
CHAPTER 9 -
AUCTIONS AND 
MECHANISM DESIGN 

In most real-world markets, sellers do not have perfect knowledge of market demand as 
we have maintained so far in this book. sellers typically have only staJistical 
information about market demand. Only the buyers themselves know precisely how much 
of the good they are willing to buy at a particular price. In this chapter, we will revisit the 
monopoly problem under this more typical circumstance. 

Perhaps the simplest situation in which the above elements are present occurs when 
a single object is put up for auction. 'There, the seller is typically unaware of the buyers' 
values but may nevertheless have some information about the distribution of values across 
buyers. In such a setting, there are a number of standard auction forms that the seller might 
use to sell the good-flrst-price. second-price, Dutch, English. Do each of these standard 
auctions raise the same revenue for the seller? If noL which is best? Is there a nonstandard 
yet even better selling mechanism for the seller? To answer these and other questions, we 
will introduce and employ some of the tools from the theory of mechanism design. 

Mechanism design is a general theory about how and when the design of appropriate 
institutions can achieve particular goals. This theory is especially germane when the designer 
requires information possessed only by others to achieve her goal. The subtlety in designing 
a successful mechani.sm lies in ensuring that the mechanism gives those who possess the 
needed information the incentive to reveal it to the designer. Although we will not explore 
the general theory of mechanism design here, this chapter provides an introduction to the 
topic by employing its techniques to study the design of revenue-maximizing auctions. 

9. 1 THE FouR STANDARD AucnoNs 
Consider a seller with a single object for sale who wishes to '!;ell the objeet to one of N 
buyers for the highest possible price. How should the seller go about achieving this goal? 
One possible answer is to hold an auction. Many distinct auctions have been pur to liSe at 
one time or another, but we will focus on the following four standard auctions.1 

1 We •hnll assume throughout and unte .. , nuted I hal in all auc\ioM ties in bids :ore hroken nt random: 
Each lied bidder li equally likely 10 be dumed win11U. 
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First· Price, Sealed· Bid: Each bidder submits a sealed bid to the seller. The high 
bidder wins and pays his bid for the good. 

Second·Price, Sealed·Bid: Each bidder submits a sealed bid 1co the seller. The high 
bidder wins and pays the second-highest bid for the good. 

Dutch Auction: The seller begins with a very high price and begins to reduce it. 
The first bidder to raise her hand wins the object at the current price. 

English Auction: The seller begins with very low price (perlhaps zero) and begins 
to increase it. Each bidder signals when he wishes to drop out of the auction. Once 
a bidder has dropped out, he cannot resume bidding later. When only one bidder 
remains, he is the winner and pays the current price. 

Can we decide even among these four which is best for the seller? To get a handle on 
this problem, we must begin with a model. 

9.2 THE INDIEPENDENT PRIVATE VALUES MODEL 
A single risk-neutral se\1er wishes to sell an indivisible object to one of N risk-neutral 
buyers. The seller values the object at zero dollars.2 Buyer i's value for the object, Vi> is 
drawn from the interval [0, 1] according to the distribution functi-on F;(v;) with density 
function f1 ( v1 ). 3 We shall assume that the buyers' values are mutually independent. Each 
buyer knows his own value but not the values of the other buyers. However, the density 
functions, ft, ... , fN, are public information and so known by the :;eller and all buyers. In 
particular, while the seller is unaware of the buyers' exact values, knows the distribution 
from which each value is drawn. If buyer i's value is v1, then if he wins the object and pays 
p, his payoff (i.e., von Neumann-Morgenstern utility) is v; - p, whereas his payoff is- p 
if he must pay p but does not win the object. 4 

This is known as the "independent, private values" model. Independent refers to the 
fact that each buyer's private information (in this case, each buyer's value) is independent 
of every other bidder's private information. Private value refers to the fact that once a 
buyer employs his own private information to assess the value of object, this assessment 
would be unaffected were he subsequently to learn any other buyer's private information, 
i.e., each buyer's private information is sufficient for determining his value.5 

Throughout this chapter, we will assume that the setting in which our monopolist finds 
himself is well-represented by the independent private values model. We can now· begin to 
think about how the seller's profits vary with different auction formats. Note that with the 

2This amounts to nssuming that the object has already been produced and that the seller's use value for it is zero. 
3Recall that F; (v,) denotes the probability that i 's value is less than or equal to 111, and that f, (IIi) = F/(v, ). The 
lntter relation can be equivalently expressed as F;(v;) = .h:; fr· (x)dx. Consequently, we will sometimes rder to 
Ji and sometimes refer to F.· since each one determines the other. 
4A!though such an outcome not possible in any one of the four auctions there are other auctions (i.e., 
all-pay auctions) in which payments must be made whether or not one wins the object. 
5There are more general models in which buyers with private information would jJOtentiaHy obtain yet additional 
information about the value of the object were they to learn another buyer·,\- privMe information. but we shaH not 
consider such model, here 
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production decision behind him and his own value equal to zero, profit-maximization is 
equivalent to revenue-maximization. 

Before we can determine the seller's revenues in each of the four standard auctions, 
we must understand the bidding behavior of the buyers across the different auction formats. 
Let's start with the first-price auction. 

9.2.1 BIDDING BEHAVIOR IN A FIRST·PRlCE, SEAI.ED·BID AUCTlON 
To understand bidding behavior in a first-price auction, we shall, for simplicity, assume that 
the buyers are ex-ante symmetric. That is, we shall suppose that for all biddersi = I, ... , N, 
f;(v) f(v) for oil v E [0, 1]. 

Clearly, the main difficulty in detennining the seller's revenue is in determining how 
the buyers, let's agree to call them bidders now, will bid. But note that if you are one of the 
bidders, then because you'd prefer to win the good at a lower price rather than a higher one, 
you will want to bid low when the others are bidding low and you will want to bid higher 
when the others bid higher. Of course, you do not know the bids that the others submit 
because of the sealed-bid rule. Yet, your optimal bid will depend on how the others bid. 
Thus, the bidders are in a strategic s6tting in which the· optimal action (bid) of eaclh bidder 
depends on the actions of others. Consequently, to determine the behavior of the bidders, 
we shall employ the game-theoretic toq_ls developed in Chapter 7. 

Let's consider the problem of how to bid from the point of view of bidder i. Suppose 
that bidder i's value is v;. Given this value, bidder i must submit a sealed-bid, b;. Because b; 
will in general depend on i's value, let's write b;(v;) to denote bidder i's bid when his value 
is v,·. Now, because bidder i must be prepared to submit a bid b;(v;) for each of his potential 
values v; e (0, l}, we may view bidder i's strategy as a bidding function b( [0, I] 
mapping each of his values into a (possibly different) nonnegative bid. 

Before we discuss payoffs, it will be helpful to focus our attention on a natural class 
of bidding strategies. It seems very natural to expect that bidders with higher vallues will 
place higher bids. So, let us restrict attention to increasing bidding functions. Next, 
because the bidders are ex-ante symmetric, it is also natural to suppose that bidders with the 
same value will submit the same bid. With this in mind, we shall focus on finding :a strictly 
increasing bidding function, b: (0, 1] IR+, that is optimal for each bidder to employ, 
given that all other bidders employ this bidding function as well. That is, we wish to find a 
symmetric Nash equilibrium in strictly increasing bidding functions. 

Now, let's suppose that we find a symmetric Nash equilibrium given by strictly 
increasing bidding function bo. By definition it must be payoff-maximizing for .a bidder, 
say i, with value v to bid b(v) given that the other bidders. employ the,same bidding 
function b( · ). Because of this, we can usefully employ what may at first apperur to be a 
rather mysterious exercise. 

The mysterious but useful exercise is this: Imagine that bidder i cannot alttend the 
auction and that he sends a friend to bid for him. The friend knows the equilibrium bidding 
function bO, but he does not know bidder i's value. Now, if bidder i's value bidder 
i would like his friend to submit the bid b( v) on his behalf. His friend can do this for him 
once bidder i calls him and tells him his value. Clearly, bidder i has no incentive: to lie to 
his friend about his value. That is, among all the values r E [0, 11 that bidder i with value 
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11 can report to his friend. his payoff is by reporting his true value, 11, to his 
friend. This is because reporting :he valuer results in his friend submitting the bid b(r) on 
his behalf. But if bidder i were there himself he would submit the bid P(ll). 

Let's calculate bidder i's payoff from reporting an arbitrary value, r, to his 
friend when his value is 11, given that all other bidders employ the bidding function b<·). 
To calculate this expected payoff, it is necessary to notice just two things. F'mt, bidder i 
will win only when the bid submitted for him is highest. That is, when b{r) > b(IIJ) for 
all bidders j -1: i. Because b( ·) is strictly increasing this precisely when r exceeds 
the values of all N - 1 other Letting F denote the distribution function associated 
with f, the probability that this occurs is (F(r))N- t which we'U denote F N- 1(r). Second, 
bidder i pays only when be wins and he then pays his bid, b{r). Consequently, bidder i's 
expected payoff from reporting the value r to his friend when his value is 11, given that aU 
other bidders employ the bidding function P(·), can be written 

u(r, 11) = FN-1(r)(11- b{r)). (9.1) 

Now, as we have already remarked, because b(.) is an equilibrium. bidder i 's expected 
payoff maximizing bid when his value is 11 must be b{11). Consequently, (9.1) must be 
maximized when r = 11, i.e., when bidder i reports his true value, 11, to his friend. So, we 
may differentiate the right-hand side with respect tor and set the derivative equal to uro 
when r = v. Differentiating yields 

dFN- I(r)(ll- b(r)) = (N -l)F N- 2(r)/(r)(11- P(r)) - FN-I(r)b'(r). (9.2) 
dr 

Setting this equal to zero when r = 11 and rearranging yields 

Looking closely at the left-hand side of (9.3), we see that it is just the derivative of the 
product FH-1(v)b(u) with respect to 11. With this observation, we can rewrite (9.3) as 

(9.4) 

Now, because (9.4) must hold for every u, it must be the case that 

FN- 1(v)b(11) = (N - I) fo" xf(x)FN- 2(x)dx +constant. 

