
Lab Assignments in TDT4255 Computer Design

Fakultet for informasjonsteknologi,
matematikk og elektroteknikk
Institutt for datateknikk
og informasjonsvitenskap

Institutt for datateknikk
og informasjonsvitenskap

Institutt for datateknikk
og informasjonsvitenskap

Computer Architecture and Design Group
Department of Computer and Information Science

Version 2: 30th of April 2012

Contents

List of Figures 3

Abbreviations 7

1 Introduction 9
1.1 Practical Goal: the Processor Architecture and Design 9
1.2 Learning Outcome . 9
1.3 Practical Information . 10

2 A Brief Overview of Hardware and Tools 13
2.1 Introduction . 13
2.2 VHDL . 13
2.3 Field Programmable Gate Arrays, FPGAs 24
2.4 Design and Implementation in FPGAs – a Walk through the Xil-

inx ISE Design Suite . 28

3 Implementation Framework 106
3.1 Introduction . 106
3.2 Implementation Framework . 106
3.3 Instruction Set Architecture . 109
3.4 Support Files . 111

4 Assignment 1 – Simple Multi-cycle MIPS Processor 114
4.1 Introduction . 114
4.2 Requirements . 114
4.3 Suggested Architecture . 115

5 Assignment 2 – A Simple Pipelined Processor 117
5.1 Introduction . 117
5.2 Requirements . 117
5.3 Suggestion for the Architecture 117

6 Assignment 3 – Optimized Pipelined Processor 119
6.1 Introduction . 119
6.2 Requirements . 119

A The List of Versions 120

Bibliography 121

2

List of Figures

2.1 Avnet S6LX16 Development Board 14
2.2 Hardware setup and accompanying tools 15
2.3 Example entity . 16
2.4 Flip–flops, FFs . 18
2.5 Multiplexor, MUX . 19
2.6 A state machine . 22
2.7 A generic architecture of an FPGA 24
2.8 General architecture of Spartan–6, from [7] 25
2.9 A CLB of Spartan–6 . 26
2.10 Matrix of CLBs . 27
2.11 Types of interconnections in Spartan–6, from [7] 27
2.12 FPGA Design Flow . 29
2.13 Open New Project . 31
2.14 New Project window . 32
2.15 Specification of the FPGA chip 33
2.16 A summary of the project settings 33
2.17 New Project opened . 34
2.18 Adding a new source . 34
2.19 Name and location for the source file 35
2.20 Specifying the module interface 36
2.21 A summary of the module specification 36
2.22 A new module added . 37
2.23 The architecture of the incrementer, VHDL code 37
2.24 Included libraries . 38
2.25 Checking the syntax of the VHDL code pertaining to the module

toplevel . 39
2.26 A new testbench file . 40
2.27 Unit under test . 40
2.28 A summary of a test bench . 41
2.29 The test bench skeleton . 41
2.30 An assignment of test vectors . 42
2.31 Invoking ModelSim from ISE environment 42
2.32 Starting simulation in ModelSim 43
2.33 Adding signal waves in ModelSim 44
2.34 Simulation results . 45
2.35 Simulation results - detail . 45
2.36 Invoking XST within ISE Project Navigator 46
2.37 RTL design view . 47

3

LIST OF FIGURES

2.38 Design implementation . 48
2.39 Design mapping . 48
2.40 Design place and Route . 49
2.41 Choosing timing simulation . 50
2.42 Design and embedded platform 52
2.43 ISE Open New Project . 53
2.44 A new project summary . 53
2.45 ISE new empty project . 54
2.46 A new source of a type embedded processor 54
2.47 A summary of the newly created project 55
2.48 A Base System Builder . 55
2.49 Defining the type of a system bus 56
2.50 Creating a new design . 56
2.51 Defining the development board 57
2.52 Choosing the number of processors 57
2.53 Defining processor parameters . 58
2.54 Choosing peripherals for the hardware platform 58
2.55 A system with no cache memory 59
2.56 Applications to be created . 59
2.57 A summary of the hardware platform 60
2.58 A system view . 61
2.59 A block diagram of the created system 61
2.60 A Create and Import Peripheral wizard 62
2.61 CIP wizard welcome window . 63
2.62 A ’Create new peripheral’ option 63
2.63 Saving the new peripheral . 64
2.64 The name and version of the peripheral 64
2.65 A PBL interface for the peripheral 65
2.66 Interface resources for the peripheral 65
2.67 PLB Slave configuration for the peripheral 66
2.68 Software accessible registers . 66
2.69 Interconnect lines . 67
2.70 No simulation files for the platform 67
2.71 Support files for peripheral manipulation 68
2.72 Support files summary . 68
2.73 New peripheral core among the available IP cores 69
2.74 Files containing the peripheral logic 70
2.75 ISE project pertaining to the peripheral 70
2.76 User logic.vhd file . 71
2.77 User logic.vhd file: implementation of the incrementer architecture 71
2.78 Implementation of the ’write register’ process 72
2.79 Implementation of the ’read register’ process 73
2.80 Adding the path for the Implement Design 74
2.81 Location for the incrementer design files 75
2.82 Import peripheral . 75
2.83 The name and version of the imported peripheral 76
2.84 Overwrite the contents of previous files 76
2.85 VHDL type of source files . 77
2.86 Peripheral Analysis Order file as a source for the peripheral import 77
2.87 A list of VHDL–files for the peripheral import 78

4

LIST OF FIGURES

2.88 Slave mode for the peripheral communication 78
2.89 Peripheral ports . 79
2.90 Assigned parameters for the peripheral core 79
2.91 No interrupts included . 80
2.92 User defined parameters . 80
2.93 User defined ports . 81
2.94 A summary for the imported peripheral 81
2.95 Adding peripheral to the hardware platform 82
2.96 The properties of the new peripheral 82
2.97 Incrementer connection to the system PLB bus 83
2.98 Peripheral SPLB port . 84
2.99 Peripheral address space . 84
2.100Peripherals after generation of addresses 85
2.101The location of the ISE project for the embedded processor system 86
2.102Adding a new source to the embedded system 87
2.103The location of the constraints file 87
2.104Constraints file added to the project 88
2.105Opening the embedded platform in the XPS 89
2.106The system view in XPS . 89
2.107Generating libraries for the system applications 90
2.108Assigning default drivers . 90
2.109Adding a new software application 91
2.110Choosing the project name . 92
2.111New application project . 92
2.112The header file added to the project 93
2.113Adding a new source file . 94
2.114Choosing the name for the source file 94
2.115The code for the source file . 95
2.116Generate linker script . 97
2.117The application for the linker script 97
2.118Notification on SDK . 98
2.119Details of the linker script . 98
2.120Mark to Initialize BRAMs . 99
2.121A ’Build Project’ option . 100
2.122Update bitstream option . 101
2.123Avnet Programming Utility user interface 102
2.124User interface upon connecting to the development board 102
2.125The .bit file location . 103
2.126Configure FPGA . 104
2.127Confirmation of the FPGA type 104
2.128The Send and Receive consoles after the FPGA is programmed . 105

3.1 Schematic view of the toplevel entity 107
3.2 Schematic view of the toplevel entity 108
3.3 Com Module State Machine . 108
3.4 MIPS Quick Reference . 112

4.1 Suggested architecture for simple multi-cycle MIPS processor . . 115
4.2 Control Unit . 116
4.3 Example for the control unit state machine 116

5

LIST OF FIGURES

5.1 Suggested architecture . 118

6

Abbreviations

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

BRAM Block RAM

BSB Base System Builder

CIP Create and Import Peripheral

CLB Configurable Logic Block

DUT Design Under Test

FF flip–flop

FPGA Field Programmable Gate Array

FSM Finite State Machine

GP General Processor

HDL Hardware Description Language

IC Integrated Circuit

I/O Input/Output

IP Internet Protocol

LUT Look–up Table

MUX Multiplexor

PLB Processor Local Bus

RAM Random–Access Memory

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

Si silicon

SRAM static Random–Access Memory (RAM)

UART Universal Asynchronous Receiver/Transmitter

7

ABBREVIATIONS

USB Universal Serial Bus

UUT Unit Under Test

VHDL VHSIC HDL

VHSIC Very High Speed Integrated Circuit

XPS Xilinx Platform Studio

8

Chapter 1

Introduction

This compendium is an accompaniment for the set of lab assignments in the
course TDT4255 Computer Design which is given by the Computer Architec-
ture and Design group. It contains the description of the lab assignments, the
description of hardware and tools to be used and some practical information.
Because the tools are rather complex, the whole Chapter 2 is devoted to the
introduction of the tools and development environment which will be used for
assignments. Each of the three chapters which follow contains a description and
clarification for one of the course assignments.

Lab assignments are graded and these grades are part of the final grade in the
course. Therefore, it is to your best interest to carefully read this compendium
and understand its contents.

1.1 Practical Goal: the Processor Architecture
and Design

The main goal of the assignments is the design and implementation of a central
part of each computer – the processor. You will do this based on the knowledge
of computer architecture and computer hardware design which you will acquire
through the course lectures. The processor will be implemented on an FPGA
chip from the Spartan 6 family by Xilinx. Spartan 6 chip is placed on the
development board by Avnet with additional hardware resources which make it
possible to test the processor within a larger system.

You will implement different processor architectures i.e. multicycle and pipelined
architectures thereby obtaining practical knowledge about the operation of each,
their advantages and drawbacks. Assignments are presented in a way which will
give you a logical learning path for the processor architecture from ALU to the
implementation of the processor with its control and data paths.

1.2 Learning Outcome

The main learning outcome is:

• the knowledge of the processor core architecture

9

CHAPTER 1. INTRODUCTION

In addition, the lab assignments are organised in such a way which will
provide you with practical knowledge of computer hardware design, particular
steps of the design and implementation processes, reconfigurable chips, use of
VHDL, embedded systems design and use of advanced development environ-
ments such as Xilinx ISE Design Suite, in particular ISE Project Navigator and
Xilinx Platform Studio, XPS.

In brief, you will get the experience with the following:

• Hardware design in VHDL

• Steps of hardware design within a complex development environments such
as Xilinx ISE

• Design simulations in ModelSim

• Designing and programming for embedded systems (XPS)

• FPGAs

1.2.1 A Brief Overview of Hardware and Tools

The first hours of practical work in the lab are intended for familiarisation with
hardware and tools you will be using for the lab assignments. Therefore, we
have made a brief tutorial which makes the most of the Chapter 2 contents. In
order to introduce you to the sort of assignments which await you in this course,
you will complete a simple task through this tutorial.

1.2.2 Assignment 1

You will design and implement a simple multi-cycle MIPS processor in VHDL
and synthesise your design.

1.2.3 Assignment 2

In Assignment 2, you will design and implement a pipelined processor architec-
ture.

1.2.4 Assignment 3

Assignment 3, you will extend your previously implemented pipelined processor
to optimize its performance by implementing different hazard detection and
correction techniques.

1.3 Practical Information

Some practical information is provided in order to ease the process of prepar-
ing and delivering assignment results but also to prevent misunderstandings
regarding the content and grading of your deliveries.

10

CHAPTER 1. INTRODUCTION

1.3.1 Lab and Assistance

For this course you will be working in groups of two. You are free to choose your
group partner. In case you cannot find a fellow student to work with, contact a
teaching assistant for the course. He will be able to find a lab partner if there
are more students missing one.

The lab premises at which you will be working are on the fourth floor of the
IT-west building, room 458.

1.3.2 Deliveries

A delivery for each assignment should contain the following items:

• Report

• VHDL files with the design

• VHDL files with the test benches

• Source code of the test programs for the implemented processors

Remember to comment your VHDL code.

Report

A report is the most important part of the delivery. It not only presents your
work, also it shows how well you have understood the task and acquired the
needed knowledge. Therefore, it is important to spend some time studying the
tips on how to write a good report before you begin with writing one.

Firstly, a good report does not have to be a long one. On the contrary,
reporting is all about concise communication of the main ideas and solutions
regarding the report subject. Of course, the number of pages depends on the
concrete assignment and on the extent of your solution so it will vary according
to the need for a thorough description of your work. However, for the set of
assignments in this course, an average of 10 pages would suffice.

The style of writing need be particularly stripped off of all unnecessary in-
formation. The sentences should be clear, presenting precisely the idea you wish
to convey. Only the facts which are needed for providing a good picture of your
work should be kept.

Whenever you can present your results or ideas in figures or tables, do that!
One picture is worth thousands words. Of course, a figure or a table needs to
be thought up well so that it conveys the needed information in the concise and
easily understandable way. Then, remember to make references to figures and
tables throughout the text.

Moreover, references should be made to the sources of information such as
books, datasheets and similar, which you consult for writing a report. It is a
sign of a good writing style for a formal document.

A report should be organised hierarchically. While you are free to choose the
exact organisation, you should keep it within generally accepted framework for
report organisation. According to this, a report should contain following basic
sections:

11

CHAPTER 1. INTRODUCTION

Abstract – contains an overview of the work on the assignment. It provides a
brief description of the task and the achievements and results of the work
presented in the report. If such is the case, it also mentions the things
which have not been successfully implemented.

