
Ramaswamy Palaniappan 

Digital Systems Design 

Download free books at 



Download free ebooks at bookboon.com

2 

 

Ramaswamy Palaniappan

Digital Systems Design



Download free ebooks at bookboon.com

3 

 

Digital Systems Design
© 2011 Ramaswamy Palaniappan & Ventus Publishing ApS
ISBN 978-87-7681-806-7



Download free ebooks at bookboon.com

Digital Systems Design

4 

Contents

Contents

 Preface  7

 About the author 8

1 Number System Basics 9
1.1 Decimal Numbers 9
1.2 Other Number Systems – Binary, Octal and Hexadecimal 10
1.3 Conversion between different number systems 13
1.4 Other number codes 15

2 Introduction to Logic Gates 19
2.1 AND gate 22
2.2 OR gate 25
2.3 NOT gate 27
2.4 AND implementation with OR gate and vice versa 28
2.5 NAND gate 29
2.6 NOR gate 31
2.7 Integrated circuits 32

Bli med i 
NITO studentene og få:
Jobbsøkerkurs

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/advert/0a94004e-ebb6-45b2-8285-9f9100e214d4


Download free ebooks at bookboon.com

Digital Systems Design

5 

Contents

3 Combinatorial Logic Circuits 33
3.1 Logic circuit simplification 34
3.2 Boolean algebra 35
3.3 DeMorgan’s theorem 38
3.4 More examples 39
3.5 XOR and XNOR gates 43

4 Karnaugh Maps 47
4.1 Sum of products 47
4.2 Product of sums 48
4.3 K-maps 51

5 Bistable Multivibrator Circuits 67
5.1 S-R flip-flop 68
5.2 J-K flip-flop 75
5.3 D flip-flop 79
5.4 T flip-flop 82
5.5 Monostable and astable multivibrators 84

Ren vannkraft siden 1898

Ny teknologi for å utnytte vannkraften maksimalt

Norges største leverandør av fjernvarme

Europas mest moderne driftssentral

Norges største netteier

Størst innen strømsalg

...

Les mer på hafslund.no

VI ER PÅ
– ER DU?

Nytenkning, kompetanse og muligheter 
gjør Hafslund til en spennende arbeidsplass.

         Gå inn på hafslund.no/jobb�

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/advert/64a3fd82-96d7-e011-adca-22a08ed629e5


Download free ebooks at bookboon.com

Digital Systems Design

6 

Contents

6 Arithmetic Circuits 87
6.1 Half adder 87
6.2 Full adder 89
6.3 Parallel adder 92
6.4 Parallel addition using integrated circuits 93
6.5 Parallel subtraction  94

7 Coders and Multiplexers 98
7.1 Encoder 99
7.2 Decoder 104
7.3 Multiplexer 107
7.4 De-multiplexer 111

8 Counters 114
8.1 Asynchronous up-counter 114
8.2 Asynchronous down-counter 117
8.3 Asynchronous counters with incomplete cycles 120
8.4 Synchronous counters  123

Er du student? Les mer her
www.statnett.no/no/Jobb-og-karriere/Studenter

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/advert/5aa1fd82-96d7-e011-adca-22a08ed629e5


Download free ebooks at bookboon.com

Digital Systems Design

7 

Preface

Preface 
The aim of this book is to provide readers with a fundamental understanding of digital system concepts such as logic gates 
for combinatorial logic circuit design and higher level logic elements such as counters and multiplexers. 

First year undergraduates taking a course in computer science or engineering (and related disciplines like information 
technology) are the main target audience. Foundation year students and those taking pre-university courses (like ‘A’ levels) 
will also benefit from the text. 

I have tried to follow a simple approach in writing the text. Mathematics is used only where necessary. There are plenty 
of illustrations to aid the reader in understanding the concepts. 

I hope I have done justice in discussing all the necessary fundamentals related to digital systems in this one volume. But 
by doing so, I had to skip advanced concepts such as computer hardware and programming and the interested reader can 
refer to advanced texts after mastering the basic concepts presented in this book. 

For over a decade, I have greatly benefited from discussions with students and fellow colleagues who are too many to 
name here but have all helped in one way or another towards the contents of this book and I must thank them. I must 
also thank my wife for helping me prepare some of the contents. Many a time, she and my daughter had to put up with 
my absence to complete this book, so I dedicate this work to them. I am also indebted to Dr. Cota Navin Gupta for his 
useful comments in the early parts of the book. Finally, I trust that my proofreading is not perfect and some errors would 
remain in the text and I welcome any feedback or questions from the reader. 

Ramaswamy Palaniappan
July 2011
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Number System Basics

1 Number System Basics
Digital technology has become widespread and encompasses virtually all aspects of our everyday lives. We could see 
it being used in computers and related gadgets, entertainment, automation (robotics), medical etc. Though physical 
quantities measured in the real world are analogue, most of these are processed by digital means. In order to do this, we 
have to convert the measured analogue quantity into digital, process the digital quantity using digital circuitry and then 
reconvert to analogue. 

The contents of this book concentrate on the digital circuit design to enable the processing of the digital quantity. But 
before we look into the principles of such designs, we need to understand the basics of number systems.

1.1 Decimal Numbers

Decimal number system is the commonly used number system that has ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. It is also 
known as base (or radix) ten system since it has ten digits that can be used to represent any number. Figure 1.1 shows 
the positional values or weights of the decimal number system for an integer. 

100101102

tens unitshundreds

Increasing 
power of 10

326

6 x 102 2 x 101 3 x 100

600 20 3+ + =  62310

Figure 1.1: Decimal number system for integers.
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The digit with least weight (i.e. the one on the foremost right) is known as the least significant digit (LSD) while the 
highest weight digit is known as the most significant digit (MSD). In the example shown in Figure 1.1, the MSD is digit 
6 while the LSD is digit 3. Figure 1.2 shows the case for fractional decimal number. 

100101102

Increasing 
power of 10

10-310-210-1

Decreasing 
power of 10

Decimal point

7 x 102 2 x 10-1 5 x 10-2

817 52

8 x 100

1 x 101

700 10 8 0.2 0.05+ + + + =  718.2510

Figure 1.2: Decimal number system for fractional numbers.

1.2 Other Number Systems – Binary, Octal and Hexadecimal

While decimal number system is the commonly used number system in everyday lives, digital devices uses only binary 
number system that consists of 0 and 1. The base is two for this system and Figure 1.3 show an example of binary number 
for decimal equivalent of 6.2510

202122

Increasing 
power of 2

2-32-22-1

Decreasing 
power of 2

Binary point
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1 x 22 0 x 2-1 1 x 2-2

011 10

0 x 20

1 x 21

4 2 0 0 0.25+ + + + =  6.2510

Figure 1.3: Binary number system with an example.

Similarly, octal and hexadecimal (hex in short) number systems have number bases of 8 and 16. For octal number system, 
the eight digits are 0, 1, 2, 3, 4, 5, 6, and 7 while hexadecimal number system has 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 
C, D, E, and F. Figure 1.4 gives examples on these number systems.  

5 x 82 4 x 8-1

375 4

3 x 80

7 x 81

320 56 3 0.5+ + + =  379.510

(a)
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10 x 161 12 x 16-1

7A C

7 x 160

160 7 0. 75+ + =  167.7510

(b)

Figure 1.4: Number system examples (a) octal (b) hex. 
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1.3 Conversion between different number systems

It is often necessary to convert a number from one base system to another. Converting a number to decimal is rather 
straightforward as we have seen in the previous examples. The weights or positional values (for the appropriate base) 
are multiplied with the digit and summed to give the decimal value.  In this section, we will look at methods to convert 
numbers from decimal to binary, octal and hex. Other conversions such as octal to binary (and vice versa), binary to hex, 
hex to binary, octal to hex and hex to octal are also possible.

1.3.1 Decimal to binary, octal and hex conversions

There are two methods that can be used to achieve decimal to binary conversion. The first method is by presenting the 
decimal value in units, tens, hundreds etc. For example:   

The problem with this method is that certain positional values (such as 22 and 20 in the example above) can easily be 
forgotten. There is another method called repeated division that is more frequently employed. Figure 1.5 illustrates this 
method. It works by repeated division with a value of 2 (until the quotient is 0) and the remainder digits from each step 
represent the binary number (in reverse order). 

remainder
34

2
= 17 à 0

17

2
= 8 à 1

8

2
= 4 à 0

4

2
= 2 à 0

2

2
= 1 à 0

1

2
= 0 à 1

LSD

MSD

Figure 1.5: Decimal to binary conversion example, 3410 = 1000102. 
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Similarly, we can convert a decimal number to octal and hex. Figures 1.6 and 1.7 illustrate the steps for these conversions. 
Do remember that the final answer is in the reverse order! 

 

remainder
149

8
= 18 à 5

18

8
= 2 à 2

2

8
= 0 à 2

LSD

MSD

Figure 1.6: Decimal to octal conversion example, 14910 = 2258. 

remainder
564

16
= 35 à 4

35

16
= 2 à 3

2

16
= 0 à 2

LSD

MSD

Figure 1.7: Decimal to hex conversion example, 56410 = 23416.

1.3.2 Binary to Octal and vice versa

Any binary number can be converted to octal simply by grouping them in groups of three digits. For example, 1001011108 

can be converted to 4568 as shown in Figure 1.8 (a). The reverse procedure of converting an octal number to binary can 
be done by writing three binary digit equivalent for each octal digit. This is shown in Figure 1.8 (b).



Download free ebooks at bookboon.com

Digital Systems Design

15 

Number System Basics

1  0  0     1  0  1     1  1  0

4 5 6

(a)

7             5             2

111 101 010

(b)

Figure 1.8: Octal to binary conversion example and vice versa: (a) 1001011102 = 4568  (b) 7528 = 1111010102. 

1.3.3 Binary to Hex and vice versa

Similar to octal number, binary number can be converted to hex simply by grouping them in groups of four digits. For 
example, 100101112 can be converted to 9716 as shown in Figure 1.9 (a). A hex number can be converted to binary by 
writing four binary digit equivalent for each hex digit. This is shown in Figure 1.9 (b).

1  0  0  1   0  1  1  1

9 7

(a)

8             3             2

1000 0011 0010

(b)

Figure 1.9: Hex to binary conversion example and vice versa: (a) 100101112 = 9716  (b) 83216 = 1000001100102. 

1.4 Other number codes

In this section, several other commonly used codes will be discussed.

1.4.1 ASCII code

ASCII stands for American Standard Code for Information Interchange. Characters such as ‘a’, ‘A’, ‘@’, ‘$’ each have a code 
that is recognised by the computer. Standard ASCII has 128 characters (represented by 7 binary digits; 27=128), though 
the first 32 is no longer used. Extended ASCII has another 128 characters, mostly to represent special characters and 
mathematical symbols such as ‘ÿ’, ‘ė’, ‘Σ’, and ‘σ’. Table 1.1 shows the standard ASCII code.
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Table 1.1: Standard ASCII code

D’mal Hex B’ary Char D’mal Hex B’ary Char D’mal Hex B’ary Char

32 20 0100000 space 48 30 0110000 0 64 40 1000000 @

33 21 0100001 ! 49 31 0110001 1 65 41 1000001 A

34 22 0100010 “ 50 32 0110010 2 66 42 1000010 B

35 23 0100011 # 51 33 0110011 3 67 43 1000011 C

36 24 0100100 $ 52 34 0110100 4 68 44 1000100 D

37 25 0100101 % 53 35 0110101 5 69 45 1000101 E

38 26 0100110 & 54 36 0110110 6 70 46 1000110 F

39 27 0100111 ‘ 55 37 0110111 7 71 47 1000111 G

40 28 0101000 ( 56 38 0111000 8 72 48 1001000 H

41 29 0101001 ) 57 39 0111001 9 73 49 1001001 I

42 2A 0101010 * 58 3A 0111010 : 74 4A 1001010 J

43 2B 0101011 + 59 3B 0111011 ; 75 4B 1001011 K

44 2C 0101100 , 60 3C 0111100 < 76 4C 1001100 L

45 2D 0101101 - 61 3D 0111101 = 77 4D 1001101 M

46 2E 0101110 . 62 3E 0111110 > 78 4E 1001110 N

47 2F 0101111 / 63 3F 0111111 ? 79 4F 1001111 O

D’mal Hex B’ary Char D’mal Hex B’ary Char D’mal Hex B’ary Char

80 50 1010000 P 96 60 1100000 ` 112 70 1110000 p

81 51 1010001 Q 97 61 1100001 a 113 71 1110001 q

82 52 1010010 R 98 62 1100010 b 114 72 1110010 r

83 53 1010011 S 99 63 1100011 c 115 73 1110011 s

84 54 1010100 T 100 64 1100100 d 116 74 1110100 t

85 55 1010101 U 101 65 1100101 e 117 75 1110101 u

86 56 1010110 V 102 66 1100110 f 118 76 1110110 v

87 57 1010111 W 103 67 1100111 g 119 77 1110111 w

88 58 1011000 X 104 68 1101000 h 120 78 1111000 x

89 59 1011001 Y 105 69 1101001 i 121 79 1111001 y

90 5A 1011010 Z 106 6A 1101010 j 122 7A 1111010 z

91 5B 1011011 [ 107 6B 1101011 k 123 7B 1111011 {

92 5C 1011100 \ 108 6C 1101100 l 124 7C 1111100 |

93 5D 1011101 ] 109 6D 1101101 m 125 7D 1111101 }

94 5E 1011110 ^ 110 6E 1101110 n 126 7E 1111110 ~

95 5F 1011111 _ 111 6F 1101111 o 127 7F 1111111 .
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1.4.2 Binary coded decimal (BCD)

BCD is actually a set of binary numbers where a group of four binary numbers represent a decimal digit. As there are 10 
basic digits in the decimal number system, four binary digits (bits) are required1. Figure 1.10 shows an example, while 
Table 1.2 gives the BCD code.  

