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1. Mechanism models for plates subjected to uniform lateral load

A collapse model for a rectangular plate subjected to uniform lateral load is shown in
Figure 1.1. The boundaries are fixed against rotations but free to slide inwards so that no
membrane force is developed.

Figure 1.1 Collapse model for rectangular plate

The “roof-top” mechanism assumed is such that plate segments bounded by yield lines
rotate as rigid bodies. All energy dissipation takes place in yield lines. The angle of @ of
the oblique yield lines is unknown. The virtual rotations along the boundaries are given

by
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2

where 6w is the virtual displacement at center.

The internal virtual work is given by
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2b¢ (cos #56 + sin ¢tg¢5¢9)}

oW, =M, {2atg¢5¢9 +2b66 + (a - btg¢) 2tg 900 +
cos

= 4MP{atg¢+b} 560 (13)

The external virtual work corresponds to the volume of the roof top
ow, = .[qé'w(x,y)
A
ow
=q (a—btg¢)btg¢b7 (1.4)

- 1_qi {3ab - b1} biggso

Equating internal virtual work and external virtual work there comes out

2+ 2
48m, 87T,

b2

q= (1.5)

b
3igp——1g"¢
a
The angle ¢ is determined such that ¢ attains a minimum, i.e.:

i _,

s (1.6)

which yields

tgd = ‘/3+(3j _b (1.7)
a a

The corresponding collapse load is

2

48M, 1
Iy bV b
a a

In case of simply supported edges the internal virtual work is halved and the collapse load
becomes

(1.8)
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(1.9)

1.1 Rectangular plate undergoing finite deflection

When the deflections at the centre of the plate become finite, membrane forces develop
which increase the load-carrying capacity. As a first step consider the deformation of a
plate strip with unit width in Figure 1.2

N M

Figure 1.2 Collapse mechanism for plate strip

The internal virtual work in one hinge is
OW, = M 56+ Nbu

The virtual elongation in a hinge is found from kinematic considerations

su="s0 TELE T Brocé FELedlnfisér
OFF ! Tt wec s

The bending moment and axial force must further satisfy the plastic interaction function
for a platestrip, being

2
M (N
=t 2| _1=0 5

M,,+kNP) (1.12)

(1.11)
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where
N, =0,k is plastic axial capacity

K. . . . .
M,=o, ry is plastic bending moment for platestrip of thickness 4

The normality criterion states that
or 2N

§u=5ﬂ,5=6ﬂ—N—i (1.13)
or 1

P

Combining Equations (1.11) , (1.13), (1.14) there comes out
N w

N o (1.15)

p

The internal virtual work is now

CGHRGIE

The first term in Equation (1.16) is due to bending and the second is the contribution
from membrane forces.

(1.16)

Returning to the rectangular plate, the displacement field introduced pre-supposes that all
elongation takes place at the mid hinge, and no elongation at the boundaries. Assigning
all virtual work due to membrane forces to the internal hinges we get

é‘Wi=MP{1+3(%) }59 (1.17)

For the hinges at the boundaries the following virtual work expression applies
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S5 ,,=M,,{1—[%j }59 (1.18)

The total internal work is found by integration of Equations (1.17) and (1.18) along the
yield lines. It is further pre-supposed that the angle ¢ of the oblique yield lines is
determined during the pure bending phase. Thus, the first term in Equations (1.17) and
(1.18) will remain as in the calculations in Section 5.1.

The integration must now be split up into several regions, see Figure 1.3. The total
internal virtual work is four times the hinges indicated.

4y @

!