Introduction – introduces the task of the assignment and the challenges it
brings. Also, it gives a brief introduction to how the task was approached
and in which way the solution was reached.

Solution – describes your solution of the task. Contains a detailed description
of all the subtasks which have been solved and how they contribute to
the solution for the given task. The use of diagrams, figures, tables and
similar is welcome as a support to your description.

Result – presents the results: what has been successfully completed and what
did not work. If any ways around it were found, provide them at this
place. Every solution should be tested for its validity. This is the place
where you will describe what kind of testing you have performed and what
the outcome of your tests was.

Discussion – Discuss the assignment and your achievements. You are free to
critically assess your work – what could have been done better, which way
you would choose to go if given the same task again etc.

Conclusion – a brief conclusion of the performed work. Round–up the chal-
lenges and results

Bibliography – follows a report as a list of references which have been used
in the report.

1.3.3 Evaluation

Assignment deliveries are evaluated based on the delivered report and code. The
number of points you will score for the assignment is decided upon the following:

• To what extent the requirements of the assignment have been fulfilled

• The quality of the delivered report

• Code quality and technical solutions

• Testing

• Solutions which go beyond the assignment requirements

12

Chapter 2

A Brief Overview of
Hardware and Tools

The goal of this chapter is to introduce you to the hardware and accompanying
tools you will be working with on the course assignments. The content is kept
as simple as possible. However, the tools you will be working with are rather
complex so if you would like to look for more information about specific features,
a number of references to appropriate documents are provided throughout the
text. Moreover, as learning by doing has proved to be an efficient way of grasping
new knowledge, we have provided a brief tutorial to familiarise you with the
hardware and tools you are going to use throughout the semester.

2.1 Introduction

All three assignments are about computer design and implementation in hard-
ware. You will be asked to design a computer unit i.e. ALU unit or processor
core and implement the design in a chip. For the design, a Hardware Descrip-
tion Language (HDL) will be used. In particular, you will work with VHSIC
HDL (VHDL) within a Xilinx ISE development environment [4]. You will im-
plement your design in a reconfigurable chip, a Field Programmable Gate Array,
FPGA chip. In particular, you will work with a chip from the Spartan 6 family
by Xilinx which will be used within an S6LX16 development board by Avnet.
The board contains a number of other units which enable the access to Spartan
6 chip for its configuration as well as testing during its operation. Figure 2.1
shows the development board S6LX16.

Figure 2.2 shows a schematic view of the hardware with which you will work.
Different tools will be used for different stages of the development of the solution.
The snapshots of the tools are also shown in Figure 2.2 in relation to the parts
of the hardware setup they are used for.

2.2 VHDL

A brief overview of the main VHDL features follows.

13

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.1: Avnet S6LX16 Development Board

2.2.1 Introduction

VHDL is an extensive language. We encourage all who need more information
to buy a book: ’The VHDL Cookbook’ [1]. It is old but it describes the VHDL
syntax very well. However, it is not so good to describe what it is that distin-
guishes VHDL from programming languages and how VHDL should be written
so that the generated hardware is synthesisable into functional units.

VHDL is a language intended for specification of digital circuits. Originally,
the intention was to provide a brief and clear documentation of the circuits but
soon more possibilities were discovered. In the first place, it was the possibility
for the simulation of the VHDL code with the aim of checking that the circuits
perform as they should. After some time, it became possible to synthesise the
circuit description in VHDL. This meant an automatic conversion of the VHDL
code into actual logic circuits, either in Field Programmable Gate Array (FPGA)
or Application Specific Integrated Circuit (ASIC). Then it became possible to
make a complete design of digital circuits through a description in VHDL and
then let the tools generate implementation files for FPGA or ASIC production.

Although the whole VHDL language can be simulated by a VHDL simulator,
only a subset of VHDL can be synthesised. This often brings in problems for
fresh VHDL designers who write the code which can be nicely simulated but
cannot be synthesised. Therefore, it is useful to have synthesis in the back
of the mind during the design process so that no unpleasant surprises pop up
when the circuit comes to the synthesis stage. For good tips on how to write a
synthesisable VHDL code, we recommend ’HDL Coding Techniques’ chapter in
XST manual [2].

14

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

PC
Avnet
Prog.
Utility

UART
via

USB

S6LX16

Spartan-6PSoCISE
.bit file

1

2

3

Figure 2.2: Hardware setup and accompanying tools: 1 – Xilinx ISE Project
Navigator within which the configuration bitstream and a corresponding .bit
file are generated; 2 – Avnet Programming Utility which transfers .bit file to
the S6LX16 board via UART over USB connection; 3 – embedded system im-
plemented in Spartan 6 (block diagram generated within XPS)

15

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.3: Example entity

What is important for writing a synthesisable code is to think in the right
way during the design phase. You are all familiar with programming and VHDL
looks like a programming language. However, it is only so at the first glance.
When you are making circuit modules, you need to think as a digital designer.
Those who do not do so, often end up with writing a bad code or the code
which is impossible to synthesise. You have to see for yourselves about flip–
flops (FFs), Multiplexors (MUXs), buses and combinatorial logic. This level of
design is called Register Transfer Level (RTL). To come to that stage, you need
some experience.

2.2.2 Structure

Typically, a simple VHDL file implements a simple hardware module and con-
sists of three parts. The first part states which libraries will be used. This
is something which corresponds to the inclusion of header files in C. An ex-
ample which includes the library ’ieee’ and which specifically uses the package
’std logic 1164’ from this library would look like this:

l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

The second part consists of entity description. An entity shows how a hard-
ware module communicates with its environment, which signals go in and out
of the module. It is something which corresponds to the interface in Java. Here
is an example which defines a hardware module with three input signals, one
output signal and one 8–bit bidirectional bus:

en t i t y ek s empe l en t i t e t i s

port (
eksempel input : in s t d l o g i c ;
eksempelbuss : inout s t d l o g i c v e c t o r (7 downto 0) ;
eksempeloutput : out s t d l o g i c ;
c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c) ;

end ek s empe l en t i t e t ;

This entity corresponds to the circuit depicted in Figure 2.3.
The last part of a VHDL file contains the implementation of the correspond-

ing entity. This is called architecture and it is the place where the logic is

16

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

specified. One example of the architecture would be as following:

a r c h i t e c t u r e eksempelarch o f ek s empe l en t i t e t i s

begin

−− t h i s i s a comment
−− here comes the implementation i t s e l f

end eksempelarch ;

The architecture can instantiate modules defined in other VHDL files and,
therefore, a hierarchy can be made of VHDL modules which together make up a
complex system. Here is an example of the architecture which instantiates our
example module:

a r c h i t e c t u r e fu o f bar i s

s i g n a l ek sempe l input i : s t d l o g i c ;
s i g n a l eksempe lbus s i : s t d l o g i c v e c t o r (7 downto 0) ;
s i g n a l eksempe loutput i : s t d l o g i c ;

begin

eksempelmodul : ek s empe l en t i t e t
port map (

eksempel input => eksempe l input i ,
eksempelbuss => eksempelbuss i ,
eksempeloutput => eksempeloutput i ,
c l k => c lk ,
r e s e t => r e s e t) ;

end fu ;

Pay attention to the fact that the architecture defines three new internal
signals, just above begin. Simply stated, a signal is a conductor which is,
among other things, used as a connection between modules within the system.
In our example, you can see how each signal in the example module is mapped to
one of the internal signals in the architecture fu of bar which instantiates the
module. Therefore, it is natural that these internal signals are further used at
some other place within this architecture, either to connect the example module
with some other instantiated module or for the logic specified in this architecture
(architecture fu of bar).

2.2.3 The Description of Behaviour

The previous section showed how we can describe the structure of hardware
modules by entities and architectures. This is not enough for making a complete
hardware design. At one or another level, we need to specify logic behaviour.

As mentioned, the behaviour is specified within the module architecture.
Typically, it can be done in a so–called process. The process is a collection of
expressions which implement behaviour. One important thing to keep in mind
is that all processes and instantiated modules in one architecture are running in
parallel with each other. This is natural because both the instantiated modules
and processes represent digital circuits which are mutually connected. A process
is made like this:

17

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.4: Flip–flops, FFs

proce s s (c lk , r e s e t)
begin

−− the proce s s code comes here

end proce s s ;

A process begins with the specification of the so–called sensitivity list which
states to which signals the process will react. All changes of these signals lead
to the process running anew. In the example above, it is the signals clk and
reset which are in the sensitivity list. This is used by the simulator so that it
can recognise when to run the process anew. It is less clear what this is used
for by the synthesis tools. The synthesis tools you are going to use will ignore
the sensitivity list. Therefore, it is important to make a correct sensitivity list
with simulation in mind, otherwise the simulation will give wrong results i.e.
the synthesised design will not be as desired.

To summarise, the behaviour of a module is described by the com-
bination of instantiated submodules and processes. If the functional-
ity of a single module becomes too complex, typically it is split into
more submodules.

Combinatorial Design

Internally within the process, we typically want to be able to specify a given
digital circuit. This is done by the combination of sequential statements, boolean
expressions and signal assignments.

Signal Assignments In a process, a signal is assigned a value like this:

eksempe l s i gna l <= ’0 ’ ;

Sequential Statements There is a whole row of sequential statements in
VHDL. It can be somewhat confusing because the result of these statements is
no sequential program but the circuit structure.

Here is an example of if–statement which will result in the MUX shown in
Figure 2.5:

i f a = ’0 ’ then
b <= c ;

e l s e
b <= d ;

end i f ;

18

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.5: Multiplexor, MUX

Here is an example of case–statement which reminds on switch–case in C
and Java:

case a i s
when ’0 ’ =>

b <= c ;
when ’1 ’ =>

b <= d ;
end case ;

This case–statement will result in the same MUX as the if–statement above.
The advantage of using a case–statement becomes more obvious when a condi-
tioning signal (a in the above example) is more than one bit wide. For example,
if we had a 3–bit signal, there would be eight possible outcomes. In such a case,
one case–statement with eight when–expressions would be much nicer than a
row of nested if–statements.

Boolean Expressions We have certainly the possibility to implement boolean
algebra in VHDL. After all, that is the basis of the language for specifying dig-
ital circuits. Here are some examples:

a <= b and c ;
d <= d nor (e and f) ;

Flip–Flops

We often need a synchronous design i.e. the design which includes flip–flops.
So, how can we make a flip–flop in VHDL?

Flip–flops (and latches) are automatically generated if VHDL is written in
a specific way. Take a look at this example:

proce s s (c lk , r e s e t)
begin

i f r e s e t = ’1 ’ then
a <= ’0 ’ ;

e l s i f r i s i n g e d g e (c l k) then
a <= b ;

end i f ;
end proce s s ;

This is a so–called synchronous process with asynchronous reset. This means
that the circuit will react immediately to the reset signal if it is set high but
everything else is happening synchronously with the clock signal. If the reset

19

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

signal has value ’1’ (high), the signal a will be set low. If the reset signal is not
set and there is a rising edge on the clock signal (rising_edge(clk)), then a

will be set to the same value as signal b. This happens only when the clock
goes from low to high, therefore corresponding to the definition of a flip–flop.
Synthesis tools will therefore make a flip–flop for signal a.

Someone might notice that signal b is not in the sensitivity list. We have
already mentioned that the sensitivity list must contain all the signals to which
the process needs to react. Here, it is not necessary to include signal b because
a synchronous process needs to ’wake up’ only when either reset or clock signal
is changed.

It is worth mentioning that we could get arbitrarily complicated logic within
an elsif–block and all the signals which are set here would become FFs.

One important property of the process is that the signals which are used
within the process have a value from the previous time when the process was
run. Let us take a look at this new example of a flip–flop:

proce s s (c lk , r e s e t)
begin

i f r e s e t = ’ 1 ’ ;
a <= ’0 ’ ;
c <= ’0 ’ ;

e l s i f r i s i n g e d g e (c l k) then
a <= b ;
c <= a ;

end i f ;
end proce s s ;

Here, we have made two flip–flops of signals a and c. The flip–flop a will
be exactly as in the previous example. The flip–flop c will also be a common
flip–flop but which value will c get? A natural thing to think is that a and c will
always have the same values but this is not the case. c is assigned a previous
value of the signal a i.e. the value a got in the previous cycle. This circuit is
schematically shown in Figure 2.4.

Latches

It is also possible to make latches in VHDL. It can be done in the following way:

proce s s (b , c)
begin

i f b = ’1 ’ then
a <= c ;

end i f ;
end proce s s ;

Here, we have made a latch out of signal a. This is because we have not
specified what will happen if the signal b is low, we have just said what happens
when b is high. Therefore, the synthesis tools have to make a latch so that the
signal a is held constant in case b is low.

Latches are rarely needed so most often something has gone wrong if the
synthesis tools must introduce latches. Typically, we unintentionally forget to
specify all possibilities either in an if or a case statement as it was demonstrated
in the example above. To avoid a latch in this example, we can include an else

block which sets a to something when b is low.