1  0  0  1 

9 7 3

0  1  1  1 0  0  1  1 

Figure 1.9: Hex to binary conversion example and vice versa: 97310 = 10010111.0011BCD. 

1 Three bits will only give eight representations, which is not enough for a decimal system.
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Table 1.2: BCD code

Decimal BCD Decimal BCD

0 0000 5 0101

1 0001 6 0110

2 0010 7 0111

3 0011 8 1000

4 0100 9 1001

1.4.3 Gray code

Gray code is another commonly encountered code system. The main feature of this code is that only one bit changes 
between two successive values. This system is less prone to errors and is considered very useful for practical applications 
such as mechanical switches and error correction in digital communication as compared to the standard binary system. 
Table 1.3 gives the BCD code with 4 bits (i.e. up to decimal value of 15).  

Table 1.3: Gray code

Decimal Gray Decimal Gray

0 0000 8 1100

1 0001 9 1101

2 0011 10 1111

3 0010 11 1110

4 0110 12 1010

5 0111 13 1011

6 0101 14 1001

7 0100 15 1000
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2 Introduction to Logic Gates
The basic building blocks for digital circuits are logic gates. Most logic gates are binary logic, i.e. have two states of 0 or 
1. The input or output of these logic gates can only exist in one of these states, where a positive logic system treats 0 as 
FALSE value and 1 as TRUE value and conversely for the negative logic system. Figure 2.1 shows a logic waveform that 
is logic 1 between time t1 and t2 and is logic 0 at other times. Positive logic will be assumed throughout the book except 
where denoted otherwise. 

Figure 2.1: Positive logic waveform.

Figures 2.2 and 2.3 show the input and output voltage ranges for logic 0 and 1 for a common logic gate2 used in digital 
devices. Transition region is the range where the voltage is not defined and hence, the input or output voltage from the 
device should not fall in this region as the logic value can be either 0 or 1. The output ranges are smaller as compared to 
input ranges, which is useful to reduce noise interference. The difference between the input-output ranges is known as 
noise margin. While it is usual to have a noise margin that is the same for both logical values, this does not have to be 
the case all the time.

To illustrate the usefulness of this noise margin, consider an example where there is noise interference in between two 
devices. Suppose the output voltage from the first digital device is 4.6 V (i.e. digital logic 1) and a spike (noise) of -0.5V 
enters as interference. The value of input voltage to the second device will be 4.1 V and the input digital level will still be 
1. Without this noise margin, the digital level input to the second device will be unpredictable as it will fall within the 
transition region. The difference between input and output ranges for a given logic value is known as guaranteed noise 
immunity, which is 1 V in this case. It should also be obvious that the transition region for output voltage will be wider 
than for the input voltage because of this noise margin. 

2 The gate is actually a CMOS type NAND gate.  NAND gates will be discussed later in the chapter.
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0 1.5 3.5 5

Voltages (V)

Transition region 
for input voltages

Logic 0 range for 
input voltage

Logic 1 range for 
input voltage

Figure 2.2: Input logic related to actual voltages.
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0 0.5 4.5 5

Voltages (V)

Transition region for 
output voltages

Logic 1 range for 
output voltage

Logic 0 range for 
output voltage

Figure 2.3: Output logic related to actual voltages.

Actual pulse waveform does not resemble the form shown in Figure 2.1, but is rather like the one shown in Figure 
2.43 where there is a period of time required for the pulse to rise and fall and these are known as rise and fall times, 
respectively. The time taken for the pulse to rise from 10% to 90% of the amplitude is rise time while the fall time is the 
time taken for the amplitude value to drop to 10% from 90%. The actual rise and fall times for a digital device depends on 
its specifications; costly devices have smaller times. The pulse width is measured using 50% of the rise and fall amplitude 
values as shown in the figure.

Figure 2.4: An example of actual pulse waveform.

3  Even this figure is simplified for ease of understanding. Actual waveform will have lots of spikes.  
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2.1 AND gate

Basically AND gate is composed of two inputs and a single output as shown in Figure 2.5 with algebraic representation4 
BAF ⋅= or simply . The traditional symbol shown in Figure 2.5(a) is more commonly employed in text 

books. However, the IEEE/ANSI symbol as shown in Figure 2.5(b) is gaining popularity and has the advantage of containing 
qualifying symbols inside the logic-symbol that describes the operation of the gate. The truth table that gives the output 
F for inputs A and B is given in Table 2.1. It can be seen that the output is LOW (FALSE) when any one of the inputs is 
LOW (FALSE) and the output is only HIGH (TRUE) when all the inputs are HIGH (TRUE).  

A

B
F

(a)

A

B
F

&

(b)

Figure 2.5: AND gate logic symbols (a) traditional (b) IEEE/ANSI standard.

Table 2.1: Truth table for two-input AND gate

A B F

0 0 0

0 1 0

1 0 0

1 1 1

AND gate inputs do not have to be limited to two; there can be any number of inputs greater than one as shown in Figure 2.6.

4  Also known as Boolean or logic expression.
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A
B F
C

(a)

A

B
F

C
D

(b)

Figure 2.6: Three and four input AND gates: (a)  CBAF ⋅⋅=    (b) DCBAF ⋅⋅⋅= .

2.1.1 Timing diagram

Timing diagram is useful in describing the relationship between the inputs and output of a logic gate. The inputs of a 
digital logic gate can be shown diagrammatically as a waveform that represents the changing values over time. A waveform 
corresponding to the changing values of the inputs over time will be generated at the output of the logic gate. Figure 
2.7 show examples of timing diagram waveform for equal and unequal mark-space cycles. The mark represents the time 
for logic level HIGH, while the space represents the time for logic level LOW. Equal mark-space requires periodic clock 
pulse5. All the discussion in this book will be using equal mark-space timing waveforms only. 

5  Clock pulses will be discussed in later chapters.
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Voltage

Time0 V (LOW)

5 V (HIGH)

t0 t1 t2 t3 t4 t5 t6 t7

0 1 0 0 1 1 0 Logic levels

MarkSpace

(a)

Voltage

Time0 V (LOW)

5 V (HIGH)

t0 t1 t2 t3 t4 t5 t6 t7

0 1 0 0 1 1 0 Logic levels

Space Mark

(b)

Figure 2.7: Example of timing diagram waveforms: (a) equal mark-space (b) unequal mark-space.

2.1.2 Timing diagram example for AND gate

Figure 2.8 shows an example of a timing diagram for a two-input AND gate. At each time block, the inputs A and B affect 
the output F. For example, in time block t0 to t1, both inputs are LOW, so the output is also LOW. Similarly, the entire 
timing waveform for the output can be obtained using AND operation of inputs in each time block. 
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A

B

F

0 1 0 0 1 0

0 1 1 0 1 1

0 1 0 0 1 0

t1 t2 t3 t4 t5 t6t0

Figure 2.8: Timing diagram waveform for a two-input AND gate.

2.2 OR gate

OR gate as shown in Figure 2.9 has algebraic representation, BAF += . The truth table that gives the output F for 
inputs A and B is given in Table 2.2. It can be seen that the output is HIGH when any one of the inputs is HIGH and the 
output is only LOW when all the inputs are LOW.  

A

B
F

(a)

A

B
F

≥1

(b)

Figure 2.9: OR gate logic symbols: (a) traditional (b) IEEE/ANSI standard.
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Table 2.2: Truth table for two-input OR gate

A B F

0 0 0

0 1 1

1 0 1

1 1 1

Similar to AND gate, there can be any number of inputs greater than one as shown in Figure 2.10.

A
B F
C

A

B
F

C
D

Figure 2.10: Three and four input OR gates:  (a)  CBAY ++=   (b)  DCBAY +++= .

2.2.1 Timing diagram example for OR gate

Figure 2.11 shows an example of a timing diagram for a two-input OR gate. At each time block, the inputs A and B affect 
the output F. For example, in time block t5 to t6, one input is HIGH, so the output is HIGH. Similarly, the entire timing 
waveform for the output can be obtained using OR operation of inputs in each time block. 

A

B

F

0 1 0 0 1 0

0 1 1 0 1 1

0 1 1 0 1 1

t1 t2 t3 t4 t5 t6t0

Figure 2.11: Timing diagram waveform for a two-input OR gate.
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2.3 NOT gate

NOT gate is also known as INVERTER as it inverts (complements) the input logic level. It is shown in Figure 2.12 and has 
only one input and one output with algebraic representation of AF =  or 'AF = . The bubble in the symbol denotes 
inversion (without it, the symbol will represent a buffer gate that does not alter the logic level; in IEEE/ANSI standard, 
the bubble is replaced by a triangle). The truth table for NOT gate is given in Table 2.3.

A F

(a)

A F
1

(b)

Figure 2.12: NOT gate logic symbols: (a) traditional (b) IEEE/ANSI standard.

Table 2.3: Truth table for NOT gate

A F

0 1

1 0
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NOT gate can also be connected in cascade and a few examples are shown in Figure 2.13. It should be obvious that odd 
number of NOT gate connections give output logic level that is complement to the input logic level and an even number 
of NOT gates connections give output logic level that is the same as the input logic level.

A F

(a)

A F

(b)

    Figure 2.13: Cascade connection of NOT gates: (a) AAF ==   (b) AAF == .

2.4 AND implementation with OR gate and vice versa

It is useful to know that AND gate logic can be easily implemented using OR gate and vice versa through a simple process 
using additional NOT gates. For example, an AND gate equivalent can be constructed with an OR gate with both the 
inputs and outputs inverted through NOT gates. Figure 2.14 shows an example with equivalent truth table in Table 2.4. 
This is actually DeMorgan’s first theorem, which will be discussed in detail in Chapter Three. It is mentioned here so that 
the reader is aware that it is possible to implement one gate logic with another gate(s).

A

B
F

(a)

A

B
F

(b)

Figure 2.14: AND gate implementation with OR gate: (a)   (b) .

Table 2.4: Truth table illustrating AND gate implementation using OR and NOT gates

A B A B BAF += BAF +=

0 0 0 1 1 1 0

0 1 0 1 0 1 0

1 0 0 0 1 1 0

1 1 1 0 0 0 1
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2.5 NAND gate

NAND and NOR gates that will be discussed in the following section are known as universal gates as combinations of 
these gates are sufficient to obtain equivalent operation of OR, AND or NOT gates. However, this is different to the 
implementation discussed in Section 2.4 as either NAND or NOR gates on their own will be sufficient to implement logic 
function of any of the other gates. NAND gate logic symbol is shown in Figure 2.15 (note the addition of a bubble when 
compared to AND gate) and its truth table is shown in Table 2.5. A NAND gate operation can also be obtained through 
cascade operation of AND and NOT gates as shown in Figure 2.16. Algebraically, the operation can be defined as.  

A

B
F

(a)

A

B
F

&

(b)

Figure 2.15: NAND gate logic symbols: (a) traditional (b) IEEE/ANSI standard.

Table 2.5: Truth table for NAND gate

A B AB F

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

A

B
F

AB AB

Figure 2.16: NAND gate logic using AND and NOT gates.