5]&&@3959

Figure 1.3 Different regions of integration

For the purpose of simply the second term in Equations (1.17) and (1.18) are shown here

Mid hinges:

swo :
i :3(% (a-bigp)iggs6-2 (1.19)
M, h

Boundaries in region (2)

WO (W
M,  \h

) (a—btg¢)tg¢§9-2 (1.20)

Boundaries in region (3):
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Here the virtual work expression varies due to the linear variation of w along the oblique
yield line. The deflection at coordinate x is given by

W) _w_x

v 121
h ho tod (1.21)
2
This yields
bg¢ ’
¢ 2 2
‘5;? = j—[%j bx dx- 14564
S 589 (1.22)
1(wY
=——| — | 2btg°¢56
3( hj g
In oblique yield lines there is obtained similarity
WP (wY b
= - cosg+singigd; o0 -4
7 (hj 200S¢{ ¢+sin grgp| (1.23)
At short edge
WO 1(wY
L =—| —| -boO-2
M, 3 ( hj (1.24)
The total virtual work becomes (second term only)
W (wY 8 4
—L1 = | {4atgp——btg*¢+—b
M[hj{agqé 5 g9 3} (1.25)

P

The total collapse pressure is now given by (confer also Equations (1.8) and (1.9))

h

< (1.26)

t¢+2
_48M, 8P 1(W
3

2 3tg¢—22tg2¢+é
a a
q= b2 j

3tg¢—étg26’ tg¢5+é
a a

The expression for the minimum angle is now introduced (Equation 5.8) in a slightly
modified form by defining the parameter

Response of Structurestto Eexplosion Loads J Amdahl, NTNU, Dept of Marine Technology



Analysis and Design of Marine Structures subjected to Accidental Loads 9

b pY b
a=—i 3+(—) - (1.27)

which also implies

tgd=3-2a or L= v3-2a (1.28)

b a

Equation (1.26) can then be written as:

q (1.29)

ala? 9-3a

2
_48M, {1+ a+(3-2a) }

This equation is valid until w/ A =1. After this, the axial force becomes equal to the
plastic membrane force at the mid hinge. In the oblique hinge lines we have to divide into
two parts, one where the axial force is equal to the plastic axial force and one part in
which bending moment remains.

The internal virtual work for a platestrip yielding in tension is
<~ Q
_ \?’ ()

SW, = N,6u=4M, %50 S (1.30)

and replaces the expression given by Equation (1.17). At the same time the virtual work
at the corresponding boundary hinge vanishes. The internal virtual work consists now of
the following contributions:

Mid hinges:
ow®
M P

=4%{a—btg¢}tg¢5€~2 (1.31)

Boundaries in region (2)

sw
M,

0 (1.32)
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Boundaries in region (3)

gtg¢ 2
3 wih 2 9
o~ _ J' p(ﬁj bx dxtg¢5g.4=im (1.33)
M, ; h L 3 w/h
2
gtgqﬁ
for x> T the virtual work vanishes in this region.
w
Oblique vield lines:
b/2cos¢
A (w) x .
= — dxicos@+singigg|o0-4
M, 5[ ( h) \b/cos¢g {eos¢ ped}
b/2cos¢ W % (134)
+ —| ———— |dx{cos @ +sin gigp ;06 -4
b/2cos¢ h(b/zcosgéj { }
wlh
L ~ 2 {14109} 60+ 4b {141 2¢}{E—L
M, wihl % E 0 win s
. (1.35)
= 4b{l+1g ¢};
Boundaries short edge:
b2
5)  wihk 2 2
W _ {1_(1) (L) }MM
M, ; h b/2 (1.36)
_i_b__é‘g
3w/lh

For x> ﬂZ_ the virtual work vanishes.
w/h

The total virtual work is then

J Amdahl, NTNU, Dept of Marine Technology
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oW, w 1
L= —{8atgd—8btg*p+ 4b + 4bta* P! 56 +
v - {Batgp—8big’p 2’} ™

4btg2¢+4b[ 1 _1) (337)
8atgd+8b \ 3w/ h

P {4btg¢ + 4b}

=%{8atg¢+ 8b}{1 +

Introducing  fgg=+/3-2a and %: 372 the following relation holds true:
a

Abtg’ ¢+ 4b _a2-a)
Batgd+8b 3-a

(1.38)

The first term in Equation (5.39) is twice the internal work in pure bending.