Noting that a bidder with value zero must bid uro, we conclude that the constant above 
must be zero. Hence, it must be the case that 

N - I 1" b(v) = -N-1 - xf(x)FN- 2(x)dx , 
F - (11) 0 
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which can be wrinen more succinctly as 
. , 
. 1 (" dFN-1 

o(v) = pH-I(v) Jo x (x). (9.5) 

There are two things to nocice about the bidding function in (9.5). First, as we bad 
assumed. it is strictly increasing in v (see Exercise 9.1). Second, it has been uniquely 
determined. Hence, in conclusion, we have proven the following. 

First-Price Auctioll Symmelric Equilibrium 
If N bidders 1u:we independtnr private values d1awn from the common distribution, F, then 
bidding 

. I 1" b(v) = -N- 1- xdFN- 1(x) 
F - (v) o 

whenever one's value is v constitute.r a symmetric Nash equilibrium of a first-price, sealed-
bid auctio11. Moreover. this is the only symmetric Nash equilibrium. 6 

EXAMPl£ 9.1 Suppose that each bidc:let's value is uniformly distributed on [0. 1]. Then 
F(v) = v and f(u) == I. Consequently. if there are N bidders, then each employs the 
bidding functioo 

I {" == vH- 1 fo x(N - l)x N- 2 dx 

= - - x 11- 1dx N-1 Ia" 
vN-1 o 

== N - I _!_vN 
uN-1 N 

v =v-N. 
So, each bidder shades his bid, by bidding less !han his value. Note that as the number of 
bidders increases. the bidders bid more aggressively. 0 

Because pN- IO is the distribution function of the highest value among a bidder's 
N - 1 competitors, the bidding strategy displayed in Theorem 9.1 says that each bidder 
bids the expectation of the second highest bidder's value conditiona.l on his own va.lue being 

6Strictly g.""' have not shown that tbi.• is an equilibrium. We have sllown that if & symmetric equilibrium 
exl$ts, then this tnust be iL You are asked 10 show I hat this is indeed an equilibrium in an exercise. Yoo might also 
wonde< about the exisw>ce or asymmotric equilibria. It can be shown thai there are none, although wo shall noc 
doiO h<"'. 
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highest. But, because the bidders use the same strictly increasing bidding function, having 
the Nghest value is equivalent to having the highest bid and so equivalent to winning the 
auction. So, we may say that-

In the unique symmetric equilibrium of a first-price, sealed-bid auction, each bidder bids 
the expectation of the second-highest bidder's value conditional on winning the auction. 

The idea that one ought to bid conditional on winning is ve.ry intuitive in a first-
price auction because of the feature that one's bid matters only when one wins the auction. 
Because this feature is present in other auctions as well, this idea should be considered one 
of the basic insights of our strategic analysis. 

Having analyzed the first-price auction, it is an easy matter to describe behavior in a 
Dutch auction. 

9.2.2 BIDDING B£HAVIOR IN A DUTCH AUCTION 
In a Dutch auction, each bidder has a single decision to make, namely, "At what price should 
I raise my hand to signal that I am willing to buy the good at that price?" Moreover, the 
bidder who chooses the highest price wins the auction and pays this price. Consequently, 
by replacing the word "price" by "bid" in the previous sentence we see that this auction is 
equivalent to a auction! So, we can immediately conclude the following. 

Dulch Symmelrk Equilibrium 
If N bidders have independent private values drawn from the common distribution, F, then 
raising one's hand when the price reaches 

whenever one's value is v a symmetric Nash equilibrium of a Dutch auction. 
Moreover, this is the only symmetric Nash equilibrium. 

Clearly then, the first-price and Dutch auctions raise exactly the same revenue for the 
seller, ex-post (i.e., for every realization of bidder values VJ, ••• , ). 

We now turn to the second-price, sealed-bid auction. 

9.2.3 BIDDING BEHAVIOR IN A SECOND·PRICE, SEALED-BID AucnoN 
One might wonder why we would bother considering a second-price auction at all. Isn't 
it obvious that a first-price auction must yield higher revenue for the seller? After all, in a 
first-price auction the seller receives the highest bid, whereas in a second-price auction she 
receives only the second-lu"ghest bid. 

While this might sound convincing, it neglects a crucial point The bidders will bid 
differently in the two auctions. In a first-price auction, a bidder has an incentive to raise her 
bid to increase her chances of winning the auction, yet she has iln incentive to reduce her 
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bid to lower the price she pays when she does win. In a second-price auction, the second 
effect is absent because when a.Qidder wins, the amount she pays is independent of her bid. 
So, we should expect bidders to·bid more aggressively in a second-price auction than they 
would in a first-price auction. Therefore, there is a chance that a second-price auction will 
generate higher expected revenues for the seller than will a first-price auction. When we 
recognize that bidding behavior changes with the change in the auction format, the question 
of which auction raises more revenue is not quite so obvious, is it? 

Happily, analyzing bidding behavior in a second-price, sealed-bid auction is remark-
ably straightforward. Unlike our analysis of the first-price auction, we need not restrict 
attention to the case involving symmetric bidders. That is, we shall allow the density func-
tions f 1, ••• , fN, from which the bidders' values are independently drawn, to diff4;!r.7 

Consider bidder i with value v1, and let B denote the highest bid submitted by the 
other bidders. Of course, B is unknown to bidder i because the bids are sealed. Now, if 
bidder i were to win the auction, his bid would be highest and B would then be the second-
highest bid. Consequently, bidder i would have to pay B for the object. In effect, then, the 
price that bidder i must pay for the object is the highest bid, B, submitted by the other 
bidders. 

Now, because bidder i's value is v1, he would strictly want to win the auction when 
his value exceeds the price he would have to pay, i.e., when v1 > B; and he would strictly 
want to lose when v1 < B. When v1 B he is indifferent between winning and losing. 
Can bidder i bid in a manner that guarantees that he will win when v; > B and that he will 
lose when V; < B, even though he does not know B? The answer is yes. He can glllarantee 
precisely this simply by bidding his value, v1! 

By bidding v1, bidder i is the high bidder, and so wins, when v1 > B, and be is not 
the high bidder, and so loses, when v; < B. Consequently, bidding his value is a. payoff-
maximizing bid for bidder i regardless of the bids submitted by the other bidder'S (recall 
that B was the highest bid among any arbitrary bids submitted by the others). Moreover, 
because bidding below one's value runs the risk of losing the auction when one would have 
strictly preferred winning it, and bidding above one's value runs the risk of winning the 
auction for a price above one's value, bidding one's value is a weakly dominant bidding 
strategy. So, we can state the following. 

Second-Price Auction Equilibrium 
If N bidders have independent private values, then bidding one's value is. the unique weakly 
dominant bidding strategy for each bidder in a sealed-bid auction. 

This brings us to the English auction. 

9.2.4 BIDDING BEHAVIOR IN AN ENGUSH AUcnON 
In contrast to the auctions we have considered so far, in an English auction 1here are 
potentially many decisions a bidder has to make. For example, when the price is very low, 

7In fact, even the independence can be dropped. (See Exercise 9.3.) 
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he must decide at which price he would drop out when no one has yet dropped out. But, if 
some (Jiber bidder drops out first. be must then decide at which price to drop out given the 
remaining active bidders, and so on. Despite this, there is a close connection between the 
English and second-price auctions. 

In an English auction, as in a second-price auction, it turns out to be a dominant 
strategy foe a bidder to drop out when the price reaches his value, regardless of which 
bidders remain active. The reason is rather straightforward. A bidder i with value v1 who, 
given the history of play and the current price p < v., considers dropping out can do no 
worse by planning to remain active a little longer and until the price reaches his value, v1• 

By doing so, the worst that can happen is that he ends up dropping out when the price does 
indeed reach his value. His payoff would then be zero, just as it would be if he were to 
drop out now at price p. However, it might happen, were he to remain active, that all other 
bidders would drop out before the price reaches 111• In this case, bidder i would be strictly 
better off by having remained active since he then wins the object at a price strictly less 
than his value 11;, obtaining a positive payoff. So, we have the following. 

