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Sammendrag
Level-set metoden er en implisitt metode for å representere og spore en overflate i to eller flere
dimensjoner. Metoden er mye brukt bl.a. i datagrafikk, eller som her, ved simulering av tofasestrømning.
En av de største fordelene med level-set metoden er at den håndterer endringer i overflatens topologi
på en naturlig måte. I denne oppgaven diskuteres beregning av krumningen og normalvektorene til en
overflate representert med level-set metoden.

Krumning og normalvektorer beregnes vanligvis med sentraldifferansestensiler, men denne
standardmetoden bryter sammen når overflaten endrer topologi, f.eks. når to dråper kolliderer og
slår seg sammen. Det har tidligere blitt utviklet flere metoder for å håndtere dette problemet. I denne
oppgaven presenteres en ny metode som er en videreutvikling av tidligere metoder. Den nye metoden
håndterer mer generelle tilfeller og utvides enkelt til tredimensjonale simuleringer.

Ved hjelp av denne metoden simuleres flere tilfeller av tofasestrømning som er relevante for å
forstå flytendegjøring av naturgass. Den nye metoden muliggjør simuleringer som er mer generelle
enn tidligere simuleringer. Spesielt betraktes aksesymmetriske simuleringer av en vanndråpe som
faller gjennom dekan og slår seg sammen med en dyp dam av vann. Resultater fra simuleringene
sammenliknes med eksperimentelle resultater som finnes i literaturen. Det presenteres også rent
geometriske resultater som validerer resultatene av den nye metoden, samt tredimensjonale resultater for
en statisk overflatekonfigurasjon. New section
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Abstract
The level-set method is an implicit interface tracking method that can be used in two or more dimensions.
The method is popular e.g. in computer vision, and as here, in simulations of two-phase flow. One of the
main advantages of the level-set method is that it handles changes in the interface topology in a natural
way. In the present work, the calculation of the curvature and normal vectors of an interface represented
by the level-set method is considered.

The curvature and normal vectors are usually calculated using central difference stencils, but this
standard method fails when the interface undergoes a topological change, e.g. when two droplets collide
and merge. Several methods have previously been developed to handle this problem. In the present work,
a new method is presented, which is a development on existing methods. The new method handles more
general cases, and is easily extended to three-dimensional simulations.

Using this new method, several two-phase flow simulations are performed that are relevant for
understanding the liquefaction of natural gas. The new method enables simulations that are more general
than previous ones. In particular, axisymmetric simulations of a water droplet falling through decane
and merging with a deep pool of water are considered. The results of simulations are compared to
experimental results in the literature. Purely geometrical results are also presented in order to validate
the results of the new method, and three-dimensional results are given for a static interface configuration.

New section
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Nomenclature
∇ ·u The divergence of the vector field u.

∇u The Jacobian matrix of the vector field u.

κ The curvature of the interface. It may vary along the interface. 1/m

µ Dynamic viscosity of a fluid. Pa·s

ν Kinematic viscosity of a fluid. ν =µ/ρ. m2/s

ρ Density of a fluid. kg/m3

σ The surface tension. It may vary along the interface. N/m

u(x) Velocity field of a fluid. m/s

p(x) Pressure of a fluid. Pa

v Normal velocity of the interface. v = n ·u. m/s

∆x The grid spacing used in spatial discretization.

Γ The interface between two fluids. This is the zero level set of φ.

δ(x) The Dirac delta “function”, the distribution with the property
∫

f (x)δ(x)d x = f (0).

φ(x) The level-set function. Γ is the set of x such that φ(x) = 0.

sgn(x) The signum function, sgn(x) = x/abs(x). The value at zero is sgn(0) = 0.

n Normal vector to the surface.

t Tangent vector to the surface.

CFL Courant-Friedrichs-Lewy

CNG Compressed Natural Gas

GFM Ghost-Fluid Method

LNG Liquefied Natural Gas

LSM Level-Set Method

PDE Partial Differential Equation

SSP Strong Stability Preserving

TVD Total Variation Diminishing

WENO Weighted Essentially Non-Oscillatory
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§1 Introduction

L I Q U E F I E D N AT U R A L G A S has in recent years become a major Norwegian export item. In 2010,
the “Snøhvit” field alone produced 5 billion standard cubic meter oil equivalents of natural gas [1],

which was processed at the Melkøya production facility. The heat exchangers operating at Melkøya can
liquefy 11 000 tonnes of natural gas every 24 h [2], with a final LNG temperature of −162 ◦C. These
numbers indicate that large amounts of energy are being used for the liquefaction of natural gas. As a
consequence, reducing energy use in the liquefaction process can lead to large financial savings. It will also
improve the reduction in greenhouse gas emissions that results from using LNG instead of compressed
natural gas (CNG) or other petroleum-based fuels. It has been estimated [3] that the contribution to
greenhouse gas emissions from the liquefaction stage is around 20 g/kWh of CO2 equivalents. This is
roughly the same as for the final combustion stage, so there is a large potential for reduction.

While some reductions in energy consumption can be achieved using standard engineering methods,
a deeper fundamental understanding of the processes in a liquefaction heat exchanger is needed in order
to further reduce the energy usage. A better understanding may also reduce the downtime of liquefaction
systems due to transient operating conditions. To this end, SINTEF Energy has a long-term research
programme called “Enabling Low-Emission LNG Systems”, which among other things aims to obtain a
better understanding of fluid dynamics at the microscale through numerical modelling and experiments.
The work presented here is a part of this programme, and aims to improve the existing numerical codes.
In particular, the aim is to improve parts of the code that is relevant to colliding drops and to drops
colliding with films. Such cases are of high interest when attempting to better understand gas liquefaction.

The numerical codes presently being used have been developed to simulate two-phase fluid flow. In
order to simulate two fluids interacting at a detailed level, it is paramount to know at all times where the
boundary between the two fluids is located. In the present code, the Level-Set Method (LSM) is used
to track the interface, and the code will therefore be referred to as the level-set code. The LSM is very
general, and apart from fluid dynamics it has been used for modeling everything from tumor growth [4]
to wildland fire propagation [5] and computer RAM production [6]. For a good introduction to the
LSM, see e.g. [7]. The LSM originated from the seminal article by Osher and Sethian [8].

In two dimensions, the level-set method can easily be visualized, as in Figure 1 on the next page. In
this figure, the interface is between the gray and white areas in the right half. To track this interface in
2D, a function φ(x) in a (2+1)D space (metallic gray) is used, shown in the left half, and the interface
is represented by the level set Γ = {x|φ(x) = 0}. φ(x) is the level-set function, and the name of this
function should now be self-evident.

In two-phase flow simulations using the LSM, accurate interface curvature and normal vector
information is vital in order to get good results. Standard methods exist for calculating these
geometric quantities, but fail when the interface topology changes. The present work proposes a new
method for calculating these quantities, which is an extension of previous methods. The proposed
method handles general interface configurations and topology changes, and extends easily to three
dimensions.

The outline of this report is as follows: in this chapter, a general introduction to the problem is given.
In Chapter 2, the theory of two-phase incompressible flow, the LSM and numerical methods is given. In
Chapter 3, the current method is presented in detail. In Chapter 4, the method is validated on geometric
test cases, and the results are compared to other methods. In Chapter 5, the results of two-phase flow
simulations using the current method are reported. In Chapter 6, experimental results in the literature
are reviewed and compared to the simulation results. Finally, in Chapter 7, some concluding remarks are
offered and future prospects are discussed. Relevant parts of numerical codes used in simulations are

1



Figure 1: Illustration of interface tracking using the level-set method. The interface is between the gray
and the white area on the right-hand side of the image, and the level-set function is shown in gray on the
left-hand side. Also shown on the left-hand side, in blue, is the plane φ(x) = 0.
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presented in the appendices.
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§2 Theory of the level-set method and two-
phase fluid simulation

Contents
2.1 The Level-Set Method . . . . . . . . . . . 5
2.2 Advection and reinitialization of φ . . 6
2.3 The Navier-Stokes equations . . . . . . . 8
2.4 The Ghost-Fluid Method . . . . . . . . . 9
2.5 Numerical methods . . . . . . . . . . . . 10
2.6 Final remarks . . . . . . . . . . . . . . . . . 12

Even if there is only one possible unified
theory, it is just a set of rules and equations.
What is it that breathes fire into the equations
and makes a universe for them to describe?

Stephen Hawking

Old chapter,
but some new
parts(indicated).T H E T H E O RY O F T H E LSM is a large subject which cannot possibly be completely reviewed

here. For an excellent and extensive review of the LSM and its applications, see the review article
by Osher and Fedkiw [7]. In this chapter, a brief introduction to the LSM will be given, along with an
overview of how the method is coupled to the physics of multiphase flow. Special emphasis will be given
to the topics of reinitialization and of curvature calculation, which are important in this work. A short
introduction to the numerical methods used is also given.