Figure 2.17 shows an example for implementing an AND gate using NAND gates only. The blue shaded tiny bubble 
represents branch-off of the signal and should not be confused with the empty  bubble that is used to represent inversion 
operation. Similarly, other gates such as OR and NOT can be implemented using NAND gates and these are left as 
exercises for the reader. 
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A

B

AB

AB

F=AB=AB

Signal branch-off

Figure 2.17: AND gate implementation using two NAND gates.
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2.6 NOR gate

NOR gate is basically an OR gate with the output inverted. Figure 2.18 shows the logic symbol with truth table shown in 
Table 2.6. Algebraically, the operation can be defined as BAF += . Similar to NAND gate, several NOR gates can be 
used to implement AND, OR or NOT gates. An example of this is shown in Figure 2.19 and the reader can easily verify 
through the use of truth tables that .

A

B
F

(a)

A

B
F

≥1

(b)

Figure 2.18: NOR gate logic symbols: (a) traditional (b) IEEE/ANSI standard.

Table 2.6: Truth table for NOR gate

A B A+B F

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

A

B

A

B

F=A+B=AB

Figure 2.19: AND gate logic implementation using NOR gates.
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2.7 Integrated circuits

All the gates that we have discussed in this chapter are manufactured as integrated circuit (IC) with several gates in one 
IC. For example, 74LS00 is a transistor-transistor logic (TTL) technology based IC that has four (quad) two-input NAND 
gates. Complementary Metal-Oxide Semiconductor (CMOS) is another technology that is widely used for manufacturing 
IC but TTL devices are more commonly employed for laboratory experiments as they are more robust to electrostatic 
noise. Figure 2.20 shows the pin configuration of 74LS00 and Figure 2.21 shows an example of pin configurations to 
implement NOT operation. Pin 14 is connected to the power supply while pin 7 is the ground pin. It should be obvious 
that the LED will only light-up (i.e. the output will be HIGH) if switch A is turned OFF (i.e. made to logic level LOW) 
– similar to the input and output values as in the truth table shown in Table 2.3.  

14 13 12 11 10 9 8

1 2 3 4 5 6 7

VCC

GND

Figure 2.20: 74LS00 - Quad NAND IC.

14 13 12 11 10 9 8

1 2 3 4 5 6 7

VCC

GND

LED

+5 V

Switch A

Figure 2.21: NOT gate implementation example using 74LS00.
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3 Combinatorial Logic Circuits
In the previous chapter, operation and truth tables of single gates were discussed. However, in practise, single gates are 
seldom useful and combinations of several gates are employed for a particular application.  For example, see Figure 3.1 
where different gates are used to obtain the output F.

A

C

F = AB(B+C)
B

AB
B

B+C

Figure 3.1: Example of combinatorial logic circuit.
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3.1 Logic circuit simplification

Very often, there is the need to simplify logic circuits (whenever possible). For example, the circuit shown in Figure 3.1 
requires four gates but equivalent logic output can be obtained with just two gates by simplifying the expression as follows:  

BBA  is zero due to the presence of  BB  as shown in the truth table given in Table 3.1. The simplified circuit is given 
in Figure 3.2. Table 3.2 gives the truth table and it can be seen that the outputs given by expressions )( CBBAF +=
and CBAF =  are the same.

Table 3.1: Truth table for BBA

A B B BB BBA
0 0 1 0 0

0 1 0 0 0

1 0 1 0 0

1 1 0 0 0

A

C

F = ABCB
B

Figure 3.2: Simplified logic circuit.
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Table 3.2: Truth table for )( CBBAF +=  and  CBAF =

A B C
)( CBBAF += CBAF =

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 0 0

The above simplification may not be clear at this stage but that will be the purpose of the following sections to look 
into Boolean algebra that will be useful to simplify logic circuits. Not only will the simplification result in lower cost, 
smaller and simpler design (since fewer gates will be used), it will also reduce other complications such as overheating 
and propagation delay.

3.2 Boolean algebra

Basic axioms of Boolean algebra are shown in Table 3.3, while Table 3.4 shows the Boolean theorems for operation of a 
single variable and a constant (either 0 or1).

Boolean algebra satisfies commutative and associative laws. Therefore, the order of variables in a product or sum does not 
matter and the order of evaluating sub-expression in brackets does not matter. For example: 

Commutative law: ABBA +=+  and ABBA ⋅=⋅ ;

Associative law: CBACBACBA ++=++=++ )()(  and CBACBACBA ⋅⋅=⋅⋅=⋅⋅ )()( .

Boolean algebra also satisfies the distributive law where the expression can be expanded by multiplying out the terms. 
For example:

Distributive law: CABACBA ⋅+⋅=+⋅ )( . 

It should be evident by now that when an expression contains AND and OR, AND operator takes precedence over OR 
operator. For example, 1101110 =+=⋅+⋅  and not .01101110 =⋅⋅=⋅+⋅
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Table 3.3: Basic axioms of Boolean algebra

01 = 1 0 10 = 0 1

111 =⋅
1

1
1

000 =⋅
0

0
0

010 =⋅
0

1
0

001 =⋅
1

0
0

110 =+
0

1
1

101 =+
1

0
1

111 =+
1

1
1

000 =+
0

0
0
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Table 3.4: Boolean theorems for operation of a single variable and a constant

00 =⋅ B
0

B
0

BB =+0
0

B
B

BB =⋅1
1

B
B

11 =+ B
1

B
1

BBB =⋅
B

B
B

BBB =+
B

B
B

0=⋅ BB B

B
0

1=+ BB B
1

B
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3.3 DeMorgan’s theorem

DeMorgan’s theorem is very useful to simplify expressions when they contain a bar (inversion) over more than a single 
variable. It states that an inverted expression can be replaced by its individual inverted variables but with AND replaced 
by OR and vice versa. For example: 

DeMorgan’s theorem: BABA +=⋅  and BABA ⋅=+

Figure 3.3 shows the circuit equivalence using DeMorgan’s theorem.

A

B
AB

A

B
A + B

A

B
A + B

A

B
A B

Figure 3.3: Circuit equivalence using DeMorgan’s theorem.

3.3.1 Examples illustrating DeMorgan’s theorem

The following examples show the usefulness of using DeMorgan’s theorem. Note that from now on, the use of  
AND ( ⋅ ) sign in the expression will be dropped for simplicity sake unless noted otherwise, so CBAF ⋅⋅= will be 
written as .
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3.4 More examples

In this section, several examples are given to illustrate simplification using Boolean algebra and DeMorgan’s theorem:
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6
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As another example, consider the circuit diagram given in Figure 3.4 which can be simplified as 

A

B

C

D

F

Figure 3.4: Logic circuit example for simplification.

The correctness of the simplified expression can be verified by constructing a truth table and comparing the output from 
both expressions. The simplified logic circuit diagram is shown in Figure 3.5 where only five gates are required as opposed 
to six gates in the original circuit. It can be seen that there is no input A as its logic value does not affect the output based 
on the simplified expression.  
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B

C

D

F

Figure 3.5: Simplified logic circuit of the example shown in Figure 3.4.

While the expression for the logic circuit shown in Figure 3.5 is simplified to single literals, it is interesting to note that 
another equivalent logic circuit shown in Figure 3.6 only requires four gates as DCBDCBF ++=+= .

B

C

D

F

Figure 3.6: Equivalent logic circuit of the example shown in Figures 3.4 and 3.5.

If complement inputs are available, then the simplified circuit shown in Figure 3.5 will only require two gates as shown 
in Figure 3.7.

B

C

D

F

Figure 3.7: Simplified logic circuit when complement inputs are available.
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3.5 XOR and XNOR gates

To conclude the chapter, it is useful to look at two more frequently used gates: Exclusive OR (XOR) and Exclusive NOR 
(XNOR). These gates would be useful when circuitry such as half adders and full adders are discussed in later chapters. 
XOR gate as shown in Figure 3.8 has algebraic representation, BABAF += or more commonly written as BAF ⊕= . 

The truth table that gives the output F for inputs A and B is given in Table 3.5. It can be seen that when both inputs have 
the same logic value, the output is LOW. The output is HIGH when the input logic values are dissimilar, i.e. one LOW 
and one HIGH.  

A

B
F

(a)

A

B
F

=1

(b)

Figure 3.8: NOR gate logic symbols: (a) traditional (b) IEEE/ANSI standard.
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Table 3.5: Truth table for two-input XOR gate

A B F

0 0 0

0 1 1

1 0 1

1 1 0

XNOR gate is simply XOR with an inversion. The gate is shown in Figure 3.9 and has algebraic representation,

The truth table is given in Table 3.6. The output is HIGH when both inputs have the same logic value. The output is 
LOW when the input logic values are dissimilar, i.e. one LOW and one HIGH.  

A

B
F

(a)

A

B
F

=1

(b)

Figure 3.9: XNOR gate logic symbols: (a) traditional (b) IEEE/ANSI standard.
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Table 3.6: Truth table for two-input XNOR gate

A B F

0 0 1

0 1 0

1 0 0

1 1 1

3.5.1 Boolean algebra for XOR operation

Table 3.7 shows the Boolean algebra for XOR operation. XOR operation is also both commutative and associative: 

ABBA ⊕=⊕  and CBACBACBA ⊕⊕=⊕⊕=⊕⊕ )()( .

Table 3.7: Boolean algebra for XOR operation

AA =⊕ 0 0=⊕ AA BABA ⊕=⊕

AA =⊕1 1=⊕ AA BABA ⊕=⊕

3.5.2 Parity checker

As mentioned earlier, XOR gates are useful when designing more advanced circuitry such as adders, but these are also used 
in parity checker devices. Parity checker is used to reduce errors from transmitting a binary code across a communication 
channel. For example, if the seven bit ASCII code for W, 1010111 (see Table 1.1) is to be transmitted, an eight parity bit 
is appended at the beginning of the code. This parity bit will either be 0 or 1 depending on whether even or odd parity 
is required. Assuming that it is even parity checker, then the total number of bits will be even. In this case, the parity bit 
will be 1 and code to be transmitted will be 11010111. 

XOR gates can be used as even parity checker. For example, with three inputs, the expression will be CBAF ⊕⊕=  
and the output is HIGH if one of the inputs or all three inputs are HIGH. Similarly, for eight inputs, the output is HIGH 
when odd number of inputs is HIGH.

Figure 3.10 shows the logic circuit using seven two-input XOR gates where the bits representing the code are A0, A1,…., A6 
and the parity bit is P. The output F will be HIGH when odd number of inputs is HIGH. So if the code is not transmitted 
correctly (say resulting in odd number of 1s), then the LED will light-up to show that an error has occured. On the other 
hand, with correct transmission, the number of 1s will be even and the output will be low (i.e. LED will not light-up).
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A0

A1

A2
A3

A4

A5

A6

P

10 AA ⊕

32 AA ⊕

3210 AAAA ⊕⊕⊕

54 AA ⊕

PA ⊕6

PAAA ⊕⊕⊕ 654

PAAAAAAAF ⊕⊕⊕⊕⊕⊕⊕= 6543210

LED

Figure 3.10: XOR gate usage as even parity checker. 

It should be obvious that XNOR gates can be used as odd parity checker as the output will be HIGH only when even 
number of inputs is HIGH. 
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4 Karnaugh Maps
In the previous chapter, simplification of expressions for combinatorial logic circuits was studied using Boolean algebra 
and DeMorgan’s theorem. In this chapter, a different graphical based method called Karnaugh maps (or K-maps in short) 
will be studied to simplify the expressions. But before K-maps can be discussed, the two types of methods for writing 
logic circuit expressions will be discussed.

4.1 Sum of products

Sum of products (SOP) is a method to express the terms in a logic expression as a sum of products. For example: 

The logic circuit diagrams for these expressions are shown in Figure 4.1. It can be seen that each product term is connected 
using an OR gate.

 

CBAABCF +=

A

B

C

BABAABF ++=

A
B

Figure 4.1: SOP logic circuit examples.
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Tables 4.1 and 4.2 give the truth tables for these expressions. Each product term results in the output F = 1. For example, 
the expression CBAABCF += gives output of 1 when A=1, B=1 and C=1 for ABCF =  and similarly for CBAF =
, the output is 1 when A=1, 1=B  (i.e. 0=B ) and C=1.

Table 4.1: Truth table for CBAABCF +=

Table 4.2: Truth table for 

4.2 Product of sums

Products of sums (POS) is another method to express the terms in a logic circuit expression as a product of sums. For 
example: 



Download free ebooks at bookboon.com

Digital Systems Design

49 

Karnaugh Maps

The logic circuit diagrams for these expressions are shown in Figure 4.2. An AND gate connects each of the sum terms.