English Auction Equilibrivm 
If N biddtrs have independem private then dropping out when the price reaches 
one's value is the unique weakly dominant bidding strategy for each bidder in an English 
auction.1 

Given this result, it is easy to see that the bidder with the highest value will win in an 
English auction. But what price will he pay for the object? That, of course, depends on the 
price at which his fast remaining competiUJr drops out of the auction. But his last remaining 
competitor will be the bidder with the second-highest value, and he will, like all bidders, 
drop out when the price reaches his value. Consequently, the bidder with highest value wins 
and pays a price equal to the second-highest value. Hence, we see that the outcome of the 
English auction is identical to that of the second-price auction. In particular, the English 
and second-price auctions earn exactly the same revenue for the seller, ex-post. 

9.2.5 REWNUE COMMRISONS 
Because the first-price and Dutch auctions raise the same ex-post revenue and the second-
price and English auctions raise the same ex-post revenue, it remains only to compare the 
revenues generated by the first- and second-price auctions. Clearly. these auctions need 
not raise the same revenue ex-post. For example, when the highest value is qu ite high and 
the second-highest is quite low, running a first-price auction wiU yield more revenue than a 
second-price auction. On the other hand, when the first· and second-highest values are close 
together, a second-price auction will yield higher revenues than wi.ll a first-price auction. 

Of course, when thr. seller must llc.cide which of the two a11ction forms to employ. 
he does not know the bidders' values. However, kuowing how the bidders bid as functions 

• As io the '"""'on case., chi< weak dominance result doc.< nOI rely on indcpeodeocc biddtr's 
values. ll holds • ....,. if v-dlues ue correlated. However. it i• the volues an: priWJit. 



AUCTIONS AND MECHANISM 381 

of their values, and .knowing the distribution of bidder values, the seller can calculate the 
expecud revenue associated each auction. Thus, the question is. which nuctioo yields 
the highest expected revenue, a first- or a second-price auction? Because our analysis of the 
first-price auction involved symmetric bidders, we must assume symmetry here to compare 
the expected revenue generated by a first-price versus a second-price auction. So. in what 
follows,/(·) will den()(e the common density of each bidder's value and F(-) will denote 
the associated distribution function. 

Let's begin by considering the expected revenue, RFPA., generated by a first-price 
auction (FPA). Because the highest bid wins a first-price auction and because the bidder 
with the highest value submits the highest bid, if vis the highest value among theN bidder 
values, then the seiicr's revenue is b(v). So, if tile highest value is distributed according to 
the density g(v), th.e seller's expected revenue can be written 

Rm. = f 
Because the density, g, of the maximum of N independent random variables with 

common density f and distribution F is NJFN- l, 9 we have 

(9.6) 

We have seen that in a second-price auction, because each bidder bids his value. the 
seller receives as price the second-highest value a.110ng theN bidder values. So, if h(v) is the 
density of the second-highest value, the seller's expected revenue, R5,.,.., in a secood-priee 
auction can be written 

RsPA. = 11 

vl;(v)dv. 

Because the density, h, of the second-higllest of N independent random variables 
with common density f and distribution function F is N(N -l)FN- 2 f(l- F), 10 we have 

RsPA = N(N - I ) f vFN-1(v)f(v)(l - F(v))dv •. (9.7) 

'To $ee thi,, note that the: highest value is lell than or equal to v if and only if all N value$ rue. and thai tllis 
nccur.s wilh probability FN (11). HtllCI:, the distribuJion funetiun of the highest volur l$ FN. tile densily 

1he dcrivauve of the dJstribuuoa functioa the resuh follows. 
IO<>ne """Y to ,.. this is to treat pmbability density !iJ<e pmbability. Thi-n !Yob.'lhility (density) that oome 
panicular bidder's value is u is f(v) •nd the probability th<lt exactly one or the remoining N - 1 other 
values is above this (N - I)FN- lCvX I - F(v)). Consequently, the pt'ub1bili1y thai this particular bidder's value 
i• v and il is is (N- l)f(v)FN•l(v)(l - F(v)). llccau$c: there are N bidders. tile probobilily (i.e., 
density) that the: second-lugbest Ylllue is vis then N(N- I )j(vlf""-2(v)(l - F(v)). 
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We shall now compare the two. From (9.6) and (9.5) we have 

RFPA =Nil lou xdFN-t(x)] f(v)FN-l(v)dv 

= N(N- 1) 11 [fov xFN-2(x)f(x)dx] f(v)dv 

= N(N -1) {[[xFN-2(x)f(x)f(v)]dxdv 

= N(N -1) {f.\xF"-2(x)f(x)f(v)]dvdx 

= N(N- 1) [ xFN-2(x)f(x)(1- F(x))dx 

= RsPA· 

where the fourth equality follows from interchanging the order of integration (i.e., from 
dxdv to dvdx), and the final equality follows from (9.7). 

EXAMPLE 9.2 Consider the case in which each bidder's value is 'llniform on [0, 11 so that 
F(v) = v and f(v) = L The expected revenue generated in a first-price auction is 

RFPA = N fo 1 
b(v)f(v)FN-I(v)dv 

= N i' [v- ]vN-1dv 

= (N -1) lot vNdv 

N -1 
= N+l" 

On the other hand, the expected revenue generated in a second-price auction is. 

RsPA = N(N- 1) { vF"-'(v)f(v)(l- F(v))dv 

= N(N- 1) L1 
vN-1(1- v)dv 

= N(N N N+ 1 
N-1 

= N+1. 
0 



Allr:TIONS AND DF.SIGN 383 

Remarkably, the first- and second-price auctions raise the same expected revenue, 
regardless of the common diskjbution of bidder values! So, we may state the following: 

If N bidders have independent private values drawn from the common distribution, F, then 
all four standard auction forms (first-price, second-price, Dutch, and English) raise the 
same expected revenue for the seller. 

This revenue equivalence result may go some way toward explaining why we see aU 
four auction forms in practice. Were it the case that one of them raised more revenue than 
the others on average, then we would expect that one to be used rather than any of the others. 
But what is it that accounts for the coincidence of expected revenue in these auctions? Our 
next objective is to gain some insight into why this is so. 

9.3 THE RMNUE EQUIVALENCE THEOREM 
To explain the equivalence of revenue in the four standard auction forms, we must first find 
a way to fit all of these auctions into a single framework. With this in mind, we now define 
the notion of a direct selling mechanism. 11 

A direct selling mechanism •is a collection ofN probability assignment functions, 
... , VN ), ... , PN(VJ, ... , VN ), and N Costfunctionsct(Vt, ... , VN ), ... , CN(VJ, •.• , 

VN). For each i and every vectorofv.,alues (Vt, ... ,vN), p;(Vt. ... ,vN) E [0, 1] denotes 
the probability that bidder i receives the object and c;(Vt. ... , VN) E lR denotes the pay-
ment that bidder i must make to the seller. 12 Consequently, the sum of the probabilities, 
Pt(Vt, ... , VN) + · · · + PN(vi, ... , vN), must never exceed unity. On the other hand, we 
allow this sum to fall short of unity because we want to allow the seller to keep the object. 13 

A direct selling mechanism works as follows. Because the seller does not know the 
bidders' values, he asks them to report them to him simultaneously. He then takes those 
reports, r1, •.. , TN, which need not be truthful, and assigns the object to one of the bidders 
according to the probabilities p;(rt, ... , YN ), i = l, ... , N, keeping the object with the 
residual probability, and secures thepaymentc,(r1, ••• , TN) from each bidder i = 1, . . , N. 
It is assumed that the entire direct selling probability assignment functions 
and the cost functions-are public information, and that the seller must carry out the terms 
of the mechanism given the vector of reported values. 

Clearly, the seller's revenue will depend on the reports submitted by the bidlders. Will 
they be induced to report truthfully7lf not, how will they behave? These are very good 
questions, but let's put them aside for the time being. Instead, let us .consider a different 
question: How are the four standard auctions related to direct selling mechanisms? 

What we will show is that each of the four standard auctiops can be equ\valently viewed 
as an direct selling mechanism. That is, a direct selling mechanism in 
which it is an equilibrium for the bidders to report their values truthfully. These 

11 Our presentation is based upon Myerson (1981 ), 
12 Note, first, that a bidder's cost may be negative and, second, that a bidder's cost may be positive even when that 
bidder does not receive the object (i.e., when that bidder·s probability of receiving the object is zero). 
13Th is is more generality than we need at the moment because the seller never keeps the object in any of the four 
standard auctions. However, lhis will be helpful a little later. 
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will prove to be central. Indeed, understanding incentive-compatible direct selling mech-
anisms will not only be the key to underslallding !he connection among !he four srandard 
auctions, but it will be central to our understanding revenue-maximizing auctions as well. 

Consider a first-price auction with symmetric bidders. We'd like to construct an 
"equivalent .. direct selling mechanism in which trulh-telling is an equilibrium. To do this, 
we shall employ !he first-price auction equilibrium bidding function b(-). The idea behind 
our construction is simple. Instead of !he bidders submitting bids computed by plugging 
their values into the equilibrium bidding function, the bidders will be asked to submit !heir 
values and the seller will then compute their equilibrium bids for !hem. Recall !hat because 
bO is strictly increasing, a bidder wins !he object in a first-price auction if and only if he 
has !he highest value. 

Consider, then, !he following direct selling mechanism. where bO is !he equilibrium 
bidding function for !he first-price auction given in (9.5): 

{ 
I . ifll; > v; for all j ":/: i 

p;(Va. . . • ' 11}11) = 0 the . , o . rw1se, 
and 

( ) _ { h( Ill), if Vj > V j for alJ j ":f: i 
01 111 ' • • · ' v N - 0. otherwise. 