J 2.1 j

The Level-Set Method

T H E LSM I S O N E O F T H E M O R E S U C C E S S F U L interface tracking methods used in compu-
tational physics. Since its introduction by Osher and Sethian in [8], it has been used for numerous

physical applications, as well as in computer graphics.1

Perhaps the main virtue of the LSM is how intuitive it is; in 2D it can easily be explained to anyone
with a basic knowledge of multivariate calculus. This simplicity stems from the implicitness of the LSM.
This also makes the numerical implementation of the LSM relatively easy. Comparing the LSM to other
interface tracking methods, such as the Front Tracking Method where the interface is represented by
piecewise continuous functions, the simplicity becomes especially clear.

The main disadvantage of the LSM, on the other hand, is that it is not a conservative method. During
the course of a simulation, a fraction of fluid 1 may be converted to fluid 2 in an unphysical fashion.
Various tricks have been invented to circumvent this, e.g. the HCR-2 reinitialization method[9], so
it is only a small effect presently. Interface tracking methods may be conservative; an example of this
is the Volume-of-Fluid (VOF) method, but then they typically have other disadvantages. In the VOF
method, for instance, the advection equation cannot easily be solved, necessitating the use of interface
reconstruction methods. See e.g. [10], where particularly Figure 11 illustrates the challenges presented
by this fact. Recent efforts have attempted to join the LSM and VOF in order to get the benefits of both
methods; this approach seems to be fairly successful[11]. New section

To expand on the simplistic presentation of the LSM given in the introduction, we present the
formal definitions here. Let Γ be the interface between two fluids, e.g. air and water. The interface Γ
has codimension 1 to the space S we are working in, that is, in 3D the interface has two dimensions.

1Industrial Light+Magic has used the LSM in several Hollywood blockbusters, e.g. Star Wars: Episode III and the Pirates of the
Caribbean movies, to create realistic ocean animations with effects like water spray.
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S is the physical domain where the fluids under study are confined, e.g. a cubic box. Furthermore, a
physical interface such as the one between air and water clearly has an inside and an outside, so Γ is an
orientable surface. To represent this interface, we define a level-set function φ : S→R with the property

Γ= {x |φ(x) = 0}. (1)

This only defines the value of φ at the interface Γ. Away from the interface, we have not specified what
φ is yet. As we only care about the value at the interface, we have some freedom here, but the common
choice is a signed distance function. Thus φ is fully specified by

φ(x) =

(

−dist(x,Γ) if x is inside Γ,
dist(x,Γ) if x is outside Γ.

(2)

Here, the function dist(x,Γ) is the shortest distance from the point x ∈ S to the interface Γ. As φ is a
mapping from S→R, it can be embedded as a surface in S×R. (It should be noted thatφ is an invertible
mapping for most x, but there exists a subset of S where this is not the case if more than one body is
present in S .) As an example of this with S =R×R, the level-set function φ representing a circle would
be a cone standing on its tip, with an angle of 90o at the tip. The cone is of course a 2D surface embedded
in 3D Euclidean space.

With this picture of a cone standing on its tip, another virtue of the level-set approach can be nicely
illustrated. If we look at ∇φ, we known that this vector will point in the direction that φ increases
the most. This is simply the normal vector to the circle, or indeed to any interface, when evaluated at
the interface. If φ is not exactly a signed distance function, we need to normalize n, so it is given by

n=
∇φ
|∇φ|

. (3)

From this, the curvature is given by the well-known formula

κ=∇ ·n=∇ ·
�

∇φ
|∇φ|

�

. (4)

With suitable discretizations of the derivatives involved, these quantities are easy to calculate numerically.In [12], Smereka notes
regarding curvature that

“One of the major
advantages of level-set

methods is their ability
to easily handle

topological changes.
However for this

problem we have found
this not to be the case.”

This is often quoted as one of the nice features of the LSM, along with e.g. the very natural way the
method handles topological changes [13]. However, when curvature calculations are combined with
topological changes, things are not so rosy, as is seen further down. The standard discretization of the
curvature is (see e.g. [14])

κ=
φx x +φyy

(φ2
x +φ

2
y + ε)

1/2
−
φ2

xφx x +φ
2
yφyy + 2φxφyφxy

(φ2
x +φ

2
y + ε)

3/2
(5)

Here, e.g. φx denotes the derivative of φ, calculated using standard central differences.Second half of
section in new.
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Advection and reinitialization of φ

F R O M T H E D E F I N I N G E Q UAT I O N (2), φ is intialized at the start of a simulation. For a given
velocity field u, φ should be transported so that the interface follows the flow. This is done by
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solving the advection equation,
∂ φ

∂ t
= v |∇φ|=−u ·∇φ. (6)

Here v is the velocity normal to the interface, and the first equality is a Hamilton-Jacobi type equation.
The second equality follows from the normal velocity being v = u ·n and inserting the expression for n
given in Equation (3). This equation is not justified here, see e.g. [15].

Solving this advection equation will of course result in transportation of the interface Γ and of the
level-set functionφ. But it also has a side effect: it will stretch and compress the level-set function, making
it different from a signed distance function. Over time, this makes the LSM less accurate in tracking
the position of the interface. If we imagine one extreme of stretching, |∇φ| → 0, this loss of accuracy is
easy to understand: for such a very flat φ, adding a small numerical error to φ will displace the interface
position by a very large amount. Because of this we want to keep φ equal to a signed distance function,
which brings us to the topic of reinitialization of φ.

Reintialization is, as the name suggests, to reset the value of φ to an intial condition of some sort.
The initial condition given in Equation (2) is a signed distance function, so with reinitialization we want
to transform an arbitrary φ into a signed distance function with the same zero level set. It is essential
that this last criterion is fulfilled, namely that the interface is the same before and after reinitialization.
The reinitialization procedure was introduced by Sussman, Smereka and Osher in [15], and consists in
solving the PDE

∂ φ

∂ t
+ sgn(φ)(|∇φ| − 1) = 0 (7)

to steady state. Intuitively, one might reinitialize by simply computing the signed distance to the interface
for all grid points. This approach has two problems: first, it is very slow, requiring O (n3) operations
(in 3D) even after some clever optimizations [16]. Second, it may distort the interface due to grid
errors.

The PDE-based approach introduced in [15] is much faster computationally, and avoids problems
with grid errors. It is justified by the fact that the signed distance function is the unique viscosity solution
of the Eikonal equation, |∇φ|= 1, with the initial value of φ at the interface. With this in mind, solving
the Eikonal equation for N pseudo-time steps will ensure that φ is a signed distance function C ·N space
steps away from the interface, where C is the CFL-number used when solving Equation (7) numerically.
This is so because the characteristics of Equation (7) originate at the interface, a very useful property of
this equation[15].

This equation is discretized using the advanced methods presented below in Section 2.5. To avoid
these technicalities here, we consider instead the 1D version with a forward Euler integration in τ. The
extension to higher-order methods is straightforward, although tedious. The forward Euler integration
gives

φν+1
i =φνi −∆t S(φ0

i )G (φ)i , (8)

where S(φ) is the smoothed signum function given by S(φ) = φp
φ2+2∆x2

.2 G (φ)i is the discretization of

the so-called Godunov Hamiltonian, discussed in e.g. [15]. The details of G (φ)i are not important for
the purposes of this discussion, but since there exist at least two subtly different versions both in use, it
is given here:

G (φ)i =







q

max(a2
+, b 2

−)− 1 ifφ0
i > 0 ,

q

max(a2
−, b 2

+)− 1 ifφ0
i < 0 ,

(9)

2Here∆x is a small numerical constant to avoid dividing by zero. The grid spacing is a common choice.
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where a+ = max(a, 0), a− = min(a, 0), and a = D−x φi (the backward difference in x-direction) and
b = D+x φi (the forward difference in x-direction). What is important to notice here is the −1-term
which is not included by some authors, who prefer to include it explicitly in Equation (8). G is written
here in a slightly awkward form in order to make the generalization to 2D and 3D obvious by analogy
to the Euclidean distance formula.

When solving this in practice, higher order versions of the forward and backward differences are used.
The fourth- and fifth-order WENO discretizations introduced in Section 2.5 are commonly used. These
are upwinding discretizations, and need accurate normal vectors at the interface in order to correctly
determine which direction is upwind. This will prove to be a crucial point further down.Last part of

section is new
J 2.3 j

The Navier-Stokes equations

T H E N U M E R O U S I N T E R E S T I N G P H Y S I C A L S I T UAT I O N S that can be studied with the
level-set codes used here all share few common traits: they involve two incompressible fluids,

these fluids do not mix, and they are both Newtonian fluids. Further it is assumed that the temperature
is constant, that no chemical reactions happen etc. Together, these assumptions give the governing
equations of the system being studied, namely the celebrated Navier-Stokes equations:

∇ ·u= 0 (10)

∂ u

∂ t
+(u ·∇)u=−

∇p

ρ
+ ν∇2u+ f (11)

Here ν = µ/ρ is the kinematic viscosity, while µ is the dynamic viscosity. ρ is the density, u is the
velocity field and p is the pressure. f is any external force, such as gravity, and may be zero.