A

B

))(( BABAF ++=
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A

B

C

))()(( CBCACBAF ++++=

Figure 4.2: POS logic circuit examples.

The truth table for the first POS example,   is given in Table 4.3. To understand the table, consider  
 and using DeMorgan’s theorem, we can obtain

So, the truth table for POS terms can be easily completed for each term by giving output F=0 with the variables A and B 
following negative logic (i.e. complemented variable is logic 1 and uncomplemented variable is logic 0).

Table 4.3: Truth table for  
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Table 4.4 gives the truth table for the second POS example,  . Following the similar 
procedure, consider 

)()()( CBCACBAF ++++++=

CBCACBAF ++=

)()( AACBBBCACBAF ++++=  since 1=+ XX

CBACBACBACBACBAF ++++=  

CBACBACBAF ++=     as CBACBACBACBA =++

Table 4.4: Truth table for 

POS expressions are not frequently employed in digital systems but discussed here for the sake of completeness. 

4.3 K-maps

As mentioned earlier, K-map is a graphical method that is useful to simplify logic expressions. While the algebraic methods 
discussed in Chapter 3 can equally be used to simplify the expression, it is often easier to simplify an expression using 
K-maps when the number of variables is higher. 



Download free ebooks at bookboon.com

Digital Systems Design

52 

Karnaugh Maps

4.3.1 Two variable K-map

Consider a truth table as in Table 4.5 with two variables A and B. Its corresponding K-map is drawn in Figure 4.3. The 
K-map can be completed for variable combinations that give F=1 and F=0 as in the figure but it is common practice not 
to include F=0 in K-maps, so we shall only include combinations that give F=1 after this example.  

Table 4.5: Truth table for two variable K-map example 

A B F

0 0 0

0 1 1

1 0 1

1 1 1

A=0 A=1

A A
B=0 B F=0 F=1

B=1 B F=1 F=1

Figure 4.3: K-map example from truth table in Table 4.5.
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To simplify the expression, start by creating a loop for  (i.e. for adjacent cells) as shown in Figure 4.4(a). 
This loop is known as pair loop as it involves looping two 1s.  Since  the looping 
will result in AF = , i.e. the variable in complement and uncomplemented form disappears. The process is repeated 
until all 1s have been looped (note that loops can overlap). Hence, repeat the looping as shown in Figure 4.4(b) where 

. Since all 1s in the K-map have been looped, further simplification is not possible and the 
simplified expression is a combination of the two looped terms (each loop gives one term): BAF += .

Figure 4.4: Two variable K-map looping: (a) AF = , (b) BF = . Simplified expression from both loops is BAF += .

Consider solving the example algebraically from the truth table with K-map (each term is a variable combination that 
gives F=1):

The answer is obviously the same.

4.3.2 Three variable K-map

In addition to pair loops, we can have quad loops (involving four 1s). Consider a three variable logic expression:
 . A truth table can be completed with each term ABC , CBA , CBA ,  

CBA  giving output F=1 as shown in Table 4.6. 
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Table 4.6: Truth table for 

Figure 4.5 gives the completed three variable K-map. Note in particular on the sequence of variables A and B in the K-map. 
The sequence (order) follows gray code (00à01à11à10 with BA à BA à à BA ) where only one bit changes 
in adjacent cells. Figure 4.6(a) shows the quad loop applied for four adjacent 1s. Variables B and C are in complemented 
and uncomplemented forms in the quad loop, so these variables will disappear leaving only variable A. For this loop, 
algebraically,  

However, it is not the end of the simplification as there is one more 1 that is not paired (for CBAF = ). Loops in K-maps 
can wrap around, so create a pair loop as shown in Figure 4.6(b). Variable A  is in complemented and uncomplemented 
forms in the pair loop, so it will disappear leaving only CB .  So the resulting simplified expression will be CBAF += .
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Figure 4.5: Three variable K-map for .
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Figure 4.6: Three variable K-map shown in Figure 4.5: (a) quad loop (b) quad with pair loop.

As another example, consider CBACBABAF ++= . Since one of the terms, BA has only two variables, it should 
be expanded to give BA = )( CCBA + = CBACBA + . So CBACBACBACBAF +++= . Now the 
K-map can be constructed as shown in Figure 4.7 and quad loop applied to give BF = .

Figure 4.7: Three variable K-map for  CBACBACBACBAF +++= .

It can be verified that algebraic simplification also gives the same result:

CBACBABAF ++=

)( CCBABAF ++=

BABAF +=

)( AABF +=

BF =
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4.3.3 Four variable K-map

Consider a logic expression with four variables: 

Figure 4.8 shows the K-map for this expression. With four variables, octet looping (with eight 1s) is possible. Note that 
loops should be as big as possible, so if there is a choice of two quad loops and one octet loop, then the octet loop should 
be created.

Only variable C remains from the octet loop as the other variables are in both complement and uncomplemented forms 
and hence disappear. There are two quad loops that give  and DA  (wrapped around loop). The final expression is 

.

It should be obvious now that a pair loop removes one variable, a quad loop removes two variables while an octet loop 
removes three variables. In the example above, octet loop removed variables A , B  and D .

Figure 4.8: Four variable K-map.

4.3.4 Additional examples

Consider the truth table as in Table 4.7. For this example, let us obtain the simplified logic circuit diagram.
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Table 4.7: Truth table for additional example 1
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First, the logic expression should be obtained from the truth table and using it, K-map drawn (as shown in Figure 4.9). 
Next, we can obtain the simplified expression and with it draw the simplified logic circuit diagram as shown in Figure 4.10.

Logic expression:  

K-map:

Figure 4.9: K-map for additional example 1.

Simplified expression: .

Simplified logic circuit diagram:

A

B

C

CDBDAF ++=

D

Figure 4.10: Simplified logic circuit diagram additional example 1.
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As another example, consider a logic expression,  and 
its corresponding K-map as shown Figure 4.11. 

Figure 4.11: K-map for the additional example 2.

The wrapped around quad loop gives DB while the pair loop gives CBA . There is a single 1 that can’t be looped, so 
it remains as it is: . So, the simplified expression is .

4.3.5 Don’t care conditions

In digital logic design, we often encounter don’t care conditions. These conditions are cases that won’t occur in our design 
and hence the output can be set to any value (either 0 or 1). Don’t care conditions are denoted using X in the truth tables 
and K-maps. For example, consider a seven segment display device as shown in Figure 4.12 that is commonly used to 
display hexadecimal characters.  

a

b

c

d

e

f

g

Figure 4.12: Seven segment display.

The device consists of light emitting diodes (LEDs)7 that light up with different patterns to give the hexadecimal output 
as shown in Figure 4.13. Note that the hex characters A to F are normally displayed in a mixture of upper and lowercase 

7  Newer devices operate using liquid crystal technology.
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to avoid ambiguity (for example differentiating D with 0, B with 8 etc). 

Figure 4.13: Hex characters displayed by the seven segment display.

Table 4.8 gives the character encodings for the seven LEDs (a, b, .... ,g), where a 1 denotes that the LED will be ON and 
a 0 denotes that the LED will be OFF. So to display numeral 0, LEDs a, b, c, d, e, and f will be turned on and LED g will 
be off. Similarly, to display character F, LEDs a, e, f, and g will be on while LEDs b, c, and d will be off. 
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Table 4.7: Character encodings for seven segment display LEDs

LED
Digit a b c d e f g

0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 0
2 1 1 0 1 1 0 1
3 1 1 1 1 0 0 1
4 0 1 1 0 0 1 1
5 1 0 1 1 0 1 1
6 1 0 1 1 1 1 1
7 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
A 1 1 1 0 1 1 1
b 0 0 1 1 1 1 1
C 1 0 0 1 1 1 0
d 0 1 1 1 1 0 1
E 1 0 0 1 1 1 1
F 1 0 0 0 1 1 1

Now, for the sake of discussing the don’t care conditions, consider that we are going to use the seven segment display only 
to display the decimal numerals (i.e. 0 to 9). So, while designing the necessary wiring for the device, we can now ignore 
displays for the rest of the characters A to F. This situation will be denoted with X as in Table 4.8. Let us obtain the logic 
expression for LED a. To avoid confusion with the hex characters, we’ll denote the variables as P, Q, R, and S instead 
of A, B, C and D as used earlier. Four variables (i.e. four inputs) are required since we have ten possible combinations. 
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Table 4.8: Seven segment display LED encoding for decimals (showing don’t care conditions)

LED
Digit a b c d e f g

0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 0
2 1 1 0 1 1 0 1
3 1 1 1 1 0 0 1
4 0 1 1 0 0 1 1
5 1 0 1 1 0 1 1
6 1 0 1 1 1 1 1
7 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
A X X X X X X X
b X X X X X X X
C X X X X X X X
d X X X X X X X
E X X X X X X X
F X X X X X X X

Using the truth table, we can now construct the K-map as shown in Figure 4.14 (without considering don’t care conditions) 
and Figure 4.15 (with don’t care conditions). 
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Table 4.9: Truth table for LED a

Digit P Q R S LED a
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
A 1 0 1 0 X
b 1 0 1 1 X
C 1 1 0 0 X
d 1 1 0 1 X
E 1 1 1 0 X
F 1 1 1 1 X

Figure 4.14: K-map for LED a without considering don’t care conditions.

The simplified expression without considering don’t care conditions is . 
Note that the solution is not unique as the wrapped around pair loop could also be formed for SRQP  and SRQP  
giving SQP instead of SRQ as shown for SRQP  and SRQP . With this, the simplified expression will be 

.
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Now consider Figure 4.15 where the don’t care conditions are accounted. Since X is either 0 or 1, we can assume it to be 
1 and use in the looping procedures.

Figure 4.15: K-map for LED a (considering don’t care conditions).

The simplified expression is now  and it can be seen that the expression is made simpler 
by considering the don’t care conditions. 

As a final example for the chapter, let us obtain the logic expression for LED b. Table 4.10 gives the truth table and Figure 4.16 
shows the K-map with don’t care conditions. The simplified logic expression is 
. It should not be forgotten that the loops should be as big as possible.
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Table 4.10: Truth table for LED b

Digit P Q R S LED b
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
A 1 0 1 0 X
b 1 0 1 1 X
C 1 1 0 0 X
d 1 1 0 1 X
E 1 1 1 0 X
F 1 1 1 1 X

Figure 4.16: K-map for LED b with don’t care conditions.
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5 Bistable Multivibrator Circuits
In this chapter, circuits that have two stable states (i.e. off and on) will be studied. These circuits are also commonly 
known as flip-flops. As they have two stable states (i.e. logic 0 or 1), they are useful to store one bit of digital data, i.e. 
as memory elements. Several types of flip-flops will be studied before we look at other multivibrators to generate single 
and train of pulses. 

Figure 5.1 shows a general flip-flop symbol. Usually, there are one or two inputs to the flip-flop and the output also has 
a complement. The inputs are either logic 0 or 1 and commonly known as set (or preset) input when equal to 1 (HIGH 
state) and reset (or clear) input when equal to 0 (LOW state). 

Inputs 
(normally 
one or 
two)

Output

Complement 
output

Q

Q

Figure 5.1: General flip-flop symbol.
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5.1 S-R flip-flop

S-R flip-flop (also known as set-reset or latch) can be constructed using NOR or NAND gates. Both types of flip-flops are 
shown in Figure 5.2. The truth table for the S-R flip-flop is shown in Table 5.1. Q+ here denotes the next state of output Q.

Q

Q

S

R

S-R FF

(a)

R

S Q

Q

(b)

R

S Q

Q

(c)

Figure 5.2: S-R flip-flop: (a) general symbol (b) using NAND gates (c) using NOR gates.



Download free ebooks at bookboon.com

Digital Systems Design

69 

Bistable Multivibrator Circuits

Table 5.1: Truth table for S-R flip-flop

S R Q+

0 0 Q No change, Q+=Q

1 0 1 Set output Q+=1

0 1 0 Clear output Q+=0

1 1 - Invalid state

It can be seen that for both NAND and NOR types, there is feedback for the output and complemented output to the 
inputs. When both S and R inputs are LOW (logic 0), the output of the flip-flop will be the same as its previous state, 
i.e. no change in the Q state. A HIGH (logic 1) S input to the flip-flop will cause the output Q+ to change state to HIGH. 
Similarly, R=1 input will cause the S-R flip-flop’s output Q+=0.  It should be obvious that the S input sets the flip-flop to 
logic 1 while the R input resets the flip-flop to logic 0. S-R flip-flop output is not defined when both inputs are 1, so this 
situation should be avoided when using the S-R flip-flop. In the above discussion, state of Q will be opposite to the state 
of Q  at all times.