(9.8) 

Look closely at this mechanism. Note !hat the bidder with the highest reported value, 
v, receives the object and he pays b(v) for it, just as he would have in a first-price auction 
equilibrium. So. if the bidders report their values truthfully, !hen the bidder with the highest 
value, v, wins the object and makes the payment b(v) to the seller. Consequenlly, if this 
mechanism is incentive-compatible, the seller will earn exactly the same ex-post revenue 
as he would with a first-price auction. 

To demonstrate that this mechanism is incentive-compatible we need to show that 
truth-telling is a Nash equilibrium. So, let us suppose !hat all other bidders report thei r 
values trulhfully and that the remaining bidder has value v. We must show that this bidder 
can do no better than to report his value truthfully to the seller. So, suppose that this bidder 
considers reporting value r. He then wi.ns !he object and makes n paymentofb(r) if and only 
if r > vi for all other bidders j. Because the olher N - I bidders' values are independently 
distributed according to F, this event occurs with probability FN-I (r). Consequently, this 
bidder's e;ttpected payoff from reporting value r when his true value is v is 

But this is exactly the payoff in (9. 1), which we already know is maximized when r = v. 
Hence, the direct selling mechanism (9.8) is indeed incentive-compatible. 

Let's reconsider what we have accomplished here. Beginning with the equilibrium of 
a fi rst-price auction, we have constructed an incentive-compatible direct selling mechanism 
whose truth-telling equilibrium results in the same ex-post assignment of !he object to 
bidders and the same ex-post by !hem. fn panicular. it results in the same ex-post 
revenue for the seller. Moreover, this method of constructing a direct mechanism is quite 
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general. Indeed, beginning with the equilibrium of any of the four standard auctions, we can 
similarly construct an incentiv&-compatible direct selling mechanism that yields the same 
ex-post assignment of the object to bidders and the same ex-post payments by them. (You 
are asked to do this in an exercise.) 

In effect, we have sbown that each of the four standard auctions is equivalent to some 
incentive-<:ompatible direct selling mechanism. Because of this, we can now gain insight 
into the fonner by studying the latter. 

9.3.1 INCENTIVE-COMPATIII.f DIII£CT SElaiG MEOW41SMS 
Consider an incentive-compatible direct selling mechanism with probability assignment 
functions p1(-) and cost functions c1(-) , i = I, . . . , N . By incentive compatibility, each 
bidder must find it opcimal to report his true value given that all other bidders do so. Let us 
consid.er the impUcations of thi s. 

Suppose that bidder i 's value is v1 and be considers reporting value r,. If all other 
bidders report their values truthfully, then bidder i's expected payoff is 

I I' . 

u;(r;, 111) = 1 .. ·1 ( p;(r;, 11-;)11; - c;(r;, 11-l)) f _1(v_1)dv_1, 

' 
where f _;(v- ;) = f(v, ) . . . / ( 111-J)/(11;+1>· . . /(l'H)anddll-1 =dv1 ... dv;-tdlll+l· . • dvN . 

For every r1 e (0, I], let 

and 

c;(r;) = 11 
• .. 11 

c;(r;, •-t) f - ;(11- i )dv_1. 

Therefore, p1(r1) is the probability that i receives the object when he reports r; and c,(r,) is 
i 's expected payment when be reports r1, with both of these being conditional on all others 
reporting truthfully. Consequently, bidder i's expected payoff when his·value is II; and he 
reports it to be r1 can be written as 

u1(r;, v;) = p1(r;)v,- c;(r;), (9.9) 

when all other bidders report their values truthfully. 
So, the mechanism is incentive-compatible if and only if for every v; , u,tr;, v,) is 

maximized in r 1 at r1 = v1; i.e., u1(v1, u1):::: u1(r,, 111) for all r1 e [0, 1]. 
The following result is very useful. It completely charocterizes incentive-compatible 

direct selling mechanisms. 
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CHAPTER9 

lncentive-Compahble Direct Selling Mechanisms 
A direct selling mechanism (p;(·), c;(·))7"' 1 is incentive-compatible only 1! for every 
bidder i 

(i) p1(v1) is nondecreasing in Vi and, 
(ii) C;(v;) = C;(O)+ fi 1(v;)v1 - fov; ft1(x)dx,forevery V; E [0, 1]. 

Proof: Suppose the mechanism is incentive-compatible. We must show that (i) and (ii) hold. 
To see that (i) holds, note that by incentive compatibility, for <l.ll rr, Vr E [0, 1}, 

Adding and subtracting fi 1(v1)r1 to the right-hand side, this implies 

Butacarefullookatthe term in square brackets reveals thatitisu1(v1 , r1), bidder i'sexpected 
payoff from reporting v; when her true value is r,. By incentive compatibility, this must be 
no greater than u1(r1, r1), her payoff when she reports her true value, r1• Consequently, 

That is, 

jj1(r;)v1 - C;(r;):::: [ji1(v1)r;- C;(v,-)] + fi1(v;)(v1 - r1) 

u;(ri,ri)+ ft1(vi)(vi -ri) 
= [fi;(r;)r;- C1(r;)] + jJ1(vd(v,- r;). 

which, when rewritten, becomes 

So, when v; > r;, it must be the case that j.)1(v,·) :2:: j.)1(r;). We conclude that P10 is 
nondecreasing. Hence, (i) holds. 

To see that (ii) holds, note that because bidder i 's expected payoff must be maximized 
when he reports truthfully, the derivative of u;(r;, v;) with respe<:t tor; must be Zero 
r; = u1.14 Computing this derivative yields 

au;(r;, v;) -1 _, 

a = p1(r;)v;- c;(ri), ,, 
14We are ignoring two points here. The first is whether u,.{r,-, v;) is in fact dim:rentiable in r;. Although it need 
not be everywhere differentiable, incentive compatibility implies that it must be differentiable almost everywhere 
and that the we shall conduct can be made perfectly rigorous. We will pursue these details here. The 
second point we ignore is the first-order condition at the two noninterior values v; = 0 or I. Strictly speaking, the 
derivatives at these boundary poinls need not be Lero. But there is no harm in tbis because these two values each 
occur with probability zero 
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and setting this to zero when r; = v; yields 

(9.10) 

Because v; was arbitrary, (9.10) must hold for every v1 e [0, 1]. Consequently, 

("' C;(V;)- C;(O) = Jo c;(x)dx 

[" = Jo p;(x)x dx 

r· = jj1(v;)v;- Jo jj1(x)dx, 

where the first equality follows from the fundamental theorem of calculus, the seccmd from 
(9.10), and the third from integration by parts. Consequently, for every bidder i and every 
V; E [0, 1], 

r· C;(v;) = C1(0) + jj1(v;)v; - Jo P1(x)dx, (9.11) 

proving (ii). 
We must now show the converse. So, suppose that (i) and (ii) hold. We must show 

that u;(r;, v;) is maximized in r1 when r1 = v1• To see this, note that substituting (ii) into 
(9.9) yields 

(9.12) 

This can be rewritten as 

where this expression is valid whether r1 ::"S v; orr; v1 •
15 Because by (i) p10 is nonde-

creasing, the integral in curly brackets is nonnegative for all r1 and v1• Consequently, 

1"' u1(r;, v;) ::'S -C;(O) + jj1(x)dx. 
0 • 

(9.13) 

But, J?y (9.12), the right-hand-side of (9.13) is equal to u1(v1, v;). Consequently, 

u;(r;, v1) ::S u1(v1, v;), 

so that u1 (r;, v1) is indeed maximized in r; when r; = v;. I 

lSRecall the convention in mathematics that when a < b, Jbu f(x)dx = -Jab f(x)dx. 
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Part (ii) of Theorem 9.5 says that if a direct mechanism is incentive-compatible there 
must be a connection between the probability assignment functions and the cost functions. 
In particular, it says that once the probability assignment function has been chosen and once 
a bidder's expected cost conditional on having value zero is chosen, the remainder of the 
expected cost function is chosen as well . To put it differently, under incentive compatibility 
a bidder's expected payment conditional on his value is completely determined by his 
expected payment when his value is zero and his probability assignment function. This 
observation is essential for understanding the following result. 

Revenue Equivolence 
Jfrwo incmtive-compatible direct selling mechanisms have the same probability assignmem 
functioTLS and every bidder with value zero is indifferem between the two mechanisms, then 
the rwo mechanisms generate the same e,;pected revenue for the seller. 

Proof: The seller's expected revenue is 

R = t · .. t t Ct(v,, .... VN)f(v,) ... /(uN)du, ... dvN lo lo 1• 1 

= t 1
0

1 "'1
0

1 
C;(IJI, · .. , VN)f(!JI) .. . f(VN)dv1 .. . d!JN 

/a I 

= t11 [11 
.. • {' c;(v;. v_,)f_;(u_,)dv- 1] fi(vr)dv; 

1• 1 o o lo 
N 11 = L cr(v;)/;(v;)du; 

i• l 0 

= t t [c;(O) + ji1(u; )vl - t· p1(x)dx] fr(v;) dv; 
•= I lo lo 

where the founh equality follows from the definition of c;(v;) and the fifth equality follows 
from (9.11). 