These equations hold for a single phase fluid flow, but we are interested in more complicated problems.
However, it turns out that by a clever trick the two-phase problem is equivalent to the single-phase
Navier-Stokes equations, with an additional force term which is singular and zero outside the interface,
given by

fs(x, t ) =
∫

Γ
fsfd(s, t )δ(x− xI (s))d s, (12)

where fsfd is a surface-force density dependent on the actual system, and xI (s) is a parametrization
of the interface. This is explained in greater detail in [17, Chapter 2.2], and is a big advantage: we
can use existing methods for the one-phase problem! However, we still have to take care of physical
properties that vary between the two fluids. This is done using the Ghost-Fluid Method (GFM), which
unfortunately counteracts some of the improvements that come from using Equation (12). In particular,
the introduction of a ghost fluid means we still have to solve the Navier-Stokes equations twice, both for
the real fluid and the ghost fluid.Double-check

this is correct Another problem when solving the Navier-Stokes equations is the pressure term. The pressure is
coupled back to the velocity, so a decoupling is needed in order to facilitate the numerical solution. This
is made possible by the Helmholtz-Hodge theorem. After the decoupling, the pressure is given by a
Poisson equation, and the resulting system of equations can be solved numerically. For an introduction
to the application of the Helmholtz-Hogde theorem in projection methods for incompressible flows, see
e.g. [18].

It should also be noted that while Equations (10) to (11) appears to be coordinate-free, this is not
the case. Perhaps the easiest way to see this is to compare the operator∇2 for a 2D cartesian coordinate
system and for a 3D axisymmetric coordinate system with a fixed azimuthal angle θ= 0. By fixing θ,
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we indicate that none of the physical quantities depend on θ. The 2D coordinates (x, z) are then in
correspondence with the axisymmetric coordinates (ρ,ζ ), where we use the convention

x = ρcos(θ) = ρ (13)
y = ρ sin(θ) = 0 (14)
z = ζ (15)

This coincidence does not, however, mean that the physics is the same in these two systems. Writing out
the Laplacian using both cartesian and axisymmetric coordinates, we obtain [19]

∇2
cart =

∂ 2

∂ x2
+
∂ 2

∂ z2
(16)

∇2
axi =

∂ 2

∂ ρ2
+
∂ 2

∂ ζ 2
+

1

ρ

∂

∂ ρ
(17)

where an additional term contributes in the axisymmetric case. This difference is not purely
mathematical, but physical as well. It has e.g. been noted that turbulence is a different phenomenon in
2D than in 3D, with energy dissipation being more nonlocal in 2D [20]. Part about

2D/3D is new
J 2.4 j

The Ghost-Fluid Method

T H E D I S C O N T I N U I T Y O F E . G . ρ from one fluid to another leads to several jump conditions
that can be derived for physical properties across the interface. This is reminiscent of the similar

situation in electrodynamics, where one constructs Gaussian pill-boxes and Amperian loops in order to
find the correct jump conditions. Similar considerations here, see e.g. [17], yield Equations (18) to (22),
where [a] denotes the difference in a across the interface.

[u] = 0, (18)
[p] = 2[µ]n ·∇u ·n+σκ, (19)

[µ∇u] = [µ]
�

(n ·∇u ·n)nn)+ (n ·∇u · t)nt)− (20)

(n ·∇u · t)tn) + (t ·∇u · t)tt)
�

− (t ·∇sσ)tn), (21)

[∇p] = 0. (22)

Here n is the normal vector to the surface and t is the tangent vector, and products like nn denote the
outer (tensor) product. Correspondingly,∇u does not indicate the divergence, but the Jacobian tensor.
Thus e.g. n ·∇u ·n is a scalar. Note that the sign convention for n and the definition of [a] have to be
consistent, if so these equations hold regardless of the sign convention. The convention used here is that
normal vectors point towards increasing p hi , and that the jump is [a] = a+− a−, where a+ lies further
towards increasing φ than a−.

These jump conditions have to be imposed on the numerical solutions somehow. Early attempts at
this used the jump conditions explicitly for 1D simulations, but these approaches are cumbersome
to implement in 2D or higher dimensions [21]. The Ghost-Fluid Method (GFM) avoids this by
implementing the jump conditions implicitly. The GFM was introduced in [22] for the Euler equations,
and extended to the Navier-Stokes equations in [21].
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As the name suggests, the GFM introduces a ghost fluid. The purpose of this ghost fluid is to represent
both fluids everywhere in the computational domain. When we momentarily pretend that both fluids
exist everywhere in the domain, we simply solve all equations for both fluids, then update the position
of the interface, and use the sign of the level set function to select which solution is the physical one at
each point. The jump conditions are enforced onto the ghost fluid using interpolation.Improve this

section
J 2.5 j

Numerical methods

W H E N S O LV I N G T H E PDE S introduced in the previous sections on a computer, both the
spatial discretizations and time integration (e.g. Runge-Kutta) schemes for evolving the system in

time have to be chosen with care. Since the cases considered here involve two fluids in contact, there
is always a contact discontinuity in the pressure, density etc. Such discontinuitites are problematic for
both the spatial and time discretizations, and must be handled with care.

Consider first the space discretizations, using as an example the discretization of ∂ u
∂ x in 1D. A very

common choice is the central difference

∂ u(x)

∂ x
≈

u(x + 1
2∆x)− u(x − 1

2∆x)

∆x
. (23)

This is a second-order accurate discretization, and it is obviously a linear scheme. From this fact it
follows, using Godunov’s theorem, that the discretization may introduce spurious oscillations when
discontinuities are present. Godunov’s theorem is a no-go theorem stating that linear schemes for solving
PDE’s can be at most first order accurate if we demand that they do not introduce new extrema (i.e.
oscillations).

Several approaches have been developed to circumnavigate this restriction, such as the use of flux
limiters. In the present numerical codes, a discretization scheme known as WENO-5 is used, see
[23] for details and justification of this scheme. WENO schemes are known to be computationally
efficient in addition to being robust[23]. WENO stands for Weighted Essentially Non-Oscillatory,
and is an improvement to the earlier Essentially Non-Oscillatory (ENO) schemes. To avoid too many
technicalities, the reader may think of the ENO scheme as an interpolation method where an r -point
stencil is chosen around the point x such that the resulting interpolating polynomial introduces the
least oscillations. This can be done e.g. using divided differences. As the name suggests, this results in
a solution with essentially no oscillations, although they cannot be completely avoided as Godunov’s
theorem dictates.

The drawback of the ENO method is that it uses the least oscillating interpolation also when the
solution is smooth, where it is possible to achieve higher precision with the same amount of computation.
This is because when choosing between all possible r -point stencils around x, we have used 2r −1 points
in the intermediate calculations. Away from discontinuities, it should be possible to utilize all these
points. This is the improvement made by the WENO scheme.

The WENO scheme extends the ENO approach by using a weighted average of all the interpolations
available to the ENO scheme. The weighting is such that when the function to be interpolated is smooth,
the weighting is close to the optimal choice, giving a 2r − 1th order interpolation. When the function to
be interpolated has a discontinuity, it essentially falls back to the ENO scheme which gives a r th order
interpolation. This is the elegance of the WENO schemes, that one can easily compute which ENO
discretizations are nice at a given point. No more technical details will be given here about niceness
estimates etc., the reader is again referred to [23] for these.

When the temporal solution of a PDE is considered, similar problems arise. We consider the most
commonly used class of methods for “integrating” a PDE one step in time, namely the Runge-Kutta
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methods. For the purposes of this discussion, assume that the spatial discretization has already been
done, so that the PDE is of the form

∂ u(t )i
∂ t

= f
�

u(t )i , u(t )i+ 1
2
, u(t )i− 1

2
, . . .
�

= f (u). (24)

Here, the last equality defines the shorthand f (u). The . . . indicates all the spatial evaluations involved
in the spatial discretization. The Runge-Kutta method (or RK method) then estimates the solution at
the next time step, t +∆t , using s evaluations of the function f (u). From this, we say that a given RK
method is an s -stage method. An exampe is the classical RK method, which is a fourth-order four-stage
RK method, where fourth order means that the error made in each step is O (∆t 5).

The problem with the classical RK method and other related RK methods is that they may produce
unstable solutions in the presence of shocks. To avoid this, a special class of RK methods known as Strong
Stability-Preserving (SSP-RK) methods are used. The SSP-RK methods come from the theory of Total
Variation Diminishing (or TVD) solutions of hyperbolic PDEs. TVD solutions are first-order Euler
integrations of the PDE where the spatial discretization is designed to keep the conservation property,
e.g. conservation of momentum, of the original PDE. This is done by requiring that one time integration
does not increase the total variation of the solution. SSP-RK methods are extensions of this technique,
where the RK method is designed to still keep this conservation property while simultaneously allowing
for a more accurate solution than the first-order Euler method. The SSP-RK methods used in practice
belong to a further sub-class of methods called low-storage methods. As the name implies, these use
less memory than more straight-forward alternatives, at the expense of being more lengthy to describe
and implement. For examples of low-storage methods and a good discussion of SSP-RK methods in
general, see [24]. The methods described here are not low-storage methods in an effort to avoid too
many technicalities.