Hence,
96 M, w a2-a) 1
=—"—<1+ -1
=z h{ 3 (3(w/h)2 j} (1.39)

Similar calculations may be carried out of a simply supported plate. The derived
relationship can be summarized by the following formulas:
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2
i:l-*—zzw_ 5 ZSI (1'40)
q, 9-3a
q, 3—-a \3z
where for clamped plate
w 48M 1.42
T %= azazp (42
for simply supported plate
_2w _24M, (1.43)
b D= a’a’
and
2
gl 3+(éj b (1.44)
a a a
hZ
M, =0, (1.45)

Note the similarity between Equations (1.40) and (1.41) and those derived for a plate strip
previously. In fact, by letting 5/a — 0, Equations (1.40) and (1.41) condensate to the
platestrip relationships, namely

q 2

% (1.46)
q

—=2z 1.47
% (1.47)

Equations (1.40) and (1.41) are plotted in Figure 1.4 for different aspects ratios.

Approximate formulas which are valid over the entire deformation range may be obtained
by an elliptic fit to the asymptotic solutions
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P 20 (1.48)

l:zz{l——“(z_“)}
90 3-a

=2Z{1+<_a—1><a_~2} 2506 (1.49)
3—-a

=22f ()

Thus from the equation

1Y (2@
(q/qo] +{(q/qo} - (1.50)
there is obtained
q;q():\/l+{22(l+(a3_—llfa_2)} (1.51)
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o

Lateratl pressure p/p

Lateral deflection &

Figure 1.4 Plastic load carrying capacity of rectangular plates with finite deflections

2. Mechanism models for beams subjected uniform lateral load

Equations (1.46) and (1.47) predict the large displacement behaviour of a beam with a
rectangular cross-sections, i.e., cross-sections obeying the plastic interaction curve

2
M, \N,

As shown in Figure 2.1 this expression is too optimistic for I-profiles. A fairly good
approximation can be obtained with the interaction curve
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M (NY
F—MP{NP) 1=0 (2.2)

where
l<ax<?2

This expression can be used to derive plastic-load displacement similar to the ones for
rectangular section.

For a fully clamped beam equilibrium is given by (see Figure 2.2)

1 M w

0 0
N
N N
.
1.0
N\. Parameter A /A
0.8 | NN\ W

X 0.6
x>, 0.4 L~

0.6 S 0.
0.2 v
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0 \\ /
HEA, HEB, HEM - sections

0.2 — x N
e./ ( ECCS )
1

53- 6,13

0 1 1 R N M
0 0.2 0.4 0.6 0.8 1.0 W
Figure 2.1 Interaction curves for I-profiles
Kinematics yield the following relationship
Su = %549 (2.4)

The normality criterion requires
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a-1
1 (N
Su=SAa—I| —
! “N,,[N,,j 2:5)
00 =64 1
v (2.6)
so that
1
a-1
N|_[1wNy 2.7)
N, ) a2 M,

Figure 2.2 Collapse mechanism for beam

Introduction Equations (2.2) and (2.7) into Equation (2.3) there is obtained

=
9| 22y ey 2.8)
9 20 M, 200 M,

For W >1 the beams becomes a membrane whereby
2a M,
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a_wNy
9% 2 M, 2.9
16M, . . .
g, =—5— denotes the plastic collapse loan in bending

Similar calculations may be performed for a beam with simply supported ends. The
results may be summarized as shown in expression (2.10)and(2.11).

9 146 (@-1)  S<1 (2.10)
9
q
= =ad o>1 (21 1)
9
where for clamped beam
g2l g, =162 2.12)
2a M, 0
and simply supported beam
52 Ne 0 -8 (2.13)
a M, 4

2.1 Beams with partial end fixity

P FRAAAY

W/ a v T

Figure 2.3 Collapse mechanism for beam with partial end fixity
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If the beam has a finite axial restraint, the ends will move inwards and thereby relax the
build-up of membrane forces. As shown for a tubular beam in Figure 2.3, the virtual
plastic elongation in each is now given by

1 ON

w
ou =—00———560
u 5 %k 0 (2.14)