20

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

State Machines

State machines are a common way to make a control logic in VHDL because
there is often a need for implementing some form of sequential logic. A usual
way of making a state machine is shown here:

a r c h i t e c t u r e fsm arch o f fsm i s

−− s e t up the new data type (nor . ’ t i l s t and ’ <=> eng . ’ s ta te ’)
type t i l s t a nd s t yp e i s (t i l s t and 1 , t i l s t and 2 , t i l s t a n d 3) ;

−− s t a t e r e g i s t e r
s i g n a l t i l s t a n d : t i l s t a nd s t yp e ;

begin

proce s s (c lk , r e s e t)
begin

i f r e s e t = ’1 ’ then
t i l s t a n d <= t i l s t a n d 1 ;

e l s i f r i s i n g e d g e (c l k) then

case t i l s t a n d i s

when t i l s t a n d 1 =>
t i l s t a n d <= t i l s t a n d 2 ;

when t i l s t a n d 2 =>
t i l s t a n d <= t i l s t a n d 3 ;

when t i l s t a n d 3 =>
t i l s t a n d <= t i l s t a n d 1 ;

when othe r s =>
t i l s t a n d <= t i l s t a n d 1 ;

end case ;

end i f ;

end proce s s ;

end fsm arch ;

This state machine is shown in Figure 2.6. First we introduce a new type
for our state register. This type contains all different states we need. Then we
set up the state register itself. It is a register because we assign it in an if

rising_edge(clk) block further below.

Our case–statement makes a choice over the state register and performs
different things dependent on the state we are in. The only thing which is done
in our example is to update the state register but a real state machine will in
addition do other things here. Pay attention to the when others-statement. It
is there to cover all possible states so that we can get a defined behaviour also
when we end up in an unexpected state for one or another reason.

21

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.6: A state machine

2.2.4 Simulation of VHDL Code

It is important to simulate the circuits designed in VHDL. Even if the design
can be tested out in an FPGA, there are limited debugging possibilities there
so typically the errors are found through simulations beforehand.

Test benches in VHDL

Simulation is typically conducted with the use of so–called test benches. These
are VHDL modules whose only task is to instantiate circuit designs (which are
called Unit Under Test (UUT) within the test context) and test if they work
as expected. This is done by setting the values for all inputs of a UUT which
is followed by checking if the circuit reacts correctly to these test vectors. The
entity of a test bench will not contain any signals because a test bench can not
be instantiated at any other place neither can it be synthesised. A test bench is
used only in a simulator so that all the possibilities and tricks of VHDL can be
used here. It is not necessary to worry about whether the code is synthesisable
or not. The code style in a test bench is therefore typically a bit different than
that in the circuit design.

Here is a test bench for the test module we made in section 2.2.2.

l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

−− empty en t i t y f o r t e s tbenche s
en t i t y t e s t e n t i t e t t b i s

end t e s t e n t i t e t t b ;

−− te s tbench a r c h i t e c t u r e
a r c h i t e c t u r e t e s tbench arch o f t e s t e n t i t e t t b i s

−− de c l a r e t e s t en t i t y
component t e s t e n t i t e t

port (
t e s t i npu t : in s t d l o g i c ;
t e s tbu s s : inout s t d l o g i c v e c t o r (7 downto 0) ;
t e s toutput : out s t d l o g i c ;
c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c) ;

end component ;

22

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

−− i n t e r n a l s i g n a l s
s i g n a l t e s t i n p u t i : s t d l o g i c ;
s i g n a l t e s t b u s s i : s t d l o g i c v e c t o r (7 downto 0) ;
s i g n a l t e s t o u t pu t i : s t d l o g i c ;
s i g n a l c l k i : s t d l o g i c ;
s i g n a l r e s e t i : s t d l o g i c ;

begin −− t e s tbench arch

−− i n s t a n t i a t e UUT (Unit Under Test)
UUT: t e s t e n t i t e t

port map (
t e s t i npu t => t e s t i n pu t i ,
t e s tbu s s => t e s t bu s s i ,
t e s toutput => t e s t ou tpu t i ,
c l k => c l k i ,
r e s e t => r e s e t i) ;

−− make c l o ck s i g n a l (100 ns per iod)
c l k p r o c : p roce s s
begin

whi l e t rue loop
c l k i <= ’1 ’ ;
wait f o r 50 ns ;
c l k i <= ’0 ’ ;
wait f o r 50 ns ;

end loop ;
end proce s s ;

−− pre s s the t e s t v e c t o r s
t e s t : p roc e s s
begin

−− f i r s t r e s e t the c i r c u i t
r e s e t i <= ’1 ’ ;
wait f o r 100 ns ;

r e s e t i <= ’0 ’ ;
wait f o r 100 ns ;

−− pre s s the t e s t v e c t o r s here in the same way as i t was done
−− with the r e s e t s i g n a l in the code above but t h i s time f o r
−− other s i g n a l s o f the c i r c u i t

−− . . .

end proce s s ;

end te s tbench arch ;

We can see that this is a description of a test bench module with completely
empty entity, no input or output signals for the module. Within the architecture,
UUT is instantiated (the module we would like to test). Then, a process follows
which produces the clock signal (with period of 100ns). Towards the end, there
is a process which first resets the circuit and then applies the test vectors. The
stimulation by test vectors is not given in this example but it is done by signal
assignments and wait statements.

Pay attention to the use of the language constructors such as while–loops
and wait–statements. These are not permitted in the synthesisable code but
can be used in test benches. Especially useful is a wait for X ns which can

23

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Connection
block

Switch box

Configurable
logic block

Configurable
I/O block

Figure 2.7: A generic architecture of an FPGA

be used to apply test vectors at different points in time. For the case of wait–
statements, a process will be run sequentially as in a common programming
language. Other useful VHDL possibilities specific for simulation from which
the test benches benefit include input/output to file and screen.

A good test bench will test most possible of the situations which can occur.
This can be done by manually writing a set of test vectors in the test bench
which will stimulate UUT. More advanced test benches can be written so as to
generate test vectors automatically with the use of a random number generator.
In this way, a large number of random test vectors can be tested and, therefore,
more can be covered than it would have been by hard–coding manually defined
test vectors into the test bench.

Simple test benches rely on the person who performs simulation to manually
examine in the simulator that the circuit reacts correctly to the stimuli from
the test bench. More advanced test benches check themselves if the output of a
UUT is correct or not and write the result down into the file.

2.3 Field Programmable Gate Arrays, FPGAs

FPGAs are semicustom, array–based, pre–wired digital integrated circuits ICs.
Introduced in the mid 1980s when the gap between the rising design complexity
and the design productivity was widening, FPGAs offered a solution in a form
of arrays of reconfigurable blocks whose logic function and interconnectivity
could be programmed by users. Among the chips which implement digital logic,
FPGAs are somewhere between Application Specific Integrated Circuit (ASIC)
and General Processor (GP). For the former, which are tailored to a specific
application, computation is done in hardware, while the latter make use of
silicon (Si) reusability by sequentially performing a sequence of instructions –
a program – on the same hardware. FPGAs can also be programmed through
the process of configuration of its logic blocks and their interconnectivity. They

24

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.8: General architecture of Spartan–6, from [7]

can be programmed many times i.e. reconfigured many times, abiding to the
requirements for a Si reusability as GPs do. However, in FPGAs a computation
is performed in hardware so that they benefit from the same advantages as
ASIC designs do, but avoiding at the same time the high production costs
which accompany ASIC design. Although high production costs prevent them
from being widely used, they have still found areas of application in certain
fields. However, due to the possibility to be reprogrammed, they have become
a valuable asset for prototyping because of the lower costs and time of the
prototype production.

Figure 2.7 shows a schematic view of the general FPGA architecture with
four main elements: Configurable Logic Blocks (CLBs), configurable Input/Output
(I/O) blocks, switch boxes and connection blocks. The logic implemented in an
FPGA chip is dependent on the configuration of the CLBs and interconnectivity
realised through switch boxes and connection blocks. Basic components of an
FPGA can be implemented in various ways and exact implementation is mainly
dependent on the manufacturer and the concrete FPGA family. A widespread
type of FPGAs are static Random–Access Memory (RAM) (SRAM)–based
FPGAs whose CLBs are implemented as Look–up Tables (LUTs) in SRAM
cells. A LUT can be pictured as a small memory block. They store a small
amount of data which can be accessed by immediately addressing the data loca-
tion. In that way, LUTs can replace processing units and save the time needed
for the computation. You will work with the SRAM–based FPGA chip by Xilinx
which comes from the Spartan–6 family.

2.3.1 Spartan 6

Spartan–6 [5] is the latest product from the Spartan family which is known as
a low–cost family from Xilinx. Manufactured in 45nm technology, it has also
been optimised for a low power consumption performing savings of up to 50% in

25

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.9: A CLB of Spartan–6 and its connection to the switch box: actual
connections are between the slices within the CLB and the switch box, from [7]

comparison to its 60nm predecessor Spartan–3A. Figure 2.8 shows a schematic
view of the Spartan–6 reconfigurable texture. A more detailed view is shown in
Figure 2.9 for the connection between a CLB and a switch box.

In Xilinx FPGA technology, the logic is organised in CLBs. Each CLB is
divided into so–called slices, see Figures 2.9 and 2.10. A slice in general repre-
sents a group of Look–up Tables and accompanying Multiplexors and flip–flops
which make possible the realisation of the desired sequential or combinatorial
logic. It is possible that slices contain some additional circuitry which makes
them better suitable for the implementation of arithmetic operations or the use
as distributed RAM and shift registers, for example.

I/O resources are manufactured in SelectIO technology and are grouped in
I/O interface tiles. Beside I/O blocks, each tile contains logic blocks and buffers.

Interconnects play an important part and in Spartan–6 there are four dif-
ferent types as shown in Figure 2.11. Fast interconnects are used in simple
functions to avoid unnecessary usage of resources otherwise used for imple-
mentation. Single interconnects are used for the connection with immediate
neighbours, while double interconnects do the same for every other tile. Quad
interconnects provide the connection with a fourth tile in all four directions,
something like the long lines in previous generations.

There is often a need for the design implemented in FPGA to make use
of certain amounts of memory. In order to reduce the time of accessing the
data stored in the memory, memory can be placed on the FPGA chip. On
one side, it is possible to use LUTs for that purpose. LUTs are used as data
storage and combined into memories of the desired size. Such usage is known
as ’distributed memory’ because the memory which is implemented in LUTs is
actually distributed across the chip area as are the LUTs which are used for
its implementation. On the other hand, Xilinx has also provided another type
of the on–chip memory – Block RAM (BRAM). As the name suggests, these
are dedicated memory blocks. BRAM can be accessed through dual ports. The
capacity is usually of several kB and an FPGA can contain several blocks of

26

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.10: The placement of the CLBs and the pertaining slices into a matrix,
from [7]

Figure 2.11: Types of interconnections in Spartan–6, from [7]

27

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

BRAM. Spartan–6 family contains up to 18kB of BRAM in blocks of 9kB.
More on BRAM in Spartan–6 can be found in [6].

There are many other features of Spartan–6, like handling of clock resources,
for example, which are examples of how clever design an implementation can
yield desirable results with respect to speed, power consumption and similar
requirements. For those interested in the details of the Spartan–6 architecture,
more can be found in the documents provided by Xilinx on its official site.

2.3.2 S5LX16 Development Board

For the development of FPGA–based applications, a range of development
boards exists. The one you will work with is produced by Avnet and is shown in
Figure 2.1. It contains one Spartan–6 chip, XC6SLX16-2CSG324C, and other
resources which enable the user to access the FPGA and test its operation.
The board is self–powered by a rechargeable battery which is recharged ev-
ery time the board is connected to the PC. The connection with the PC is
a Universal Asynchronous Receiver/Transmitter (UART) serial communication
via a Universal Serial Bus (USB) cable. On the PC side, the communication
with the board is realised through a virtual COM port configured for the fol-
lowing settings:

• 115200 bits per second

• 8 data bits

• no parity

• 1 stop bit

• no flow control

The power switch is SW1 and it has to be in the position on before the board
is connected to the PC. When a USB cable is connected between the board and
the PC, the diode D18 is lit up. If the battery was disconnected from the board
connector, the diode D16 will be blinking so make sure to connect the battery
before you start using the board. When the FPGA is being configured, the
diode D11 will blink blue and then remain lit up blue after the configuration is
completed.

2.4 Design and Implementation in FPGAs – a
Walk through the Xilinx ISE Design Suite

2.4.1 Xilinx ISE

The road from the design to the implementation in FPGA is not a simple, one–
step process. It takes several steps each of which is followed by the verification
of the design. Figure 2.12 shows a flow diagram of these steps according to the
specification by Xilinx. Other FPGA–vendors also provide their own specifica-
tion but, in essence, the steps are as described here.

28

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Design
Entry

Design
Synthesis

Design
Implementation

Xilinx Device
Programming

Back
Annotation

Behavioural
Simulation

Functional
Simulation

Static Timing
Analysis

Timing
Simulation

In-Circuit
Verification

DESIGN VERIFICATION

Figure 2.12: FPGA Design Flow (adapted from iseguide on www.xilinx.com)

29

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Design Entry – consists of the source files for the design modules and the
constraints the design should obey (user constraints, timing constraints,
area constraints, pin assignments). Source files may be of different types
but for the assignments you will make your design in VHDL (.vhd files).