In order to specify the SSP-RK methods used here, we use the convenient notation afforded by the
Butcher tableau. In Table 1, a general four-stage RK method is shown, together with the Butcher tableau
representing this method. The coefficients describing the method are divided into three groups, the ai j
which are highlighted in green, and the bi which are highlighted in red. The third group of coefficients,
ci , are not used when f (u) does not depend explicitly on time, as is the case here.

Table 1: L E F T: A four-stage RK method. R I G H T: The corresponding Butcher tableau, a simple way to
organize the coefficients. In this case, f (u, t ) = f (u) is assumed, so the coefficients ci , used for specifying
the time f (u, t ) should be evaluated at in each stage, are irrelevant.

k1 =∆t f (u)
k2 =∆t f (u + a21k1)
k3 =∆t f (u + a31k1+ a32k2)
k4 =∆t f (u + a41k1+ a42k2+ a43k3)

un+1 = un + b1k1+ b2k2+ b3k3+ b4k4)

0
c2 a21
c3 a31 a32
c4 a41 a42 a43

b1 b2 b3 b4

The Butcher tableaus for the two SSP-RK methods used here are given in Table 2. The more accurate
of these methods, the third-order SSP-RK 3()4, is given in Table 2 b). This is used when solving the
Navier-Stokes equations. The less accurate second-order SSP-RK 2()4 given in part a) of the table is used
for e.g. solving the reinitialization equation, where high accuracy is not as important. The reader may
wonder why a four-stage method is used, if the desired accuracy is only second order. This is because
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the SSP coefficient, a number describing the maximum time step size in an analogous way to the CFL
condition, is much higher for the optimal four-stage method – 3 – than the optimal two-stage method –
1. This means that a time step three times as large can be used while still preserving the SSP property. In
general, the SSP coefficient for an optimal s -stage method is (s − 1). This is discussed in much greater
detail in [25].

Table 2: Strong Stability-Preserving Runge Kutta schemes used for solving the differential equations at
hand.

(a) SSP four-stage second-order RK

0
1/3 1/3
2/3 1/3 1/3
1 1/3 1/3 1/3

1/4 1/4 1/4 1/4

(b) SSP four-stage third-order RK

0
1/2 1/2
1 1/2 1/2

1/2 1/6 1/6 1/6
1/6 1/6 1/6 1/2

This completes the discussion on solving the Navier-Stokes equations and the level-set equations,
e.g. for reinitialization. In addition to this, a Poisson equation for the pressure must be solved at
each time step, as indicated in Section 2.3. Solving this equation is done using the PETSc library,
www.mcs.anl.gov/petsc/, which provides several Poisson solvers. These include methods based on the
well-known conjugate gradient (CG) method or the generalized minimal residual (GMRES) method.
The GMRES method is generally more robust than the CG method, but unless otherwise stated, the
simulations performed here are not particularly sensitive to the choice of Poisson solver.

A final feature of the present codes that is worth mentioning is the use of a staggered grid. In simple
terms, this means that scalar values are stored at cell centers and vector values are stored at cell faces.
This commonly used approach makes some computations less cumbersome, since the vectorial values
are often needed at the cell faces, e.g. we need the value ui+1/2, j . It also avoids checkerboarding of the
pressure, a problem with unstaggered grids where the pressure becomes oscillatory and unphysical. See
[26, Section 6.2] for a more detailed introduction to the use of staggered grids.

J 2.6 j

Final remarks

F U R T H E R D E T A I L S O F T H E M E T H O D S used here, e.g. a thorough derivation of the jump
conditions across the interface, can be found in [17] and [27]. As the methods to be discussed in

this thesis mainly focus on the level-set aspect of modelling, the theory of incompressible two-phase
flow is not reviewed in great depth here; on this topic, said references provide more detail. A more
detailed exposition of the numerical methods used can be found in [23] and [25]. This concludes the
theory chapter. The next chapter introduces and motivates the proposed method for robust calculation
of geometric quantities.
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Introduction

C A L C U L AT I N G T H E C U RVAT U R E of the interface between two phases is important, since
its value is used e.g. in the Ghost Fluid Method (GFM) and in calculating the surface force in

Equation (12). Recalling the discussion of the GFM in Section 2.4, it is seen that the curvature κ
determines part of the jump in the pressure across the interface, Equation (18). In a similar fashion,
the normal vectors to the interface are important, e.g. when advecting the level-set function and when
reinitializing it. Calculating these geometric quantities is straighforward in theory, using Equation (4)
and Equation (3) to compute them from the level-set function.

However, as is often the case, in practice it is not so straightforward. The problems arise when the
distance between two interfaces is of the order∆x. In this case the kink in φ, which has to exist between
the interfaces, will often cause the derivatives of φ to become undefined.3 For a graphical depiction of
the problem, see Figure 2. When this happens, the curvatures and normal vectors will be erroneous,
sometimes sufficiently so to make the simulations crash.

φ(x)

(a) Droplets in near contact

φ(x)

x

0

(b) A slice of the level-set function

Figure 2: (a) Two droplets in near contact. The dotted line marks a region where the derivative of the
level-set function is not defined. (b) A one-dimensional slice of the level-set function. The dots mark
points where the derivative of φ is not defined. (Figure due to Karl Yngve Lervåg)

Several approaches have been used to remedy this flaw. The first approach to this problem is described
by Smereka in [12]. He describes the problem briefly, and increases the numerical smoothing in the
curvature discretization to lessen the effect. This is not an optimal solution, and Smereka notes on one

3In the numerical sense, undefined does not necessarily mean infinite, but rather large, erroneous values.
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of the simulations with merging interfaces that “most of the area loss occurs at the topology change”.
He also notes that he is not satisfied with this approach.

The earliest non-smearing approach, by Macklin and Lowengrub [4], uses a modification of the
directional differences for points close to kinks, along with a curve fitting scheme. This has been
elaborated further by the same authors. Further improvements to this method, and adaptations to the
framework used in the present level-set codes, have been developed by Lervåg [28],[29]. These methods
work well, but are difficult to extend to 3D due to the use of curve-fitting.

An alternative approach to the problem is due to Salac and Lu [30], and will be referred to as the
Salac and Lu method. In essence, this approach extracts the bodies represented by the level-set function,
such that each body (e.g. drop) is momentarily given its own version of the computational domain. In
this dedicated version, φ does not represent any other bodies that can induce kinks, and this temporary
φ can be reinitialized and the geometric quantities can be calculated without problems. The author likes
to think of this as a layer-based approach, in analogy with layers used in popular image editing software,
as illustrated in Figure 3. For a review and comparison of these methods, see the article by Lervåg and
Ervik [31].

(a) Original level-set function (b) Extracted level-set functions

Figure 3: Illustration of the Salac and Lu approach. In Figure (b), two level set functions are shown in
different layers. These two have been extracted from the single level-set function in Figure (a). The zero
level-set is highlighted in black, as well as the edges of the computational domain. In both cases, the
level-set function is only shown for a region around the zero level-set, inside the commonly employed
“computational tubes”.

Improve figure, make realistic

The method considered here is a further development of the Salac and Lu method. It is referred to
as the local level-set extraction method, or LOLEX method in short. The reason why the Salac and
Lu method is insufficient in some cases, as well as the details of the present method, is given below.

We give here an outline of the following sections: we start by giving a more thorough account of
the Salac and Lu method, upon which the current method is based, in Section 3.2. Some concepts from
the Macklin and Lowengrub method are also introduced, since they are used in the current method.

14



The motivation for the current method is then explained. Following this, the idea behind the LOLEX
method is described in Section 3.3, and detailed explanations, pseudo-code and figures are presented in
Section 3.4 to illustrate the details of the method. The actual code used is presented in the appendices;
the programming language used is Fortran 90/95. We finally give a brief retrospect of this chapter
along with some closing remarks. Results obtained with the LOLEX method are presented in the next
chapters.

J 3.2 j

Motivation of the current method

T H E I D E A O F SA L AC A N D LU is simple when compared to the curve-fitting scheme used by
Macklin and Lowengrub and later by Lervåg. This simplicity is more in keeping with the “spirit” of

the level-set method: the LSM is an implicit alternative to front tracking methods that employ curve
fitting, and this implicitness makes extending to higher dimensions straightforward. In the same fashion,
the Salac and Lu method is trivially extendable to 3D, while the methods employing curve fitting are
not. There are, however, some drawbacks to the Salac and Lu method as well.

