CHAPTER 9

AUCTIONS AND
MECHANISM DESIGN

In most real-world markets, sellers do not have perfect knowledge of market demand as
we have maintained so far in this book. Instead, sellers typically have only siatistical
information about market demand. Only the buyers themselves know precisely how much
of the good they are willing to buy at a particular price. In this chapter, we will revisit the
monopoly problem under this more typical circumstance.

Perhaps the simplest situation in which the above elements are present occurs when
a single object is put up for auction. There, the seller is typically unaware of the buyers’
values but may nevertheless have some information about the distribution of values across
buyers. In such a setting, there are a number of standard auction forms that the seller might
use to sell the good—first-price, second-price, Duich, English. Do each of these standard
auctions raise the same revenue for the sellec? If not, which is best? Is there a nonstandard
yet even better selling mechanism for the seller? To answer these and other questions, we
will introduce and employ some of the tools from the theory of mechanisin design.

Mechanism design is a general theory about how and when the design of appropriate
institutions can achieve particular goals. This theory is especially germane when the designer
requires information possessed only by others to achieve her goal. The subtlety in designing
a successful mechanism lies in ensuring that the mechanism gives those who possess the
needed information the incentive to reveal it to the designer. Although we will not explore
the general theory of mechanism design here, this chapter provides an introduction to the
topic by employing its techniques to study the design of revenue-maximizing auctions.

9.1 THe FOUR STANDARD AUCTIONS

Consider a seller with a single object for sale who wishes to Sell the object to one of N
buyers for the highest possible price. How should the seller go about achieving this goal?
One possible answer is 10 hold an auction. Many distinct auctions have been pur to use at
one time or anuther, but we will focus on the following four standard auctions.'

"'We shall assume throughout and unless otherwise noted that in all auctions ties in bids are hroken at random:
Each tied bidder is equally likely 1o be deemed the winner
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* First-Price, Sealed-Bid: Each bidder submits a sealed bid to the seller. The high
bidder wins and pays his bid for the good.

*» Second-Price, Sealed-Bid: Each bidder submits a sealed bid o the seller. The high
bidder wins and pays the second-highest bid for the good.

* Dutch Auction: The seller begins with a very high price and begins to reduce it.
The first bidder to raise her hand wins the object at the current price.

* English Auction: The seller begins with very low price (perhaps zero) and begins
to increase it. Each bidder signals when he wishes to drop out of the auction. Once
a bidder bas dropped out, he cannot resume bidding later. When only one bidder
remains, he is the winner and pays the current price.

Can we decide even among these four which is best for the seller? To get a handle on
this problem, we must begin with a model.

9.2  THe INDEPENDENT PRIVATE VALUES MODEL

A single risk-neutral seller wishes to sell an indivisible object to one of N risk-neutral
buyers. The seller values the object at zero dollars.” Buyer i’s value for the ohject, vy, is
drawn from the interval [0, 1] according to the distribution function F;(v;} with density
function f;{v,).> We shall assume that the buyers’ values are mutually independent. Each
buyer knows his own value but not the values of the other buyers. However, the density
functions, fi,..., fx. are public information and so known by the seller and all buyers. In
particular, while the seller is unaware of the buyers’ exact values, he knows the distribution
from which each value is drawn. If buyer i°s value is v, then if he wins the object and pays
P, his payoff (i.e., von Neumann-Morgenstern utility) is v; — p, whereas his payoffis —p
if he must pay p but does not win the object.*

This is known as the “independent, private values” model. Independent refers to the
fact that each buyer’s private information (in this case, each buyer’s value) is independent
of every other bidder’s private information. Private value refers to the fact that once a
buyer employs his own private information to assess the value of thz object, this assessment
would be unaffected were he subsequently to learn any other buyer’s private information,
{.e., each buyer’s private information is sufficient for determining his value.’

Throughout this chapter, we will assume that the setting in which our monopolist finds
himself is well-represented by the independent private values model. We can now begin to
think about how the seller’s profits vary with different auction formats. Note that with the

?This amounts to assuming that the object has already been produced and shat the seltes’s use value for it is zero.
3Recall that F;(v;) denotes the probability that i’s value is less than or equal to v, and that fi(w) = F}’(v,-). The
latter relation can be equivalently expressed as Fi{v) = f3" fi(x)dx. Consequently, we will sometimes refer to
fi and sometimes 1efer to £; since each one determines the other.

4Although such an outcome is not possible in any one of the four auctions above, there are other auctions (i.c.,
all-pay auctions) in which payments must be made whether or not one wins the object,

SThere ate more general models in which buyers with private information would potentially ebtain yet additional
information about the value of the abject were they to learn ancther buyer s private information, but we shall net
consider such models bere.
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production decision behind him and his own value equal to zero, profit-maximization is
equivalent to revenue-maximization.

Before we can determine the seller’s revenues in each of the four standard auctions,
we must understand the bidding behavior of the buyers across the different auction formats.
Let's start with the first-price auction.

9.2.1 BIDDING BEHAYIOR IN A FIRST-PRICE, SEALED-BID AUCTION

To understand bidding behavior in a first-price auction, we shall, for simplicity, assume that
the buyers are ex-ante symmetric. That is, we shall suppose that forall biddersi =1, ..., N,
fitvy= fu}forall v e [0, 1.

Clearly, the main difficulty in determining the seller’s revenue is in determining how
the buyers, let’s agree to call them bidders now, will bid, But note that if you are one of the
bidders, then because you’d prefet to win the good at a lower price rather than a higher one,
you will want to bid low when the others are bidding low and you will want to bid higher
when the others bid higher. Of course, you do not know the bids that the others submit
because of the sealed-bid rule. Yet, your optimal bid will depend on how the others bid.
Thus, the bidders are in a strategic setting in which the optimal action (bid)} of each bidder
depends on the actions of others. Consequently, to determine the behavior of the bidders,
we ghall employ the game-theoretic toqls developed in Chapter 7.

Let's consider the problem of how to bid from the point of view of bidder i. Suppose
that bidder i’s value is v;. Given this value, bidder i must submit a sealed-bid, b;. Because b;
will in generak depend on i’s value, let’s write &; (1) to denote bidder 's bid when his value
is v;. Now, because bidder / must be prepared to submit a bid &, (v;) for each of his potential
values v; € [0, 11, we may view bidder i’s strategy as a bidding function b;: [0, 1] - Ry,
mapping each of his values into a (possibly different) nonnegative bid.

Before we discuss payoffs, it will be helpful to focus our attention on a natural class
of bidding strategies. It seems very natural to expect that bidders with higher values will
place higher bids. So, let us restrict attention to strictly increasing bidding functions. Next,
because the bidders are ex-ante symmetric, it is also natural to suppose that bidders with the
same value will submit the same bid. With this in mind, we shall focus on finding a strictly
increasing bidding function, b: [0, 1] — Ry, that is optimal for each bidder to employ,
given that all other bidders employ this bidding function as well. That is, we wish to find a
symmetric Nash equilibrium in strictly increasing bidding functions.

Now, let’s suppose that we find a symmetric Nash equilibrium given by the strictly
increasing bidding function b(-). By definition it must be payoff-maximizing for a bidder,
say i, with vatue v to bid b(v) given that the other bidders, employ the same bidding
function &(-). Because of this, we can usefully employ what may at first appear to be a
rather mysterious exercise.

The mysterious but useful exercise is this: Imagine that bidder ¢ cannot attend the
auction and that he sends a friend to bid for him. The friend knows the equilibrium bidding
function B(-), but he does not know bidder i's value. Now, if bidder i’s value is v, bidder
i would Tike his friend to submit the bid 5(») on his behalf. His friend can do this for him
once bidder i calls him and tells him his value. Clearly, bidder { has no incentive: to lie to
his friend about his value. That is, among all the values r € [0, I] that bidder 7 with value
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v can report to his friend, his payoff is maximized by reporting his true value, v, 10 his
friend. This is because reporting the value r results in his friend submitting the bid b(r) on
his behalf. But if bidder i were there himself he would submit the bid b(v).