The normally criterion yields
AN Sy ran L )15
N, \ N, 2 2k00| M, (£13)

which also can be expressed as

N
a-1 s 0—
N1 _wN, Nt N,
N,) 2aM, 8ka’M:,w N, (2.16)
20 M,
A simpler notation is
1 dn
na—l :5___
cdo (2.17)
where the dimensionless spring constant is defined by
eo Nat .18
Sk%%—-— Fo zerg &) TV .Swi7T oI T 18)

A closed-form solution of Equation (2.18) is difficult. Instead numerical integration is
used, given by the recurrence formula

n,, =n,_ +2cA8(5,—n*"), i=23.. (2.19)

n =co! —con (2.20)

The equilibrium condition is given by

q a
—=1-n"+adn 221
qo ( v )

Response of Structurestto Eexplosion Loads J Amdahl, NTNU, Dept of Marine Technology



Analysis and Design of Marine Structures subjected to Accidental Loads 19

Load-displacement relationships for various values of the spring constant ¢, is shown in
Figure 2.4 for a =1.5.

Z

7, >o
2T T,
75 o= 15
Y,
5 yd

o0
-4
=0,

o

Figure 2.4 Plastic-lateral load-deformation relationships for I-profile with & =1.5

3. Dynamic behaviour models

Various methods are available for predicting the influence of translatory inertia on the
permanent deformation of blast loaded structures. A first insight is obtained by studying
the response of a linear spring mass system as shown in Fig. 5.8.
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e

Figure 3.1 Dynamic amplification factor for four different type of loadings.
T is the first natural period of vibration of the structural element /10/.

It is seen that the pulse shape, the duration as well as the rise time of the pulse is
important with respect to dynamic amplification. The maximum response possible for a
SDOF-system is DLA (Dynamic Load Amplification factor) = 2 for a sustained
rectangular pulse.

A more realistic description of the explosion load is a skewed triangular pressure pulse. A
reasonable approximation for a detonation is 7, ~ 0.5¢, .

As shown in Figure 3.1 the response is independent of the rise time when it is small
compared to the fundamental period of vibration.
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Figure 3.2 Response of a linear spring-mass system.

The results in Figure 2.4 may also be used for a beam with simply supported ends
provided that the spring coefficient is taken as

Ny
" 2ka’M? G-1)

and J is given by Equation (5.62).

A basic assumption in the consideration above is that the cross-section of the beam
remains intact in the large deflection range so that the plastic bending moment is retained.
This means that no twisting and lateral buckling or local buckling of webs and flanges

take place.

This observation can be generalized: in the impulsive loading range, the response
depends only on the total impulse and is independent of the shape of the impulse.
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The results above apply to linear spring stiffness, but they are not limited to elastic
material behaviour as far as maximum response in the first cycle is considered.

The rigid-plastic or elastic plastic method provide non-linear load-deformation modes can
be distinguished as shown in Figure 3.3

z 1
o i affpm)'(/)ﬁf,;{é ~ a)
IR I 4

Figure 3.3 Idealized elastic-plastic response

Curve a describes the typical response when membrane forces are developed due to axial
fixity of the ends of the beam/plate.

Curve b is representative for the behaviour when the axial fixity is small so that bending
forces predominate the response.

A reasonable approximation for case a is the linear curve indicated in Figure 3.3,
especially for large lateral deformation. For case b the bilinear representation is a valid
assumption with a transition point at the deformation at the yield point, w, ,

corresponding to the collapse load in bending.

Figure 3.1 may now be used to calculate the maximum response for case a deformation
modes. Figure 3.4- Figure 3.7 may be used for case b deformation modes. They
summarize the response of elastic plastic system.
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An important factor in the above calculations is the effective natural period of vibration.
This is not identical to the elastic period of vibration, but is defined according to

meq
Ty =2rx |— (3.2)

where k,, is defined for case a and case b respectively in Figure 3.3.

The equivalent (modal) mass is calculated on the assumption that the dynamic
deformation mode is identical to the static collapse pattern.