Design Synthesis – generates a netlist for your design. A netlist is a descrip-
tion of your design in a form of a list of the design components, component
attributes and the interconnectivity between them. For the generation of
a design netlist, a Xilinx Synthesis Technology, XST, is used. As a result,
the netlist for your design is saved in a specific format – an .ngc file.

Design Implementation – implements the netlist provided in an .ngc file in
the form which corresponds to the particular FPGA chip so that the chip
programming can be performed for the available FPGA resources. Design
implementation is performed through three processes: Translate, Map and
Place and Route. The Translate process merges the netlist and the design
constraints and produces a logical design reduced to Xilinx primitives. The
latter is given in a form of Xilinx native generic database file, .ngd file.
The Map process produces a native circuit description file, .ncd file, which
maps the logic design to physical components of FPGA such as CLBs and
I/O blocks. The Place and Route process places the mapped design on
an FPGA and routes the interconnections between design components.
It produces an .ncd file with the design placed and routed for the actual
FPGA.

Xilinx Device Programming – generates a .bit programming file out of the
.ncd file produced in the Place and Route process. The programming
file provides the information for the configuration of the resources on the
physical chip.

Figure 2.12 also shows various types of design verification dependent on the
available format of the design. Verification at a high abstraction level (be-
havioural simulation) is fast, but it may not uncover all the timing issues which
may occur when the design is implemented on the chip. Verification at a low ab-
straction level (timing simulation) is slower but more accurate. Different types
of the design verification have already been explained in Section 2.2.

Xilinx ISE provides you with the tools to design and implement your design
on a Xilinx FPGA chip. It is an extensive and rather complex tool and for more
information we refer you to the product documentation. A tutorial about its
use is also added to the folder with useful files on the course It’s learning page
[4]. It may be helpful if you consult this document during your work on the
assignments as well as Xilinx database for FAQs and forums devoted to FPGA
design.

In order to introduce you to the ISE Project Navigator and show how to
perform the described steps, we present you with a simple task – to design and
implement an incrementer within ISE Design Studio. As a support, screenshots
are provided for each step. We advise you that you perform the described steps
yourself within ISE environment.

30

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Begin with a new project

Figure 2.13: Opening a new project in ISE Project Navigator

31

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.14: A New Project window with the specification of the project name
and the location for the project files

VHDL Design

Open the ISE Project Navigator from the Start menu of your computer. In
ISE, a design is implemented as a project so choose File → New Project
option from the menu bar on top as shown in Figure 2.13. A window will open
in which you will be asked to provide the name for your project and the location
for the corresponding files, see Figure 2.14. For the top–level source type leave
the offered option of HDL as you will make your design in VHDL. Click Next.

The window opens in which you are asked to specify a Xilinx chip you will
be using and the settings for your project. As Avnet S6LX16 development
board contains a chip from the Spartan 6 family i.e. XC6SLX16-2CSG324C,
your chosen options should be as in Figure 2.15. Mark that the speed grade
is changed to -2 from the originally offered -3. As a synthesis tool you will be
using Xilinx Synthesis Technology, XST, so leave the offered option chosen. For
the simulator within your project choose Modelsim–SE VHDL and VHDL as
a preferred language. Click Next. A summary of the project settings appears
as shown in Figure 2.16. Click Finish.

In the window which opens, see Figure 2.17, there is a Design pane in the
top left corner. In the Implementation view, as is originally chosen, this pane
shows all design files within the project. Design files are ordered hierarchically
according to the entities within the design they contain. For each project, there
is one top–level entity which contains all the remaining ones. At the moment,
only the chip is symbolically shown and the folder with user library modules is
empty.

To add a source file, right–click on the chip symbol and click on the New
Source, see Figure 2.18. A window like the one in Figure 2.19 opens. Here
you can choose the type of the source file to be included in the user library for
your project. Mark VHDL Module because VHDL was chosen for the design
in the project settings in the beginnings. Choose a name for your module. In
this simple exercise, there will be only one module which will be, therefore, a
top–level module. So, we suggest you name it simply a – toplevel. Leave the

32

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.15: Specification of the FPGA chip to be used in the project and the
project settings

Figure 2.16: A summary of the project settings

33

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Implementation View

Figure 2.17: New Project opened with no design sources

Figure 2.18: Adding a new source

34

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.19: Choosing type, name and the location to be saved at for the new
source file

suggested location for the toplevel source file to be saved in the project folder.
Click Next.

In the window which opens, define the interface of your toplevel entity –
the directions and types of the port signals. A simple design considered in this
example has four interface signals as shown in Figure 2.20. Input signal clk
stands for the input clock signal, input signal reset is a reset signal. When its
value is high, all the output lines should be reset, in this case to ’0’. The input
for the incrementer is provided on a 32–bit input bus, bus in. The result of
the incrementer operation is produced as an output on a 32–bit bus bus out.
If you do not specify interface signals for your module, you can do that in the
corresponding .vhd file. After making the choice, click Next.

A summary of your specification for the new module opens in a window, as
shown in Figure 2.21, where you can check once again if everything is as you
want. Click Finish if you agree.

ISE Project Navigator environment now shows a newly added module in the
Design pain in the top left. Below it, in the Processes pane, a list of available
processes for the design is shown when you mark the entity as shown in Figure
2.22. To the right, a VHDL code for the newly added module is generated based
on the specification you have provided. It is a skeleton which leaves you space
to implement the architecture of your module. Add the code as in Figure 2.23
which implements the behaviour of the incrementer module:

en t i t y t o p l e v e l i s
Port (c l k : in STD LOGIC;

r e s e t : in STD LOGIC;
bus in : in STD LOGIC VECTOR (31 downto 0) ;
bus out : out STD LOGIC VECTOR (31 downto 0)) ;

end t op l e v e l ;

a r c h i t e c t u r e Behaviora l o f t o p l e v e l i s

begin

35

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.20: Specifying the module interface

Figure 2.21: A summary of the module specification

36

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.22: A new module added within the design hierarchy

Figure 2.23: VHDL code which implements the architecture of the incrementer
module

37

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.24: The libraries which need to be included in order to make the code
from Figure 2.23 error–free

ADDONE: proce s s (c lk , r e s e t) i s
begin

i f r e s e t = ’1 ’ then
bus out <= (othe r s => ’ 0 ’) ;

e l s i f r i s i n g e d g e (c l k) then
bus out <= conv s t d l o g i c v e c t o r (unsigned (bus in) + 1 , 3 2) ;

end i f ;
end proce s s ADDONE;

end Behaviora l ;

It is as follows: when reset signal is high, it resets all lines of the output bus
to logic ’0’; otherwise, on the rising edge of the clock signal, it increments the
value on the input bus by one. For the sake of simplicity, no additional checks
have been implemented for the maximum value to be represented on the input
lines.

Beside the code given above, you also need to include some libraries in ad-
dition to those which are automatically included when a .vhd file for the new
module is created by the ISE Project Navigator. Figure 2.24 shows which li-
braries need to be included.

Before you proceed to the design synthesis step, you need to be sure that
your VHDL code is free of syntax errors. To invoke the syntax check, mark the
module in the Design pane (in this simple case it is only the toplevel module) and
in the Processes pane click on Check Syntax on a subtree below a Synthesis
- XST entry, see Figure 2.25. If the code is error–free, the message like the
one in the Console pane at the bottom is shown. In case there are any syntax
errors in the code, you may view them in the Errors pane at the bottom.

38

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.25: Checking the syntax of the VHDL code pertaining to the module
toplevel

Behavioural Simulation – ModelSim

Error–free syntax of a VHDL–code does not mean that the code will lead to
the generation of hardware which behaves in the way you would like it to. To
check if it is so, you need to simulate the behaviour of the module architecture
described by your code. The module behaviour can be simulated so that any
’misbehaviour’ can be detected at this early design phase and accordingly cor-
rected by re–writing the piece of VHDL code in question. For simulation, you
will use ModelSim as specified at the beginning of your project. In Figure 2.12
it is shown that for a design entry, in our case described in VHDL, a behavioural
simulation can be performed.

Behavioural simulation means the simulation of the VHDL code in its orig-
inal form with the assumption that all the components are perfect and with no
delay. It is a fast simulation and it can reveal many types of functional errors in
the circuit. Behavioural simulation can be run also only by ModelSim and then
no access to the synthesis tools is needed. A common approach to simulate a
given circuit is to make a test bench as described in Section 2.2.4. Once more,
a test bench is a VHDL entity which has an empty port description and whose
architecture instantiates the circuit design which will be tested. This entity is
known as a Unit Under Test, UUT. A test bench sets the test vectors and the
circuit response can be checked either manually in a ’waveform viewer’ or auto-
matically by the code in the testbench itself. A test bench is not synthesisable
and therefore it can not get use of the whole of the VHDL language.

Test benches can be written from scratch, but Xilinx ISE provides a support
for their generation as well, at least to the point when test vectors need to be
specified. Right–click on your toplevel in the Design pane and choose New

39

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.26: Creating a new test bench file

Source. In the window which opens choose VHDL Testbench for the source
type, see Figure 2.26. Choose the name for new source file as toplevel tb. Click
Next. In the next window you can choose with which entity from your design
the testbench will be associated, see Figure 2.27. In our case there is only one
– toplevel entity so select it and click Next. The summary of your testbench
appears as in Figure 2.28. Click Finish.

Figure 2.27: Choosing the entity which will be tested within the test bench

The generated code for the test bench is shown in the left pane of the ISE
Project Navigator. Take a look at the code, the entity has no interface input /
output signals, it cannot be synthesised. Further, mark that the UUT i.e. our
toplevel module is instantiated as a component, its input and output signals
mapped to signals within a test bench, see Figure 2.29. Also, mark the process
for clock generation. The result of this process is a signal which will play the
role of the clock signal for the testing purposes. The toplevel module is tested
within the process below the clock–generating process in Figure 2.29. Its inputs
are assigned certain test vectors at certain times. In Figure 2.30 you can see
how this is done – we have chosen a few test vectors for this purpose.

40

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.28: A summary information on the creation of a test bench file

Figure 2.29: The generated skeleton for the testbench

41

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.30: An example of the assignment of test vectors to the inputs of the
UUT

Figure 2.31: Invoking ModelSim from ISE environment

42

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.32: Starting simulation in ModelSim

The ISE software has a full integration with the ModelSim simulator. There-
fore, you can open the ModelSim simulator by clicking on the Simulate Behav-
ioral Model in the Processes pane when the toplevel test bench is marked,
see Figure 2.31.

In the Library view, you get the overview over all libraries and logical
structure. Your circuit will be in the ’work’ library after compilation. VHDL
files have to be compiled in the special sequence because of the dependencies
between the files. The compilation sequence is specified through the menu choice
compile → compile order. Here you can set the sequence by yourself or try
Auto Generate. This will compile all files and find the dependencies but it will
do so only if all the files are error–free. For your simple design of the incrementer
no specification for the compilation order is needed.

Compile the source files with the menu choice Compile→ Compile. When
you have more files to compile for simulation, you will use Compile→ Compile
All option. If all the files have been compiled without error, you may begin with
the simulation. Choose your test bench in the list over libraries (card ’Design’).
Remember that all your design modules are placed in the library ’work’. Menu
choice Simulate → Start Simulation starts the simulation see Figure 2.32.

In the simulation mode, you will get the list of all the component instances
in the workspace overview to the left. By clicking on one particular instance (for
example your testbench), a list of all signals in the current instance is acquired
(in the object window). What is desirable during simulation is to get the graphic
overview, a waveform, over the changes of the signals in the design during the
simulation run. This is set up in the following way:

• In the workspace overview, choose the instance with the signals you would

43

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.33: Adding signal waves in ModelSim

like to examine.

• Right–click in the object window and choose Add to Wave→ All Items
in Region see Figure 2.33. All signals in the chosen instance are then
added in the wave window which comes up to the right.

• Run simulation by writing run in the console window or by pressing the
corresponding button in the tools line.

Add all the signals in the test bench to the wave window. You will get
something similar as shown in Figure 2.33. Run simulations until you are certain
about that the incrementer works as it should. Figure 2.34 shows one part of
the simulation results, while the position of the cursor in Figure 2.35 shows
how the output bus changes at the rising edge of the clock signal. Although
in the simple design for the incrementer no subcomponents are present beside
the toplevel, keep in mind that it is also possible to examine the signals in the
subcomponents.

44

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.34: One part of the resulting simulation waves

Figure 2.35: The change of the output bus lines at the rising edge of the clock
signal

45

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.36: Invoking an XST tool within ISE Project Navigator

Synthesis
Now that you know that the syntax of your VHDL code is error–free and

that the behaviour of the hardware to be generated out of your VHDL code is
as desired, you can proceed to the synthesis step which creates a netlist out of
your design in VHDL. You will use Xilinx Synthesis Technology – XST synthesis
tool. If you have not invoked a syntax check beforehand, XST will do that
automatically thereby preventing synthesis of any code which is not error–free.
Figure 2.36 shows ISE Project Navigator after synthesis of your design described
in VHDL has been performed. The report can be viewed in the Console pane
at the bottom or, as shown in Figure 2.36, by clicking on View Text Report
on a pop–up menu for XST, when the synthesis report opens in the pane to the
right. You are advised to go through it in order to understand how your design
has been transformed from the VHDL–described level to the so–called Register
Transfer Level, RTL.