5.1.1 S-R flip-flop with Enable input

An enabling input can be used to control the operation of the flip-flops as shown in Figure 5.3. Here the inputs R and S 
will only have an effect on the output Q+ if the enable input is 1. When E=1, the NAND gates (in bold) will act as inverters, 
thereby the circuit behaving exactly like the NAND gate S-R flip-flop in Figure 5.2(b). Table 5.2 gives the truth table values. 

R

S
Q

Q

E

Figure 5.3: S-R flip-flop with Enable input.
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Table 5.2: Truth table for S-R flip-flop with Enable input

E S R Q+

0 0 0 Q No change, Q+=Q

0 1 0 Q No change, Q+=Q

0 0 1 Q No change, Q+=Q

0 1 1 Q No change, Q+=Q

1 0 0 Q No change, Q+=Q

1 1 0 1 Set output Q+=1

1 0 1 0 Clear output Q+=0

1 1 1 - Invalid state

-
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5.1.2 Clocked S-R flip-flop

Similar to the enable input, there could be a clock (i.e. pulsed) input to the flip-flop. Clocked S-R flip-flop is shown in 
Figure 5.4 where the edge of the clock (either positive or negative) triggers the change in the flip-flop state. The negative 
edge of the clock occurs when the clock pulse drops from logic 1 to 0 and is also known as negative going transition 
(NGT) while the positive going transition (PGT) occurs when the clock pulse goes from logic 0 to 1. An opposite clock 
edge will not affect the flip-flop output. For example, a negative edge triggered flip-flop will not change state during the 
positive edge. Table 5.3 shows the truth table for the NGT clocked flip-flop where it can be seen that the flip-flop changes 
state during the corresponding negative triggering edge of the clock. The PGT clocked flip-flop behaves similarly except 
that the change (if any) occurs during the positive edge transition of the clock.

Q

Q

S

R

S-R FFClock 
pulse

PGT triggered

(a)

Q

Q

S

R

S-R FFClock 
pulse

NGT triggered

(b)

Figure 5.4: Clocked S-R flip-flops: (a) PGT (b) NGT, note the bubble for NGT triggered flip-flop.

Table 5.3: Truth table for NGT clocked S-R flip-flop

Clock S R Q+

0 0 Q No change, Q+=Q

1 0 1 Set output Q+=1

0 1 0 Clear output Q+=0

1 1 - Invalid state
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A few examples using timing diagrams follow to illustrate the behaviour of clocked S-R flip-flops. Figure 5.5 shows an 
example on how the timing diagram changes for NGT clocked S-R flip-flop. Any change in the output Q will only occur 
during NGT (shown by t1, t2, …, t5):

 - At time t1,  Q goes to logic 1 as S=1, R=0 
 - At time t2,  Q remains at logic 1 as S=1, R=0 
 - At time t3,  Q goes to logic 0 as S=0, R=1 
 - At time t4,  Q remains at logic 0 as S=0, R=1 
 - At time t5,  Q goes to logic 1 as S=1, R=0 

There won’t be any changes during tPGT for negative edge triggered flip-flop.

R

S

Clock
NGT triggered

t1 t2 t3 t4 t5

Q

1

0

1

0

1

0

1

0

tNGTtNGTtNGTtNGTtNGT

Figure 5.5: Timing diagram for NGT clocked S-R flip-flop example.

A PGT clocked S-R flip-flop timing diagram example is shown in Figure 5.6. Any change in the output Q will only occur 
during PGT (shown by t1, t2, …, t5):

 - At time t1,  Q goes to logic 1 as S=1, R=0 
 - At time t2,  Q remains at logic 1 as S=0, R=0 
 - At time t3,  Q goes to logic 0 as S=0, R=1 
 - At time t4,  Q goes to logic 1 as S=1, R=0 
 - At time t5,  Q goes to logic 0 as S=0, R=1 

There won’t be any changes during tNGT for positive edge triggered flip-flop.
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R

S

Clock
PGT triggered

t1 t2 t3 t4 t5

Q

1

0

1

0

1

0

1

0

tPGTtPGTtPGTtPGTtPGT

Figure 5.6: Timing diagram for PGT clocked S-R flip-flop example.
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5.1.3 Asynchronous flip-flop inputs

The S and R inputs are known as synchronous inputs as their effects are synchronised to the clock input. Flip-flops can 
also have asynchronous inputs that can affect the output at any time irrespective of the clock pulse. Figure 5.7 shows the 
NGT S-R flip-flop symbol with two additional pulse inputs: ( PRE ) that sets the output to logic 1 and clear ( CLR ) that 
sets the output to logic 0. Both these inputs are ACTIVE LOW8 (shown with an overbar, also note the existence of the 
bubble in the figure), which means that a logic 0 input will affect the flip-flop output rather than logic 1. Asynchronous 
inputs always take precedence over the S and R inputs. 

Q

Q

S

R

S-R FF

CLR

PRE
bubble denotes 

ACTIVE LOW input

Figure 5.7: NGT S-R flip-flop symbol with asynchronous inputs.

Figure 5.8 illustrates the effect of these asynchronous inputs using a timing diagram. When PRE  and CLR equals logic 
1, the flip-flop behaves exactly as an NGT clocked S-R flip-flop. However, when either pulse becomes active (i.e. goes to 
logic 0), the effect on output Q is immediate (i.e. independent of the clock pulse):

 - At time t1,  Q goes to logic 1 as S=1, R=0 
 - At time t12,  Q goes to logic 0 as 0=CLR

 - At time t2,  Q goes to logic 1 as S=1, R=0 
 - At time t3,  Q goes to logic 0 as S=0, R=1 
 - At time t34,  Q goes to logic 1 as 0=PRE  
 - At time t4,  Q goes to logic 0 as S=0, R=1 
 - At time t5,  Q goes to logic 1 as S=1, R=0 

8  S and R inputs that either sets or resets the flip-flop on logic 1 are examples of ACTIVE HIGH inputs.
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R

S

Clock

t1 t2 t3 t4 t5

Q

1

0

1

0

1

0

1

0

1

0

1

0
PRE

CLR

t12 t34

Figure 5.8: NGT S-R flip-flop timing diagram example with asynchronous inputs.

5.2 J-K flip-flop

R-S flip-flop is not very commonly used in digital systems due to the invalid state that can occur when both inputs are 
logic 1. J-K (named after Jack Kilby) flip-flop overcomes this problem by toggling (i.e. going to opposite state) when inputs 
J=K=1. Table 5.4 shows the truth table for this flip-flop.

Table 5.4: Truth table for J-K flip-flop

J K Q+

0 0 Q No change, Q+=Q

1 0 1 Set output Q+=1

0 1 0 Clear output Q+=0

1 1 Q Toggle, QQ =+

Similar to R-S flip-flop, J-K flip-flop can have enable input, clocked (NGT or PGT) and asynchronous inputs. Figure 5.9 
shows the PGT J-K flip-flop symbol. 



Download free ebooks at bookboon.com

Digital Systems Design

76 

Bistable Multivibrator Circuits

Q

Q

J

K

J-K FF

CLR

PRE

Figure 5.9: PGT J-K flip-flop symbol with asynchronous inputs.
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A timing diagram example for J-K flip-flop is given in Figure 5.10. The previous discussions for S-R flip-flop hold for J-K 
flip-flop except that when J=K=1, the output toggles from its previous state:

 - At time t1,  Q goes to logic 1 as J=1, K=0 
 - At time t2,  Q toggles to logic 0 as J=1, K=1 
 - At time t3,  Q remains at logic 0 as J=0, K=0 
 - At time t4,  Q toggles to logic 1 as J=1, K=1
 - At time t5,  Q goes to logic 0 as J=0, K=1 

K

J

Clock

t1 t2 t3 t4 t5

Q

1

0

1

0

1

0

1

0

Figure 5.10: PGT J-K flip-flop timing diagram example.

Figure 5.11 gives a timing diagram example of NGT J-K flip-flop with asynchronous inputs:

 - At time t1,  Q toggles to logic 1 as J=1, K=1 
 - At time t12,  Q goes to logic 0 as 0=CLR
 - At time t2,  Q goes to logic 1 as J=1, K=0 
 - At time t3,  Q goes to logic 0 as J=0, K=1 
 - At time t34,  Q goes to logic 1 as 0=PRE  
 - At time t4,  Q remains at logic 1 as J=0, K=0 
 - At time t5,  Q remains at logic 1 as J=1, K=0 



Download free ebooks at bookboon.com

Digital Systems Design

78 

Bistable Multivibrator Circuits

K

J

Clock

t1 t2 t3 t4 t5

Q

1

0

1

0

1

0

1

0

1

0

1

0
PRE

CLR

t12 t34

Figure 5.11: NGT J-K flip-flop timing diagram example with asynchronous inputs.

5.2.1 Master-slave flip-flop

As we will see in a later chapter, a sequence of flip-flops are usually connected to each other with a single clock and an 
example is shown in Figure 5.12. Since there could be a delay in the clock pulse to arrive at FF2 as compared to FF1 due to 
the longer wiring, the output can become unpredictable. To avoid this problem, a master-slave flip-flop can be used where 
FF1 is the master and FF2 is the slave. The inputs to FF1 are used to determine the output of the master during CLK=HIGH 
and this output is then transferred to the slave when CLK=LOW. However, master-slave flip-flops have become obsolete 
with the design of modern edge-triggered flip-flops that responds with sufficient speed and reliability. 

Q

Q

J

K

Q

Q

FF1

J

K

CLK FF2

Input

Figure 5.12: Two flip-flops connected with a single clock.
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5.3 D flip-flop

D flip-flop is also known as data flip-flop since it can store a single bit of data. The output of the flip-flop Q follows the 
single input D at the respective clock pulses. Figure 5.13 shows the D flip-flop symbol. 

Q

Q

D

D FF

CLR

PRE

Figure 5.13: PGT D flip-flop general symbol. 
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Table 5.5 gives the truth table for D flip-flop. The output Q will follow the input D at either NGT or PGT clock depending 
on whether it is negative or positive edge triggered flip-flop. The D flip-flop can also have asynchronous inputs such as 

PRE  and CLR  that affect the output Q independently of the clock. 

Table 5.5: Truth table for D flip-flop

D Q+

0 0 Q+=D

1 1 Q+=D

Figure 5.14 gives an example of the D flip-flop timing diagram:

 - At time t1,  Q goes to logic 1 as D=1 
 - At time t2,  Q goes to logic 0 as D=0
 - At time t23,  Q goes to logic 1 as 0=PRE  
 - At time t3,  Q remains at logic 1 as D=1 
 - At time t4,  Q remains at logic 1 as D=1
 - At time t45,  Q goes to logic 0 as 0=CLR
 - At time t5,  Q remains at logic 0 as D=0

D

Clock

t1 t2 t3 t4 t5

Q

1

0

1

0

1

0

1

0

1

0
PRE

CLR

t23 t45

Figure 5.14: NGT D flip-flop timing diagram example.

Figure 5.15 shows how a J-K flip-flop can be used to construct a D flip-flop. When D=1, inputs to J-K flip-flop:  1== JD  
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and 0== DK and hence, Q = 1. Similarly, when D=0, inputs to J-K flip-flop:  0== JD  and 1== DK  and hence, 
Q = 0. So the output Q follows input D as in the D flip-flop. 

Q

Q

D

J-K FF

CLR

PRE

J

K

Figure 5.15: PGT D flip-flop constructed using J-K flip-flop.
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5.4 T flip-flop

The final flip-flop to be considered in this chapter is T flip-flop. The truth table of the T flip-flop is given in Table 5.6 
assuming it is triggered by an NGT clock. The output for T flip-flop toggles at T=1 thereby giving a clock like waveform 
but with half the frequency as shown by the timing diagram in Figure 5.16. When T=0, the output Q does not change. 

Table 5.6: Truth table for NGT T flip-flop

T Q+

0 Q
No change, QQ =+

1 Q Q+ toggles, QQ =+

T

Clock

t1 t2 t3 t4 t5

Q

1

0

1

0

1

0

Figure 5.16: NGT T flip-flop where T=1, hence flip-flop operates in toggle mode at each clock trigger.