The primary issue stems from the fact that the Salac and Lu method is aware of the global topology
of the interface. A problematic area, with a kink in the level set function close to φ= 0, can be caused
either by two bodies in close proximity or by a single body folding back onto itself. In the latter case,
as illustrated in Figure 4, the Salac and Lu method falls back to the standard discretization, and the
calculated curvature will be erroneous. This may seem like an edge case not worth considering, but
simulations have shown that this often happens, e.g. when a falling droplet merges into a pool. When the
curvature was calculated in such a case using the Salac and Lu method, the curvature error was sufficient
to crash the simulation. For details of this particular case, the reader is referred to Section 5.1. Figure 4 is
taken from the author’s project thesis, [32, Section 5.2]. Another situation where this would often be
the case is in tumor simulations like those performed by Macklin and Lowengrub, as seen in Figure 5,
copied from [4, Figure 6].
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The idea of the LOLEX method

T H E M E T H O D P R E S E N T E D H E R E tries to combine the best of the Salac and Lu approach with
the best of the Macklin and Lowengrub method. As illustrated in the previous section, the Salac and

Lu method is aware of the global topology of the interface, which is problematic in some cases. The
Macklin and Lowengrub method does not have this problem, as its curve fitting considers only the local
area, but as previously stated it does not extend easily to 3D. An obvious workaround to the “global
awareness” is to make the Salac and Lu method consider only the local topology; say, a 10×10×10 cube
around the point where we calculate the curvature.

Since the Salac and Lu method relies on reinitialization to remove kinks, a potential problem with
this approach is computational efficiency. Since reinitialization is somewhat computationally expensive,
and we would do it on a 10×10×10 grid for each point along the interface, the method would quickly
become slow. To avoid problems with this, we want to use the ordinary methods as much as possible,
only resorting to the LOLEX method when we have to. This means using it when there are kinks in the
level-set function close to the interface. To easily identify kinks, we use the quality function Q(x) which
was introduced by Macklin and Lowengrub in [4]. It is defined as

Q(x) = |1−∇φ(x)|, (25)
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Figure 4: The curvature field plotted in the final frame before the simulation crashed. Note the red
curvature field inside the air finger between the drop and the pool, which is incorrect. The color should
be green in this area.(Figure best viewed in color)
Improve figure w lighter background

Figure 5: Another typical situation where the Salac and Lu method would fail. Figure copied from
[4], showing the interface between a tumor and healty tissue. The dash-dotted line is the least accurate
solution.
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i.e. the deviation of φ from a signed distance function. If Q(xi , j ,k )> η, we use the present method for
the grid point xi , j ,k . A value of η= 0.005 is used here, and is seen to perform well. In addition to this,
the current work uses the “narrow band” level-set method introduced in [33]. This means that quantities
such as the curvature are only calculated in a narrow band around the zero level set, where they are
needed. Together, these two conditions severly restrict the use of present method compared to the use of
the normal method. In a typical falling drop simulation, the present method will only be used in a small
percentage of the total number of time steps, and even then, it will typically not be used for all points
along the interface. This means the computational (in)efficiency of the present method has a low impact
on the total runtime of a simulation. Note, however, that the improvement afforded by the LOLEX
method is still large: it only takes a few erroneous curvature values in one time step to completely ruin
the results of a simulation.

An illustration of both the narrow band level-set method and the quality function is given in Figure 6.
In this figure, the red lines indicate the zero level set, the light grey bands indicate the narrow band
around φ = 0, say where |φ| < ε ≈ ∆x, and the medium grey bands indicate where Q(x) > η. The
intersection of the light and the medium grey bands indicate where the present method will be used; as
expected, this is where the two bodies are close together. Check consistent

use of "present
method"/"LOLEX
method"

Having briefly presented the idea behind the present method and the scope in which it will be used,
we give here a step-by-step outline of it. See also the appendices, where the full code is given, along
with a flowchart illustrating the interdependence of the routines in the case of curvature calculations.
2D notation is used here, since it is easier to read than 3D notation. All steps are easily extendable to
3D.

,→ Loop over the computational domain using indices i,j

,→ If (xi , j not close to interface) do nothing

,→ Else if ( Q(xi , j )< η ) use ordinary method

,→ Else use LOLEX method:

,→ Copy φ in a [-1,ilmax+2]*[-1,jlmax+2] square around i,j into the lookphi array.
,→ Identify the bodies present in the [0,ilmax+1]*[0,jlmax+1] square, store this in the bodies

array.
,→ For each body, extract the relevant part of the lookphi array into locphi(:,:,bodyno).

This array has 3 ghost cells on the boundary outside ilmax*jlmax; these are not used until
the extrapolation further down. Extracting means
− copying lookfi for the internal points of this body
− copying lookfi for external points that are not next to more than one body
− explicitly reconstructing the signed distance for external points that are next to more

than one body
− setting a value of 2*dx for the internal points of all bodies other than this one

,→ Once the locphi array has been filled for all bodies, the values are extrapolated into the
ghost cells. The extrapolation is zeroth-order, as will be explained further down.

,→ The locphi array is then reinitialized for all bodies. This erases the problematic kink, as
well as the value of 2*dx which was set previously. Thus this value is unimportant, as long as
it is > 0.

,→ Using these local φ’s, the curvature and normal vectors can be calculated for each body. The
multiple curvatures are then combined using a weighted average. For the normal vector, the
closest body dictates which one to use.
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Figure 6: Illustration of the quality function and the narrow band level-set method. The red lines indicate
φ= 0, the light grey bands indicate the narrow band where |φ|< ε, and the medium grey bands indicate
where Q(x)> η. The intersection of the light and the medium grey bands, the dark grey area, indicates
where the LOLEX method will be used.

The steps in this algorithm that perhaps warrant further comments are: identifying the bodies
present, explicitly reconstructing the signed distance, extrapolating to the ghost cells, and reinitializing.
These will be considered further in the next section and subsections. The quantities ilmax,jlmax and
klmax represent the number of grid points, in the x, y and z directions respectively, of the local grid. The
values of ilmax,jlmax etc. are all set to 7 in the following. Their values are independent of the global
grid size, denoted by imax, jmax, kmax.

J 3.4 j

Details of the method

S O M E S T E P S O F T H E A L G O R I T H M O U T L I N E D need further explanations. This is either
because they are too technical to be fully described in the short outline, or because they have

not been properly motivated yet. The steps that will be considered is identifying the bodies present
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(Section 3.4.1), explicitly reconstructing the signed distance (Section 3.4.2), extrapolating to the ghost
cells (Section 3.4.3), and reinitializing (Section 3.4.4).

3.4.1 Identifying the bodies present

We start by explaining the procedure used to identify the bodies present. Here a recursive routine is used,
which starts at a seed point in a body and iterates through the entire body, marking it as such in the
bodies array. This routine is called bodyscan in the code and flowcharts, see appendices. The bodies
array starts with a value of unchecked, and bodies found are marked using increasing integers, i.e. the
first body found is marked as 1. The recursive subroutine will have marked the entire first body when its
first call returns.

After the subroutine returns, we check if the present body is large enough to keep, or if it should be
discarded. The reasoning behind discarding some bodies is twofold: a body occupying only a few cells in
the local area will not be accurately represented, and will give erroneous values of the curvature and
normal vectors. Furthermore, if it is small, it cannot be close to the present point, which is at the centre
of the local area. Thus it is not important, since there must be another body close to the central point. If
all bodies present are far away from the central point, we would not be using the LOLEX method in the
first place. This assumes that no global bodies have only a few internal points, but such bodies are not
properly resolved anyway. For such small bodies, we fall back to the standard method.

In practice, a Gaussian is used to decide which bodies are discarded. A normalized Gaussian is
precomputed and stored in an array which is the same size as the bodies array, centered at the centre of
the local area, with 1/4 the width of the local area as the standard deviation. The values in this array are
summed up for the points in the current body. If these sum up to less than a given value, the current
body is discarded. A threshold of 0.11 is used here. For removed bodies, the points in the body are
marked as removed. Points not inside a body are marked as nobody. Verify final

threshold.
Difference
2D/3D? Gaus-
sian/constant
weight?

For some points, it may happen that all bodies are removed from the local area. In this case, we check
the distance from the central point in the local area to the closest interface. This is given by the value
of the level-set function at this point. If this value is larger than 2∆x,the curvature value and normal

verify 2∆x

vectors for this point is unimportant, so we set the curvature equal to zero. If all bodies are removed,
but the central point is close to an interface, an error message is printed saying that something has gone
wrong. This has not happened during the simulations reported here.

A point to note about the routine given here is that even though a recursive subroutine is used,
memory usage will not be problematic. This is because the routine operates on a small array whose
size is independent of the grid size. In 3 dimensions and with the presently used size of the local
area, the array bodyscan would have 11*11*11 = 1331 elements, which is too few to cause memory
problems.