For a rectangular plate the deformation pattern shown in Figure 1.1 should be used. The
equivalent plate mass should be determined so that the kinetic energy is retained, i.e.:

1 1
Emeqvg = E J-phvsz (3.3)
4
2
\%
m, =ph| — | dA 34
' I(J 34

where v, is the maximum velocity at the mid hinge of the plate. p = mass density of
plate and / = plate thickness

m,, = ph [% (a-b-1tgp)b+ ébtggé . b}
(3.5)
= %h[zab ~bgf]
Including the minimum angle ¢ this can be written
2-«a

meq = mplate T (3.6)
where the total plate mass is

mplate = phab (3'7)
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Letting b/a — 0 we get the relationship for a beam, i.e.

1
meq = Myeam * 5 (38)
For a square plate, b/a =1, there is obtained
1
meq = mplate ’ E (39)

3.1 Analytic solutions

Several solutions are available for rectangular plates and beams subjected to uniformly
distributed pressure of constant magnitude and a certain duration (rectangular pulse).

Applying the static collapse pattern Jones (1) obtained the following formula with respect
to permanent deformation at mid hinge.

1/2
_ 3-a 919 _1)|q_ _
2_2{1+(2—0!)(1—a)} {quo[qo 1](1 Cosw)} : (3-10)

where «a, q/q, are defined in the static case, 7 = duration of pulse, and

. 2g, {1+Q-a)(1-a)}
" T G-a

(3.11)

p is mass density of plate and
45 =9, for clamped plate
4, =24, for simply supported plate

It is interesting to compare the permanent deformation predicted by Equation (3.10) for a
long duration pulse by which cos yz = —1 with the static solution by Equation (1.51).

PR . {(iJ —1} 3.12)
2+ 2-a)-a) |4
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and

1/2
{1+4i(i—1j} -1
Zam _ 90 \ 90
e ERYE (3.13)
stat

&
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Figure 3.8 Dynamic versus static permanent deformation

It is seen from Figure 3.8 that the dynamic deformation approaches asymptotically the
correct solution, DLA =2 for q/q, — . The deviation may to some extent be due to
the use of the approximate formula given by Equation (1.51), but is mainly due to the fact
that Equation (3.10) underestimates the permanent deformations in the small
displacement range because a square yield curve is used as shown in Figure 3.9.
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Figure 3.9 Yield curves

If an inscribed yield curve is used an upper bound to the dynamic displacement would be
obtained. The corresponding curve is obtained by setting o, =0.618c, . This yields

Zan ¢ (2.58-3.20)

stat

for

4 2-50)
9

This clearly overestimates the deformation. It is apparent from these considerations that
the circumscribed square yield curve is reasonable for z >>1 because the major part of

. . N
the energy dissipation takes place on the membrane phase with AR 1.
p

The foregoing equations are also valid for beams by letting b6/a —> o ): « =0 and b=/
is beam span.

If the pressure-pulse is of short duration and g >> g, the load can be idealized as
impulsive. From the moment theorem, the impulse / is given by

I =qz = phV, (3.14)

where ¥, = impulsive velocity. Equation (3.10 may be rewritten.
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2 2 (3.15)
=~ l+2[i] e 1+(1J yir?
0 9
substituting
48M,
qo = ) (3.16)
and using Equation (3.15) we get
2
7o (3.17)
_2. (3-2a) 1+(2—a)(1—a)}
6 2-a
where
pbVy
A=
4M, (3.18)
which is a non-dimensional form of the kinetic energy.
Thus, Equation (3.10) takes the form
G- 1/2
z= {1+ 1} (3.19)

21+ 2-a)l-a)]

3.2 Approximate solutions for elastic- and plastic periods of vibration

If the asymptotic solution for plastic deformation, Equation(1.51), is used the plastic

stiffness is given by
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_d(gab) 2qyab [1+(a—-1)(a—2)

keq - aw - ;l 3I—a (3 20)

the equivalent mass is given by Equation (3.6) and reads
2-a

By = PB0R—— (3.21)

Hence, the “plastic” period of vibration is
2 p— p—
T, =2x Moy o ph B3-a)2-a)
k,, 6-2g,(1+(@-D(a-2)
(3.22)

oyl [P B-20)3-2)2-a)
1240, (+(@-1)(a-2)

In the membrane phase this is valid for both clamped and rotationally free plates.