Figure 5.17 shows the general T flip-flop symbol and also how a J-K flip-flop can be used to construct a T flip-flop by 
tying J-K inputs together. When J=K=1, the flip-flop output toggles and when J=K=0, the flip-flop output does not change. 
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Q

Q

T

T FF

CLR

PRE

(a)

Q

Q

T

J-K FF

CLR

PRE

J

K

(b)

Figure 5.17: NGT T flip-flop: (a) general symbol (b) constructed using J-K flip-flop.

�����������������������������������

	��������	��������������������	���

������������������
������������������
����������������

����
������	�
����������	��������
���	��	��

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/advert/f8a2fd82-96d7-e011-adca-22a08ed629e5


Download free ebooks at bookboon.com

Digital Systems Design

84 

Bistable Multivibrator Circuits

5.5 Monostable and astable multivibrators

So far, we have considered flip-flops that have two stable states. In this section, we will look at two devices, one that give 
short trigger pulses and another that gives two states that are free running. Monostable multivibrator is also known as one 
shot as it has one stable state (normally Q=0) and the other state (normally Q=1) occurs for a specific tp duration when 
triggered. Astable multivibrator does not have a stable state but switches continuously between two states (i.e. Q=0 and 
Q=1) which results in a train of square (or rectangular) wave pulses at a frequency determined by values of connected 
resistors and capacitors. Square wave pulses (i.e. with a 50% duty cycle) could be used as clock input. 

5.5..1 Monostable multivibrator

Monostable multivibrator could be divided into two types: non-retriggerable and retriggerable. Non-retriggerable 
monostable multivibrator will ignore any trigger request during a tp pulse while the retriggerable one will re-trigger the 
pulse for another tp duration. The effects of both multivibrators are illustrated in the examples given in Figure 5.18. For 
non-retriggerable monostable multivibrator, trig2 has no effect since it is within the duration of the tp pulse triggered by 
trig1. However, for retriggerable monostable multivibrator, trig2 has the effect of extending the one shot pulse by tp duration. 

trig1 trig2 trig3

tp tp

(a)

trig1 trig2 trig3

tp
tp tp

(b)

Figure 5.18: Monostable multivibrator: (a) non-retriggerable (b) retriggerable.
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5.5.2 Astable multivibrator

Astable multivibrator designed using 555 timer IC is shown in Figure 5.19. It generates rectangular pulses with duration 
tA and tB. Duty cycle is defined as tB/(tA + tB). To generate clock pulses, the duty cycle has to be 50%, i.e. tA = tB.

+5 V

R1

R2

1

2

3

4

8

7

6

5

555

C
+

+
0.01 µF

tB

tA

Output

Figure 5.19: Astable multivibrator using 555 timer IC.
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The values of the resistors R1 and R2 and the capacitor C will affect the durations of tA and tB:

tA = 0.693 R2C

tB = 0.693 (R1+ R2)C

The frequency of the pulse is given by, freq=1/(tA + tB). 

Consider an example where R1=4.7 kΩ, R2 = 10.0 kΩ, and C = 100ųF, we get

tA = 0.693 R2C

    = 0.693 x (10 kΩ) x 100 μF

    = 0.693 x (10000 Ω) x 0.0001 F

    = 0.693 s

tB = 0.693 (R1 + R2)C

    = 0.693 x (4700 Ω+10000 Ω) x 100 μF

   = 1.01871 s

Frequency = 1/(tB + tA ) = 0.58421 Hz.
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6 Arithmetic Circuits
In computers, arithmetic computations such as binary addition and subtraction are done in arithmetic logic unit (ALU) 
that consists of logic gates and flip-flops. Logic gates perform the arithmetic operation while the flip-flops (i.e. register and 
accumulator) are used as temporary memory storage (something like a scratch pad that we use to perform mathematical 
computation). We will look at adder and subtractor circuits in this chapter.  

6.1 Half adder

Consider adding two bits, A0 and B0 to give sum Σ0 and carry-out, C1. Table 6.1 shows the possible combinations that 
can take place.

Table 6.1: Half adder combination

A0 B0 C1 Σ

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Σ0A0

B0 C1

HA

Figure 6.1: Half adder (HA) symbol.

Using K-maps as shown in Figure 6.2, we can obtain the logic expressions for Σ0 and C1. It can be seen that for Σ0, it is 
not possible to simplify the expression as no looping is possible and the expression is 

00000 BABA +=Σ .

Since this is XOR expression (see Section 3.5), it can also be expressed as 

000 BA ⊕=Σ .
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Similarly, the expression for C1 is

001 BAC = .

Figure 6.2: Half adder K-maps for (a) Σ0  (b) C1.
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The half-adder logic circuit is shown in Figure 6.3.

A0

B0
Σ0

C1

Figure 6.3: Half adder logic circuit.

6.2 Full adder

Very often when adding two bits,  A0 and B0 to give sum Σ0 and carry-out C1, there can be another input, carry-in C0  

resulting from addition of previous bits. The possible combinations for a full adder are shown in Table 6.2 where it can 
be seen that the three binary inputs, A0, B0  and C0  add to give the two binary outputs, Σ0 and C1. Full adder symbol is 
shown in Figure 6.4.

Table 6.2: Full adder combinations

Σ0A0

C0 C1

FAB0

Figure 6.4: Full adder (FA) symbol.
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K-maps for the two full adder outputs are shown in Figure 6.5. For Σ0, no looping is possible and the expression is 

0000000000000 CBACBACBACBA +++=Σ  

)()( 00000000000 BABACBABAC +++=Σ

which can also be expressed in simpler form using XOR and XNOR expressions as 
000000 )( BABABA ⊕=+ and 

000000 )( BABABA ⊕=+  to give

)()( 000000 BACBACo ⊕+⊕=Σ .

We can actually simplify this further by allowing 00 BAX ⊕= :

XCXC 000 +=Σ .

Further simplification can be made using an XOR expression to give

00 CX ⊕=Σ

0000 CBA ⊕⊕=Σ

For C1, three pair loops are possible resulting in

oCBCABAC 000001 ++=  .

 (a)
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 (b)

Figure 6.5: Full adder K-maps for (a) Σ0  (b) C1.
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The full adder circuitry is shown in Figure 6.6.

Figure 6.6: Full adder logic circuitry.

It should be obvious that a half-adder can be constructed using a full adder by setting C0=0. This is illustrated in Figure 6.7.

Σ0A0

C0=0 C1

FAB0

Figure 6.7: Half adder design using full adder.

6.3 Parallel adder

Usually, addition is done on a number of bits using a parallel adder that consists of several full adders as shown in Figure 
6.8 for addition of two 3 bit numbers.  

A0 B0

Σ0

A1 B1

Σ1

C2

A2 B2

Σ2C3

FA0FA1FA2

C0=0C1

Figure 6.8: Parallel adder layout for addition of two 3 bit numbers.
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As an example, consider adding A  = 1 1 1 with B  =  1 0 1 as depicted in Figure 6.9 to give sum = 1 0 0 and final carry of 1. 

B0=1

Σ0=0

C1=1

C3=1

FA0FA1FA2

A0=1

C2=1

B1=0

Σ1=0

A1=1B2=1

Σ2=1

A2=1

C0=0

Figure 6.9: Parallel addition example of two 3 bit numbers.

6.4 Parallel addition using integrated circuits

Parallel adders in integrated circuits (IC) form are available such as the four bit TTL 74LS283 as shown in Figure 6.10 
(with pin configurations). Such adders can be cascaded to add more bits. For example, two 74LS283 ICs can be used to add 
two 8 bit numbers as illustrated in Figure 6.11 (pin layout has been modified for ease of understanding, the actual layout 
is as shown in Figure 6.10). The two numbers: A0, A1, A2, A3, A4, A5, A7  and B0, B1, B2, B3, B4, B5, B7  are added together 
with carry input C0 to give sum S0, S1, S2, S3, S4, S5, S7 and carry out C8. The carry out from the first IC, C4 is passed as the 
carry input to the second IC.

Vcc B2 A2 Σ2 A3 B3 Σ3 C3

Σ1 B1 A1 Σ0 A0 B0 C0 GND

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

74LS283

Figure 6.10: Four bit adder IC, 74LS283 showing pin configurations.
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A1 A0A2A3

B1 B0B2B3

C0

Σ1 Σ0Σ2Σ3

C4

A5 A4A6A7

B5 B4B6B7Σ5 Σ4Σ6Σ7

C8 74LS28374LS283

Figure 6.11: Cascading two 74LS283 to add 8 bit numbers.

6.5 Parallel subtraction 

Consider a simple subtraction problem: 6 - 4 = 2. In binary, this will be 0110 – 0100 = 0010. Subtraction in binary can 
be performed through addition by converting the number to be subtracted (i.e. the subtrahend) to 2’s complement form 
and adding to the minued9. 

9  In the example, 6 – 2 = 4, 6 is the minued and 2 is the subtrahend.

Bli med i 
NITO studentene og få:
Jobbsøkerkurs

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/advert/0a94004e-ebb6-45b2-8285-9f9100e214d4


Download free ebooks at bookboon.com

Digital Systems Design

95 

Arithmetic Circuits

6.5.1 2’s complement

A binary number can be converted to 2’s complement simply by performing 1’s complement (i.e. inverting) each bit and 
then adding 1 to the inverted bits. Any carry from this operation should be discarded. For example, 2’s complement of 
4 in binary is 

 4 in binary → 0100

 1’s complement of 4 → 1011

 2’s complement of 4 → 1100

Now, 6 - 4 can be represented in binary as shown in Figure 6.12. The carry is discarded to give the correct answer of 2. 

Figure 6.12: Subtracting two numbers using 2’s complement method for subtrahend.

It should be obvious that an adder can also function as subtractor with additional gates. For example, the full adder shown 
in Figure 6.4 can be used to design a subtractor by inverting B0 and setting C0=1 (both these actions will result in 2’s 
complement form for B0) as shown in Figure 6.13. Similar to parallel adders, parallel subtractors can be designed using 
several full adders as shown in Figure 6.14. 

A0

C0=1 C1

FAB0

Σ0

Figure 6.13: A full adder used as subtractor.
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A0

B0

Σ0

A1

B1

Σ1

C2

A2

B2
Σ2C3

FA0FA1FA2

C0=1C1

Figure 6.14: Designing a parallel subtractor using several full adders.

Using the example in Figure 6.12, 74LS283 can be modified to act as subtractor as shown in Figure 6.15. The minued is 
represented by A0, A1, A2, A3 and the  inverters convert the subtrahend (B0, B1, B2, B3) to 1’s complement and C0 is set to 
1 to convert this 1’s complement number to 2’s complement. The outputs (Σ0, Σ1, Σ2, Σ3) denote the correct answer as 4 
and the carry out, C4 = 1 is discarded.

A1 A0A2A3

B1 B0B2B3

C0

Σ1 Σ0Σ2Σ3

C4

(discarded)

1 1

0 1 1 0

1 0 1 1

0 1 0 0
0 0 1 0

74LS283

Figure 6.15: Using 74LS283 as subtractor. 
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6.5.2 Dual adder/subtractor

Replacing the inverters in Figure 6.15 with XOR gates will result in a dual mode adder/subtractor circuit. This is illustrated 
in Figure 6.16. When the control input is 1, the circuit acts as a subtractor and when the control input is 0, it acts as an 
adder. For example, when B0=1 and control input=1 (during subtraction), the output of XOR is 0, i.e. the XOR gate acts as 
an inverter to give 1’s complement and C0=1 to give 2’s complement. When B0=1 and control input=0 (during addition), 
C0=0 and the output of XOR is 1, i.e. the XOR gate acts just as a buffer without changing the logic value.

Control 
input

C0

A1 A0A2A3

B1 B0B2B3
Σ1 Σ0Σ2Σ3

C4 74LS283

Figure 6.16: Using 74LS283 in dual mode: adder/subtractor. 
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7 Coders and Multiplexers
In this chapter, we will look two types of operations that are common in digital devices: coding and multiplexing. Coding 
devices can be categorised as either encoders or decoders and similarly, we have multiplexers and de-multiplexers. 
Commonly available ICs will be used to illustrate these operations.  
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7.1 Encoder

An encoder is a device that does some form of coding, for example converting an octal number to binary as shown in 
Figure 7.1.  In general, a N bit encoder has 2N input lines and N output lines; in the case of octal to binary encoder, it is 
8-to-3, i.e. eight input lines and three output lines. Only one input is active10 at a time. 

2N to N
(8-to-3) 
encoder

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

Inputs Outputs

Figure 7.1: A general encoder example: octal to binary.