The generated netlist containing both – logical design and constraints (which
were none in the incrementer example) is saved in the .ngc file in the project
folder. The content of the file can be interpreted into an understandable form for
you by clicking, for example, on View RTL Schematic, so that your design at
the RTL can be viewed in the right pane of ISE Project Navigator environment,
see Figure 2.37.

46

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.37: Viewing the design at the register transfer level, RTL

Implementation
As mentioned, the implementation of your design aims at producing a bit-

stream in a form of a .bit file which can be used for the configuration of the
FPGA chip. Now we shall go through the three steps of this process which were
invoked during implementation.

First, the generated logical design is translated into an equivalent description
only expressed with Xilinx primitives. The design expressed with Xilinx primi-
tives is kept in an .ngd file within the project folder. The Map process mapped
the logical design from the .ngd file into available resources on the FPGA chip
for which the project was setup. By clicking on View Text Report on the
pop-up menu pertaining to the Map process in the Processes pane, the re-
port is opened in the right pane. Figure 2.39 shows one segment of this report
where the summary on the slice logic utilisation and distribution is shown. You
are advised to go through the report and learn about the usage of individual
components of the FPGA for your design – the CLBs, LUTs within them, I/O
components. The data connected to your design at this level are kept in an
.ncd file in the project folder. It physically represents the design mapped to the
components in the Xilinx FPGA.

The step Place & Route, as the name suggests, places and routes the
design in the way it will be implemented on an actual FPGA chip. In other
words, the FPGA chip is configured based on the design generated in this step.
The process itself uses the data from the .ncd file generated in the Map step and
generates another .ncd file which corresponds to the placed and routed design
and which is directly used for the generation of the configuration bitstream for
the FPGA chip.

47

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.38: Implement Design step for the toplevel module and the generated
report

Figure 2.39: Map step within the design implementation and the generated
report

48

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.40: Place and Route step for the toplevel module and one part of
the generated report

49

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.41: Choosing the timing simulation within the ISE environment

Timing Simulation – ModelSim
A circuit which is synthesised for a specific FPGA will always have certain

delay. Different paths through the circuit have different delays. This can affect
the circuit behaviour and lead to errors which are not possible to discover by
behavioural simulations. After a circuit has been synthesised by the Xilinx ISE,
it is, therefore, important to simulate the circuit anew with the help of the
so–called timing simulation. It is also performed by the ModelSim, but this
time based on the circuit description with the timing information generated
by Xilinx ISE and not directly on the original VHDL files. Timing simulation
is much more time–demanding than behavioural simulation and, therefore, it
should come in addition to the behavioural simulation and not as a replacement
for it. You can invoke the timing simulation from the ISE environment in the
same way as behavioural simulation, the only difference being that you need
to choose Post–Route item in the drop–down list which corresponds to the
Simulation view in the Design pane as shown in Figure 2.41.

Therefore, in Xilinx ISE you can start timing simulation in ModelSim in the
following way:

• Make sure that the test bench you have previously made is added to the
project.

• Choose ’Post–Route Simulation’ in the source window.

• In the process window you have to right–click on ’Simulate Post Place &
Route Model’ (under ’ModelSim Simulator’) and choose ’Run’.

• Then you are coming directly in the simulation mode in ModelSim.

50

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Run the simulation and check if the functionality is still correct. Pay atten-
tion to the fact that not all signals are changed at the same time with the clock
signal but first after a little delay.

Generating the programming file
The configuration bitstream which is used for programming the FPGA chip

is generated in a form of a .bit file within a process invoked by clicking on a
Generate Programming File item in the Processes pane. The processes for
the generation of the configuration files for chip–programming devices can be
further invoked (see the list in the Processes pane) dependent on the concrete
device which is used for programming the chip. However, as mentioned in
the beginning of this chapter, for this purpose you will use Avnet Programming
Utility which uses the generated .bit file and transfers it to the board containing
Spartan 6 chip over the USB cable. Therefore, the walk through ISE Project
Manager is completed with the generation of the programming file.

51

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

MicroBlaze PLB

Communication
module

MicroBlaze and supporting
IP cores

Data / Instruction
PLB

Communication
with

UART

Design for the assignment

Figure 2.42: The relation between the design created for the assignment and
the embedded platform within which it is to be implemented.

2.4.2 Xilinx EDK – Designing an Embedded Platform

The design which you will make for each of the assignments will not be imple-
mented on FPGA chip as a sole design. It will be implemented as a part of the
embedded platform which is run by a Micro Blaze soft processor. Figure 2.42
shows a schematic view of the design which will be implemented on an FPGA.
The design you are going to make for each assignment is depicted as a shaded
box which contains a communication module beside other modules dependent
on the concrete assignment. The purpose of the communication module is to
provide a correct communication between your design and the MicroBlaze PLB
bus. The PLB bus is controlled by a MicroBlaze soft processor and one of the
IP cores also connected to it is a communication module for UART through
which the communication with the PC is established thereby enabling you to
interact with the program running on the processor core you will implement on
an FPGA.

For the assignments, you will be given a set of support files which will contain
design for some of the modules for the assignment. The communication module
will be among them. It will be left for you to connect the given modules and the
modules you will design yourself in a correct way so that your design performs as
desired. Further in this section we present you with the design of an embedded
platform and show you how to include in it the incrementer from the previous
section.

Start ISE Project Navigator from the Windows Start menu by clicking on
Start → Xilinx ISE Design Suite 12.4 → ISE Design Tools → Project

52

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.43: Opening new project in ISE Project Navigator

Navigator. Click on the menu item File → New Project and in the window
which opens, find the location where you would like to save your project files and
choose the name for the project as, for the example in Figure 2.43, TestExercise0.
Click Next.

Figure 2.44: A summary of the new project in ISE Project Navigator

Choose the project settings as in Figure 2.15. Click Next. A summary of
the project appears, see Figure 2.44. If you agree with the provided information,
click Finish.

The new project opens in the default Implementation view, as in Figure
2.45. Right–click on the design as shown in Figure 2.18 before and in the
window which opens choose Embedded Processor for the Source Type in the
left pane. Name the system, for example system, as shown in Figure 2.46 and
accept the offered path for saving your new source. Click Next.

A window opens in which the summary of the system is shown as in Figure
2.47. Pay attention to the notification at the bottom of the window which says

53

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.45: A new project in ISE Project Navigator with no assigned files

Figure 2.46: Adding a new source file corresponding to an embedded processor

54

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.47: A summary of the newly created project

that ’EDK will be launched to allow you to configure your new processor design’.
Click Finish.

Figure 2.48: Switching from ISE Project Navigator to XPS

After a few moments, a Xilinx Platform Studio opens and a message appears
as shown in Figure 2.48 where you are asked if you would like to use a Base
System Builder (BSB) wizard to create your system. Click Yes.

Further, the wizard will ask you what type of bus you would like to choose
for the connections within your embedded system. Choose the PLB as shown
in Figure 2.49 and click OK. In the next window opened by the wizard choose
the option I would like to create a new design and click Next, see Figure
2.50.

55

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.49: Choosing the type of the bus for the system: choose Processor
Local Bus, PLB

Figure 2.50: Creating a new design

56

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.51: Choosing the development board for the hardware platform: choose
Avnet board Avnet Spartan–6 LX16 Evaluation Board

Now the wizard asks you to specify for which board you will develop the
embedded system. Make a choice as shown in Figure 2.51: for the Board
Vendor choose Avnet, for the Board Name choose Avnet Spartan–6 LX16
Evaluation Board. Click Next.

Figure 2.52: Choosing the number of processors for the system

Then, you are asked to define system configuration with respect to the num-
ber of processors. For the purpose of providing a communication for your design,
one processor will suffice. Therefore, choose the option Single–Processor Sys-
tem as shown in Figure 2.52 and click Next.

Now you are asked to define some parameters for the processor. Make the
choice as shown in Figure 2.53: MicroBlaze for the Processor Type, keep the
system clock frequency as offered i.e. equal to the reference clock frequency and

57

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.53: Defining processor parameters

for the Local Memory choose the amount of 32KB. Click Next.

Figure 2.54: Choosing peripherals for the hardware platform: mark that the
parameters for the UART peripheral are set so that they comply with the com-
munication parameters for the Avnet board

Now that the processor is specified, you are asked to choose peripherals.
Make the choice as shown in Figure 2.54, removing all the components apart
from the component for the communication with UART and the components for

58

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.55: A system with no cache memory

data and instruction transfer between the MicroBlaze processor and Processor
Local Bus (PLB) interconnections. Click Next.

In the next window just click Next as there is no cache memory, see Figure
2.55.

Figure 2.56: Applications for the platform to be created by the wizard

The Application window opens as shown in Figure 2.56. Mark that for the
application Test microblaze 0 as a standard I/O USB UART is chosen. This
corresponds to the peripheral you have chosen in one of the previous windows
which will realise the needed communication for our design. Click Next.

A summary of your design appears as in Figure 2.57. Pay attention to the
location of the files created in XPS pertaining to your system: they are placed
in the folder system within the folder corresponding to the project opened in
ISE Project Navigator environment which invoked the XPS. Also note the file
system.ucf in the folder data within the system folder. This file contains the

59

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.57: A summary of the hardware platform to be created

constraints for your system design which will be later used for the generation of
the programming file. Click Finish.

Now you can view the system design created by Base System Builder wizard
according to your specification see Figure 2.58. In the Project pane to the
left, there are three tabs – the Project tab which contains information on the
files associated with the project and basic project options, the Applications
pane with the associated software applications (for the time being there are just
those generated by the wizard) and the IP Catalog pane. It contains IP cores
which can be incorporated into your system. For the time being there are only
those pre–built but soon you will add one of your own – the design created in
the previous section.

In the window to the right of XPS, there are again several tabs. Figure 2.58
shows one of them, System Assembly View. Go through the tabs and pay
attention to which components are present in your system. If you are interested
in learning more about XPS, look into supporting documentation like [3]. Figure
2.59 shows a block diagram of the created system.

60

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.58: System view of the created design for the hardware platform

Figure 2.59: A block diagram of the created system

61

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.60: Invoking a Create and Import Peripheral wizard from the
XPS menu

Create and Import Peripheral

You will add the designed incrementer (see section 2.4.1) as a user peripheral
core to the hardware platform based on a MicroBlaze soft processor and a PLB.
However, for this purpose a design from section 2.4.1 needs to be extended with
the module which will enable the incrementer to communicate with the rest of
the platform hardware over the PLB. This module will realise the corresponding
communication protocol.

We shall use again a wizard to help us create a peripheral core. Figure
2.60 shows how you can start a Create and Import Peripheral (CIP) wizard
by choosing the corresponding menu option. A welcome window appears as in
Figure 2.61. Click Next.

In the window which opens choose the option Create templates for a
new peripheral, see Figure 2.62, as you will need to create a new peripheral
module which implements the logic of the incrementer created in section 2.4.1
but also the communication protocol with the PLB system bus. Click Next.

For the location where the files pertaining to your peripheral will be saved
choose To an XPS project as shown in Figure 2.63. As indicated at the
bottom of the screen, the files will be saved in the subfolder pcores within your
project tree. Click Next.

Choose the name for the peripheral, incrementer as for the example in
Figure 2.64.The version will be automatically set for you by the wizard. Click
Next.

62

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.61: CIP wizard welcome window

Figure 2.62: Choosing the option Create new peripheral

63

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.63: Save the new peripheral within your XPS project tree

Figure 2.64: Assigning the name and version for the peripheral

64

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.65: The choice for the PLB interface for the peripheral

For the interface for the new peripheral choose PLB as in Figure 2.65 and
click Next.

Figure 2.66: Choosing interface resources for the peripheral

In the window which opens you may choose interface resources for the pe-
ripheral. For this simple example of an incrementer, make the selection as shown
in Figure 2.66 and click Next.

Your peripheral was chosen to interface the system bus as a slave. In embed-
ded systems, the communication is realised via buses. In our system, the system
bus was chosen to be a PLB type. All components connected to the system bus,
the processor and peripherals alike, need to obey certain communication proto-
col during the data transfer via bus lines. In our system a Master/Slave mode
was chosen in which one component, the MicroBlaze processor in our case, is a
Master of all the data transfer via PLB, acting as an initiator of the transfers.

65

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.67: PLB Slave configuration for the peripheral

Peripherals are assigned the role of slaves. So does the incrementer acts as a
slave within the communication protocol. For the configuration of the slave
interface which appears, see Figure 2.67, choose the offered solution where no
bursts or use of cache are allowed for the transfer and click Next.

Figure 2.68: Choosing the number of software accessible registers: 2 in our case

In this window you can choose the number of registers which can be accessed
through the software i.e. which can be read and written by your program. We
shall make a choice of 2 because we plan to use one register for writing the
data for the incrementer and another for reading the data from the incrementer
output. Click Next.