3.4.2 Explicit reconstruction of the signed distance

For some points with φ> 0, two or more bodies are within∆x of the point. This means that the value
of φ is probably incorrect, since it has to be the distance to two separate bodies at the same time. We
will call such points “dependent points”. Because φ is likely incorrect for dependent points, we discard
its value, and instead explicitly reconstruct the distance to the relevant interface. The procedure used is
from [34], which is slightly modified. This procedure was also used in the author’s project thesis [32],
and the remainder of this subsection is copied from that report with minor changes.

The reader is reminded that our objective is to find the distance to the relevant interface for a
dependent point. This dependent point lies right next to two interfaces, but when we perform this
calculation our interest is only one of these interfaces, so the other body is removed. Note that the signed
distance is always positive for exterior points, so it is just the normal distance.
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Figure 7: The five cases considered in the Adalsteinsson et al. method. Note that here, the body displayed
in gray is just one of the bodies close to the central point. This implies that the fifth case is not relevant
in this context: if the interfaces in e belong to two different bodies, we are only interested in one of them,
so the situation is reduced to b. If they both belong to the same body, there cannot be two bodies next
to the center point, so we have an independent point and would not be using this method in the first
place. (Figure copied from [34])

The procedure in [34] is as follows. The point (i , j ) which we are considering is next to the interface
of current interest. We ignore all other interfaces. Up to rotational symmetry, there are four possible
cases. Adalsteinsson et. al. have five possible cases in their approach, which is more general, but applied
in this context the fifth case never happens. This consitutes the aforementioned small modification. The
cases are shown in Figure 7, copied from [34].

We examine the four relevant cases (a to d) closer:

a The interface crosses one of the lines from (i , j ) to its four neighbours. In this case, we use the distance
to the interface along this line as our distance. This distance is given by

s =∆x +φ(i − 1, j ) (26)

where we have assumed that (i − 1, j ) is the neighbour on the other side of the interface. Since
this neighbour is an internal point, it has φ< 0. The distance to the interface is the distance to
the neighbouring grid point (∆x) minus the distance from that grid point to the interface, which
gives this formula. It is best to use only the φ-value inside the body, since it is less distorted.

b The interface crosses two of the lines, and these two lines make out a corner of the 2×2 grid in
Figure 7. In this case we use the shortest distance to the straight line between the two points of
intersection. The distance d is given by the formula

�

d

s

�2

+
�

d

t

�2

= 1. (27)
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As long as s2+ t 2 6= 0 this equation can be solved, and the positive solution is

d =
s t

p

s2+ t 2
. (28)

If we have s2+ t 2 = 0, then s = t = 0, so it is obvious from Figure (b) that the distance to the
interface is d = 0.

c The interface crosses three lines. We construct the two straight lines between the points of intersection,
and use the shortest distance to either of these two lines, given by

�

d

min(s1, s2)

�2

+
�

d

t

�2

= 1. (29)

d The interface crosses two lines. These lines are on opposite sides of the point (i , j ). In this case, we
use the shortest of the two distances, so d =min(s1, s2).

These formulae can be extended to three dimensions, where the possible cases are more numerous; this

As a side remark, we
mention that case a is
the most common, case
b is less common, and
cases c and d have not
been observed during
typical droplet
simulations.

is not considered in further detail here.
Consider the 3D case

3.4.3 Extrapolation

After the interior of the locphi array has been filled, the ghost cells must be filled before we can
reinitialize the local φ. A first approach was to use linear extrapolation, which should work well since
φ is a linear function in 1D. However, it turns out that this approach does not work. A fundamental
property of the reinitialization equation (7) is that its characteristics originate at the interface φ = 0.
This is why the present method (and the Salac and Lu method) works - we only need a few cells directly
next to the interface to have the correct value of φ, and reinitialization will fix the rest. It also means
that reinitialization will never move the position of the interface, which is a desireable property in
general.

The problem with linear extrapolation occurs when we extrapolate starting on the opposite side
of the kink from the interface. In this case, the values of the local φ are tending towards 0 from above,
which means that extrapolation can reintroduce the other body (which we removed in the first place).
When this happens, reinitialization cannot fix the values beyond the kink, since it cannot move the
interface reintroduced by extrapolation. This situation is shown in Figure 8(c) and (e), and thus we
cannot use linear extrapolation.

A straightforward alternative is to use a zeroth-order extrapolation. This means simply copying the
values along the edges into the ghost cells. It is obvious that this will never cross φ= 0, so reinitialization
is able to works as intended. An example of this is shown in Figure 8(d) and (f).

We describe further the parts of Figure 8. In (a), a zoom in on the global level set of a droplet touching
a pool is shown. In (b), the local level set of the lower body (the pool) is shown after extraction and
explicit reconstruction. Here, the values on the edges are not set, indicated in green. In (c), the same is
shown using first-order extrapolation, and in (d) with zeroth-order extrapolation. In (e), the first-order
extrapolated φ is shown reinitialized, and in (f) the zeroth-order extrapolated φ is shown reinitialized.
Note in particular that in (e), a kink still exists after the entire procedure (green line), so the geometric
quantities calculated could still be wrong if the derivatives cross the kink.

As Figure 8 is an illustration ignoring grid effects, a “real-life” example of a zeroth-order extrapolated
local level set is given in Figure 9 (a). This figure also illustrates how the corner cells are handled.
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(a) Zoom in on global level set (b) Extracted local level set

(c) First order extrapolated (d) Zeroth order extrapolated

(e) First order, reinitialized (f) Zeroth order, reinitialized

Figure 8: Extraction, extrapolation and reinitialization of the local level set is shown, for the lower body
in Figure (a). Figure (a) is a zoom-in of Figure 6. Red indicates a negative value, blue a positive value,
and white indicates zero. The green lines indicate kinks in the level set function, and the black lines are
the zero level sets. A detailed explanation of the figures is given in Section 3.4.3. (Figure best viewed in
color.)
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Figure 9: Zeroth-order extrapolated local level set, part of a circle. In this case, there are 7 internal cells
in either direction, and three ghost cells outside this. The black square frames the internal cells. In (a),
the distance from the interface to the other body is 2.8∆x. In (b), the distance is 1.1∆x. It is seen that
the zero level set in (b) is slightly deformed.

Assuming three ghost cells in both directions, there are nine ghost cells in one corner. Using zeroth-order
extrapolation, these cells all get the value from the corresponding corner of the internal grid.

A possible improvement over the zeroth-order extrapolation used here would be to use values from
the global φ where it is possible, i.e. inside the body considered and in outside regions where the quality
function is below the threshold η. Where this is not possible, one would fall back to the zeroth-order
extrapolation. This would probably increase the accuracy of the curvature and normal vectors. However,
the curvature and normal vectors calculated further down are sufficiently accurate that no more time
was spent pursuing this alternative here.

3.4.4 Reinitialization

When the extracted local level-set has been extrapolated, it must then be reinitialized before the geometric
quantities are calculated. This is essential in order to have good values of the level-set function outside the
interface. The entire LOLEX method hinges on the fact that reinitialization restores the local level-set to
a signed distance function, so that ordinary discretizations will not give errors. This is not, however,
straightforward.

When reinitializing, we require at least some points on either side of the interface with decent
φ-values. In addition to this, we need to know the smeared sign function, and most crucially, the normal
vectors at the interface. Thus we are faced with a bootstrapping problem: accurate normal vectors are
required in order to accurately calculate the normal vectors. This is only a problem when the global
interfaces are very close; when there is a moderate distance (i.e. more than one grid point between the
interfaces), the normal vectors can be calculated at the interface using the local level-set.

The solution to this conundrum is to exploit the redundant information which is stored in the level
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set function. To illustrate this redundancy, imagine that you are walking along a normal vector to the
interface. At each grid point you pass, you are told the current distance to the interface. As long as you
do not pass any kinks, this information is redundant: using the value at the first grid point you pass,
you can calculate the value at the next grid point, and the one after that, given that you know the grid
spacing.

What this means for the present case is that we have information inside the current body that we can
use. Most importantly, we can calculate the normal vectors without problem for internal points. This
means that we can reinitialize a level set different from φ= 0, e.g. φ=−0.8∆x, and get essentially the
correct φ afterwards. We are not guaranteed to get exactly the correct φ, but seeing as we cannot obtain
the correct φ anyway, we will settle for a good approximation.

The value of −0.8∆x used here gives the most accurate results. If the value is too close to zero, the
benefit of reinitializing from a lower level set is reduced. However, if the value is too large, we risk having
this lower level set too close to the edges of the local domain, and we increase the potential error caused
by reinitializing from a different level than zero.

Another problem solved by this is the fact that the values directly outside the zero level set may be
incorrect in some cases. In particular, this happens when an outside grid cell is not flagged as dependent,
but its value of φ still deviates from that dictated by a signed distance function. Tests have shown that
this sometimes occurs, and that it distorts the zero level set somewhat. An example of this is shown in
Figure 9 (b). This is a similar case to that in Figure 9 (a), but the distance to the other body has been
reduced from 2.8∆x to 1.1∆x.

