension to consider is the coordination of multiple actions. 
As we noted above, a returns policy cannot coordinate the system when the 
retailer controls the retail price. Finding a modification to returns policies 
to coordinate such a setting would be very useful. Similar statements could 
be made for actions such as manufacturer or retailer promotional effort. One 
might also want to consider the role of forecasting. Atkinson (1979), Donohue 
(1996), and Tsay (1997) all partially address this issue by considering systems 
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in which some informational refinement occurs over time, but none of these 

authors explicitly models how that revision occurs. In particular, they do not 

consider that gathering information might be costly for the retailer and thus 

that the contract terms might affect the quality of information available to the 

supply chain. All of these would be worth pursuing, and likely involve some 

variant of the schemes considered here. 
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