The window shown in Figure 2.69 leaves you the option of choosing which
interconnect lines to leave between the new peripheral and the rest of the system.
By highlighting a line in the middle pane, the corresponding description appears

66

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.69: Interconnect lines between the new peripheral and the rest of the
system

Figure 2.70: No simulation files to be added in the platform

67

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.71: Asking wizard to create support ISE and XST files for the periph-
eral and examples for the supporting drivers

in the right pane. In Figure 2.69, you are shown an example of the description
for the data lines from the PLB bus to the peripheral. Also, mark the schematic
view in the left pane. The logic you implemented for the incrementer in section
2.4.1 will be placed in the block User Logic. Choose the suggested interface
lines and click Next. In the next window, see Figure 2.70, click Next without
ticking the offered possibility to generate test bench files. This is because all
the simulations for your logical design will be done in ModelSim beforehand.

In the next window, see Figure 2.71, tick the two options which will help
you create your peripheral – for the wizard to generate ISE and XST project
files and driver files for the software interface. The former ones will help you
implement your design while the latter ones will provide you with the skeleton
and example code for accessing and making use of your peripheral. Click Next.

Figure 2.72: A summary of the support files for the created peripheral

68

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.73: The new user peripheral core added among the available IP cores

A window with the information about the new peripheral opens as in Figure
2.72. You are advised to scroll through the central pane and revise once more
what files will be created and where they will be placed. Click Finish.

The newly created peripheral is shown among other IP cores under Project
Local Cores subtree, see Figure 2.73.

The user logic design, i.e. the logic of your incrementer, will be added within
ISE Project Navigator for the project created by CIP wizard. As specified, the
accompanying files are placed in one of the subfolders within the project tree as
shown in Figure 2.74.

Close the XPS environment and open this project in ISE Project Navigator.
Figure 2.75 shows this project opened. Two main .vhd files can be seen in
the Project pane: plbv46 slave single.vhd which implements the design
needed for the communication with the PLB and user logic.vhd which will be
updated with the design of the incrementer from the section 2.4.1. Open this
file in the right pane and scroll through its contents. You will see that CIP
wizard has created most of the interface and PLB–related logic for you. It has
also marked the sections which you should not change and the sections in which
you are free to add your own design. Scroll to the section for the declaration of
signals, variables and components which will be used in the description of the
entity’s behaviour and add the following code, as shown in Figure 2.76:

component t o p l e v e l
port (c l k : in STD LOGIC;

r e s e t : in STD LOGIC;
bus in : in STD LOGIC VECTOR (31 downto 0) ;
bus out : out STD LOGIC VECTOR (31 downto 0)) ;

end component ;

69

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.74: The placement of the files which can be used for further develop-
ment of the peripheral logic within ISE and XST

Figure 2.75: ISE project for the peripheral, located at
<ISE system project>\system\pcores\<your pcore>\devl\projnav\

70

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.76: User logic.vhd file and the section for the implementation of the
incrementer architecture: designed incrementer from section 2.4.1 is included as
a component

Figure 2.77: User logic.vhd file and the section for the implementation of the
incrementer architecture: instantiation of the incrementer component

71

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.78: User logic.vhd file and the section for the implementation of the
process ’SLAVE REG WRITE PROC’

You will use the incrementer design from section 2.4.1 as a component within
a larger system so the incrementer component needs to be instantiated. Scroll
through the user logic.vhd file to the section of the architecture description
and add the following code below the wizard–generated line –USER logic
implementation added here, as shown in Figure 2.77:

Exerc i s e0 : t o p l e v e l port map
(c l k => Bus2IP Clk ,
r e s e t => Bus2IP Reset ,
bus in => s l v r e g0 ,
bus out => s l v r e g 1) ;

It instantiates the incrementer component with the signals within the ar-
chitecture of the user logic block within the peripheral. Scroll further down to
the process which describes the write operation of the data from the PLB to
the software accessible registers. It is our intention to use register 0 for writing
and register 1 for reading from the peripheral core. This can be seen from the
signal assignments in the port map list for the bus_in and bus_out. There-
fore, comment or delete the lines related to register 1 when writing the data for
the incrementer with the data from PLB, see Figure 2.78. Your code for the
wizard–generated process ’SLAVE REG WRITE PROC’ should look like this:

SLAVE REG WRITE PROC : proce s s (Bus2IP Clk) i s
begin

i f Bus2IP Clk ’ event and Bus2IP Clk = ’1 ’ then
i f Bus2IP Reset = ’1 ’ then

s l v r e g 0 <= (othe r s => ’ 0 ’) ;
−− s l v r e g 1 <= (othe r s => ’ 0 ’) ;

72

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.79: User logic.vhd file and the section for the implementation of the
process ’SLAVE REG READ PROC’

e l s e
case s l v r e g w r i t e s e l i s

when ”10” =>
f o r byte index in 0 to (C SLV DWIDTH/8)−1 loop

i f (Bus2IP BE(byte index) = ’1 ’) then
s l v r e g 0 (byte index ∗8 to byte index ∗8+7) <=

Bus2IP Data (byte index ∗8 to byte index ∗8+7);
end i f ;

end loop ;
−− when ”01” =>
−− f o r byte index in 0 to (C SLV DWIDTH/8)−1 loop
−− i f (Bus2IP BE(byte index) = ’1 ’) then
−− s l v r e g 1 (byte index ∗8 to byte index ∗8+7) <=
−− Bus2IP Data (byte index ∗8 to byte index ∗8+7);
−− end i f ;
−− end loop ;
when othe r s => nu l l ;

end case ;
end i f ;

end i f ;

end proce s s SLAVE REG WRITE PROC;

Analogously, for the process ’SLAVE REG READ PROC’, comment or delete
the line related to reading of the register 1 as shown in Figure 2.79. The process
’SLAVE REG READ PROC’ in your code should look like this:

SLAVE REG READ PROC : proce s s (s l v r e g r e a d s e l , s l v r e g0 , s l v r e g 1) i s
begin

case s l v r e g r e a d s e l i s
−− when ”10” => s l v i p2bu s da ta <= s l v r e g 0 ;

73

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.80: Adding the path for the Implement Design process

when ”01” => s l v i p2bu s da ta <= s l v r e g 1 ;
when othe r s => s l v i p2bu s da ta <= (othe r s => ’ 0 ’) ;

end case ;

end proce s s SLAVE REG READ PROC;

Your peripheral core now contains the logic implemented in another project,
the project you made in section 2.4.1. For further synthesis and implementation
within a larger system, it is necessary to provide the path for the location of this
file. Highlight the name of the top level in the upper pane of the Design tab and
right–click on the pop–up menu item Process Properties which opens when
Implement Design is highlighted in the Processes pane, see Figure 2.80.
Choose the location of your project files as shown in Figure 2.81. Click Apply
and then OK. Check the syntax and exit ISE Project Navigator environment.

You will open XPS to add the updated peripheral in your hardware platform.
Choose the menu option Hardware → Create and Import Peripheral as
in Figures 2.60, 2.61. In the window which opens after the welcome window,
choose Import existing peripheral option, see Figure 2.82.

74

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Location of the project which implements the incrementer logic

Figure 2.81: Adding the path of the project with the .vhd file which contains
the description of the incrementer design

Figure 2.82: Choosing to import the peripheral

75

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.83: Assigning the name and version to the peripheral to be imported

Figure 2.84: Confirmation that the peripheral to be imported should overwrite
the contents of previous files

As in Figure 2.63 choose the XPS project as the place where to save the
corresponding files. Choose the incrementer for the name of the toplevel for
the peripheral and accept the offered version, see Figure 2.83. Click Next. For
the notification that a peripheral with such name already exists, click Yes that
you want to overwrite its contents as shown in Figure 2.84.

For the type of the source files choose the first option – HDL source files
and click Next, see Figure 2.85.

Now you are asked to define the source of your peripheral–related .vhd files.
Because the CIP wizard has already created Peripheral Analysis Order file and
placed it in the data folder below the folder corresponding to the new peripheral
in the project tree, you are advised to use this file as a source of your design
files. As Figure 2.86 shows, locate this file through the Browse button and

76

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.85: Opting for the source files to be provided in the HDL form, VHDL
in our case

Figure 2.86: Providing the Peripheral Analysis Order file as a source for the
import of the peripheral

77

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Click this button
to search for

the project folder

Added .vhd file

Figure 2.87: A list of VHDL–files which will be included for the imported pe-
ripheral

click Next.

In the window which opens, see Figure 2.87, a list of .vhd files is shown which
will be included into the imported peripheral. Pay attention to the two bottom
lines. They refer to .vhd files you have modified in ISE Project Navigator so as
to include the logic of the incrementer. Click Next.

Figure 2.88: Choosing the peripheral communication mode as a slave to a system
PLB bus

For the interface between the new peripheral and the system bus choose
PLBv46 Slave as shown in Figure 2.88. Click Next.

Scroll through the list of ports which opens in the next window, as shown in
Figure 2.89. Notice that the CIP wizard has created the signals for the interface

78

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.89: Peripheral ports

between the peripheral and the rest of the system obeying the signal naming
convention so that it is easy to determine the connections between the two.
Click Next.

Figure 2.90: Assigned parameters for the peripheral core

Click Next for the offered assigned parameters, Figure 2.90 and for the
interrupts – there were none included, see Figure 2.91.

Also, for the two windows which follow regarding the user defined parameters
and ports, accept offered choice and click Next, see Figures 2.92 and 2.93.

A peripheral summary appears as shown in Figure 2.94. Click Finish.

79

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.91: No interrupts included

Figure 2.92: User defined parameters

80

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.93: User defined ports

Figure 2.94: A summary for the imported peripheral

81

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.95: Adding peripheral to the hardware platform

After the peripheral is imported, it needs to be added to the hardware plat-
form. Right–click on the peripheral on the Add IP item in the pop–up menu to
add the peripheral in the System Assembly View in the central pane, see Figure
2.95.

Figure 2.96: The properties of the new peripheral within the hardware platform

In the window which opens you may view the properties of the new peripheral
within the hardware platform, see Figure 2.96. Click OK.

Now the instance of the new peripheral appears in the System Assembly pane
but it is still not connected to any of the buses within your hardware platform.
In order to connect the Slave PLB interface of the incrementer peripheral, open

82

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.97: Connecting the added incrementer peripheral to the system PLB
bus

the drop–down list by the SPLB interface of the incrementer 0 peripheral and
choose mb plb as shown in Figure 2.97. This is the MicroBlaze mastered PLB
system bus.

Now your peripheral is connected to it, inspect the schematic of the bus
connections to the left. Inspect the Ports and Addresses tabs of the System
Assembly View. In the Ports tab for the incrementer 0, you may notice that
its SPLB port is connected to the mb plb bus as previously defined, see Figure
2.98.

In the Addresses tab, under the Unmapped Addresses, assign 64K ad-
dress space to the new peripheral, see Figure 2.99, and then click on the Gen-
erate Addresses button in the top right corner.

As Figure 2.100 shows, the newly added peripheral is assigned the base
address 0x84418000.

83

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.98: Peripheral SPLB port

Generate Addresses button

Figure 2.99: Assigning the address space to the peripheral

84

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.100: System peripherals after generation of the corresponding addresses

85

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.101: The location of the ISE project for the embedded processor system

Programming FPGA

Now we need to configure the FPGA – Spartan–6 chip on the Avnet development
board – according to the system design. In other words, we need to program
the FPGA to perform an incrementer functionality. In addition, we shall make
a short software program which will run on FPGA. It will enable the user to
send a number to the FPGA and read the response from the incrementer. By
inspecting these values, the operation of the incrementer can be verified.

The FPGA is programmed by downloading a configuration .bit file. In sec-
tion 2.4.1, we have seen how a .bit file is generated within ISE Project Navigator
environment. In the same way we shall generate a programming .bit file for the
system we have designed. In addition, as we intend to download the executable
.elf file for the pertaining software as well, the generated .elf file needs to be
merged with the configuration .bit file so as to produce a .bit file which is to
be downloaded to the FPGA. The content of the .elf file will reside in the
Spartan–6 BRAM memory. Therefore merging of the .bit file and the .elf file
corresponds to the update of the .bit file so that it contains the data from the
.elf and configures the BRAM with these data.

Let us now first generate a .bit file for the designed system. Open the Project
Navigator for the system. It is the project you initially made for the embedded
processor system. Figure 2.101 shows its location for our example. The only
component is system.xmp which contains the information about the system
design except the information on the constraints. Therefore, the constraints
file needs to be added manually. When the design was created in the XPS

86

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.102: Adding a new source to the embedded system

environment, a constraints file was generated, as said, and now you will add
this file to the system design in ISE Project Navigator so that the constraints
are included as well.

Right–click the system.xmp source and click on the Add Source item in
the pop–up menu which opens, see Figure 2.102.

Figure 2.103: The location of the constraints file within the generated system
platform

Locate the system.ucf file in the <project_ name>\system\data\ folder
as shown in Figure 2.103.

Now your project should look like in Figure 2.104. Highlight the top level
source in the Design tab and click on the Generate Programming File
in the Processes pane below. You will get some warnings at the Translate

87

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.104: Constraints file added to the project

and Place & Route phases but ignore them as they refer to unrouted signals
within the system which are not needed for our simple design. For the software
development, we shall use XPS environment.