Let’s calculate bidder i's expected payoff from reporting an arbitrary value, r, to his
friend when his value is v, given that all other bidders employ the bidding function b(-).
To calculate this expected payoff, it is necessary to notice just two things. First, bidder i
will win only when the bid submitted for him is highest. That is, when b(r) > b(v,) for
all bidders j # i. Because b(-) is strictly increasing this occurs precisely when r exceeds
the values of all N — 1 other bidders. Letting F denote the distribution function associated
with f, the probability that this occurs is (F(r))¥ ! which we’ll denote F¥~'(r). Second,
bidder i pays only when he wins and he then pays his bid, bir). Consequently, bidder i's
expected payoff from reporting the value r to his friend when his value is v, given that all
other bidders employ the bidding function b(-), can be written

u(r, v) = F¥='(r)(v - b(r)). o1

Now, as we have already remarked, because b(-) is an equilibrium, bidder i 's expected
payoff maximizing bid when his value is v must be b(v). Consequently, (9.1) must be
maximized when r = v, i.e,, when bidder i reports his true value, v, to his friend. So, we
may differentiate the right-hand side with respect to r and set the derivative equal to zero
when r = v. Differentiating yields

dFN'(r)(v = b(r))

= =(N = DFV ) f(rw = b)) — F¥-'0b't).  (9.2)

Setting this equal to zero when » = v and rearranging yields
N = DFY ) f(b(v) + FY'@)b'(0) = (N — Duf@)F¥ ). (9.3)

Looking closely at the left-hand side of (9.3), we see that it is just the derivative of the
product F¥=)(v)b(v) with respect to v. With this observation, we can rewrite (9.3) as

dF V- ()b(v)

= (N = Duf()F" (). (9.4)
dv "

Now, because (9.4) must hold for every v, it must be the case that
FY ' (w)b(v) = (N — l)f xf(x)F¥~*(x)dx + constant.
a

Noting that a bidder with value zero must bid zero, we conclude that the constant above
must be zero. Hence, it must be the case that

3(11)-—: f xf(,t]F”'z(x}a‘x,
0

-F”“'(u)
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which can be written more succinctly as
L
bv) = F""(v)_L xdF¥='(x). 9.5)

There are two things to notice about the bidding function in (9.5). First, as we had
assumed, it is strictly increasing in v (see Exercise 9.1). Second, it has been uniquely
determined. Hence, in conclusion, we have proven the following.

First-Price Auction Symmetric Equilibrium
If N bidders have independent private values drawn from the common distribution, F, then
bidding

S SR P
bor = gy Jy 240

whenever one's value is v constitutes a symmetric Nash equilibrium of a first-price, sealed-
bid auction. Moreover, this is the only symmetric Nash equilibrium.®

EXAMPLE 9.1 Suppose that each bidder’s value is uniformly distributed on [0, 1]. Then
F(v) = vand f(v) = 1. Consequently, if there are N bidders, then each employs the
bidding function

1 v i
bv) = vﬁ,_lfu xdx™!

l v
B mf x(N — Dx¥?dx
0

. v
(]

N

So, each bidder shades his bid, by bidding less than his value. Note that as the number of
bidders increases, the bidders bid more aggressively. O

Because FV=!(-) is the distribution function of the highest value among a bidder’s
N — 1 competitors, the bidding strategy displayed in Theorem 9.1 says that each bidder
bids the expectation of the second highest bidder’s value conditional on his own value being

“Strictly speaking, we have not shown that this is an equilibrium. We have shown that if a symmetric equilibrium
exists, then this must be it. You are asked to show that this is indeed an equilibrium in an exercise, You might also
wonder about the existence of asymmetric equilibria. It can be shown (hat there are none, slthough we shall not
do 50 here,
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highest. But, because the bidders use the same strictly increasing bidding function, having
the highest value is equivalent to having the highest bid and so equivalent to winning the
auction. So, we may say that—

In the unique symmetric equilibrium of a first-price, sealed-bid auction, each bidder bids
the expectation of the second-highest bidder’s value conditional on winning the auction,

The idea that one ought to bid conditional on winning is very intuitive in 2 first-
price auction because of the feature that one’s bid matters only when one wins the auction.
Because this feature is present in other auctions as well, this idea should be considered one
of the basic insights of our strategic analysis.

Having anatyzed the first-price auction, it is an easy matter to describe behavior in a
Dutch auction.

9.2.2 BIDDING BEHAVIOR IN A DUTCH AUCTION

In a Dutch auction, each bidder has a single decision to make, namely, “At what price should
I raise my hand to signal that [ am willing to buy the good at that price?' Moreover, the
bidder who chooses the highest price wins the auction and pays this price. Consequently,
by replacing the word “price” by “bid” in the previous senience we see that this auction is
equivalent to a first-price auction! So, we can immediately conclude the following.

Dutch Auction Symmetric Equilibrium

If N bidders have independent private values drawn from the common distribution, F, then
raising one’s hand when the price reaches

1 b N—1
mj(; xdF (X)

whenever one’s value is v constitutes a symmetric Nash equilibrium of a Dutch auction.
Moreover, this is the only symmetric Nash equilibrium.

Clearly then, the first-price and Dutch auctions raise exactly the same revenue for the
seller, ex-post {i.e., for every realization of bidder values vy, ..., vy).
We now turn to the second-price, sealed-bid auction.

9.2.3 BIDDING BEHAVIOR IN A SECOND-PRICE, SEALED-BID AUCTION

One might wonder why we would bother considering a second-price agction at all. Isn’t
it obvious that a first-price auction must yield higher revenue for the seller? After all, in a
first-price auction the seller receives the highest bid, whereas in a second-price auction she
receives only the second- highest bid.

While this might sound convincing, it neglects a crucial point: The bidders will bid
differently in the two auctions. In a first-price auction, a bidder bas an incentive to raise her
bid to increase her chances of winning the auction, yet she has an incentive to reduce her
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bid to lower the price she pays when she does win. In a second-price auction, the second
cffect is absent because when ahidder wins, the amount she pays is independent of her bid.
So, we should expect bidders to-bid more aggressively in a second-price auction than they
would in a first-price auction. Therefore, there is a chance that a second-price auction will
generate higher expected revenues for the seller than will a first-price auction. When we
recognize that bidding behavior changes with the change in the auction format, the question
of which auction raises more revenue is not quite so obvions, is it?

Happily, analyzing bidding behavior in a second-price, sealed-bid auction is remark-
ably straightforward. Unlike our analysis of the first-price auction, we need not restrict
atiention to the case involving symmetric bidders. That is, we shall allow the density func-
tions fi, ..., Fy, from which the bidders’ values are independently drawn, to differ.’

Consider bidder { with value v;, and let B denote the highest bid submitted by the
other bidders. Of course, B is unknown to bidder i because the bids are sealed. Now, if
bidder i were to win the auction, his bid would be highest and B would then be the second-
highest bid. Consequently, bidder i would have to pay B for the object. In effect, then, the
price that bidder ¢ must pay for the object is the highest bid, B, submitted by the other
bidders.

Now, because bidder i’s value is v;, he would sirictly want $o win the auction when
his value exceeds the price he would have to pay, i.c., when v; > B; and he would strictly
want to lose when v; < B. When v; = B he is indifferent between winning and losing.
Can bidder  bid in a manner that guarantees that he will win when v; > B and that he will
lose when v; < B, even though he does not knew B? The answer is yes. He can puarantee
precisely this simply by bidding his value, v;!

By bidding v;, bidder { is the high bidder, and so wins, when v; > B, and he is not
the high bidder, and so Joses, when v; < B. Consequently, bidding his vaiue is a. payoff-
maximizing bid for bidder i regardiess of the bids submitted by the other bidders (recall
that B was the highest bid among any arbitrary bids submitted by the others). Moreover,
because bidding below one’s value runs the risk of losing the auction when one woutd have
strictly preferred winning it, and bidding above one’s value runs the risk of winning the
auction for a price above one’s value, bidding one’s value is a weakly dominant bidding
strategy. So, we can state the following.

Second-Price Auction Equilibrium

If N bidders have independent private values, then bidding one's value is the unigue weakly
dominant bidding strategy for each bidder in a second-price, sealed-bid auction.

This brings us to the English auction. *
9.2.4 BIDDING BEHAYIOR IN AN ENGLISH AUCTION
In contrast to the auctions we have considered so far, in an English auction there are

potentially many decisions a bidder has to make. For example, when the price is very low,

In fact, even the independence assumption can be dropped. (See Exercise 9.3.)
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he must decide at which price he would drop out when no one has yet dropped out. But, if
some oiher bidder drops out first, he must then decide at which price to drop out given the
remaining active bidders, and so on. Despite this, there is a close connection between the
English and second-price auctions.

In an English auction, as in a second-price auction, it turns out to be a dominant
strategy for a bidder to drop out when the price reaches his value, regardless of which
bidders remain active. The reason is rather straightforward. A bidder i with value v; who,
given the history of play and the current price p < v;, considers dropping out can do no
worse by planning to remain active a little longer and until the price reaches his value, v,.
By doing so, the worst that can happen is that he ends up dropping out when the price does
indeed reach his value. His payoff would then be zero, just as it would be if he were to
drop out now at price p. However, it might happen, were he to remain active, that all other
bidders would drop out before the price reaches v;. In this case, bidder i would be strictly
better off by having remained active since he then wins the object at a price strictly less
than his value v;, obtaining a positive payoff. So, we have the following.

Enalish Auction Equilibri
If N bidders have independent private values, then dropping out when the price reaches

one's value is the unique weakly dominant bidding strategy for each bidder in an English
auction.