Consequently, the seller's expected revenue depends only on the probability assign-
ment functions and the amount bidders expect to pay when their values are zero. Because a 
bidder's expected payoff when his value is zero is completely determined by his expected 
payment when his value is zero. the desired result follows. I 

The revenue equivalence theorem provides an explanation for the apparently coinci-
dental equality of expected revenue among the four standard auctions. We now see that this 
follows because, with symmetric bidders. each of the four standard auctions has the same 
probability assignment f11nction (i.e., the object is assigned to the bidder with the highest 

• A 

9 



f'NO MECHANISM DESIGN 389 

value), and in each of the four standard auctions a bidder with value zero receives expected 
utility equal to zero. 

1be revenue equivalence theorem is very general and allows us to add additional 
auctions to the list of those yielding the same expected revenue as the four standard ooes. 
For example, a first-price, all-pay auction, in which the highest among all sealed bids wins 
but every bidder pays an amount equal to his b:d, also yields the same expected revenue 
under bidder symmetry as the four standard auctions. You are to explore this and 
othu auctions in the exercises. 

9.3.2 EFFICIENCY 
Before closing this section, we briefly turn our attention to the allocative properties of the 
four standard auctions. As we have already noted several times, each of tbe.'ie auctions 
allocates the object to the bidder who values it most. That is, each of these auctions is 
efficient. In the case of the Dutch and the ftrst-price auctions, result relies on bidder 
symmetry. Without symmetry, different bidders in a first-price auction, say, will employ 
different strictly increasing bidding functions. if one bidder employs a lower 
bidding function than another, then the one may have a higher value yet be outbid by the other. 

9.4 RMNue-MAxiMizATJON: AN APPucAnoN Of MEcHANISM DESIGN 
By now we understand very well the four standard auctions, their equilibria. their expected 
revenue. and the relation among them. But do these auctions, each generating the same 
expected revenue {under bidder symmetry), maximize the seller's eJtpected revenue? Or is 
there a bet.ter selling mechanism for the seller? If there is a better selling mechanism what 
form does it take? Do the bidders submit sealed Do they bid sequentially? What about 
a combination of the two? Is an auction the best selling mechanism? 

Apparently. finding a revenue-maximizing selling mechanism is likely to be a difficult 
task. Given the freedom to choose any selling procedure. where do we start? The k.ey 
observation is to recall how we were able to construct an incentive-compatible direct selling 
mechanism from the equilibrium of a first-price auction, and how the outcome of the first· 
price auction was exactly replicated in the direct mechanism's truth-telling equilibrium. 
As it turns out. the same type of construction can be applied to any selling procedure. 
That is, given an arbitrary selling procedure and a Nash equilibrium in which each bidder 
employs a st.categy mapping his value into payoff-maximizing behavior under that selling 
procedure, we can construct an equivalent incentive-<:ompatibte direct sellil)g mechanism. 
The requisite probability assignment and cost functions map each vector of values to the 
probabilities and costs that each bidder would experience according to the equilibrium 
strategies in the original selling pmcedure. So constructoo. selling mechanism is 
incentive-compatible and yields the same (probabilistic) assignment of the object and the 
same expected costs to each bidder as well as the same expected revenue to the seller. 

Consequently, if some seiJjng procedure yoelds the seller expected revenue equal to 
R, then so too does some incentive-compatible direct selling mechanism. But this means 
that 1W selling mechani.vm among all conceivable selling mechani;,ms yield.v lllfllll revenue 
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for the seller than the revenue-maximizing, incentive-compatible direct selling mechanism 
We can, therefore, restrict our search fc.;: a revenue-maximizing selling procedure to the 
(manageable) set of incentive-compatible direct selling mechanisms. In this way, we have 
simplified our problem considerably while losing nothing. 

9 .4.1 INDIVIDUAL RAnONAUIY 
There is one additional restriction we must now consider. Because participation by the 
bidders is entirely voluntary, no bidder's expected payoff can be negative given his value. 
Otherwise, whenever he has that value, he will simply not participate in the selling mech-
anism. Thus, we must restrict attention to incentive-compatible direct selling mechanisms 
that are individually rational, i.e., that yield each bidder, regardless of his value, a non-
negative expected payoff in the equilibrium. 

Now, in an mechanism bidder i with value v; will receive 
pected payoff u; ( v;, v1) in the equilibrium. So, an direct 
selling mechanism is individually rational if this payoff is always nonnegative, i.e., if 

u;(V;, V;) = ji;(V;)Vi- C,.(V;) 2: 0 for all V; E [0, 1]. 

However, by incentive compatibility, (ii) of Theorem 9.5 tells us that 

C;(V;) = t;(O) + ih(v;)Vf - p,.(x) dx, for every L'; E [0, 1]. 

Consequently, an incentive-compatible direct selling mechanism is individually rational if 
and only if 

1"· u;(V;, v;) = ,B;(V;)V;- C;(V;) = -C1(0) + 
0 

ji1(x)dx Oforevery v; E [0, 11, 

which clearly holds if and only if 

f;(O),: 0. (9.14) 

Consequently, an incentive-compatible direct selling mechanism is individually ra-
tional if and only if each bidder's expected cost when his value is zero is nonpositive. 

9.4.2 AN OP11MAL SEWNG MECHANISM 
We have now reduced the task of finding the optimal selling mechanism to maximizing 
the seller's expected revenue among all individually rational, incentive-compatible direct 
selling mechanisms, p10 and c1(.), i = 1, ... , N. Because Theorem 9.5 characterizes 
all selling mechanisms. and because an incentive-compatible direct 
selling mechanism is individually rational if and only if C1(0) 0, our task has been 
reduced to solving the following problem: Choose a direct selling mechanism p;(-), c;(·), 
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i = 1, ... , N, to maximize 

N t[ · ["' ] N 
R = 8 lo fi;(v;)v;- Jo P1(x)dx f,·(v,.)dw + 

subject to 

(i) jj1(v1) is nondecreasing in v1, 

(ii) C;(v;) = C1(0)+ p1(v;)v;- J;• j)1(x)dx, for every v; E [0, I], 
(iii) C;(O) ::::; 0, 
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where the expression for the seller's expected revenue follows from incentive comp:atibility 
precisely as in the proof of Theorem 9.6. 

It will be helpful to rearrange the expression for the seller's expected revenm!. 

N[t {'(" ] N = 8 Jo fi;(v;)v;[,(vt)dv;'- Jo Jo fi 1(x)f1(v1)dxdv; + 

By interchanging the order of integration in the iterated integral (i.e., from dxdv; to dv1dx), 
we obtain 

R = t [ (' p,(v;)v;/,(v;)dv;- [1' p,(x)f;(v;)dv,dx] + fc,(O) 
i=t lo o x i=l 

= t [ (' p,(v,)v;/,(v;)dv;- [ p,(x)(l- F;(x))dx] + fc;(O). 
i=l lo o i=l 

By replacing the dummy variable of integration, x, by v1, this can be written equ·ivalently ., 

R = t. [{ p,(v;)v;/;(v;)dv;- f p,(v;)(l- F;(v;))dv;] + t,c,(O) 

"1' [ 1-E(v)] N• = L p;(vt) v;- f f1(v1)dv1 + Lc;(O). 
i=l 0 ,( ' i=l 

Finally, recalling that 



we may write 

R == t1' · · ·11 
Pi( Ill, ••.• VN) [vi-

1 
f,(ll!) .. . fN(vN)dv, ... dvN 

i a l 0 0 I Vi 
N 

+ L Ct(O). 
1·1 

or 

N 
+ :L: ci(O). (9.15) 

I a I 

So, our problem is to maximize (9.15) subject to the constraints (i)-(iii) above. For 
the moment, let's concentrate on the first term in (9.15), namely 

Clearly, (9.16) would be maximiz.ed if the term in curly brackets were maximized 
for each vector of values v1, . .. , VN- Now, because the p;(v1 •• • • , vN) are nonnegative 
and sum to one or less, the N + I numbers Pl(v,, ... , w, ), . .. , PH(v,, . .. , VN), 
I - L:f'..1 Pi(v1, •• • , VN) are nonnegative and sum to one. So, the sum above in curly 
brackets, which can be rewritten as 

[ I - Fi(VI )] ( ) L- P 1(111 , ••• , VN) 111- " (v) + p;(v,, ... , VN) • 0, 
•• I Jl I •=I 

is just a weighted average of the N + I numbers 

But then the sum in curly brackets can be no larger than the largest of these bracketed terms 
if one of them is positive, and no larger than zero if all of them are negative. Suppose now 
that no two of the bracketed terms a.re equal to one aoother. 1ben, if we define 

• ( ) _ , v; - J.<v.> > max , vi- 1 <• 1 or a J r r, 
{ 

I if .!.::!i.l!U (o 1-FJC•,I) fi II . -J. • 
Pi VI , •. .• liN - j I 

0. otherwise. 
(9.17) 
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it must be the case that 

Therefore, if the bracketed tenns are distinct witll probability one, we will have 

R = [ ··· [ {tp;(vto ···· vN)[v;-
1 

/J(v,) . . . fN(VN) dv, ... dvN 

N 
+ }:ct(O) 

i = l 

::;: [ · .. [ {t.p;(v,, ... , v,.) [v;- 1 f t(llt), .. f,.(v,.) du, ... dvN 

N 

+ }:c;(O), 
i-1 

for all incentive-compatible direct selling mechanisms p;(·), c;(·). For the moment, then, 
let's assume that the bracketed terms are distinct with probability one. We will introduce 
an assump(ion on the bidders' distributions that guarantees this shortly.16 

Because constraint (iii) implies that each c1(0) 0, we can also say that for all 
incentive-compatible direct selling mechanisms p1(·), c,(·). the seller's revenue can be no 
larger than the following upper bound: 

We will now construct an incentive.compatiblc direct selling mechanism that achieves 
this upper bound. Consequently, this mechanism will maximize the seller's revenue, and so 
will be optimal for the seller. 