Table 7.1 gives the truth table for this encoder. It can be seen that only one input line is active. For simplicity of discussion 
at this stage, we assume that the input and output lines for the decoder are ACTIVE HIGH, though we will see later 
that most decoders have ACTIVE LOW input and output lines. When one input is activated, the corresponding binary 
is the output. For example, when I6 = 1, the outputs are O2 = 1, O1 = 1 and O0 = 0, which is binary number for six. Note 
the ordering of the indexes for the input and output lines in Table 7.1: I7, I6,….,I0 are ordered from left to right while it is 
O2,O1,O0 for the outputs. This ordering scheme is just chosen to allow easier understanding of the concepts. 

10  Either ACTIVE LOW or ACTIVE HIGH, to be discussed later.
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Table 7.1: Truth table for a general 8-to-3 encoder

7.1.1 Priority encoding

Though only one input line is supposed to be active at a given time, it is possible to have multiple lines being active 
perhaps due to noise or error in the logic design. To avoid unpredictable output in such situations, priority encoding 
can be utilised. Priority encoders allow the higher indexed input lines to take precedence over the lower indexed pins.

Consider a 4-to-2 encoder with the truth table as shown in Table 7.2. Whenever the higher indexed input line is active, 
the lower indexed lines do not have any effect (irrespective of being active or not). For example, when I3 = 1, the logic 
values for I0, I1 and I2 do not affect the output (shown by don’t care conditions X) and the output will O1 = 1 and O0 = 1.

Table 7.2: Truth table for a general 4-to-2 priority encoder (with don’t care conditions)

Inputs Outputs

I3 I2 I1 I0 O1 O0

0 0 0 1 0 0

0 0 1 X 0 1

0 1 X X 1 0

1 X X X 1 1

The K-maps for outputs O0 and O1 are as shown in Figure 7.2. However, the don’t care conditions now appear for the 
inputs, which is different to the don’t care conditions for the outputs that was studied in Chapter 4.  In order to complete 
the K-maps, we have to expand Table 7.2 to include both the 0 and 1 cases for the don’t care conditions as shown in Table 
7.3. From the K-maps, the expressions for the outputs are 

3120 IIIO += ,

321 IIO += .
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From Table 7.3, we can also note that the outputs will be all logic 0 for two cases: when all inputs are 0 and I0 = 1. This 
ambiguity can be solved by using a special output pin and will be discussed later. 

Table 7.3: Truth table for a general 4-to-2 priority encoder (showing full don’t care cases)

Inputs Outputs

I3 I2 I1 I0 O1 O0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 1

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 1 1 0

1 0 0 0 1 1

1 0 0 1 1 1

1 0 1 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 1 1

Figure 7.3 shows the logic circuits for the outputs O0 and O1.  

(a)
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(b)

Figure 7.2: K-maps for 4-to-2 priority encoder: (a) O0  (b) O1.
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I1

I2

I3

O0

O1

Figure 7.3: Logic circuit for 4-to-2 priority encoder.

7.1.2 Enable inputs

Figure 7.4 shows a 8-to-3 encoder IC, 74xx148 with pin configurations11. Both the inputs and outputs are ACTIVE LOW, 
i.e. enabled/activated on logic 0. It is also a priority encoder, so the higher indexed inputs take priority. 

Vcc E0 GS Ι3 I2 I1 Ι0 O0

Ι4 I5 I6 Ι7 EI O2 O1 GND

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

74xx148

Figure 7.4: 8-to-3 encoder IC, 74xx148 pin configuration.

Table 7.4 shows the truth table and it can be seen that there are additional input and outputs: Enable Input ( ), Enable 
Output ( ) and Group Select ( ). All the enable pins are also ACTIVE LOW as shown by the overbars in Table 7.4 
and by the presence of bubbles in Figure 7.4. enables the device and allows the input values to change the outputs.  
As shown in Table 7.4, when , the outputs are all inactive (i.e. logic 1).  When , the inputs are enabled 
and affects the outputs. For example, when 07 =I , the outputs are 0012 === OOO . Similarly when 03 =I , the 
outputs are 12 =O  and 001 == OO  (note that the outputs are active low, so it represents 3 in binary).

11  xx denotes different types of ICs available such as low power Schottky version, 74LS148 and high speed CMOS 
version, 74HC148.
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When all the inputs are inactive,   is disabled and when any one input is active, then . Hence   is 
useful to indicate whether the condition  1012 === OOO  is caused by 00 =I  or if all inputs are inactive. 

 is used when cascading several encoders to form a larger priority encoding system. For this purpose,  output is 
connected input of the lower priority encoder.

Table 7.4: Truth table for 74xx148

7.2 Decoder

Decoder is the opposite of encoder, for example a 3-to-8 decoder that accepts three binary inputs and activates the 
corresponding single output as shown in Figure 7.5. Figure 7.6 shows a 74xx138 IC, which is binary-to-octal (3-to-8) 
decoder. The three inputs are active HIGH (note that there is no bubble in the figure) but the eight outputs are all ACTIVE 
LOW. In addition, three enable inputs: two ACTIVE LOW and one ACTIVE HIGH need to be in the asserted mode to 
enable the IC (i.e. 13 =E , 02 =E and 01 =E ). If any of these inputs are in an inactive state, then all the outputs will 
be in inactive state (i.e. logic 1 since these are ACTIVE LOW pins) irrespective of the inputs as shown by the first three 
rows in Table 7.5. When 3E , 2E and 1E  are enabled, the inputs affect the output. For example when 1012 === III  
then pin 

7O  becomes low and when 112 == II  and 00 =I  then pin 6O  becomes low.
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N to 2N

(3-to-8) 
decoder

I0

I1

I2

Inputs Outputs
I0

I1

I2

I3

I4

I5

I6

I7

Figure 7.5: 3-to-8 decoder example.

Vcc O0

Ι0 I1 I2 Ε1 E2 E3 O7 GND

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

74xx138

O1 O2 O3 O4 O5 O6

Figure 7.6: 3-to-8 encoder IC, 74xx138 pin configuration.
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Table 7.5: Truth table for 74xx138
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7.3 Multiplexer

Multiplexer (also known as data selector) is a digital device that acts like a switch taking several inputs and connecting a 
selected input to the output at a time. Simple two input and four input multiplexers are shown in Figure 7.7.  For the two 
input multiplexer, there are two inputs: I1 and I0 with one output, O0. The selector input, S0 will decide the route from input 
to the output. For example, when S0 = 1, I1 is selected and data at I1 is routed to output O0.  For the four input multiplexer, 
there are four inputs: I3, I2, I1 and I0 with one output, O0. The selector inputs, S1 and S0 will decide which connection is 
made from the input to the output. For example, when 101 == SS , 3I  is selected and data at 3I  is routed to output 
O0.  Tables 7.6 and 7.7 show the truth table for these multiplexers.

O0

I0

I1

S0

Output

Select input

(a)

O0

I0

I1

I2

I3

S0 S1

Inputs

Output

Select inputs

(b)

Figure 7.7: Simple multiplexers (a) two inputs (b) four inputs.
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Table 7.6: Truth table for two input multiplexer

Table 7.7: Truth table for four input multiplexer

To obtain the logic circuit diagram for two input multiplexer, truth table as in Table 7.8 should be constructed. With this, 
K-map for output O0 can be obtained as shown in Figure 7.8. Two pair loops can be drawn to give the output as

10000 ISISO += .

The logic circuit diagram is given in Figure 7.9. Similar approach could be utilised to obtain logic circuit diagrams for 
higher input multiplexers.
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Table 7.8: Full truth table for two input multiplexer

S0 I0 I1 O0

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Figure 7.8: K-map for two input multiplexer.

10000 ISISO +=

I0

I1

S0

Figure 7.9: Logic circuit diagram for two input multiplexer.
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7.3.1 Multiplexer IC example

A quadruple 2-line to 1-line multiplexer (IC 74xx157) is shown in Figure 7.10. The IC contains two sets of four inputs 
(I0a, I1a, I2a, I3a and I0b, I1b, I2b, I3b) that can be routed to the four outputs (O0, O1, O2, O3) depending on the select input, S0. 
The enable, E input must asserted, i.e. it must be logic 0 for the IC to be enabled. Table 7.9 gives the truth table for this 
IC. When S0 = 0, the outputs follow I0a, I1a, I2a, I3a inputs and when S0 = 1, the outputs follow I0b, I1b, I2b, I3b inputs.

Vcc

I0a I0b Ο0 I1a I1b O1 GND

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

74xx157

I3a I3b O3 I2a I2b O2

S0

E

Figure 7.10: Quadruple 2-line to 1-line multiplexer IC, 74xx157 pin configuration.
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Table 7.9: Truth table for 74xx157

E S0 O0 O1 O2 O3

1 X 0 0 0 0

0 0 I0a I1a I2a I3a

0 1 I0b I1b I2b I3b

7.4 De-multiplexer

A de-multiplexer does the opposite of multiplexer in that it takes a single input and distributes it to a selected output. 
Hence it is also known as data distributor. An example of 1-line to 8-line demultiplexer is shown in Figure 7.11. 

IC 74xx138, which is a 3-to-8 decoder (that we discussed earlier) can also be used as a 1-line to 8-line demultiplexer 
by using 1E  as data input and the three inputs as selectors. The other two enable pins are asserted to enable the IC by 
connecting 2E to ground (i.e. logic 0) and 3E is connected to Vcc (+5 V) to give logic 1. Using this convention, the pin 
configuration is as shown in Figure 7.12 and the truth table as in Table 7.10. The select inputs (S0, S1, S2) will select the 
particular output pin and the input data (I0) will be distributed to this selected output pin.  Due to the dual mode nature 
of such ICs, these are usually known as decoder/demultiplexer ICs. 

O0

I0

S0 S1

Input

Outputs

Select inputs

S2

O7

.

.

.

.

Figure 7.11: 1-line to 8-line demultiplexer.
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Vcc O0

Ι0 I1 I2 Ε1 E2 E3 O7 GND

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

74xx138 used as 1-line to 8-line DEMUX

O1 O2 O3 O4 O5 O6

S0 S1

Select inputs

S2

Data input

Ι0 Data output

Data outputs

Vcc (+5 V)

GND

Figure 7.12: 1-line to 8-line demultiplexer using 74xx138 decoder.
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Table 7.10: Truth table for 1-line to 8-line demultiplexer (using 74xx138 IC)

It should be remembered that 74xx138 IC has outputs that are ACTIVE LOW, hence inactive outputs have logic 1 as 
shown in Table 7.10. 
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8 Counters
In this chapter, we will look at using flip flops and logic gates to design counters. There are two types of counters: 
asynchronous and synchronous. Asynchronous counters are also known as ripple counters as the clock pulse ripples from 
one flip-flop to the next. Incorrect counter output can result if the accumulative ripple delay is longer than the clock pulse. 
Synchronous counters, on the other hand, have clock pulse input to each flip-flop and hence do not suffer from this ripple 
effect. However, these counters often require additional circuitry.  

8.1 Asynchronous up-counter

Figure 8.1 shows an example of a two bit asynchronous up-counter. J-K flip flops are used here although any flip-flop 
could be used. Two flip-flops are required in this instance as it is a two bit counter. Figure 8.2 shows the state diagram 
and state table, i.e. the sequence of the counter output. As there are two bits, the counter cycles through four states12: 00, 
01, 10, 11 and it is known as up-counter since it counts in increasing order.  

As can be seen from the figure, all J and K inputs are tied to logic level 1. This ensures that all the flip-flops operate in 
toggle mode only.  The output from flip-flop 1, Q1 is the LSB, while the output from flip-flop 2, Q2 is MSB. The output Q1 
also acts as the input clock pulse for flip-flop 2.

Q2

J

K

Q1=A

Q1

FF1

J

K

FF2

+5 V Q2=B

Figure 8.1: Two bit asynchronous up-counter with NGT clock pulse.

Figure 8.2: State diagram and table for two bit asynchronous up-counter.

12  N flip flop give 2N states, sometimes N number of flip flop counter is known as modulo N counter.
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Q1=A

Clock

t1 t2 t3 t4 t5

1

0

1

0

1

0

Q2=B

NGT triggered, Q1 acts 
as clock input for FF2

Counter outputs00 01 10 11 00

NGT triggered, standard 
clock input for FF1

Counter LSB output

Counter MSB output

Figure 8.3: Timing diagram for two bit asynchronous up-counter with NGT clock pulse.