Given this result, it is easy to see that the bidder with the highest value will win in an
English auction. But what price will he pay for the object? That, of course, depends on the
price at which his last remaining competitor drops out of the auction. But his last remaining
competitor will be the bidder with the second-highest value, and he will, like all bidders,
drop out when the price reaches his value. Consequently, the bidder with highest value wins
and pays a price equal to the second-highest value. Hence, we see that the outcome of the
English auction is identical to that of the second-price auction. In particular, the English
and second-price auctions earn exactly the same revenue for the seller, ex-post.

9.2.5 REVENUE COMPARISONS

Because the first-price and Dutch auctions raise the same ex-post revenue and the second-
price and English auctions raise the same ex-post revenue, it remains only to compare the
revenues generated by the first- and second-price auctions. Clearly, these auctions need
not raise the same revenue ex-post. For example, when the highest value is quite high and
the second-highest is quite low, running a first-price auction will yield more revenue than a
second-price auction. On the other hand, when the first- and second-highest values are close
together, a second-price auction will yield higher revenues than will a first-price auction.
Of course, when the seller must decide which of the two auction forms to employ,
he does not know the bidders’ values. However, knowing how the bidders bid as functions

¥ As in the second-price auction case, this weak dominance result does not rely on the independence of the bidder's
values. It holds even if the values are correlaied. However, it is important that the values are private,
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of their values, and knowing the distribution of bidder values, the seller can calculate the
expected revenue associated with each auction. Thus, the question is, which auction yields
the highest expected revenue, a first- or a seconc-price auction? Because our analysis of the
first-price auction involved symmetric bidders, we must assume symmetry here to compare
the expected revenue generated by a first-price versus a second-price auction. So, in what
follows, f(-) will denote the common density of each bidder's value and F(-) will denote
the associated distribution function.

Let's begin by considering the expected revenue, Rgps, generated by a first-price
auction (FPA). Because the highest bid wins a first-price auction and because the bidder
with the highest value submits the highest bid, if v is the highest value among the N bidder
values, then the seller's revenue is B(v). So, if the highest value is distributed according to
the density g(v), the seller’s expected revenue can be written

1
B j; b)gw) dv.

Because the density, g, of the maximum of N independent random variables with
common density f and distribution F is NfFV~! ? we have

1
Rep = N f bw) f)FY¥='(v) dv. (9.6)
i

We have seen that in a second-price auction, because each bidder bids his value, the
seller receives as price the second-highest value among the N bidder values. So, if h(v) is the
density of the second-highest value, the seller’s expected revenue, Rsps, in a second-price
auction can be written

1
Rspa =f vh(v)dv.
o

Because the density, h, of the second-highest of N independent random variables
with common density f and distribution function F is N(N — 1)F¥=2 f(1 ~ F), ' we have

]
Rsps = N(N - 1) f vFY ) F )] - Fv))du.. 9.7)
0

9To see this, note that the highest value is less than or equal to v if and only if all N values are, und tha this
nceurs with probability £ (1), Hence, the distribution function of the highest value is FY. Because the density
function is the derivative of the distribution function the result follows.

1%0ne way 10 see this is to weat probability density like probability. Then the rrobability (density) that some
particelar bidder’s value is v 15 f{v) und the probability that exactly one of the remaining ¥ — | other bidders’
values is above this is (N — DFN=2(u){1 = F(u)). Consequently, the probability that this particular bidder's value
is v and it is second-highest is (¥ = 1) f(v}FY “2(u}(1 — F(u}). Because there are N bidders, the probabiiity (i.e.,
density) that the second-highest value is v is then N(N — 1) f{v)F¥=2(u)(1 ~ F(v)).
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‘We shall now compare the two. From (9.6) and (9.5) we have
R ! 1 ! d MN—1 N—-1
a=N A ) o xdF ) fFFY (v dve
1 v
=NN-1 f { f *F¥2x) f(x)dx] Fu)dv
0 0
1 pv
=N(N-1) f f (P20 f () f ()] dxdw
[y
1l
= NN - 1) f f [F¥ () f00 ()] dudx
0 Jx

1
—NIN-1D f XY F X1 - Fx) dx
Q

= Rspa,

CHAPTER ¢

where the fourth equality follows from interchanging the order of integration (i.e., from

dxdv to dvdx), and the final equality follows from 9.7n.

EXAMPLE 9.2 Consider the case in which each bidder’s value is uniform on [0, 1] so that
F(v) = v and f(v) = 1, The expected revenue generated in a first-price auction is

)
Reps = N fo b)) F¥ (o) dv

1 v
:Nf l:v-———]u”“dv
o N
1
=(N—1)f v
0
N-1

= NI

On the other hand, the expected revenue generated in a second-price auction is.

1
Rom = NV = 1) f W F N f )1 — Feo)dv
0

1
= N(N — 1){ ¥ = vydv
L]

—NN41}1- L ]
=N N N+
N -1

N+1
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Remarkably, the first- and second-price auctions raise the same expected revenue,
regardiess of the common disijbution of bidder values! So, we may state the following:

If N bidders have J'ndependen!;pn'vate values drawn from the common distribution, F, then
all four standard auction forms (first-price, second-price, Dutch, and English} raise the
same expected revenue for the seller.

This revenue equivalence result may go some way toward explaining why we see all
four auction forms in practice. Were it the case that one of them raised more revenue than
the others on average, then we would expect that one to be used rather than any of the others,
But what is it that accounts for the coincidence of expected revenue in these auctions? Our
next objective is to gain some insight into why this is so.

9.3 THe Revenute EQUIVALENCE THEOREM

To explain the equivalence of revenue in the four standard auction forms, we must first find
a way to fit all of these auctions into a single framework. With this in mind, we now define
the notion of a direct selling mechanism. !

A direct selling mechanism-is a collection of N probability assignment junctions,
P1lvgs - b oo PNEUL, -« o, V), and N cost functions ci(uy, ... Ux ) oo, €U, -y
up). For each i and every vector of values (v, ..., vn), pi(vy, -.., vn) € [0, 1] denotes
the probability that bidder { receives the object and ¢;(vy, ..., vy) € R denotes the pay-
ment that bidder { must make to the seller.!* Consequently, the sum of the probabilities,
v, vN) + -+ pa(ug, ..., vy), must never exceed unity. On the other hand, we
allow this summ to fall short of unity because we want to allow the seller to keep the object.!?

A, direct selling mechanism works as follows. Because the seller does not know the
bidders’ values, he asks them to report them to him simultaneously. He then takes those

eports, ry, . . ., ry, which need not be truthful, and assigns ihe object to one of the bidders
according to the probabilities p;(r1....,ry), i = 1,..., N, keeping the object with the
residual probability, and secures the paymentc; (ry, ..., ry)fromeachbidderi = 1,..., N.

It is assurned that the entire direct selling mechanism—the probability assignment functions
and the cost functions—-are public information, and that the seller must carry out the terms
of the mechanism given the vector of reported values.

Clearly, the seller’s revenue will depend on the reports submitted by the bidders. Will
they be induced to report truthfully? If not, how will they behave? These are very good
questions, but let’s put them aside for the time being. Instead, let us consider a different
question: How are the four standard auctions related to direct selling mechanisms?

What we will show is that each of the four standard auctions can be equivalently viewed
ag an incentive-compatible direct selling mechanism. That is, a direct selling mechanism in
which it is an equilibrium for the bidders to report their values truthfutly. These mechanisms

" Our presentation is based upon Myerson (1981),

"2Note, first, that a biddet’s cost may be negative and, second, that a bidder’s cost may be positive even when that
bidder does not receive the object (i.¢., when that bidder's probability of receiving the object is zero).

"3This is more generality than we need at the momens because the seller never keeps the object in any of the four
standard auctions. However, thus will be helpful a little later.
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will prove to be central, Indeed, understanding incentive-compatible direct selling mech-
anisms will not only be the key to understanding the connection among the four standard
auctions, but it will be central to our understanding revenue-maximizing auctions as well.

Consider a first-price auction with symmetric bidders. We'd like to construct an
“equivalent” direct selling mechanism in which truth-telling is an equilibrium. To do this,
we shall employ the first-price auction equilibrium bidding function b(.). The idea behind
our construction is simple. Instead of the bidders submitting bids computed by plugging
their values into the equilibrium bidding function, the bidders will be asked to submit their
values and the seller will then compute their equilibrium bids for them, Recall that because
b(-) is strictly increasing, a bidder wins the object in a first-price auction if and only if he
has the highest value.

Consider, then, the following direct selling mechanism, where b(-) is the equilibrium
bidding function for the first-price auction given in (9.5):

1, ifw > v;forall j#i
{1, otherwise,
and (9.8)
b(v;). ifwv > vy forall j #i
0, otherwise.

p.-(vl.---.vn)={

'-'I‘(UI-----”N):{

Look closely at this mechanism. Note that the bidder with the highest reported value,
v, receives the object and he pays b(v) for it, just as he would have in a first-price auction
equilibrium. So, if the bidders report their values truthfully, then the bidder with the highest
value, v, wins the object and makes the payment b(v) to the seller. Consequently, if this
mechanism is incentive-compatible, the seller will earn exactly the same ex-post revenue
as he would with a first-price auction.