Reinitializing from a different level may sound somewhat complicated to do, but the implicit
formulation springs to the rescue again. To reinitialize a different level set, we simply add a constant to φ
at every local grid point, call the reinitialization routine on this φ, and then subtract the same constant
from the reinitialized φ. The effect of this is illustrated in Figure 10, which is an extreme case. Here,
reinitialization of two very close bodies has distorted the global level-set function close to and outside
the interfaces. The reinitialized local level-set function is also wrong, but the one which is reinitialized
from a lower level gives a much more accurate representation of the interface. This will, in turn, give a
much more accurate curvature.

In order to reinitialize the local level-set, some modifications were made to the existing reinitialization
routines. The most obvious modification was to make them work on the smaller grid containing the
local level set. In addition to this, the normal vectors and the smeared sign function are typically stored
in global arrays. This is because they are used for several things in addition to reinitialization, e.g. when
advecting the interfaces. In the local level-set reinitialization, this is unnecessary since the values are not
be reused in other parts of the code. For this reason, the code calculating the smeared sign function and
the normal vectors was inlined in the routine that calculates the right-hand-side of the reinitialization
PDE.

The fact that specific routines had to be written for local level-set reinitialization enabled some
simplifications in this code. The ordinary reinitialization uses routines that are shared with other PDE
solvers, and thus they contain cases (e.g. in the choice of Runge-Kutta method) that are irrelevant for
local level-set reinitialization. In the routines for local level-set reinitialization, these cases are removed.
For reinitializing the local level-set, the SSP-RK 4()2 method is used, along with the WENO-5 method.
For details of these see Section 2.5.

3.4.5 Parameters used presently

In the LOLEX method as presented in the previous sections, there are a number of parameters than can
be varied. An overview of these is given here, along with the values used presently, and sensible ranges
for some of them.Make parameter

list To conclude this section, the entire main routine of the present method is included as well. It can be
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(a) Before (b) From φ=−∆x (c) From φ= 0

Figure 10: The LOLEX method on a global level set which is distorted due to reinitialization of very
close bodies. (a) Local φ before reinitialization. (b) Local φ reinitialized from φ=−1.0∆x. (c) Local φ
reinitialized from φ= 0.0. The black square indicates the boundary to the ghost cells, and the red square
indicates the 3×3 central points that are used in the final curvature calculation.

seen in the appendices. This code has been given some cosmetic alterations to make it more readable,
but is otherwise the same as that used to produce the results shown here.

J 3.5 j

Summary

I N T H I S C H A P T E R the presently used LOLEX method has been described in detail. The motivation
behind this method and the advantages compared to other methods have been given. The present

method is said to handle bodies folding back onto themselves, as well as being easily extended to three
dimensions. The origin of the ideas behind the method have been explained, and the technical details
have been given. The descriptions should be sufficient for anyone wanting to implement the LOLEX
method. The parameters of the method, which may be chosen with varying freedom, have also been
given. Results, both for static and dynamic simulations, are given in the next chapters.
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§4 Results from LOLEX calculations on static
cases

Contents
4.1 LOLEX curvature calculations . . . . . 27
4.2 A problem with thin bodies . . . . . . . . 31
4.3 LOLEX normal vector calculations . . 33
4.4 LOLEX curvature calculations in 3D . 34

However beautiful the strategy, you should
occasionally look at the results

Winston Churchill

Proofread
chapterU S I N G T H E LOLEX M E T H O D described in the previous chapter, we present here some

calculations of the curvature and normal vectors for static cases with no flow, i.e. purely geometric
results. These results are compared with the results from ordinary discretizations, and from the Salac and
Lu method and the Lervåg method which is a variant of Macklin and Lowengrubs method.

J 4.1 j

LOLEX curvature calculations

T H E R E S U LT S O F T H E LOLEX M E T H O D on geometric test cases are presented here. Initial
tests were made to ensure the LOLEX method reproduces the results of the Salac and Lu method,

which has been tested previously in the author’s project report[32].
Include initial
tests

Write section on
computational
expense of
LOLEX

4.1.1 Averaging the curvature values

After all the previous steps, we end up with two values of the curvature in the case with two bodies
present in the local φ. Since we cannot have a multiply-defined curvature in the present codes, an average
has to be used.

The first method of averaging considered is a geometrically weighted average. After the construction
of two local φs, we know the distance to both interfaces. Denote the curvature of the i th interface by κi ,
and the distance from the i th interface to the central point by di . The geometrically weighted average is
then given by

κ=
d1κ2+ d2κ1

d1+ d2
. (30)

An alternative to this is the harmonic weighted average. Using the same notation as before, this
average is given by

κ=
d1+ d2

d1/κ2+ d2/κ1
. (31)

The potential benefit of using a harmonic weighted average over a geometrically weighted average is that
the harmonic average gives less importance to larger values [35]. In the present case, large values are
often incorrect, since the errors produced by the ordinary method are O (1/∆x) [4]. When considering
a circle, the grid resolution would typically be set so that the radius is > 10∆x, in order to avoid errors.
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Thus a typical erroneous value is an order of magnitude larger than a typical correct value, and so it
could make sense to use a harmonic average.

Further averages can also be considered. One alternative is to use a plain average, i.e.

κ=
κ1+κ2

2
. (32)

Another option is to amend the geometric average by squaring di in both the nominator and denominator,

κ=
d 2

1κ2+ d 2
2κ1

d 2
1 + d 2

2

. (33)

Taking this further, di can be raised to the power 3, 4 etc. The higher the power, the more weight is
given to the curvature corresponding to the closest interface. We will call this the squared geometric
weighting, et cetera, even though strictly speaking it is only geometric when the exponent is 1. If we take
the limit

κ= lim
n→∞

d n
1 κ2+ d n

2 κ1

d n
1 + d n

2

, (34)

we end up selecting just the curvature corresponding to the closest interface, i.e.

κ=







κ1 if d1 < d2

κ2 if d1 > d2
1
2 (κ1+κ2) if d1 = d2

. (35)

We will call this the supremum average. To a physicist, the statement above is immediately true. Suppose
then, for the sake of argument, that you are a mathematician.

P R O O F . We want to show that the limit in Equation (34) is Equation (35). Suppose that d1 > d2, the
argument is identical in the opposite case and for equality. We can divide by d1 in the nominator and
denominator in Equation (34), and defining a = d2/d1 < 1 we are left with

κ= lim
n→∞

1nκ2+ anκ1

1n + an =
1κ2+ 0κ1

1+ 0
= κ2 (36)

�

To test the various averages in practice, all these methods were used to calculate the curvature field
for a geometric test case. In this test case, a thin ring of fluid 1 is constructed inside fluid 2. The width
of the thin ring is varied in order to test the method at different interface separations. This test case
was chosen because it reveals anisotropies and grid effects easily. The curvature of a circle is simply a
constant, the inverse of the radius, so the correct curvature is known. For the first test, the width of the
ring was set to 1.5 dx.

The results of the test are shown in Figure 11. In this figure, blue represents a negative and red a
positive curvature, while green means zero curvature. With the definition used here, the curvature of
the inner interface is negative, and that of the outer interface is positive. It is seen that the harmonic
average performs worst of all. It is also seen that the results are fairly isotropic, as they should be, but
there are some grid effects. This is unavoidable, as we do not have enough grid points to accurately store
the curvature. It is somewhat difficult to tell which average performs best, so line plots of the curvature
along the interface are given as well.
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(a) Geometric (b) Harmonic

(c) Plain average (d) Squared geometric

(e) Cubed geometric (f) Supremum

Figure 11: Comparison of different ways to average the curvature
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In the line plots, the interpolated curvature values are shown for 16 points equidistantly spaced
on a 4*dx interval along the interface. These plots are shown in Figure 12 and give good insights into
the performance of the various averages. First of all, it is confirmed that the harmonic average is the
worst, while the plain average is the next-worst. Second, the supremum average is the least noisy, but
it overestimates the correct curvature value in all but one point (note that the values are all negative).
Overall, the supremum or the geometric average are the best candidates, lying on either side of the correct
value. This fact, along with the tendency of improvement when going from squared to cubed, prompted
a search for some exponent n > 3 which has low variation and gives a good average value.

Testing with exponents n = 5,8,14,20 gave the results shown in Figure 13. From this it seems that
n = 5 is a good choice, slightly better than the geometric average. It is reassuring that as n→∞, the
results converge towards the supremum average. It is also seen that at the final three points, all exponents
give almost the same result. This is because the interpolation routine has a problem at this point. The
interpolation routine uses the marching squares algorithm, which has well-known problem in some
cases [36]. This effect dominates in the final three points, particularly the second-to-last one.