It is also seen that Eq. (3.22) can be written

_2_77 -«
7\ 6 (3.23)

€q

This defines also the duration of the pulse in a more suitable way.

COS¥T =COS 27 3_—ai
Y ,f 6 T (3.24)

eq

Thus, cosyr ~—1 for 7> T, and the maximum magnification factor is obtained.

The natural period of a clamped rectangular plate in the linear elastic range is given by

T,

_ 2t {12,9(1—1/2)}”2 529

v EW?

where y =36, 24.6, 23.2 and 22.4 when b/a =1, ', 1/3, and 0, respectively.
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The ratio between the “plastic” and elastic period of vibration is

T, { E (3—205)(3—05)(2—05)}”2 .26

4 _
¢ T, 24b/h|3c,(1-V)) 1+(-a)2-a)

For example for o, =250, b/a=1/3, ¢ becomes

¢z£,i.e. for b/h>35
blh

The plastic stiffness is larger than the elastic stiffness. This means that the elastic
response is quite significant for high 5/ / -ratios.

Correspondingly, for a beam (b/a=0), ¢~ % i.e. almost the same ratio. For typical

beams the stiffness will be governed by the plastic contribution.

3.3 Strain rate effects

For materials that are sensitive to the rate of straining the simple rigid-perfectly plastic
approximations may require further refinement. For mild steel Cowper and Symonds /2/

found the following empirical relationship between the dynamic flow stress, o’y , and the

strain rate &

%y =1+(3]" (3.27)

where D =40, p =5 and o, = static (lower) yield stress. This means that the yield stress

is doubled for &£ =40s~". The formula is well known and is often applied for dynamic
correction. However, it should be noticed that it is strictly valid for the initial yield stress
only. At large strains the influence of strain rate is less pronounced.

Hence, Equation (3.27) the formula should be used with great care when large plastic
deflections are assumed. D = 4000 is proposed for such cases in Ref. /3/. Integration
must be carried out over the cross-section in order to assess the influence on stress
resultants. In Ref. /3/ it was proposed to use Equation (3.21) for beams with A/# instead
of 4 where
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Alternatively, it is suggested that Equation (3.24) for beams and Equation. (3.20) for
plates are used without rate correction.

3.4 Comparison with experimental data

Figure 3.10 - Figure 3.12 show comparisons between various theoretical calculations and
experimental data. Curve (3) in Fig. 5.17 results from Equation. (3.19)with o =0 and
'=3/41.

It is seen that curve (3) overestimates the response. This is considered to be due to strain
rate effect and may be accounted for by increasing the yield stress.

Curve (2) in Figure 3.11 - Figure 3.12 is identical to Equation (3.19) with a =0.734 . It
appears that the predictions are in much better accordance with the test results for steel
and aluminum plates.

®@
G £ }u@ﬁ%/fg)

Wm
H

V4o - SYMONDS AND JONES
® - VAN-DUZER, GRIFFIN AND JONES

H@ ~HUMPHRE YS

1 1 1 1 i |
o 100 200 300 400 500 800 ) N

0

Figure 3.10  Comparison with other models and with test results on mild steel (curve 1
— bending theory, curve 2 — Symonds and Jones (19) without strain rate
correction, curve 3 — Jones (7), curves 4, 5 — Symonds and Jones
including strain rate effect, curve 6 — present model (hinged supports),
curve 7 — present model (clamped supports)).
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Figure 3.11  Comparison with test results — mild steel plates (curve 1 — present model
curve 2 — Jones (equation 36), curve 3 — Raya and Mura (equation 41),

X

S

curve 4 — upper bound (equation 42), curve 5 — lower bound (equation

43)).
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Figure 3.12
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