To demonstrate that this mechanism is incentive-compatible we need to show that
truth-telling is a Nash equilibrium. So, let us suppose that all other bidders report their
values truthfully and that the remaining bidder has value v. We must show that this bidder
can do no better than to report his value truthfully to the seller. So, suppose that this bidder
considers reporting value r. He then wins the object and makes a payment of b(r) if and only
if r > v; for all other bidders j. Because the other N — I bidders’ values are independently
distributed according to F, this event occurs with probability #¥=1(r). Consequently, this
bidder's expected payoff from reporting value r when his true value is v is )

F¥'(r)(v = bir)).

But this is exactly the payoff in (9.1), which we already know is maximized when r = v.
Hence, the direct selling mechanism (9.8} is indeed incentive-compatible.

Let's reconsider what we have accomplished here. Beginning with the equilibrium of
a first-price auction, we have constructed an incentive-compatible direct selling mechanism
whose truth-telling equilibrium results in the same ex-post assignment of the object to
bidders and the same ex-post payments by them. [n particular, it results in the same ex-post
revenue for the scller. Moreover, this method of constructing a direct mechanism is quite




AUCTIONS AND MFCHANISM DESIGN . e 8K

general. Indeed, beginning with the equilibrium of any of the four standard auctions, we can
similarly construct an incentive-compatible direct selling mechanism that yields the same
ex-post assignment of the object to bidders and the same ex-post payments by them. (You
are asked to do this in an exercise.)

In effect, we have shown that each of the four standard auctions is equivalent to some
incentive-compatible direct selling mechanism. Because of this, we can now gain insight
into the former by studying the latter.

9.3.1 INCENTIVE-COMPATIBLE DIRECT SELLING MECHANISMS

Consider an incentive-compatible direct selling mechanism with probability assignment
functions p;(-) and cost functions c;(:), { = 1,..., N. By incentive compatibility, each
bidder must find it optimal to report his true value given that all other bidders do so. Let us
consider the implications of this.

Suppose that bidder i's value is v; and he considers reporting value r,. If all other
bidders report their values truthfully, then bidder i's expected payoff is

1 ! '
u(ri, v) =.[u fo (pilri, voi)vi = cilri, vep)) foivddv_;,

where f_;(v_;)= f(w)... (V=) f(Wis1). .. flen)anddu.; =du...dvi_dvis. .. duy.
For every r; € [0, 1), let

1 1
pilr) = f K f pilri vi) fi(v_y)dv;
0 1]

and

1 1
Gilry) =f f ci(riy vog) foiv_)dv;.
0 0

Therefore, p,(r;) is the probability that i receives the object when he reports r; and Z;(ry) is
i's expected payment when he reports r;, with both of these being conditional on all others
reporting truthfully. Consequently, bidder i's expzcted payoff when his value is v; and he
reports it to be r; can be written as

ui(ry, v) = pi(riv, — &dri), 9.9)

when all other bidders report their values truthfully.

So, the mechanism is incentive-compatible if and only if for every v, w,(r;, v,) is
maximized in p; at ry; = v 0.6, wi(v, W) = w(n,w) forall vy € 0, 1].

The following result is very useful. [t completely characterizes incentive-compatible
direct selling mechanisms.
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Incentive-Compatible Direct Selfing Mechanisms

A direct selling mechanism (p;i(:), c.—(~))i-"’=l is incentive-compatible if and only if for every
bidder i

(i) pi(w) is nondecreasing in v; and,
{6 Ew) = &) + B{vdw — fy* Pox) dx, for every v, €10, 1.

Prook: Suppose the mechanism is incentive-compatible. We must show that (i) and (i} hold.
To see that (i) holds, note that by incentive compatibility, for all r, v € 10, 1],

Pilridwy — &) = wi(ri, vi) < wi(ug, v) = Pl )y — Giwy).
Adding and subtracting p; (v;)r; to the right-hand side, this implies
iy — &) = [pe(vidn — Eiwid] + Pyl dv; — ).

Buta careful look at the term in square brackets reveals thatitis w,(v;, ), bidder { s expected
payoff from reporting v; when her true value is r;. By incentive compatibility, this must be
no greater than u; (r;, r;), her payoff when she reports her true value, #,. Consequently,

Bolrovs — &(ri) < [P (vdr: — & (il + pilesdvy — 1)
< i, i) + Bvd — 1)
= [, (ridri — Teridl + Bylwd(e — 1)

A

That is,
Py — Ei(r) < Upi(ridry — Eilrd] + pi(wd(y; — i),
which, when rewritten, becomes
(p(v) — B;ri v — i} = 0.

So, when v; > r;, it must be the case that 5,(v;) = p;(r;). We conclude that p;(-) is
nondecreasing. Hence, (i} holds.

To see that (ii) bolds, note that because bidder i’s expected payoff must be maximized
when he reports truthfully, the derivative of u;{r;, v;) with respect to r; must be zero when
ri = v;.1* Computing this derivative yields

Buy(re, vy)

o Pilridu — Elre)

Y We are ignoting two peints here, The first is whether 1, (r;, v;) is in fact differentiable in r;. Although it need
not be everywhere differentiable, incentive compatibility implies that it must be differentinble almost everywhere
and that the analysis we shall conduct can be made perfectly rigorous. We will not pursue these details here. The
second point we ignore is the first-order condition at the two noninterior valves »; = 0 or ). Strictly speaking, the
derivatives at these boundary points need not be zero. But there is no harm (o this because these two values each
oceur with probability zero.
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and setting this to zero when r; = v; yields

&(ve) = Pi(vu. (9.10)
Because v; was arbitrary, (9.10) must hold for every v; € [0, 11. Consequently,
&i(o) — E(0) = f "Sxydx
0
L]
= f Fixyxdx
0
= piwom - [ sy,

where the first equality follows from the fundamental theorem of calculus, the second from
{9.10), and the third from integration by parts. Consequently, for every bidder 7 and every
v; € [0, 1],

el = &0 + Brlvidu — f Bi{x)dx, (9.11)
0
proving (ii).
We must now show the converse. So, suppose that (i) and (ii) hold. We must show

that u;(r;, v;) is maximized in r; when r; = v;. To see this, note that substituting (ji) into
(9.9) yields

wi(ri, wi) = pylrdyi — [51(0)4' piridr — [ iﬁ.-(x)dx]- (9.12)
0
This can be rewritten as
i, 1) = i 0) + fo pidx [ [ @i~ ;af(ri))dx] .

where this expression is valid whether r; < v; or r; = v;.'* Because by (i) 5,(-) is nonde-
creasing, the integral in curly brackets is nonnegative for all r; and v;. Consequently,

uilri, w) = "51(0)+f ’ﬁf(x)dx. 9.13)
o N .
But, by (9.12), the right-hand-side of (9.13) is equal to u;(v;, v;}. Consequently,

wilry, v) = vy, v),

s0 that u;(r;, v;) is indeed maximized in »; when r; = v;. [ ]

13Recall the convention in mathematics that when a < b, Ji* f(x)dx = — [ fix) dx.
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Part (ii) of Theorem 9.5 says that if a direct mechanism is incentive-compatible there
must be a connection between the probability assignment functions and the cost functions.
In particular, it says that once the probability assignment function has been chosen and once
a bidder’s expected cost conditional on having value zero is chosen, the remainder of the
expected cost function is chosen as well. To put it differently, under incentive compatibility
a bidder’s expected payment conditional on his value is completely determined by his
expected payment when his value is zero and his probability assignment function. This
observation is essential for understanding the following result.

Revenue Equivalence
If two incentive-compatible direct selling mechanisms have the same probability assignment

functions and every bidder with value zero is indifferent between the two mechanisms, then
the two mechanisms generate the same expected revenue for the seller.

Prook: The seller’s expected revenue is

1 i N
R=fo j zfitl.'[,,..,lf”}f(lh)...f{“”)d“].”dUN

0 =1

N 1 1
= fo [ o - S du .. doy
] o

l L.x [fn' __,foi civi, U_J)f-i(v-,-}dv_,] filv)du;

1
j; &) filvy) dv;

I
M= iM= 1M

! v
f [E;'(U] + pi(viv; ~ f ﬁf(x)dx] fitvi)dv;
a

1 Yy N
[ [pem- [ ;a.(x)dx] floddu+ 360,

=]

i

-

where the fourth equality follows from the definition of &;(v;) and the fifth equality follows
from (9.11).

Consequently, the seller’s expected revenue depends only on the probability assign-
ment functions and the amount bidders expect to pay when their values are zero. Because a
bidder's expected payoff when his value is zero is completely determined by his expected
payment when his value is zero, the desired result follows. L]

The revenue equivalence theorem provides an explanation for the apparently coinci-
dental equality of expected revenue among the four standard auctions. We now see that this
follows because, with symmetric bidders, each of the four standard auctions has the same
probability assignment function (i.e., the object is assigned to the bidder with the highest
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value), and in each of the four standard auctions a bidder with value zero receives expected
utility equal 1o zero. -

The revenue equivalence theorem is very general and allows us to add additional
auctions to the list of those yielding the same expected revenue as the four standard ones.
For example, a first-price, all-pay auction, in which the highest among all sealed bids wins
but every bidder pays an amount equal to his bid, also yields the same expected revenue
under bidder symmetry as the four standard auctions. You are asked to explore this and
other auctions in the exercises.