To construct this optimal mechanism, let the probability assignment functions be the 
pj(v,, .... v,. ), i = 1, ... , N , in (9.17). To complete the mechanism, we must define cost 
functions c;(v, , ... . v,.), i = I, . ... N . But constraint (ii) requires that for each v1• bidder 
i's expected cost and probability of receiving the object, c;(u,') and fii(v;); be related as 
follows 

16The assumpdon is gil·en in (9.22). 
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Now, because the c; and P7 are averages of the ct and Pi, this required relationship between 
averages wiii hold if it holds for each and every vector of values Vt, .. , VN. That is, (ii) is 
guaranteed to hold if we define the ci as follows: For every Vt, ... , vN, 

(9.19) 

To complete the definition of the cost functions and to satisfy co1r1straint (iii), we shall 
set cj(O, v_;, ... , t'-r) = 0 for all i and all v2 , .•• , v,. So, our candidate for a revenue-
maximizing, incentive-compatible direct selling mechanism is as follows: For every i = 
l, ... , Nand every v" ... , VN 

and 

"f 1-F;(v,) (o 1-Fj(uj)) f , 11 ·-" . 
1 v;- /.·{u;) >max , vi- f/vj) Ol a J .,... 1, 

otherwise; 
(9.20) 

(9.21) 

By construction, this mechanism satisfies constraints (ii) and (iii), and it achieves the 
upper bound for revenues in (9.18). To see this, simply substitute the Pt into (9.15) and 
recall that by construction C;"(O) = 0 for every i. The result is that the seller's revenues are 

their maximum possible value. 
So, if we can show that our mechanism's probability assignment functions defined in 

(9.20) satisfy constraint (i), then this mechanism will indeed be the solution we are seeking. 
Unfortunately, the Pi as defined in (9.20) need not satisfy (i). To ensure that they do, 

we need to restrict the distributions of the bidders' values. Consider, then, the following 
assumption: For every i = 1, ... , N 

v; - 1 - F;( V;) is strictly increasing in V;. 
j;(v;) 

(9.22) 

This assumption is satisfied for a number of distributions, including the uniform dis-
tribution. Moreover, you are asked to show in an exercise that it holds whenever each 
F; is any convex function, not merely that of the uniform distributionY Note that in 
addition to ensuring that (i) holds, this assumption also guarantees that the numbers 

liWhen this assumption fails, the mechanism we have constructed here is not uptimal. One can nevertheless 
construct the optimal mechanism, but we shall not do so here. Thus, the additi·onal assumption we are making 
here is only for simplicity's sake. 

A 
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v, - (1- FJ(v,))//J(v!), ... , VN- (1- FN(vN))/fN(vN) are distinct with probability 
one, a requirement that we employed but had left unjustified until now. 

Let us now see why (9.22} implies that (i) is satisfied. Consider some bidde.r i and 
some fixed vector of values, for the other bidders. Now, suppose that ii; > !!.; and that 
Pt(Q1, = 1. Then, by the definition of Pi, itmustbethecasethatQ; -(1-F;(Q;))/ f;(!?.;) 
is positive and strictly greater than vi- (1- Fj(vj))/fj(vj) for all j =/:- i. Consequently, 
because v; - (1 - F1(v;))/f1(v;) is strictly increasing it must also be the case that ii; -
(I- F;(£1))/ J;(£;) is both positive and strictly greater than Vj- (1- F j(vi ))/ fj(Vj) for all 
j =/:- i, which means that pt(V;, V-1) = l. Thus, we have shown thatif pt(v;, = 1, then 
pi(v;, = I for all v; > v;. But because Pi takes on eitherthe value 0 or I, p/(w;, 
is nondecreasing in v1 for every This in tum implies that f;/(v;) is nondecreasin.g in v;, 
so that constraint (i) is indeed satisfied. 

In the end then, our hard work has paid off handsomely. We can now state the 
following. 

An Opfimal Selling Mechanism 
If N bidders have independent private. values with bidder i 's value drawn from the continu-
ous positive density f; satisfying (9.22), then the direct selling mechanism defined in (9.20) 
and (9.21) yields the seller the largest prssible expected revenue. 

9A.3 A CLOSER LOOK AT THE OPilMAL SEWNG MECHANISM 
Let's see if we can simplify the description of the optimal selling mechanism by Sltudying 
its details. There are two parts to the mechanism, the manner in which it allocates the 
object-the Pi -and the manner in which it determines payments-the c;*. 

The allocation portion of the optimal mechanism is straightforward. Given the re-
ported values VJ, •.• , VN, the object is given to the bidder i whose v; - (1 - F; ( v;) )/ J;(V;) 
is strictly highest and positive. Otherwise, the seller keeps the object. But it is worth a little 
effort to try to interpret this allocation scheme. 

What we shall argue is that v; - (I - F;( v; ))/ Ji ( V;) represents the marginal revenue, 
MR1 ( V; ), that the seller obtains from increasing the probability that the object is assigned 
to bidder i when his value is v;. To see this without too much notation we shall provide 
an intuitive argument. Consider the effect of increasing the probability that the object is 
awarded bidder i when his value is V;. This enables the seller to increase cost to v; so as to 
leave his utility unchanged. Because the density of v1 is Ji ( v1 ), the seller's revenue increases 
at the rate v1 f;(v1) as a result of this change. On the other hand, incentive compatibility 
forces a connection between the probability that the good is • assigned to bidde1r i with 
value v; and the cost assessed to all higher values v; > v;. Indeed, according to constraint 
(ii), increasing the probability that lower values receive the object reduces one-for-one 
the cost that all higher values can be assessed. Because there is a mass of 1 -- F;(v;) 
values above v;, this total reduction in revenue is 1 - F;(v1). So, altogether the seller's 
revenues increase by v;f;(v;)- (1- F1(v1)). But this is the total effect due to the: density 
j;(v1) of values equal to v;. Consequently, the marginal revenue associated with e:ach v; is 
MR;(v,) = v1 - (1- F;(v1))jf,·(vt). 
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The allocation rule now makes perfect sense. If MR;(v1) > MRj(v1). The seller can 
increase revenue by reducing rhe probability that the object is assigned to bidder j and 
increasing the probability that it is assigned to bidder i. Clearly then, the seller maximizes 
her revenue by assigning all probability (i.e., probability one) to the bidder with the highest 
MR1(v1), so long as it is posi tive. If all the marginal revenues are negative. the seller does 
best by reducing all of the bidders' probabilities to z.ero, i.e., the seller keeps the object. 

The payment portion of the mechanism is a little less transparent To get a clearer pic-
ture of what is going on, suppose that when the (truthfully) reported values are v1, ••. , VN, 

bidder i does not receive the object, i.e., that pi(v;, v_;) = 0. What must bidder i pay 
according to the mechanism? The answer. according to (9.21), is 

1., 
= 0 · v;-

0 
p;'(x, v_,)dx. 

But recall that, by virtue of assumption (9.22), p'((-. v_1) is nondecreasing. Consequently, 
because pj(v1, v_1) = 0, it must be the case that pj(x, v_;) = 0 for every x v,. Hence 
the integral above must be z.ero so that 

c;(v;, v_,) = 0. 

So. we have shown chat according to the optimal mechanism. if bidder i does not receive 
the object, he pays nothing. 

Suppose now that bidder i does receive the object, i.e., that pj(v;. v_;) = I. According 
to (9.21), he then pays 

Now, because Pi takes on the value 0 or I, is nondecreasiog and continuous from the lefl in 
i's value, and p;(v,, v_;) = 1, there must be a largest value for bidder i , rj < v1,_such that 
Pi(rj , v_;) = 0. Note that r ;' will generally depend on 1/_; so it would be more explicit to 
write r;"(v_1). Note then that by the very definition of r;'(v_1), p{'(x , u_1) is equal to I for 
every x > rj(u_1). and is equal to 0 for every x rt(v_;). But this means that 

c; (v,, v_;) = II; - f" I dx 
';(ll ... j) 

= v; - (v; - rtCv- ;)) 
= r;'(v_,). 

So. when hidder i wins the object. he pays a prict, rtCu-; ), that is independem of his own 

A 

n 
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reported value. Moreover, the price he pays is the maximum value he could have reported. 
given the others' reported values, without receiving the object. 

Putting all of this together,.we may rephrase the revenue-maximizin,g selling mecha-
nism defined by (9.20) and (9.21) in the following manner. 