Open the project in XPS by double–clicking on the top level system(system.xmp)
in the Design pane, see Figure 2.105. Click on the tab Applications on the
left side.

Figure 2.106 shows its appearance and two test applications which were cre-
ated by the wizard. On the Software menu click on the Generate Libraries
and BSPs item, as shown in Figure 2.107. Click on the item Assign Default
Drivers, see Figure 2.108. Now you will create a new application which will
test the incrementer. Click on the Add Software Application Project as
shown in Figure 2.109.

88

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.105: Opening the embedded platform in the XPS: double–click on
system.xmp file

Figure 2.106: The system view in XPS: Applications tab shows test applica-
tions created by the wizard

89

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.107: Generating libraries for the system applications

Figure 2.108: Assigning default drivers

90

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.109: Adding a new software application

91

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.110: Choosing the name for the project

A window opens in which you are asked to provide the name for the project.
In the example shown in Figure 2.110, a ’rwIncrementer’ is chosen for the
project’s name. Click OK. Your application project is now added to the list of
applications as Figure 2.111 shows.

Figure 2.111: New application project

Before you continue with writing a program, make a folder within the project
tree of folders where you will save the files related to your project. When you
take a look at the folder <project_name>\system, you will notice that there is
a folder for each of the two test applications generated by the wizard. Within
the project folder, source files are kept in the src directory. Before you continue,

92

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.112: The header file added to the project

alongside the test projects folders, create a folder named after the project i.e.
rwIncrementer with the subfolder src.

When you invoked the option Generate Libraries and BSPs Scripts
from the menu item Software, among the other created files, there was a file
with declarations and some definitions for the peripheral core you have cre-
ated. These can be used for software access to the peripheral core. The file is
named after the peripheral core and has the extension .h according to the C
programming language convention for header files.

The generated incrementer.h file is at the location <project_name>\-

system\drivers\<peripheral_name_and_version>\data\source. Open the
file and inspect its contents.

Figure 2.112 shows one segment of it with the definition of the function for
accessing the two software accessible registers. These functions will be used in
our example program.

Now you will add the source code for your application. As shown in Fig-
ure 2.113, right–click on the node Sources in the project tree and choose the
location and name for your .c file.

Figure 2.114 shows the src folder within your project folder and the name
rwMain.c for your source file. Click Save.

Now your .c file is added to the project, see Figure 2.115 left pane. When
you double–click the rwMain.c, the blank file will open in the main pane to
the right. Add the code shown in Figure 2.115. For convenience, the listing is
provided in sequel:

93

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.113: Adding a new source file

Figure 2.114: Choosing the name for the source file

94

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.115: The code to be added into the source file

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Inc lude F i l e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#inc lude <s t d i o . h>

#inc lude ”xba s i c t ype s . h”
#inc lude ”incrementer . h”
#inc lude ”xparameters . h”

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Function De f i n i t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main (){
char curChar , sthChar ;
Xuint32 input , r e s u l t ;

x i l p r i n t f (” \ r \n ”) ;

x i l p r i n t f (”FPGA sta r t ed !\ r \n ”) ;

input = 5 ;

x i l p r i n t f (”Writing input value %d to incrementer \ r \n” , input) ;
INCREMENTER mWriteSlaveReg0(XPAR INCREMENTER 0 BASEADDR, 0x0 , input) ;
r e s u l t = INCREMENTER mReadSlaveReg1(XPAR INCREMENTER 0 BASEADDR,0 x0) ;
x i l p r i n t f (”The response read from the incrementer : %d \ r \n” , r e s u l t) ;

input = 7 ;

x i l p r i n t f (”Writing input value %d to incrementer \ r \n” , input) ;
INCREMENTER mWriteSlaveReg0(XPAR INCREMENTER 0 BASEADDR, 0x0 , input) ;

95

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

r e s u l t = INCREMENTER mReadSlaveReg1(XPAR INCREMENTER 0 BASEADDR,0 x0) ;
x i l p r i n t f (”The response read from the incrementer : %d \ r \n” , r e s u l t) ;

input = 10 ;

x i l p r i n t f (”Writing input value %d to incrementer \ r \n” , input) ;
INCREMENTER mWriteSlaveReg0(XPAR INCREMENTER 0 BASEADDR, 0x0 , input) ;
r e s u l t = INCREMENTER mReadSlaveReg1(XPAR INCREMENTER 0 BASEADDR,0 x0) ;
x i l p r i n t f (”The response read from the incrementer : %d \ r \n” , r e s u l t) ;

x i l p r i n t f (” \ r \n ”) ;

x i l p r i n t f (”Now you ente r a number between 0 and 9 ! \ r \n ”) ;

do{
curChar = getchar () ;
input = (Xuint32) curChar ;

}whi le ((input < 0) | | (input > 9))

x i l p r i n t f (”You entered the value %d \ r \n” , input) ;
x i l p r i n t f (”Pass ing %d to the incrementer \ r \n” , input) ;
INCREMENTER mWriteSlaveReg0(XPAR INCREMENTER 0 BASEADDR, 0x0 , input) ;
r e s u l t = INCREMENTER mReadSlaveReg1(XPAR INCREMENTER 0 BASEADDR,0 x0) ;
x i l p r i n t f (”The response read from the incrementer : %d \ r \n” , r e s u l t) ;

x i l p r i n t f (”And t h i s would be a l l f o r now ! Bye ! \ r \n ”) ;

x i l p r i n t f (”\n\n\n ”) ;

r e turn 0 ;
}

It is a simple function which sends an integer number to the implemented
design on the FPGA and reads the response from it. If it works as an incrementer
(and it should!), for the input number, the response from FPGA will be its
successor in the ascending order i.e. the incremented number.

Before you build your project, your compiled files need to be linked with
the existing libraries for the hardware platform you are going to use. You will
generate a linker script by clicking on the Generate Linker Script item on
the Software menu item as shown in Figure 2.116.

A window opens as in Figure 2.117 in which you are asked to choose the
application for which the script is to be generated. Choose the rwIncrementer
as shown in the figure.

A window opens as in Figure 2.118 in which you are let know that the recom-
mended environment for the software development is Xilinx SDK. However, you
will remain working with the software development within XPS environment 1.
So, click OK on the notification and stay within the XPS.

A window opens as in Figure 2.119 with the details for the linker as well as
the location where the generated files will be saved. Click OK.

1You are not going to make some extensive software applications for the systems you will
develop in this course and learning to use Xilinx SDK would be one more (unnecessary!) task
to do in the course

96

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.116: Invoking the generation of the linker script

Figure 2.117: Choosing the application for which the linker script will be gen-
erated

97

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.118: Notification on SDK

Figure 2.119: Details of the linker script

98

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.120: Choosing the application which will be downloaded to the BRAM
on the chip

99

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.121: Building the project

Currently, it is one of the wizard–generated test applications which would
be downloaded to the Spartan–6’s BRAM memory with the .bit file. To change
it and make your application the one whose .elf file will be merged with the
system.bit file, right–click the project name and in the pop–up menu which
opens click on the item Mark to Initialize BRAM as shown in Figure 2.120.

Click on the Build Project item from the same pop–up menu as shown in
Figure 2.121. Note that the Mark to Initialize BRAM item is now checked.

100

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.122: Updating the bitstream with the executable of the application

Now exit the EDK environment and go back to the ISE Project Navigator.
Click on the Update Bitstream item in the Processes pane as shown in Fig-
ure 2.122. The generated configuration bitstream named system download.bit,
with which you will now program the Spartan–6 chip on the Avnet development
board, is located in the project folder <project name>\system download.bit.

To download the programming file and configure the chip, you will use the
Avnet Programming Utility provided by the development board supplier, as
further explained.

101

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.123: Avnet Programming Utility user interface

2.4.3 Avnet Programming Utility

Start the Avnet Programming Utility from the Windows Start menu Avnet\AvProg.
A window like the one shown in Figure 2.123 opens. The Send console and
the Receive console are used for sending the data to the FPGA and receiving
the data from the FPGA respectively. Along the consoles to the right, you can
choose one of the options for presenting the data in the consoles. You may
choose the mode by clicking to the appropriate radio button. Disabled options
and buttons are shown shaded in grey so it is obvious that not much can be
done immediately after starting the Avnet Programming Utility. First you need
to connect to the board.

Figure 2.124: Avnet Programming Utility user interface after the connection
with the development board has been established

102

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Before connecting to the board, make sure that the development board is
physically connected to your PC by the USB cable and that the switch SW1
on the board is in the position ON. The button in the upper left corner of the
Avnet Programming Utility shows the option to connect to a COM port which
is configured for serial communication with the development board, COM5 in
the case shown in Figure 2.123. Click on this button to connect to the board.

Now you are connected to the board and you can access the board through a
user interface as shown in Figure 2.124. The default mode is Configure FPGA
which is exactly what you will need the Avnet Programming Utility for. When
connected, the send console is enabled and the button changes into Disconnect
from COMx. Click on the Browse button to locate the .bit file with which
you would like to program the FPGA.

Figure 2.125: Locating the .bit file to be downloaded to the FPGA chip

Locate the system download.bit file at the mentioned location as shown
in Figure 2.125

Once the bitfile is chosen, the button Configure FPGA in the upper right
corner becomes enabled, see Figure 2.126. By clicking this button, the sys-
tem download.bit is transfered to the board in order to program the Spartan–6
chip.

Although the device type is selected for you based on the board you are
using, you will be asked once again to confirm that this is the right device, as
shown in Figure 2.127. Click Yes.

103

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.126: Configuring the FPGA: button Configure FPGA

Figure 2.127: Confirmation of the type of the FPGA which is to be configured

104

CHAPTER 2. A BRIEF OVERVIEW OF HARDWARE AND TOOLS

Figure 2.128: The Send and Receive consoles after the FPGA is programmed

After the FPGA is programmed, you receive the notification in the Receive
Console that ’FPGA has programmed successfully!’. In the same console you
may follow the response from your FPGA. When asked to send a number for
your incrementer, use the Send Console and click the button Send.

You may now make modifications to this simple program in XPS. Remember
to invoke the option Update Bitstream every time after you compile your
project in order to merge the newly generated .elf file with your system.bit file
into a download.bit file.

105

Chapter 3

Implementation Framework

3.1 Introduction

In the TDT4255 Computer Design lab exercises, you will be asked to implement
a number of processors in three assignments. All of these assignments are based
on a common implementation framework. This chapter describes this common
framework.

3.2 Implementation Framework

You will test the design in simulation using ModelSim simulator as well as in
hardware using a FPGA board. For the implementation in the FPGA, your
design will be realised as a peripheral core within a larger embedded system.
Figure 3.1 shows which part of the design within an embedded platform you
will develop as a peripheral core as explained in Section 2.4.2 and Figure 2.42.

A more detailed block diagram is given in Figure 3.2 which shows the mod-
ules provided by the course staff and the processor connected with appropriate
signals. The modules delivered with support files are given in parentheses next
to the corresponding module.

3.2.1 Communication Module

The inputs to the com module are the bus registers that are memory mapped in
the Microblaze core so that the com module responds to the commands issued
by the device driver. The com module can write both the instruction and the
data memory but only read the data memory. When all necessary data have
been loaded into the memories (see the next subsection for how to do it), the
device driver issues a command that sets the processor enable signal enabling
the processor module which is then given access to the memory modules.

Figure 3.3 shows the state machine of the com module. The states change
when the device driver changes the value in the memory mapped command
register. The three read states stand for the memory read transaction which
takes three cycles: the address is provided in cycle 1, the memory is accessed in
cycle 2 and the data are stored in an internal register in cycle 3.

106

CHAPTER 3. IMPLEMENTATION FRAMEWORK

Figure 3.1: The toplevel design which you will implement in all assignments
and its relation to the design of peripheral core within an embedded system on
FPGA

Table 3.1: Processor Mode Memory Mapped Registers
Register Name Module Signal Decimal Offset Type
Command command 0 Write Only
Address Input bus address in 4 Write Only
Data Input bus data in 8 Write Only
Status status 12 Read Only
Data Output bus data out 16 Read Only

107

CHAPTER 3. IMPLEMENTATION FRAMEWORK

TDT4255_COM (com)

bus_address_in
bus_data_in

status
bus_data_out

command read_addr
read_data
write_addr
write_data

write_enable

processor_enable
write_imem

DATA_MEMORY (mem)

w_address
w_data

data
address

w_enable

INSTRUCTION_MEMORY (mem)

w_address
w_data

data
address

w_enable

PROCESSOR

processor_enable dmem_address
dmem_address_wr

dmem_write_enable
dmem_data_out

dmem_data_in

imem_address
imem_data_in

DMEM_MUX

Figure 3.2: Connections between delivered components and the processor com-
ponent within the toplevel entity. Delivered components are given in parentheses

Idle
Write
Inst

Read1

Read2

Read3DoneWrite
Data

Run
cmd = RD

cmd = WI

cmd = WD

cm
d

=
R

un

cmd = None

cm
d = N

one

cmd = Run

cmd != None

Figure 3.3: Com Module State Machine

108

CHAPTER 3. IMPLEMENTATION FRAMEWORK

Table 3.1 shows the memory mapped registers and which signals they are
connected to in the block diagram of Figure 3.2 when the system is in Processor
Mode. The command encodings are shown in Table 3.2. Since the com module
state machine changes the state when the command register changes the value, it
is important that the data and address registers are written before the command
register. Then, the device driver should wait until the com module reaches the
Done state. Listing 3.1 shows an example of how this can be implemented.
The com module returns to the state Idle when the command register is set to
None. The com module also provides some other status information, and the
details are available in Table 3.3.