9.3.2 EFFICIENCY

Before closing this section, we briefly turn our attention to the allocative properties of the
four standard auctions. As we have already noted several times, each of these auctions
allocates the object to the bidder who values it most. That is, each of these auctions is
efficient. In the case of the Dutch and the first-price auctions, this result relies on bidder
symmetry. Without symmetry, different bidders in a first-price auction, say, will employ
different strictly increasing bidding functions. Consequently, if one bidder employs a lower
bidding function than another, then the one may have a higher value yet be outbid by the other.

9.4 ReVENUE-MAXIMIZATION: AN APPLCATION os MecHaNISM DESIGN

By now we understand very well the four standard auctions, their equilibria, their expected
revenue, and the relation among them. But do these auctions, each generating the same
expected revenue (under bidder symmetry), maximize the seller’s expected revenue? Or is
there a better selling mechanism for the seller? If there is a better selling mechanism what
form does it take? Do the bidders submit sealed bids? Do they bid sequentially? What about
a combination of the two? Is an auction the best selling mechanism?

Apparently, finding a revenue-maximizing selling mechanism is likely to be a difficult
task. Given the freedom to choose any selling procedure, where do we start? The key
observation is to recall how we were able to construct an incentive-compatible direct selling
mechanism from the equilibrium of a first-price auction, and how the outcome of the first-
price auction was exactly replicated in the direct mechanism’s truth-telling equilibrium.
As it turns out, the same type of construction can be applied to any selling procedure.
That is, given an arbitrary selling procedure and a Nash equilibrium in which each bidder
employs a strategy mapping his value into payoff-maximizing behavior under that selling
procedure, we can construct an equivalent incentive-compatible direct selling mechanism.
The requisite probability assignment and cost functions map each vector of values to the
probabilities and costs that each bidder would experience according to the equilibrium
strategies in the vriginal selling procedure. So constructed, this direct selling mechanisin is
incentive-compatible and yields the same (probabilistic) assignment of the object and the
same expected costs to each bidder as well as the same expected revenue to the seller.

Consequently, if some selling procedure yields the seller expected revenue equal to
R, then so too does some incentive-compatible direct selling mechanism. But this means
that no selling mechanism among all conceivable selling mechanisms yields more revenue
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Sor the seller than the revenue-maximizing, incentive-compatible direct selling mechanism.
We can, therefore, restrict our search foi a revenue-maximizing selling procedure to the
(manageable} set of incentive-compatible direct selling mechanisms. In this way, we have
simplified our problem considerably while losing nothing.

9.4.1 INDIVIDUAL RATIONALITY

There is one additional restriction we must now consider. Because participation by the
bidders is entirely voluntary, no bidder’s expected payoff can be negative given his value.
Otherwise, whenever he has that value, he will simply not participate in the selling mech-
anism. Thus, we must restrict attention to incentive-compatible direct selling mechanisms
that are individually rational, i.e., that yield each bidder, regardless of his value, a non-
negative expected payoff in the truth-telling equilibrivm.

Now, in an incentive-compatible mechanism bidder i with value v; will receive ex-
pected payoff u;(v;, v;) in the wuth-telling equilibrium. So, an incentive-compatible direct
selling mechanism is individually rational if this payoff is always nonnegative, i.e., if

w, (v, w) = pi(wde — &(w) = 0forall v € [0, 11.

However, by incentive compatibility, (i) of Theorem 9.5 tells us that
w
() = &0y + pi(udy — f p:{x)dx, for every v; € [0, 1),
¢

Consequently, an incentive-compatible direct selling mechanism is individually rational if
and only if

v
uilvi, ;) = pilwdv — & (v) = —6:(0) +f Pi(x}dx > 0 for every v; € [0, 1],
¢

which clearly holds if and only if
&l =0 (9.14)

Consequently, an incentive-compatible direct selling mechanism is individually ra-
tional if and only if each bidder’s expected cost when his value is zero is nonpositive,

9.4.2 AN OPTIMAL SELUNG MECHANISM

We have now reduced the task of finding the optimal selling mechanism to maximizing
the seller’'s expected revenue among all individually rational, incentive-compatible direct
selling mechanisms, p;() and ¢;(-}, f = L, ..., N. Because Theorem 9.5 characterizes
all incentive-compatible selling mechanisms, and because an incentive-compatible direct
selling mechanisin is individually rational if and only if &(0) < 0, our task has been

reduced to solving the following problem: Choose a direct selling mechanism p; (), ¢, (),

CHAPTER O . .
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i=1,..., N, to maximize

N 1 . v; N
R=3, f [ﬁ‘-tvi)vi - [ ﬁi(x)dx] fitw)du +Y " &{0)
i— /0 0 i=t
subject to
() p;(v;) is nondecreasing in v;,
i) &:(ve) = 0} + pilw)vi — [ Bi(x)dx, for every v; € [0, 1],
(i) &(0) <0,
where the expression for the seller’s expected revenue follows from incentive compatibility

precisely as in the proof of Theorem 9.6.
1t will be helpful to rearrange the expression for the seller’s expected revenue.

N 1 ty N
R= Z}fo [ﬁ;(v.-)vf = fo ﬁ.-(x)dx] flw) duw + ;:E;(O)
N 1 ’ 1 py N
-3 [ [ pioomsoyas - [ .ﬁ,-(x)f.-(vs)dxdv.-] +3 ).
i=1 LJO B 070 i=1

By interchanging the order of integration in the iterated integral (i.e., from dxdv; to dv;dx),
we obtain

! L pl N
R= Z [[ xﬁj(l’i)vi.ﬁ'(vi)dvi - [ f f’i(x)ff(vi)dvfdx] + Zai(o)
0 0 Jx —
N 1 " .
- Z [f PulwiJu fitvy v — f Bi(x)(1 — F,-(x))dx] + ZE;(O),
' ! i=}

By replacing the dummy variable of integration, x, by v, this can be written equivalently
as

L 1 N
R= Z [fo Belw v fi(ui) dvg j; Bi(wd(1 — Fi(w)) d”i] + Z &:(0)
=l
Yo 1 - E(w) N '
= ZL Pi(v.i) [U:-‘. W] Ffilviydu, + ;C.(O).
Finally, recalling that

1 1
Bilr) = f j Pl v} foiv_D v,
[+l 0
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we may write

R= Ef [ Pivy, ..., Vy) [!J'f f(v) :If:(m) favloy)dy, .. dey
+ Za(m.

or

1 1[N -
R='{o u-j; IZP‘(!’.[””‘"N}[B‘ - %:{]fl(D|).<.fN{U,\r)dU|‘..dvy

=]

N
+Y_&(0). (9.15)

W=l

So, our problem is to maximize (9.15) subject to the constraints (i)-(iii) above. For
the moment, let’s concentrate on the first term in (9.15), namely

1 L[N [l
££ IEPJ(W----.UN)[W——J?(;E(;—””fl(v:)---fn(ﬂn)dﬂl-udvﬂ

i=1
(9.16)

Clearly, (9.16) would be maximized if the term in curly brackets were maximized
for each vector of values vy, ..., vy. Now, because the p;(vy, ..., vy) are nonnegative
and sum to one or less, the N + | numbers py(vy,...,un) ..., pa(vy, ..., Vx),
1~ Ef’:,, pi(vy, ..., vy) are nonnegative and sum to one. So, the sum above in curly
brackets, which can be rewritten as

= Fi(y,
EP:(W,H--UN)I:UE— f(“f)] ( ZP:(W-----'-’N))‘O-

is just a weighted average of the N + | numbers

[v _I= F](Ul]] [UN _ 1 Fylvy) 0
! Ay 777 felew) ]’

But then the sum in curly brackets can be no larger than the largest of these bracketed terms
if onc of them is positive, and no larger than zero if all of them are negative. Suppose now
that no two of the bracketed terms are equal to one another. Then, if we define

1, ify - -?%}I?l:-max(ﬂu —‘—j%l'-;f-') forall j #1i,

0, otherwise,

Py, uy) = | (9.17)
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it must be the case that

> lhr(. 1— Fi(v
Epl(uh‘-'lvﬁ)[ui ff ‘,)v ] EP[(”II“-.UN)[UI—-T'(U%E!].

i=] fml

‘Therefore, if the bracketed terms are distinct with probability one, we will have

; & 1-F
R=j; _/; IZPI’(”!:---n"N)[W__'}TEGi()l)]]fl(vl)---fN(”N)dUI---d"'N

f=l

N
+ Z &(0)

F i
f f [ZP}W%----‘UH){ f{u? ):”fl(vt)---fufunidvl---duﬂ
+25,-(0), ‘

i=l

for all incentive-compatible direct selling mechanisms p;(:), ¢;(-). For the moment, then,
let’s assume that the bracketed terms are distinct with probability one. We will introduce
an assumption on the bidders’ distributions that guarantees this shortly.'S

Because constraint (ii) implies that each &(0) < 0, we can also say that for all
incentive-compatible direct selling mechanisms p;(-), ¢;(), the seller’s revenue can be no
larger than the following upper bound:

R -:f f ZP;(H: ...vn)[ = f::(lh ]l filv) ... fnluy)dyy ... duy.
i=1 i t
(9.18)

‘We will now construct an incentive-compatible direct selling mechanism that achieves
this upper bound. Consequently, this mechanism will maximize the seller’s revenue, and so
will be optimal for the seller.