Tf N bidders have independent private values with bidder i 's value drawn from the conlin· 
uous positive density fi and each V; - ( I - F,(v,))/fi(v,) is strictly increasi11g, then the 
fo llowing direct selling mechonism yields the seller the largest possible expected revenue: 

For each reported vector of values, u1, •• • • VN. the seller assigns the objut to the 
bidder i whose v1 - ( I - F;(u, ))/f,(ut) is strictly largest and positive. If there is no such 
bidder. the seller keeps the object and no poyments are made. Tf there is such a bidder 
i, then only tltis bidder makes a payment to the seller in the amount r,'. where 
rt- (I - F,(rt))/fi(rt) = 0 or maxi,u VJ- ( I - FJ(VJ)IfJ(VJ). whichever Is largest. 
Bidder i "s payment, rt. is, therefore, the largest value he could hove reported, given the 
others • reported values, without receiving the object. 

As we know, this mechanism is That is, truth-telling is a Nash 
equilibrium. But, in fact, the incentive to tell the truth in this mechanism is much stronger 
than this. In this mechanism it is, in fad, a dominant strategy for each bidder to report his 
value truthfully to the seller; even if the other bidders do not report their values truthfully, 
bidder i can do no better than to report his value truthfully to the seller. You are asked to 
show this in one of the exercises. 

One drawback of this mechanism is that to implement it, the seller must know the 
distributions, F1, from which the bidders' values are drawn. This is in contrast to the standard 
auctions that the seller can in1plement without any bidder information whatsoever. Yet there 
is a connection between this optimal mechanism and the four standard auctions that we now 
explore. 

9.4.4 EFFICI£NCY, SYMMElliY, AND COMPARISON TO THE FOUR 
STAN>ARD AUCTIONS 
In the optimal selling mechanism, the object is not always allocated efficiently. Sometimes 
the bidder with the highest value does not receive the object. In fact, there are two ways 
that inefficiency can occur in the optimal selling mechanism. First, the outcome can be 
inefficient because the seller sometimes keeps the object. even though his value for it is 
zero and all bidders have positive values. This occurs when every bidder i 's value v, is such 
that v; - (1 - F,(v;))/ fi(v1) ;::: 0. Second, even when the seller does assign the object to 
one of the bidders. it might not be assigned to the bidder with the value. To see 
this, consider the case of two bidders, I and 2. If tbe bidders are nsynunetric, then for some 
11 E (0, 1], v- (I - F,(u))/ /!(11) 'I u- (l - Fl (u))//l(u). lndeed, let us suppose that for 
this particular value. v , u - (I- F,(v))// 1(v) > 11- ( I - F2(v))j/2(u) > 0. Consequently, 
when both bidders" values are 11, bidder I will receive the object. But, by continuity, even 
if bidder l 's value falls slightly to v' < v, so long as v' is close enough to 11, the inequality 
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v'- (1 - F1 (v'))/ f 1 (v') > v- (1 - Fz(v))/ h(v) > 0 will continue to hold. Hence, bidder I 
will receive tht: object even though his value is strictly below that of bidder 2. 

The presence of inefficiencies is not surprising. After all, the seller is a monopolist 
seeking maximal profits. In Chapter 4, we saw that a monopolist will restrict output below 
the efficient level so as to command a higher price. The same effect is present here. But, 
because there is only one unit of an indivisible object for sale, the seller here restricts 
supply by sometimes keeping the object, depending on the vector of reports. But this 
accounts for only the first kind of inefficiency. The second kind of inefficiency that arises 
here did not occur in our brief look at monopoly in Chapter 4. The reason is that there 
we assumed that the monopolist was unable to distinguish one COirl.sumer from another. 
Consequently, the monopolist had to charge all consumers the same price. Here. however, 
we are assuming that the seller can distinguish bidder i from bidder j and that the seller 
knows that i's distribution of values is F; and that j's is Fj. This additional knowledge 
allows the monopolist to discriminate between the bidders, which leads to higher profits. 

Let's now eliminate this second source of inefficiency by supposing that bidders are 
symmetric. Because the four standard auctions all yield the same eJCpected revenue for the 
seller under symmetry, this will also allow us to compare the standard auctions with the 
optimal selling mechanism. 

How does symmetry affect the optimal selling mechanism? If the bidders are symmet-
ric, then f; = f and F; = F for every bidderi. Consequently, the opt.Lmal selling mechanism 
is as follows: If the vector of reported values is (v1, ••• , VN ), the bidder i with the highest 
positive v;- (1- F(v;))/ f(v,) receives the object and pays the seller rt, the largest value he 
could have reported, given the other bidder's reported values, without winning the object. 
If there is no such bidder i, the seller keeps the object and no payments are made. 

But let's think about this for a moment. Because we ,ne assuming that v-
(l- F(v))/j(v) is strictly increasing in v, the object is actually awarded to the bidder 
i with the strictly highest value v;, so long as v; - ( 1 - F1( v1 ))/ /;( > 0--that is, so long 
as v; > p* E [0, 1), where 

• 1- F(p*) 
p - f(p') 0. 

(You are asked to show in an exercise that a unique such p* is guaranteed to exist.) 

(9.23) 

Now, how large can bidder i's reported value be before he is awarded the object? 
Well, he does not get the object unless his reported value is strictly highest arid strictly 
above p". So, the largest his report can be without receiving the <)bject is the largest of the 
other bidders' values or p*, whichever is larger. Consequently, when bidder i does receive 
the object he pays either p* or the largest value reported by the mher bidders, whichever is 
larger. 

Altogether then, the optimal selling mechanism is as follows: The bidder whose 
reported value is strictly highest and strictly above p* receive:; the object and pays the 
larger of p• and the largest reported value of the other bidders. 

Remarkably, this optimal direct selling mechanism can be mimicked by running a 
second-price auction with reserve price p*. That is, an auction in which the bidder with 
the highest bid strictly above the reserve price wins and pays the second-highest bid or the 
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reserve price, whichever is larger. If no bids are above the reserve price, the seller keeps the 
object and no payments are made .. This is optimal because, just as in a standard 
auction, it is a dominant strategy to bid one's value in a auction with a reserve 
price. 

This is worth highlighting. 

An Opfimal Audion Under Symmetry 
If N bidders htlve independent private values, each drown from the same continuous positive 
density f, where v- (1- F(u))/ /(u) is strictly increasing, then a second price auction with 
reserve price p' satisfying p'- (1 - F(p*))ff(p*) = 0, maximizes the seller's expected 
revenue. 

You might wonder about the other three standard auctions. Will adding an app1ropriate 
reserve price render these auctions optimal for the seller too? The answer is yes, and this is 
left for you to explore in the exercises. 

So, we have now come full circle. The four standard 
price, Dutch, and English-all yield the same revenue under symmetry. Moreover, by 
supplementing each by an appropriate reserve price, the se11er maximizes his e:x:pected 
revenue. Is it any wonder then that these auctions are in such widespread use? We will leave 
you with that thought. 

9.5 ExERCISES 
9.1 Show that the bidding strategy in (9.5) is strictly increasing. 

9.2 Show in two ways that the symmetric equilibrium bidding strategy of a first price auction with N 
symmetric bidders each with values distributed according to F, can be written as 

b(u) = u- -- dx. 1" (F(x))"-' 
o F(u) 

For the first way, use our solution from the text and apply integration by parts. For the second way, use 
the fact that pN-1(r)(u- b(r)) is maximized in r when r = u and then apply the envelope theorem 
to conclude that d(FN-\(v)(v- b(v))jdv = pN-1(u); now integrate both sides from 0 to u. 

9.3 This exercise will guide you through the proofthat the bidding function in (9.5) is in fact a symmetric 
equilibrium of the first-price auction. 
(a) Recall from (9.2) that 

du(r, u) = (N- b(r))- F.N-\(r)b'(r). 
d' 

Using (9.3), show that 

du(r, u) N 2 A N 2 b · = (N- l)f - (r)f(r)(v- b(r))- (N- l)F - (r)f(r)(r- (r)J 

= (N -l)FN-2(r)f(r)(u- r). 

(b) Use the result in part (a) to conclude that du(r, v)fdr is positive when r < u and negative when 
r > u, so that u(r. v) is maximized when r = u. 
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9.4 Throughout this chapter we have assumed that both the seller and all bidders arc risk neutral. ln this 
question, we shall eltplore the consequences of risk aversion on the part of bidders. 

There arc N bidders participating in a first-price auction. Eacll bidder's value is independently 
drawn from [0.1) according to the distribution function F, having continu<JI!S and strictly po$itive 
density f. lf a bidder's value is v and be wins the objea with a bid of b < u. lhen his von Neumann-
Morgenstcm utility is (u - b)*, where a :::_ I is fixed and common to all bidders. Consequently, 
the bidders are risk averse when a > I and risk neutral when a = I. (Do you see why?) Given 
the risk aversion parameter a, let denOie tile (symmetric) equilibrium bid of a bidder when 
his value is u. The following parts will guide you toward finding b.(u) and uncovering some of its 
implications. 
(a) Let u(r. v) denote a bidder's expected utility from bidding b.(r) when his value is v. given that 

all other bidders employ b.(-). Show that 
u(r, 11) = F"'-'(rXu-

Why must u(r, u) be maximized in r when r = u? 
(b) Use part (a) to argue that 

[u(r. v)f = [F"(r))H-o(v - b.(r)) 

must be maximized in r when r = u. 
(c) Use part (b) to argue that a first-price auction with the N - I risk averse bidders above whose 

values are each independently distributed according 10 F(u). is equivalent to a first-price auc-
tion with N - I risk bidders whose values are each independently distributed accord-
ing to F"(v). Use our solution for the risk neutral case (see 9.2 above) to conclude 
that 

!.• ( F( ) )«!H-1) = v -
0 

F(:) dx. 