Listing 3.1: Example Busy Wait Loop

#define STATUS DONE 3
void wait (){

while (TDT4255 EXERCISE2 mReadReg(
XPAR TDT4255 EXERCISE2 0 BASEADDR,
REG STATUS) != STATUS DONE){

}
}

3.2.2 Host PC Command Interface

For the communication between the host PC and FPGA, the host.py script will
be used which provides a simple command interface for several types of transac-
tions. The transactions needed for the assignments are Write Transactions,
Read Transactions and Command Transactions and Table 3.4 shows the
options which should be in command interface for each of these transactions.
After you implement the design in the FPGA, you will write the test program
for the processor design into the instruction memory by invoking the host.py

script with the -i option and providing the name of the file which contains the
program in a form of a sequence of instructions from the instruction set you have
implemented. Analogously, all necessary data will be written to data memory
only with the use of -d option. To check the results of the processor opera-
tion which are written into data memory, you will use -r option and provide
the name of the file on your host PC to which you would like these data to be
written.

3.3 Instruction Set Architecture

In the TDT4255 lab exercises, you will be responsible for implementing a MIPS
like Instruction Set Architecture (ISA). MIPS is an acronym for Microprocessor
without Interlock Pipeline Stages. MIPS is very popular microprocessor in
embedded devices. Instruction words could be set up as follows:

R-Type: This group contains all instructions that do not require an imme-
diate value, target offset, memory address displacement, or memory address to
specify an operand. This includes arithmetic and logic with all operands in
registers, shift instructions, and register direct jump instructions (jalr and jr).
All R-type instructions use a 000000 opcode. The operation is specified by the
function field.

109

CHAPTER 3. IMPLEMENTATION FRAMEWORK

Table 3.2: Com Module Command Encoding
Command Mnemonic Code Decimal Code Value

No command None 000 0
Write Instruction Memory WI 001 1

Read Data Memory RD 010 2
Write Data Memory WD 011 3

Run Processor Run 100 4

Table 3.3: Com Module Status Encoding
Status Code Decimal Code Value
Idle 00 0
Busy 01 1
Processor Running 10 2
Done 11 3

Table 3.4: Host script options
Option Description Transaction Format
–i <filename> write the host file <filename> Memory Write

to instruction memory

–d <filename> write the host file <filename> Memory Write
to data memory

–r <filename> read data memory and write Memory Read
to the host file <filename>

s enable/disable processor Command

110

CHAPTER 3. IMPLEMENTATION FRAMEWORK

Table 3.5: R-Type instruction format
name opcode rs rt rd shamt funct
bits 31–26 25–21 20–16 15–11 10–6 5–0

Table 3.6: I-Type instruction format
name opcode rs rt immediate
bits 31–26 25–21 20–16 15–0

Table 3.7: J-Type instruction format
name opcode target
bits 31–26 25–0

• opcode: is the instruction opcode, and function specifies a particular arith-
metic operation.

• rs, rt and rd : are source and destination registers

• funct field used for choosing the instruction’s behaviour (ADD, SUB,
AND etc.)

• shamt: no of bits to be shifted

I-Type : This group includes instructions with an immediate operand,
branch instructions, and load and store instructions. In the MIPS architecture,
all memory accesses are handled by the main processor, so coprocessor load
and store instructions are included in this group. All opcodes except 000000,
00001x, and 0100xx are used for I-type instructions

• rt is the destination for lw, but a source for beq and sw.

• imm is a 16-bit signed constant.

J-Type: This group consists of the two direct jump instructions (j and jal).
These instructions require a memory address to specify their operand. J-type
instructions use opcodes 00001x.

More detailed information about the MIPS architecture is given in Fig.3.4:

3.4 Support Files

Some components are given out within support files which can be used in your
design.

• hardware/toplevel.vhd: toplevel for your design

• hardware/com.vhd: communication module

• hardware/mem.vhd: A general memory with parameterisable size which
can be used as instruction memory and data memory. The memory is syn-
chronous. That means that the output (data) is available at the next rising

111

CHAPTER 3. IMPLEMENTATION FRAMEWORK

Figure 3.4: MIPS Quick Reference

112

CHAPTER 3. IMPLEMENTATION FRAMEWORK

edge of the clock signal. The output, therefore, acts as a register and there
is no reason to make an additional instruction register after it. This reg-
ister makes it impossible for this processor to be made as a single cycle
machine but it needs a separate fetch–state to fetch out the instruction
from the memory. The memory has a write port which can be directly
connected to the com module so that the com module can write new
programs to the memory.

• hardware/regfile.vhd: register file

• hardware/alu.vhd: a simple Arithmetic Logic Unit (ALU).

• hardware/processor.vhd: a file which contains the skeleton for the
processor design; you can write your code within designated areas in this
file

• hardware/user logic.vhd: this file is provided for the sake of compar-
ison so that you can check the mappings and connections with software
accessible registers are correctly modified in the user logic.vhd file gener-
ated by the CIP wizard

• driver/main.c: a driver for the peripheral core which corresponds to
your processor design

• driver/host.py: a script for the host PC command interface

113

Chapter 4

Assignment 1 – Simple
Multi-cycle MIPS Processor

4.1 Introduction

In this assignment, you will design a simple multi-cycle MIPS processor in VHDL
and synthesise your design by following the procedure described in Chapter 2.
You will also verify the behavior of the implemented MIPS processor using
the ModelSim simulator. Once your design in verified, you will integrate the
MIPS processor into a MicroBlaze-based embedded system as a peripheral core,
implement the embedded system design in FPGA and test the functionalities of
the designed processor in an FPGA.

4.2 Requirements

The main requirement for the processor design is a simple multi-cycle MIPS
architecture. However, you have to follow the architecture presented in Figure
4.1 for your MIPS processor. Some units ready for the use will be delivered as
part of the support files. You may include them into the processor design to
build a fully operational processor.

With respect to the instruction set, you have to implement the instructions
from each of the the following classes.

• ALU instructions (required to implement minimally ADD, SUB, SLT,
AND, OR instructions)

• Conditional branch instruction (BEZ - branch if equal to zero)

• LOAD and STORE instructions

• LDI (Load Immediate - load the register with the given value)

• Jump instruction (J-jump to the specified address)

Once the simple Multi-cycle MIPS processor is designed, you need to verify
the functionalities of the designed processor in a simulation environment as well
as in a hardware platform.

114

CHAPTER 4. ASSIGNMENT 1 – SIMPLE MULTI-CYCLE MIPS
PROCESSOR

Figure 4.1: Suggested architecture for simple multi-cycle MIPS processor

4.3 Suggested Architecture

The suggested architecture for the simple multi-cycle MIPS processor is depicted
in Figure 4.1. Major components of the processor are a program counter, an
instruction decoder, a control unit, a register file, a memory module (used to
implement both the instruction and data memories), and an ALU. All these
modules are implemented individually and then combined to form the MIPS
processor. The VHDL implementations of the ALU, the register file and the
memory module will be provided as supporting files.

4.3.1 Special Registers

The special registers are:

• Program counter (PC): Contains the address of the instruction which will
be fetched from the instruction memory. It must be able to be incremented
(increased by one) for every instruction and to be loaded with the new
value when a branch instruction is conducted.

• Status register (SR): Contains the status flags from the previous ALU–
instruction. This architecture needs only a zero–flag which shows if the
previous ALU–instruction gave result 0. It is used together with BNZ to
make a conditional branch.

4.3.2 Instruction Word

For this assignment, you should follow the encoding format of MIPS instruction
set. The encoding format of the MIPS instructions are described in Section 3.3
in this compendium.

115

CHAPTER 4. ASSIGNMENT 1 – SIMPLE MULTI-CYCLE MIPS
PROCESSOR

Figure 4.2: Control Unit

4.3.3 Control Unit

Figure 4.2 illustrates the different signals of the control unit of the MIPS proces-
sor. As given by the Figure, the control unit should have possibility to choose
inputs to both multiplexors, control write enable for PC and SR and control
write enable for the register file.

Because memory access takes the clock cycle, we need to implement the
Control unit as a state machine with the following states:

• Fetch: Fetch instruction from the instruction memory

• Execute: Decode and run the instruction and write the result back to
the register file. Decoding in the execute state can consist of a CASE–
statement which determines behaviour based on the opcode. The be-
haviour will contain setting the control signals for the rest of the processor.

• Stall: Since the memory access causes additional latency(one extra cycle),
for some instructions e.g. LOAD, STORE it will require more than one
cycle to complete the execution of such instruction. Which entails that
you may need to define a new state for the processor.

Figure 4.3: Example for the control unit state machine

116

Chapter 5

Assignment 2 – A Simple
Pipelined Processor

5.1 Introduction

In the second assignment, you will extend the processor from previous assign-
ment by changing the datapath to a pipeline. This means that you will need to
add pipeline registers and make a new control module which accommodates the
pipeline processing. Note that all hazards are handled through software.
Therefore, in this assignment, you don’t need to implement the hazard detec-
tion and controlling module. Hazard detection and controlling module using
hardware is left for Assignment 3.

5.2 Requirements

The major requirement of this assignment is a simple 5-stage pipelined processor.
In general, the processor has the same functional requirements as in the previous
assignment. You will also use the same test set up. To help you on the way,
we have made a suggestion from which you can work on. It is wise to make a
processor which relies on the design from the previous assignment so that you
can reuse the test benches and test programs.

5.3 Suggestion for the Architecture

We suggest you to follow the architecture presented by Patterson and Hennessy
in [1] for the simple pipelined processor. The architecture given by Patterson
and Hennessy is presented in Fig. 5.1. This is a five stage pipeline processor
which is a natural extension of Assignment 1. Here we have made a data storage
(DMEM). In addition, we have added four pipeline registers (IF/ID, ID/EX,
EX/MEM and MEM/WB). Data storage is addressed with the immediate field
in the instruction word and it has register A connected to the data input.

The Control unit (CONTROL in the figure) is placed in the decode stage. It
is a combinatorial circuit and not a state machine as in the previous assignment.
The control entity will now, based on the opcode and status register, set up the

117

CHAPTER 5. ASSIGNMENT 2 – A SIMPLE PIPELINED PROCESSOR

Figure 5.1: Suggested architecture

control signals for all pipe stages. Control signals for later pipeline stages are
sent to pipeline registers. In Fig.5.1, these signals are blue.

Branch instructions do not need to be sent through the whole pipeline, but
in this architecture they can be taken already to the decode stage. If the branch
should be taken, the control entity can set the program counter’s multiplexor
so that the immediate field in the instruction word is loaded into the PC.

118

Chapter 6

Assignment 3 – Optimized
Pipelined Processor

6.1 Introduction

In the last assignment, you will extend the previously implemented pipelined
processor to optimize its performance by implementing different hazard detec-
tion and correction techniques. Some of these techniques include, but are not
limited to, data forwarding and pipeline interlocks that stall the pipeline when
necessary. In addition, you can implement different optimization techniques to
improve the performance of your pipelined processor.

6.2 Requirements

In general, the processor has the same functional requirements as in the previous
assignment. Additionally, you need to implement different hazards detection
and correction techniques. It is wise to make a processor which relies on the
design from previous assignment so that you can reuse the test benches and test
programs.

119

Appendix A

The List of Versions

Here is the list of the compendium revisions:

• Version 1, 2011-08-31: New version for 2011

• Version 2, 2012-04-30: New version for 2012

120

Bibliography

[1] David A. Patterson and John L. Hennessy. Computer Organization and
Design. Elsevier, 2005.

[2] Xilinx. XST User Guide, 2008.

[3] Xilinx. EDK Concepts, Tools and Techniques, 2010.

[4] Xilinx. ISE In–Depth Tutorial, 2010.

[5] Xilinx. Spartan-6 Family Overview, 2011.

[6] Xilinx. Spartan-6 FPGA Block RAM Resources, User Guide, 2011.

[7] Xilinx. Spartan-6 FPGA Configurable Logic Block, User Guide, 2011.

121

	List of Figures
	Abbreviations
	Introduction
	Practical Goal: the Processor Architecture and Design
	Learning Outcome
	Practical Information

	A Brief Overview of Hardware and Tools
	Introduction
	VHDL
	Field Programmable Gate Arrays, FPGAs
	Design and Implementation in FPGAs – a Walk through the Xilinx ISE Design Suite

	Implementation Framework
	Introduction
	Implementation Framework
	Instruction Set Architecture
	Support Files

	Assignment 1 – Simple Multi-cycle MIPS Processor
	Introduction
	Requirements
	Suggested Architecture

	Assignment 2 – A Simple Pipelined Processor
	Introduction
	Requirements
	Suggestion for the Architecture

	Assignment 3 – Optimized Pipelined Processor
	Introduction
	Requirements

	The List of Versions
	Bibliography