To construct this optimal mechanism, let the probability assignment functions be the
pivr, ... o) i =1,..., N, in (9.17). To complete the mechanism, we must define cost

functions ¢/ (vy, ..., vy), § = 1,..., N. But constraint (ii) requires that for each v;, bidder
i"s expected cost and probability of receiving the object, &( U.) and p(v;), be related as
follows

2
&) = el O + B ~"f0 pi(x)dx.

'“The assumption is given in (9.22).



94

CHAPTER @

Now, because the &7 and p} are averages of the ¢ and p}, this required relationship between
averages witi hold if it holds for each and every vector of values vy, .. ., by. That is, (i) is
guaranteed to hold if we define the c7 as follows: For every vy, ..., vy,

"
(Wi vy) =0, v+ piun - U —f piix, v.)dx, 9.19)
0

To complete the definition of the cost functions and to satisfy constraint {iii), we shall
set ¥(0, v, ..., v} = Ofor all i and all v,..., v, So, our canidate for a revenue-
maximizing, incentive-compatible direct selling mechanism is as follows: For every 1 =
1,..., N andevety ty,..., Uy

1, ifop — —‘m“#>max(0,vj—km)forallj;éi,

P, o) = fiowy Fitv)) (9.20)
0, otherwise;
and
b
c:‘(v1,.--.vn)=p,-*(v1,---,v~)viﬂﬂ piix v-)dx. ©.21

By construction, this mechanism satisfies constraints (i) and (iii), and it achieves the
upper bound for revenues in (9.18). To see this, simply substitute the p into (%.15) and
recall that by construction &7(0) = 0 for every i. The result is that the seller’s revenues are

Fitu
R= f f{Zp,(vl... vN)[ f(v()” ]}fl(ul)...fN(vN)dvl...duN,

their maximum possible value.
So, if we can show that our mechanism’s probability assignment functions defined in
(9.20) satisfy constraint {i), then this mechanism will indeed be the solution we are seeking.
Unfortunately, the p* as defined in (9.20) need not satisfy (i). To ensure that they do,
we need to restrict the distributions of the bidders’ values. Consider, then, the following
assumption: Foreveryi =1,..., N

1 — Fiv)
fi(vl)

This assumption is satisfied for a number of distributions, including the uniform dis-
tribution. Moreover, you are asked to show in an exercise that it holds whenever each
F; is any convex function, not merely that of the uniform distribution.'” Note that in
addition to ensuring that (i) holds, this assumption also guarantees that the numbers

v — is strictly increasing in v;. (9.22)

7When this assumption fails, the mechanism we have constructed here is not optimal, One can nevertheless
construct the optimal mechanism, but we shall not do 5o bere. Thus, the additional assumption we are making
there is only for simplicity’s sake.
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vy — (I = Fitei)/filwy). ... v — (1 — Fy(un))/fnvy) are distinct with probability
one, a requirement that we eatlier employed but had left unjustified until now.

Let us now see why (9.22) implies that (i) is satisfied. Consider some bidder ¢ and
some fixed vector of values, v.;, for the other bidders. Now, suppose that §; > v, and that
pi(u;, ¥_;) = 1. Then, by the definition of p}, it must be the case that v, — (1~ Fy (v, )/ fil,)
is positive and strictly greater than v; — (1 — Fj{v;))/fi(v;) for all j # i. Consequently,
because v; — (1 — Fi(vi))/fi(v;) is strictly increasing it must also be the case that #; —
(1 — Fi{y; )/ fi(y;) is both positive and sirictly greater than v; — (1 — Fj(v;))/f;(v;) for all
J # i, which means that p} (%, v_;) = 1. Thus, we have shown that if pT(v, v_;) = 1, then
pi(v, v) =1forall v, > v;. But because p} takes on either the value O or 1, p}f(w;, v_;)
is nondecreasing in v; for every v_;. This in turn implies that 57{(v;) is hondecreasing in v;,
so that constraint (i) is indeed satisfied.

In the end then, our hard work has paid off handsomely. We can now state the
following,

An Optimol Selling Mechanism

If N bidders have independent private.values with bidder i 's value drawn from the continu-
ous positive density f; satisfying (9.22), then the direct selling mechanism defined in {9.20)
and (9.21) yields the seller the largest possible expected revenue.

9.4.3 A CLOSER LOOK AT THE OPTIMAL SELLING MECHANISM

Let’s see if we can simplify the description of the optimal selling mechanism by studying
its details. There are two parts to the mechanism, the manner in which it allocates the
object—the p!-—and the manner in which it determines payments—the ',

The allocation portion of the optimal mechanism is straightforward. Given the re-
ported values vy, ..., vn, the object is given to the bidder § whose v; — (1 — F;(v:))/ fi(vi)
is strictly highest and positive. Otherwise, the seller keeps the object. But it s worth a little
effort to try to interpret this atlocation scheme.

What we shall argue is that v; — (1 — F;(»;))/f:(v;) represents the marginal revenue,
MR;(v;), that the seller obtains from increasing the probability that the object is assigned
to bidder i when his value is v;. To see this without too much notation we shall provide
an intuitive argument. Consider the effect of increasing the probability that the object is
awarded bidder { when his value is v,. This enables the seller to increase the cost to v; soasto
leave his utility unchanged. Because the density of v; is f;(v;), the seller’s revenue increases
at the rate v; f;(v;) as a result of this change. On the other hand, incentive compatibility
forces a connection between the probability that the good is assigned to bidder § with
value v; and the cost assessed to all higher values »] > ;. Indeed, according to constraint
(ii), increasing the probability that lower values receive the object reduces one-for-one
the cost that all higher values can be assessed. Because there is a mass of 1 — Fi(y)
values above v;, this total reduction in revenue is 1 — F;(v;). So, altogether the seller’s
revenues increase by v f;(v;) — (1 — Fi(¥,)). But this is the total effect due 1o the density
fi(v;) of values equal to v;. Consequently, the marginal revenue associated with each v; is
MR;(vi) = v — (1= Filw))/ filv).
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The allocation rule now makes perfect sense. If MR;(v;) > MR;(v;). The seller can
increase revenue by reducing the probability that the object is assigned to bidder j and
increasing the probability that it is assigned to bidder i. Clearly then, the seller maximizes
her revenue by assigning all probability (i.e., probability one) to the bidder with the highest
MR(v;), so long as it is positive, If all the marginal revenues are negative, the seller does
best by reducing all of the bidders’ probabilities to zero, i.e., the seller keeps the object.

‘The payment portion of the mechanism is a little less transparent. To get a clearer pic-
ture of what is going on, suppose that when the (truthfully) reported values are vy, ..., vy,
bidder i does not receive the object, i.e., that pf(v;, v—;) = 0. What must bidder { pay
according to the mechanism? The answer, according to (9.21), is

o
ef (v, v=y) = py(vs, vy —f p(x,v_;)dx
(1]
“
=0 - f pllx,v_g)dx.
0

But recall that, by virtue of assumption (9.22), p/'(-, v_;) is nondecreasing. Consequently,
because p(v;, v_;) = 0, it must be the case that p/(x, v_;) = 0 for every x < v;. Hence
the integral above must be zero so that

cf (v, v_) =0.

So, we have shown that according to the optimal mechanism, if bidder i does not receive
the object, he pays nothing.

Suppose now that bidder i does receive the object, i.e., that p/ (v, v_;) = 1. According
to (9.21), he then pays

w
e (v, v-g) = p(vi, vy —j plix,v)dx
o
W
=y —f plx, v_;)dx.
o

Now, because p; takes on the value 0 or 1, is nondecreasing and continuous from the left in
i's value, and p!(v;, v_;) = 1, there must be a largest value for bidder i, r < v, such that
p!(r!, v=;) = 0. Note that r* will generally depend on v_; so it would be more explicit to
write r7(v_;). Note then that by the very definition of r(v_,), p(x, v—;) is equal to 1 for
every x > r{v_;), and is equal to 0 for every x < r](v_;). But this means that

w
i vy = — f 1dx

Slusyd
=y = (= (g}

ri(v_;).