Analysing the timing diagram shown in Figure 8.3: at time t1, NGT clock pulse triggers Q1 to toggle from logic 0 to logic 1. 
At time t2, NGT clock pulse causes Q1 to change state to logic 0. As output from flip-flop 1 acts as clock input for flip-flop 
2, at time t2, Q2 toggles to logic level 1. At time t3, the NGT clock input toggles Q1 to logic level 1 but there is no change 
in Q2 since the clock input to flip-flop 2 at this time is PGT and not NGT. At time t4, both Q1 and Q2 toggles to logic 0. 
It can be seen that the counter cycles through states 00à01à10à11 and the cycle is repeated.

8.1.1 Asynchronous up-counter – PGT clocked flip-flops

Figure 8.4 shows a two bit asynchronous up-counter but with the clock triggering edge to be positive going. The figure is 
nearly the same as Figure 8.1 except that the clock input for flip-flop 2 comes from 1Q rather than 1Q . The state diagram 
and state table will be the same as shown in Figure 8.2. The timing diagram is shown in Figure 8.5 where it can be seen 
that the flip-flop changes at PGT clock edges.

Q2

J

K

Q1=A

Q1

FF1

J

K

FF2

+5 V Q2=B

Figure 8.4: Two bit asynchronous up-counter with PGT clock pulse.
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Q1=A

Clock

t1 t2 t3 t4 t5

1

0

1

0

1

0

Q2=B

Counter outputs00 01 10 11 00

PGT triggered, standard 
clock input for FF1

Counter LSB output

Counter MSB output

Q1
1

0

PGT triggered, Q1 acts 
as clock input for FF2

01

Figure 8.5: Timing diagram for two bit asynchronous up-counter with PGT clock pulse.
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The timing diagram in Figure 8.5 can be analysed at follows: at time t1, PGT clock pulse triggers Q1 to toggle from logic 
0 to logic 1. There is no change in Q2 and the counter output is 01. At time t2, PGT clock pulse causes Q1 to change state 
to logic 0. As output from Q of flip-flop 1 acts as clock input for flip-flop 2, at time t2, Q2 toggles to logic level 1 and the 
counter output is now 10. At time t3, the PGT clock input toggles Q1 to logic level 1 but there is no change in Q2 since 
the clock input to flip-flop 2 at this time is NGT and not PGT giving counter output of 11. At time t4, both Q1 and Q2 
toggles to logic 0 giving counter output of 00. At t5, Q1 toggles to logic 1 but there is no change in Q2. It can be seen that 
the counter cycles through states 00à01à10à11 and the cycle is repeated.

8.2 Asynchronous down-counter

Figure 8.6 shows an example of a two bit asynchronous down-counter using T flip flops triggered with NGT clock pulse. 
The clock for the second flip-flop comes from 1Q (similar to up-counter using PGT as shown in Figure 8.4). Figure 8.7 
shows the state diagram and state table, i.e. the sequence of the counter output. The counter cycles through four states: 
11à10à01à00  i.e. in decreasing order as it is a down-counter (as shown in Figure 8.8).  

Q2

T
Q1=A

Q1

FF1

T

FF2

+5 V Q2=B

Figure 8.6: Two bit asynchronous down-counter with NGT clock pulse using T flip-flop.

Figure 8.7: State diagram and table for two bit asynchronous down-counter.



Download free ebooks at bookboon.com

Digital Systems Design

118 

Counters

Q1=A

Clock

t1 t2 t3 t4 t5

1

0

1

0

1

0

Q2=B

Counter outputs00 11 10 01

NGT triggered, standard 
clock input for FF1

Counter LSB output

Counter MSB output

Q1
1

0

NGT triggered, Q1 acts 
as clock input for FF2

00

Figure 8.8: Timing diagram for two bit asynchronous down-counter with NGT clock pulse.

At t1, the NGT clock pulse toggles the flip-flop to logic level 1. As 1Q is now the clock input for the second flip-flop, at 
time t1, flip-flop 2 output toggles to logic level 1. The counter output is now 11. At time t2, flip-flop 1 toggles to logic level 
0 while there is no change in flip-flop 2 as the clock input for the second flip-flop at this time is PGT. The output is now 
10. At time t3, both flip-flop receive NGT clock inputs and toggles to opposing states as previously giving output as 01. At 
time t4, flip-flop 1 toggles to logic level 0 giving counter output as 00. Hence, the counter cycles through 11à10à01à00.

Similarly, a counter with higher number of bits can be constructed. For example, a four bit asynchronous down-counter 
with PGT clock pulse using J-K flip flops is shown in Figure 8.9. The clock inputs (except for the first flip-flop) come 
from Q output of the previous flip-flop. The counter will cycle through 1111à1110à1101à1100à1011à1010à1001
à1000à0111à0110à 0101à0100à 0011à0010à0001à0000. 

Q1=A

Q1

FF1

J

FF2

+5 V Q2=B

Q3Q2

FF3

Q3=C

Q4

FF3

Q4=D

K

J

K

J

K

J

K

Figure 8.9: Four bit asynchronous down-counter with PGT clock pulse.

Table 8.1 gives a summary of the clock inputs for the second flip-flop onwards against the up/down counter and trigger 
edge types.
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Table 8.1: Clock inputs for the second flip-flop onwards against the up/down counter and trigger edge types

Clock input

Up-counter NGT Q

Up-counter PGT Q

Down-counter NGT Q

Down-counter PGT Q
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8.3 Asynchronous counters with incomplete cycles

So far, we have seen counters that complete the cycle for the specific number of bits, for example a two bit up-counter 
would have four states: 00à01à10à11 and a three bit down counter would have eight states: 111à110à101à100à
011à010à001à000. Consider a case where we need a counter only to count from 00à01à10. Two flip-flops will be 
required but the counter has to reset to 00 after 10 and not after 11. Therefore additional circuitry will be required to reset 
the counter after 10. The state diagram is shown in Figure 8.10 where the temporary state of 11 will only occur for a very 
short period of time and hence will not appear in the counter cycle. For this purpose, the clear asynchronous input of 
the flip-flops together with a NAND gate could be used to reset both flip-flops instantaneously13 . This situation is shown 
in Figure 8.11. As soon as the state Q2=1 (i.e. B=1) and Q1=1 (i.e. A=1) occur, the clear inputs reset all the flip-flips to 0 
and the counter then resumes its cycle.  Figure 8.12 shows the timing diagram for this counter.

00 01

11 10
Temporary 

state

Figure 8.10: Three state up-counter showing a temporary state.

Q1=A

Q1

FF1

J+5 V

Q2

FF2

Q2=B

K

J

K

CLR

PRE

CLR

PRE

Figure 8.11: Three state asynchronous up-counter with PGT clock pulse (with CLR input).

13  Clear input does not depend on clock edge and hence the change is immediate.
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At time t1, the PGT edge of the clock toggles the first flip-flop output to 1 (i.e. Q1=1). There is no change in Q2=0. At time 
t2, Q1 toggles to 0 and Q2 toggles to 1. At time t3, Q2 remains at 1 and Q1 toggles to 1. However, at this time point, the 
output of the NAND gate is logic level 0 and hence activates the active low CLR inputs, which reset both flip-flops to logic 
level 0. The counter then resumes its count. The effect of CLR is instantaneous and though the timing diagram shows 
a glitch during time t3, it occurs only for a very short period of time and does not appear as part of the counter output. 

Q1=A

Clock

t1 t2 t3 t4 t5

1

0

1

0

1

0

Q2=B

Counter outputs00 01 10 00 01

Counter LSB output

Counter MSB output

Q1
1

0

10

1

0
CLR

CLR input resets the 
counter

Figure 8.12: Timing diagram for three state asynchronous up-counter with PGT clock pulse.

Let us consider another example: a counter to count 000à001à010à011à100 only. In this situation, we will need three 
flip-flops and the counter has to stop the cycle at 100 (and skip 101, 110 and 111) and return to 000. In other words, the 
counter has to reset after 100. The state diagram is shown in Figure 8.13. As mentioned earlier, the temporary state of 101 
occurs only for a very short period of time and hence will not appear in the counter cycle. The additional circuitry using 
NAND gate and CLR  inputs reset the counter to 000 when the state 101 occurs. The logic circuit is shown in Figure 
8.14. As soon as the state Q3=1 (i.e. C=1) and Q1=1 (i.e. A=1) occur, the clear inputs reset all the flip-flips to 0 and the 
counter then resumes its cycle.  

000 001

011

010

100

101Temporary 
state

Figure 8.13: Five state up-counter showing a temporary state.
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Q1=A

Q1

FF1

J

FF2

+5 V Q2=B

Q3Q2

FF3

Q3=C

K

J

K

J

K

CLR

PRE

CLR

PRE

CLR

PRE

Figure 8.14: Five state asynchronous up-counter with NGT clock pulse (with CLR input).
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8.4 Synchronous counters 

Synchronous counters are advantageous over asynchronous counters as they do not suffer from clock ripple effect due 
to all flip-flops being clocked at the same time. Also, they allow counter design in any arbitrary sequence. However, 
synchronous counters often require additional circuitry. In this section, several examples will be used to illustrate the 
synchronous counter design. 

The basic steps in the design are:

1) Obtain the state diagram/table
2) Decide the number of flip-flops and type of flip-flop
3) Derive the state excitation table
4) Obtain the simplified expressions for the flip-flop inputs (for example using K-maps)  
5) Draw the logic circuit diagram

8.4.1 Synchronous counter – example 1

Assume that we wish to design a counter that counts 000à010à011à111 and then recycles back to 000. In this counter, 
there are several unused states: 001, 100, 101 and 110. Though these states should not occur in our design, it is good 
practice to set the counter to go to 000 if any of these undesired states do occur. 

Step 1: State diagram is shown in Figure 8.15.

000 010

111 011

001100

101

110

Figure 8.15: State diagram for synchronous counter in example 1.

Step 2: The number of flip-flops is three and let us assume that J-K flip flops are used.
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Step 3: The excitation table is basically a truth table that gives the necessary J and K inputs to enable a change in the current 
output Q to next state Q+. Table 8.2 shows the general excitation table for a J-K flip-flop (with don’t care conditions, X). 

Table 8.2: Excitation table for general J-K flip-flop

J input K input

Current 

output, Q

Next 

output, Q+

0 X 0 0

1 X 0 1

X 1 1 0

X 0 1 1

The excitation table for the counter to be designed is shown in Table 8.3.

Step 4: Using the excitation Table 8.3, we can obtain the K-maps for each input as shown in Figures 8.16-8.18 where 
present states should be used to draw the K-maps. 

Table 8.3: Excitation table for the counter in example 1
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(a)

(b)

Figure 8.16: K-maps for inputs (a) JA and (b) KA.

(a)
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(b)

Figure 8.17: K-maps for inputs (a) JB and (b) KB.

(a)
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(b)

Figure 8.18: K-maps for inputs (a) JC and (b) KC.
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From the K-maps, the simplified expressions for the inputs are: 

CAJ A =  ACK A +=

CBJ B =  CK B =

  1=CK

Step 5: The logic circuit diagram is given in Figure 8.19. Notice that all the clock inputs are tied together and hence the 
flip-flops are clocked simultaneously. 
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Figure 8.19: Logic circuit diagram for counter in example 1.

8.4.2 Synchronous counter – example 2

Now consider another example using T flip-flops and the counter to be designed cycles through 000à010à100à110 
and then resets to 000. 

Step 1: Since the LSB of the counter does not change, we need not be concerned about the design for this bit and can set 
QA=0. So, the simplified state diagram is as shown in Figure 8.20.

Step 2: The number of flip-flops is two only and T flip-flops will be used. 

Step 3: The general excitation table for T flip-flop is given in Table 8.4, while the excitation table for the counter is given 
in Table 8.5. 
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Figure 8.20: Simplified state diagram for example 2.

Table 8.4: General excitation table for T flip-flop

T input

Current 

output, Q

Next 

output, Q+

0 0 0

1 0 1

1 1 0

0 1 1

Table 8.5: Excitation table for the counter in example 2

Current 

state

(C B)

Next 

State

(C+ B+)

Flip-flop C

TC

Flip-flop B

TB

0 0 0 1 0 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 0 1 1

Step 4: The K-maps are shown in Figure 8.21. The simplified expressions are

1=BT

BTC =
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Figure 8.21: K-maps for example 2: (a) TB (b) TC.

Step 5: The logic circuit diagram is shown in Figure 8.22.
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Figure 8.22: Logic circuit diagram for example 2.