(d) Prove that b.(v) is strictly increasing in a :::_ I. Does this make sense? Conclude that as bidders 
become more risk averse. the seller's revenue from a first-price auction increases. 

(e) Use pan (d) and the revenue equivalence result for the standard auctions in the risk neutral case 
to argue that when bidders are risk as above. a first-price auction raises more revenue for 
the seller than a second-price auction. Hence, these two standard auctions no longer generate the 
same revenue when bidders are risk averse. 

(f) What happens to the seller's revenue as the bidders become infinitely ri$k averse {i.e .. as a -+ oo)? 

9.5 In a private values model. argue that it is a weakly dominant strategy for a bidder to bid her value in 
a second-price auction even if the joint distribution of the bidders' values exhibitS correlation. 

9.6 Use the equilibria of the second-price, Dutch, and English auctions to construct incentive<ampatible 
direct sellong foe each of them in which the eX·JlO$t assignment of the object to bidders 
as well as their ex-post payments to the seller are unchanged. 

9.7 In a first-proce. all-pay auction. the bidders simultaneously submit scaled bids. The highest bid wins 
the object alld eo,c;y bidder pays the seller the amount ol his bid. Consider the independent private 
values model with symmetric bidders whose values are each distributed according to the distribution 
function F. with density f. 
{a) Find the unique symmetric equilibrium bidding functoon. Interpret. 
(b) Do bidders bid higher or lower than in a first-price auctioo? 

A 
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(c) Find an expression for the seller's expected revenue. 
(d) 801b with and without using revenue equivalence theorem. show that the seller's expected 

revenue is the same as in a first-price auction. 

9.8 Suppose there are just two bidders. ln a second-price, all·pay auction, the two bidders simullllnc· 
ously submit sealed bids. The highest bid wins the object and both bidders pay the second-higMsl 
bid. 
(a) Fmd the unique symmetric equilibrium bidding function. Inte.rpret. 
(b) Do bidders bid higher or lower lhan in a first-price, all-pay auction? 
(c) Find an expression for the seller's expected revente. 1 

(d) Both with and without using tl\e revenue equivalence theorem, show that the seller's ex'pected 
revenue is the same as in a first-price auction. 

9.9 Consider the followi11g variant of a first-price auction. Sealed bids are collected. The highest bidder 
pays his bid but receives the object on I y if the outcome of the toss of a fair coin is heads. ! f the outcome 
is tails. the seller keeps the object and the high bidder'f bid. Assume bidder symmetry. 
(a)' Find the unique symmetric equilibrium bidding function. rnterpret. 
(b) Do bidders bid higbu or lower than in a auction? 
(c) Fmd an expreu ion for the seller's expected reven-.e. 
(d) Boch with and without using the revenue equivalence theorem, show that the seller's expected 

revenue is exactly half that of a standar(j first-prico auction. · 

9.10 Suppose all bidders' values are uniform on [0. I). COI16truct a revenue-maximizing auction. What is 
the reserve price? 

9. 11 Consider again the case of uniformly distributed values on (0, I). Is a first-price auction with the same 
reserve price 11$ in the preceding question optimal for the seller? Prove your claim using the revenue 
equivalence theorem. 

9.12 Suppose the bidders' values an: i.i.d., each according to a uniform distribution on (I, 2). Construct a 
revenue-maximizing auction for the seller. 

9.13 Suppose there are N bidders with independent privtlle values where bidder i 's value is uniform 
on [a1, b1]. Show that the following is a revenue-maximizing, inccntive<ompatible direct selling 
mechanism. Each bidder reports his value. Given the reported values v1, •• • , VN , bidder i wins the 
object if v1 is strictly larger !ban theN - I numbers of the form b,/2 + max(O. vi- b1/ 2) for j "' i. 
Bidder i then pays the seller an amount equal to the largest of these N - I numbers. All other bidden 
pay norhing. 

9. 14 A drawback of the direct mechanism approach is that the seller must know the distribution of the 
bidders' values to compute the optimal auction. The following exercise provides an optimal auction 
thnt is distribution-free for the case of two asymmetric bidders, I aJid 2, with independent private 
values. Bidder i's strictly positive and continuous demity of values on [0. I) is /. with distribution 
F1• Assume throughout thnt u1 - ( I - F,(u,))/f1(v1) is increasing for i = I. 2. 

The auction is ns follows. In the first stage, the bidders each simultaneously submit a sealed bid. 
13efore the second begins, the bids are publicly revealed. In the second stage, the bidders must 
simultaneously oleclare whether they are willing to purchase the object at the other bidder's revealed 
sealed bid. If one of them says "yes" and the other "no." then the "yes" transaction is carried out. If 
they both say "yes" or both say "no.'' then the sellu keep.• the object and no payments are made. Note 
that the seller can run this auction without knowing the bidders' value distributions. 
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(a) Consider the following strategies for the bidders: In the first stage, when h.er value is v1, bidder 

i =j:. j submits the sealed bid b;(v;) = b;, whereb; solves 

b;- 1-Fj(b,.) =max(o.v;- 1-F,(v;)). 
/,(b;) fi(v,) , 

(Although such a b; need not always exist, it will always exist if the functions v1 -

(1- F1(v 1))//1(VJ) and v2- (I - F2(Pz))/f2(v2) have the same raiJge. So, assume this is the 
case.) 

In the second stage each bidder says "yes" if and only if her value is above the other bidder's first-
stage bid. 

Show that these strategies constitute an equilibrium of this auction. (Also, note that while the 
seller need not know the distribution of values, each bidder needs to know the distribution of the other 
bidder's values to carry out her strategy. Hence, this auction shifts the infonnational burden from the 
seller to the bidders.) 
(b) (i) Show that in this equilibrium the seller's expected revenues are maximized. 

(ii) Is the outcome always efficient? 
(c) (i) Show that it is also an equilibrium for each bidder to bid his value md then to say "yes" if and 

only if his value is above the other's bid. 
(ii) Is the outcome always efficient in this equilibrium? 

(d) Show that the seller's revenues are not maximal in this second equilibrium. 
(e) Unfortunately, this auction possesses many equilibria. Choose any two strictly increasing functions 

g1 : [0, 11---+ R.2 i := 1, 2, with a common range. Supp<)se in the first stage that bidder i # j with 
value v1 bids h1(v,.) = b;, where b; solves gj(b;) = gi(V;) and says '·'yes" in the second stage if 
and only if his value is strictly above the other bidder's bid. Show that this is an equilibrium of 
this auction. Also, show that the outcome is always efficient if and only if g1 = 8). 

9.15 Show that condition (9.22) is satisfied when each F; is a convex function. Is convexity of F1 necessary? 

9.16 Consider the independent private values model with N possibly asymmetric bidders. Suppose we 
restrict attention to efficiem individually rational, direct selling mechanisms; 
i.e., those that always assign the object to the bidder who values it most. 
(a) What are the probability assignment functions? 
(b) What then are the cost functions? 
(c) What cost functions among these maximize the seller's revenue? 
(d) Conclude that among efficient individually rational, incentive-comJJatible direct selling mecha-

nisms, a second-price auction maximizes the seller's expected revenue. (What about the other 
three standard auction forms'!) · 

9.17 Call a direct selling mechanism p;(·), c;(·), i = I, ... , N deterministic if the p1 take on only the 
values 0 or I. 
(a) Assuming independent private values, show that for every incentive-compatible deterministic 

direct selling mechanism whose probability assignment functions, p1(v1, v_1), are nondecreas-
ing in v1 for every v _1, there is another incentive-compatible direct selling mechanism with 
the same probability assignment functions (and, hence, deterministic as well) whose cost func-
tions have the property that a bidder pays only when he receives the object and when he does 
win, the amount that he pays is independent of his reported val Lie. Moreover, show that the 
new mechanism can be chosen so that the seller's expected re'llenue is the same as that in 
the old. 
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(b) How does this result apply to a first-price auction with symmetric bidders, wherein a bidder's 
payment depends on his bid?. 

(c) How does this result appiy to an all-pay, first-price auction with symmetric biddeJrs wherein 
bidders pay whether or not they win the auction? 

9.18 Show that it is a weakly dominant strategy for each bidder to report his value truthfully in the optimal 
direct mechanism we derived in this chapter. 

9.19 Under the assumption that each bidder's density, ft, is continuous and strictly positive and that each 
V; (1 F;(v0))ff1(v;) is strictly increasing, 
(a) Show that the optimal selling mechanism entails the seller keeping the object with strictly positive 

probability. 
(b) Show that there is precisely one p• E [0, I] satisfying p•- (1 - F(p•))/f(p•) = 0. 

9.20 Show that when the bidders are symmetric, the first-price, Dutch, and English auctions all are optimal 
for the seller once an appropriate reserve price is chosen. Indeed, show that the optimal reserve price 
is the same for all four of the standard auctions. 