So, when hidder i wins the object. he pays a price, r{(v_;), that is independent of his own
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reported value. Moreover, the price he pays is the maximum value he could have reported,
given the others’ reported values, without receiving the object.

Putting all of this together, we may rephrase the revenue-maximizing selling mecha-
nism defined by (9.20) and (9.21) in the following manner.

The Optimal Selling Mechanism Simplified
If N bidders have independent private values with bidder i 's value drawn from the contin-
uous positive density f; and each v; — (1 — Fi(v;))/fi(v:) is strictly increasing, then the
Sfollowing direct selling mechanism yields the seller the largest possible expected revenue:

For each reported vector of values, vy, ..., vy, the seller assigns the object to the
bidder i whose v, — (1 — F,(v;))/fi(v;) is strictly largest and positive. If there is no such
bidder, the seller keeps the object and no payments are made. If there is such a bidder
i, then only this bidder makes a payment to the seller in the amount r!, where
rf = (1 = RN/ filr]) = 0 or max;g vy — (1 — Fj(v)/fi(vy), whichever is largest.
Bidder i's payment, r?, is, therefore, the largest value he could have reported, given the
others’ reported values, without receiving the object.

As we know, this mechanism is incentive-compatible. That is, truth-telling is a Nash
equilibrium. But, in fact, the incentive to tell the truth in this mechanism is much stronger
than this. In this mechanism it is, in faci, a dominant strategy for each bidder to report his
value truthfully to the seller; even if the other bidders do not report their values truthfully,
bidder i can do no better than to report his value truthfully to the seller. You are asked to
show this in one of the exercises.

One drawback of this mechanism is that to implement it, the seller must know the
distributions, F;, from which the bidders’ values are drawn. This is in contrast to the standard
auctions that the seller can implement without any bidder information whatsoever. Yet there
is a connection between this optimal mechanism and the four standard auctions that we now
explore.

9.4.4 EFFICIENCY, SYMMETRY, AND COMPARISON TO THE FOUR
STANDARD AUCTIONS

In the optimal selling mechanism, the object is not always allocated efficiently. Sometimes
the bidder with the highest value does not receive the object. In fact, there are two ways
that inefficiency can occur in the optimal selling mechanism. First, the outcome can be
inefficient because the seller sometimes keeps the object, even though his value for it is
zero and all bidders have positive values. This occurs when evcr'y bidder i 's valve v; is such
that v; — (1 — Fi(v;))/fi(v;) < 0. Second, even when the seller does assign the object to
one of the bidders, it might not be assigned to the bidder with the highest value. To see
this, consider the case of two bidders, 1 and 2. If the bidders are asymmetric, then for some
ve[0,1], v=(1 = Fi(v)/filv) # v = (1 = F(1))/fa(v). Indeed, let us suppose that for
this particular value, v, v — (1 = Fy(v))/fi(v) > v— (1 — Fa(v))/ fa(v) > 0. Consequently,
when both bidders" values are v, bidder 1 will receive the object. But, by continuity, even
if bidder 1's value falls slightly to v' < v, s0 long as v’ is close enough to v, the inequality
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v' = (1= RN/ fi() > v—(1 = Fa(v)}/ fo(v} > 0 will continue to hold. Hence, bidder 1
will receive the object even though his value is stricily below that of bidder 2.

The presence of inefficiencies is not surprising. After all, the seller is a monopolist
seeking maximal profits. In Chapter 4, we saw that a monopolist will restrict output below
the efficient level so as to command a higher price. The same effect is present here. But,
because there is only one unit of an indivisible object for sale, the seller here restricts
supply by sometimes keeping the object, depending on the vector of reports. But this
accounts for only the first kind of inefficiency. The second kind of inefficiency that arises
here did not occur in our brief look at monopoly in Chapter 4. The reason is that there
we assumed that the monopolist was unable to distinguish one consumer from another.
Consequently, the monopolist had to charge all consumers the same price. Here, however,
we are assuming that the seller can distinguish bidder ¢ from bidder j and that the seller
knows that i’s distribution of values is F; and that j°s is F;. This additional knowledge
allows the monopolist to discriminate between the bidders, which leads to higher profits,

Let’s now eliminate this second source of inefficiency by supposing that hidders are
symmetric. Because the four standard auctions all yield the same expected revenue for the
seller under symmetry, this will also allow us to compare the standard auctions with the
optimal selling mechanism.

How does symmetry affect the optimal selling mechanism? If the bidders are symmet-
ric,then f; = f and F; = F forevery bidderi. Consequently, the optimal selling mechanism
is as follows: If the vector of reported values is (my, ..., vy), the bidder i with the highest
positive v; — (1 — F(v;))/ f(v;) recejves the object and pays the seller r!, the largest value he
could have reported, given the other bidder’s reported values, without winning the object.
1f there is no such bidder i, the seller keeps the object and no payments are made.

But let’s think about this for a moment. Because we are assuming that v —
(L — F(u))/f{r) is strictly increasing in v, the object is actually awarded to the bidder
i with the strictly highest value v;, so long as v; — (1 — F(w))/ fi(w) > O—that is, so long
asv; > p* ¢ 10, 1), where

. 1=F(pY)
—— . 23
o) (9.23)

(You are asked to show in an exercise that a unique such p* is guaranteed to exist.)

Now, how large can bidder {’s reported value be before he is awarded the object?
Well, he does not get the object unless his reported value is strictly highest and strictly
above p*. So, the largest his report can be without receiving the object is the largest of the
other bidders’ values or p*, whichever is Jarger. Consequently, when bidder i does receive
the object he pays either p* or the largest value reported by the other bidders, whichever is
larger.

Altogether then, the optimal selling mechanism is as follows: The bidder whose
teported value is strictly highest and strictly above p* receives the object and pays the
larger of p* and the largest reported value of the other bidders.

Remarkably, this optimal direct selting mechanism can be mimicked by running a
second-price anction with reserve price o*. That is, an auction in which the bidder with
the highest bid strictly above the reserve price wins and pays the second-highest bid or the
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9.5 ExErCises

reserve price, whichever is larger. If no bids are above the reserve price, the seller keeps the
object and no payments are made. This is optimal because, just as in a standard second-price
auction, it is a dominant strategy to bid one’s value in a second-price auction with a reserve
price.

This is worth highlighting.

An Optimal Auction Under Symmelry

If N bidders have independent private values, each drawn from the same continuous positive
density f, where v— {1 — F(u))/f(v) is strictly increasing, then a second price auction with
reserve price p* satisfying p* — {1 — F(p*})/f(p") = 0, maximizes the seller’s expected
revéenue.

You might wonder about the other three standard auctions. Will adding an appropriate
reserve price render these auctions optimal for the seller too? The answer is yes, and this is
left for you to explore in the exercises.

So, we have now come full circle. The four standard auctions—first-price, second-
price, Dutch, and English—all yield the same revenue under symmetry. Morecver, by
supplementing each by an appropriate reserve price, the seller maximizes his expected
revenue. Is it any wonder then that these auctions are in such widespread use? We will leave
you with that thought. N

9.1
92

923

Show that the bidding strategy in (9.5) is strictly increasing.

Show in two ways that the symmetric equilibrium bidding strategy of a first price auction with ¥
symmetric bidders each with values distributed according o F, can be written as

v OENM
bw=v- f (ﬂ) ax
w=v-j, (ro
For the first way, use our solution from the text and apply integration by parts. For the second way, use

the fact that F¥~1(r)(v - B(r)) is maximized in » when r = v and then apply the envelope theorem
10 conclude that d(FY¥ =" (¥} (v — b(v))/dv = F¥~'(p); now integrate both sides from O to v,

This exercise will guide you through the proof that the bidding function in (2.5} is in fact 2 symmetric
equilibrium of the first-price auction.
(a) Recall from (9,2) that
dulr, v}
dr
Using {9.3), show that

= (N = DF¥ ) firfe — By — RY (b,

du(r, v)

=W DFEY ) Fir = ble) = (V — DF¥ 20 £0)r - b))

= (N — DFYY) fr)e — r).

{b) Use the result in part (a) to conclude that du(r, v)/dr is positive when r < v and negative when
r > v, so that u(r, v} is maximized when r = v.
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9.4 Throughout this chapter we have assumed that both the seller and all bidders are risk neutral. In this
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question, we shall explore the consequences of risk aversion on the part of bidders.

‘There are N bidders participating in a first-price auction. Each bidder's value is independently
drawn from [0,1] according to the distribution tunction F, having continuous and strictly positive
density f. If a bidder's value is v and he wins the object with a bid of b < v, then his von Neumann-
Morgenstern utility is (v — b)i. where & = 1 is fixed and common to all bidders. Consequently,
the bidders are risk averse when a > 1 and risk neutral when @ = 1. (Do you see why?) Given
the risk aversion parameter a, let ba(v) denote the (symmetric) equilibrium bid of a bidder when
his value is v. The following parts will guide you toward finding by(v) and uncovering some of its
implications.

(a) Let u(r, v) denote a bidder’s expected utility from bidding b,(r) when his value is v, given that
all other bidders employ b,(-). Show that

ulr, v) = F¥'(rXv = butr))?.

Why must u(r, v) be maximized in r when r = v?
(b) Use part {a) to argue that

[utr, )]* = [F* (0] (v - b.(r))

must be maximized in r when r = v.

{c} Use part (b) to argue that a first-price auction with the N — | risk averse bidders above whose
values are each independently distributed according to F(v), is equivalent 1o a first-price auc-
tion with N — | risk neutral bidders whose values are each independently distributed accord-
ing to F*(v). Use our solution for the risk neutral case (see Exercise 9.2 above) to conclude
that

~ v FE)\ T
5.(u}_u—j; -ﬁ;’—)) dx.

{d) Prove that b, (v) is strictly increasing in @ > 1. Does this make sense? Conclude that as bidders
become more risk averse, the seller's revenue from a first-price auction increases.

Use part (d) and the revenve equivalence result for the standard auctions in the risk neutral case
10 argue that when bidders are risk averse as above, a first-price auction raises more revenue for
the seller than a second-price auction. Hence, these two standard auctions no longer generate the
same revenue when bidders are risk averse.

(f) What happens to the seller's revenue as the bidders become infinitely risk averse (i.e., asa — 00)?

—

(e

In a private values model, argue that it is a weakly dominant strategy for a bidder to bid her value in
a second-price auction even if the joint distribution of the bidders’ values exhibits correlation.

Use the equilibria of the second-price, Duich, and English auctions 10 construct incentive-compatible
direct selling mechanisms for cach of them in which the ex-post assignment of the object to bidders
as well as their ex-post payments to the seller are unchanged.

In a first-price, all-pay auction, the bidders simultaneously submit scaled bids, The highest bid wins
the object and every bidder pays the seller the amount of his bid. Consider the independent private
values mode! with symmetric bidders whose values are each distributed according to the distribution
function F, with density f.

(a) Find the unique symmetric equilibrium bidding function. Interpret.

(b} Do bidders bid higher or lower than in a first-price auction?
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9.1

9.12

9.13

9.14

(c) Find an expression for the seller’s expected revenue,

(d) Both with and without using the r equivalence th 1, show that the seller’s expected
revenue is the same as in a first-price auction.

Suppose there are just two bidders. In a second-price, all-pay auction, the two bidders simultane-
ously submit sealed bids. The highest bid wins the object and both bidders pay the second-highest
bid.

(a) Find the unique symmetric equilibrium bidding function. Interpret.

(b) Do bidders bid higher or lower than in a first-price, all-pay auction?

(c) Find an expression for the seller’s expected revene.

(d) Both with and without using the revenue equivalence theorem, show that the seller's expected
revenue is the same as in a first-price auction.

Consider the following variant of a first-price auction. Sealed bids are collected. The highest bidder

pays his bid but receives the object only if the outcome of the toss of a fair coin is heads. If the outcome

18 tails, the seller keeps the object and the high bidder's bid. Assume bidder symmetry.

(a) Find the unigue symmetric equilibrium bidding function. Interpret.

(b) Do bidders bid higher or lower than in a first-price auction?

(¢) Find an expression for the seller’s expected revenue.

(d) Both with and without using the revenue equivalence theorem, show that the seller’s expected
revenue is exactly half that of a standard first-price auction.

Suppose all bidders' values are uniform on [0, 1]. Construct a revenue-maximizing auction. What is
the reserve price?

Consider again the case of uniformly distributed values on [0, 1]. 1s a first-price auction with the same
reserve price as in the preceding question optimal for the seller? Prove your claim using the revenue
equivalence theorem,

Suppose the bidders' values are i.i.d., each according 1o a uniform distribution on {1, 2]. Construct a
revenuc-maximizing auction for the seller.

Suppose there are N bidders with independent private values where bidder i's value is uniform
on [a;, b;). Show that the following is a revenue-maximizing, incentive-compatible direct selling
mechanism. Each bidder reports his value, Given the reported values vy, ..., vy, bidder i wins the
object if v; is strictly larger than the N — 1 numbers of the form b; /2 + max(0, v; — b, /2) for j #i.
Bidder i then pays the seller an amount equal to the largest of these N - | numbers. All other bidders
pay nothing.

A drawback of the direct mechanism approach is that the seller must know thie distribution of the
bidders’ values to compute the optimal auction. The following exercise provides an optimal auction
that is distribution-free for the case of two asymmetric bidders, 1 and 2, with independent private
values. Bidder i's strictly positive and continuous density of values on [0, 1] is f, with distribution
F;. Assume throughout that v; — (1 = F,(1,))/fi(v,) is strictly increasing fori = 1,2,

The auction is as follows. In the first stage, the bidders each simultaneously submit a sealed bid.
Before the second stage begins, the bids are publicly revealed. In the second stage, the bidders must
simultancously declare whether they are willing to purchase the object at the other bidder's revealed
sealed bid. If one of them says “yes” and the other “no.” then the “yes” transaction is carried out. If
they both say “yes"” or both say “no,” then the seller keens the object and no payments are made. Note
that the seller can run this auction without knowing the bidders’ value distributions.
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(a) Consider the following strategies for the bidders: In the first stage, when her valoe is v, bidder ’
i # j submits the sealed bid b; (1) = b;, where b; solves

_1-FK) 1 - Fv)
Silb)y fitwy )T

{Although such a b, need not always exist, it will always exist if the funcuions v —

(1 — Fitv )/ fi(v) and v, — (1 — B())/f2(1;) have the same range. So, assume this is the
case.}

b; = max (0. W —

In the second stage each bidder says “yes” if and only if her value is above the other bidder’s first-

stage bid.

Show that these strategies constitute an equilibrium of this auction. {Alse, note that while the
seller need not know the distribution of values, each bidder needs to know Ihe distribution of the other
biddet’s values to carry out her strategy. Hence, this auction shifts the informational burden from the
seller to the bidders.)

(b) (i) Show that in this equilibrium the seller’s expected revenues are maximized.

(ii) Is the outcome always efficient?

(c) (1) Show that it is also an equilibrium for each bidder to bid his value and then to say “yes” if and
only if his value is above the other’s bid.

{ii) Is the putcome always efficient in this equilibrium?

(d) Show that the seller’s revenues are not maximat in this second equilibrium.

(e) Unfortunately, this auction possesses many equilibria. Choose any two strictly increasing functions
2 :[0,1] = Ry i = 1,2, with a common range. Suppose in the first stage that bidder i # j with
value v; bids & (v,} = &, where b; solves g;(b;) = gi(v;) and says “yes” in the second stage if
and only if his value is swictly above the other bidder’s bid. Show that this is an equilibrinm of
this auction. Also, show that the outcome is always efficient if and only if g; = g;.

Show that condition (9.22) is satisfied when each F, is a convex function. Is convexity of F; necessary?

Consider the independent private values model with N possibly asymmetric bidders. Suppose we

restrict attention to efficient individually rational, incentive-compatible direct selling mechanisms;

i.e., those that always assign the object to the bidder who values it most,

(&) What are the probability assignment functions?

(b) What then are the cost functions?

(c) What cost functions among these maximize the seller's revenue?

{d) Conclude that among efficient individually ratiopal, incentive-compatible direct selling mecha-
nisms, a second-price auction maximizes the seller’s expected revenue. (What about the other
three standard auction forms™

Call a direct selling mechanism p(), ci(-), i = 1, ..., N determinisric if the p, take on only the

values Oor |,

(2) Assuming independent private values, show that for every incentive-compatible deterministic
direct selling mechanism whose probability assignment functions, p;(v;, v_;), are nondecreas-
ing in v; for every v_,. there is another incentive-compatible direct selling mechanism with
the same probability assignment functions (and, hence, deterministic as well) whose cost func-
tions have the property that a bidder pays only when he receives the object and when he does
win, the amount that he pays is independent of his reported value. Moreover, show that the
new mechanism can be chosen so that the seller’s expected revenue is the same as that in
the old.
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{b) How does this result apply to a first-price auction with symmetric bidders, wherein 2 bidder's

" payment depends on his bid?

(¢) How does this result appiy to an all-pay, first-price auction with symmetric bidders wherein
bidders pay whether or not they win the auction?

9.18 Show that it is a weakly dominant strategy for each bidder to report his value truthfully in the optimal
direct mechanism we derived in this chapter.

9.19 Under the assumption that each bidder’s density, f;, is continuous and stricly positive and that each
v; — (1 — Fi{v))/ fi(v) is strictly increasing,
(2) Show that the optimal selling mechanism entails the seller keeping the object with strictly positive

probability.

(b) Show that there is precisely one p* € [0, 1] satisfying p* — (1 - F(p*"D/f(p") =0,

9.20 Show that when the bidders are symmetric, the first-price, Dutch, and English auctions all are optimal
for the seller once an appropriate Teserve price is chosen. Indeed, show that the optimal resierve price
is the same for all four of the standard awctions.