This does not, however, affect the simulations. In simulations, only the curvature values at grid points
are used, as described in [12]. The interpolation is only used here in order to compare the averaging
methods. Thus no interpolation errors affect the physical results.
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Figure 12: Lineplots of curvature along the interface for different averaging methods.
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Figure 13: Lineplots of curvature along the interface for different exponent n in the geometric weighting.
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A problem with thin bodies

A P R O B L E M W I T H T H I N B O D I E S and the level-set method was discussed in the author’s project
thesis [32]. In essence, what happens in this case is that a thin body with only one interior point

cannot be stored correctly. Since we demand that this interior point stores the signed distance to two
interfaces at the same time, we are bound to get an error if the distance to the two interfaces is not
equal. If only a low amount of reinitialization is used, this error is small, and the interfaces move mostly
correctly according to the advection equation (6). By low amount, we typically mean that reinitialization
is performed every 20-100 time steps; the exact number depends on the specific case. By a large amount
of reinitialization, we typically mean that reinitialization is performed every 1-5 time steps. Other
factors also affect the “amount” of reinitialization. The number of pseudo-time steps and the pseudo-
CFL number used when solving Equation (8) can be varied greatly. One can also use a convergence
criterion to stop reinitialization before the specified number of pseudo-time steps, reducing the amount
of reinitialization.

In the LOLEX method, a large amount of reinitialization is used to remove kinks in φ. This will
introduce a large error for such thin bodies. It should be stressed that this only holds when a body is
thin, i.e. when a body contains only one interior point somewhere. It does not occur in the similar but
much more important situation when two bodies are close, since in that case we remove one of the
bodies before reinitializing.

Since this problem only occurs with bodies that are too thin to be resolved, it is not a significant
problem in realistic simulations. In fact, it was only discovered using an artificial stress-test of the

31



curvature calculation. In that test case, thin films were used. If these films were thinner than 2*dx, the
curvature becomes incorrect due to the reinitialization deforming the thin bodies. The resulting error is
shown in Figure 14.

(a) Thin body, LOLEX (b) Thin body, standard

(c) No thin body, LOLEX (d) No thin body, standard

Figure 14: Illustration of the curvature error when using the LOLEX method on thin bodies. When
thin bodies are present, both LOLEX and the standard method give the wrong result. When no thin
bodies are present, the LOLEX method gives the correct result while the standard method gives the
wrong result (the two lower red dots in (d) ).

In Figure 14 (a) and (b), a thin body is placed close to a circle and the curvature is calculated using
the LOLEX method and the standard method, respectively. Both methods give erroneous values. In
Figure 14 (c) and (d), the thin body has been widened. In (c), the LOLEX method gives the correct
results everywhere, while in (d) the standard method gives incorrect results in the area between the
bodies.

As seen in Figure 15, reinitialization of such a thin body can result in a deformation inducing an
incorrect curvature. Note in Figure 14 that the problem occurs only when a thin body is close to another
body. In the areas where the thin body is far from other bodies, even though use of the LOLEX method
is triggered by the kink inside the thin bodies, the single body is not reinitialized and the calculated
curvature is correct (the curvature of a straight line is zero).

The conclusion of all this is that thin bodies (i.e. bodies with only one internal point in some
direction) should be avoided. This agrees with common sense, since such bodies are not resolved
properly, and a finer grid must be used if one wants to work with thinner bodies. However, the possible
effect of reinitialization on the interaction of e.g. colliding droplets is a related effect in a physically
interesting case that should be more closely examined. Since the φ representing a thin film between
two drops is just the φ of a thin body turned upside-down, it is reasonable to think that the effect
occurs for thin films as well. The author is not aware of any thorough studies of such effects in the
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Figure 15: Thin body deformed by reinitialization. The dotted line shows the initial interface, where φ
is a signed distance function. The full line shows the result of reinitialization. In theory these should
overlap. The width of the initial body is 1.45∆x.
Make figure less tall

literature, although several authors (e.g. Smereka in [12]) mention that reinitialization is turned off in
their simulations of collisions.

In this light, it would be instructive to test the effect of reinitialization on the coalescence of
droplets, to determine whether this affects the behaviour. Reinitialization should in theory not have any
adverse effect on the motion of colliding droplets (or any bodies), but theory is often different from
practice. Some tests with different amounts of reinitialization are therefore performed further down in
Section 5.5.

To summarize this section, the LOLEX method tends to give large errors for bodies that are not
properly resolved by the level-set method. This is not a problem per se, since further grid refinements
are necessary in such cases anyway, and then the problem goes away. However, the author feels that
any differences between the LOLEX method and the standard discretizations should be pointed out
clearly.

J 4.3 j

LOLEX normal vector calculations

A C C U R AT E N O R M A L V E C T O R S close to the interface are crucial to level-set simulations. The
importance in reinitialization has been suggested above, coming from the fact that normal vectors

are used both in finding the upwind direction and in calculating the right-hand side of Equation (8).
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Normal vectors are equally important in calculating the extension velocity, where an error would lead
to the interface not moving according to the flow.The Lervåg method

is a variant of the
Macklin and Lowen-
grub method, using
different interpolat-
ing functions.

In this section we present results of accurate normal vector calculations using the LOLEX
method on several geometric test cases. These results are compared both to the standard central-
differences discretization, to a directional-differences discretization and to the curve-fitting method
of Lervåg.

When calculating the normal vectors with the LOLEX method, we are again faced with two values
at each point. In this case, however, it does not make sense to average the values, as with the curvatures.
Instead we choose the normal vector corresponding to the closest interface. If the distances are exactly
equal, we pick the normal vector corresponding to the first body. In this case, there is no correct answer,
but picking a normal vector which is at least correct for one body should be better than using one which
is correct for neither. This has been discussed by Lervåg in the context of curve fitting methods; he
reports in [29] that the least-squares quadratic curve fitting employed by Macklin and Lowengrub gives
a normal vector which is incorrect for both interfaces in the case where the distance from the grid point
to both interfaces is exactly equal.

Using this selection of the proper normal vector, the normal vectors were calculated for the test case
discussed previously in Figure 11. In this case, the width of the thin air-film was 1.6∆x. The results for
all four methods are shown in Figure 16.

Perhaps the most surprising result of this is that the directional difference method is not much better
than the central difference method. This is what prompted the use of curve fitting methods; Macklin and
Lowengrub initially used directional differences and additional grid refinement in [4], but switched to
curve-fitting methods in [37]. As is seen in Figure 16 (c), the curve fitting method (the method by Lervåg
is used here) gives the correct result. In (d), we see that the LOLEX method also gives the correct result.
It is impossible to distinguish the results in (c) and (d) without overlaying the figures and zooming in alot;
then a minute difference can be seen, as in Figure 17. Here, the normal vectors calculated by the LOLEX
method have been colored dark red, and the ones calculated by the Lervåg method have been colored
dark blue. The difference seen is too small to have any impact on the result of simulations.

Even though it is easy to see that the improved normal vectors look correct, it is nevertheless
reassuring to see two completely different methods give essentially exactly the same result.

J 4.4 j

LOLEX curvature calculations in 3D

AS P O I N T E D O U T S E V E R A L T I M E S A L R E A DY, the main advantage of the present LOLEX
method over the Macklin and Lowengrub method is that it scales easily to 3D. This is because the

present method retains the implicitness of the level-set method. A 3D extension of the Macklin and
Lowengrub method, on the other hand, would fit a local surface to the point of interest. Curvature
estimation in 3D based on local surface fitting has long been a topic of research in computer vision, see
[38] for a review of various methods including the use biquadratic surface and of splines. The conclusion
of [38] is that these methods are very sensitive to numerical noise (in their context, sensor noise). In the
current case, noise is to be expected, as can be seen in Figure 9 (b). Due to this fact, methods in computer
vision that avoid local surface fitting and calculate only the sign of the curvature have been introduced,
since this quantity can be calculated more reliably[39]. This is not a viable alternative in two-phase flow
simulations as reported here.

By contrast, the LOLEX method scales easily to 3D. Having stated this multiple times, it is time for
the author to put his money where his mouth is. A proof-of-concept implementation was completed in
4 days, given the already working 2D code with LOLEX and a 3D code where the standard curvature
discretization and routines used by the LOLEX method (e.g. reinitialization) were present.
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(a) Central difference (b) Directional difference

(c) Lervåg (d) LOLEX

Figure 16: Comparison of normal vector calculations using different methods.

The results of the proof-of-concept implementation are shown in Figure 18. In this case, a bubble is
shown above a plane, with distance 1.2∆x at the closest. The grid is 50×50×50, and the bubble radius is
12.5∆x. The surfaces are colored according to the curvature (interpolated to the surface). In Figure 18
(a), the standard 27-point stencil due to Kang et al. [14] is used. In Figure 18 (b), the LOLEX method is
used. It is seen that the LOLEX method performs much better than the standard discretization in areas
where the bubble and plane are in close proximity. The thin, yellow ring shown on the plane in Figure 18
(b) is the result of a bug which was not fixed in the proof-of-concept version here. Bugfixing takes a
lot of time, time which in this case is better spent setting up and running more physically interesting
simulations in 2D.

The analytical curvature in this case is −10. The standard discretization performs well away from
kinks, where the variation in curvature is at most ±0.2%. Close to the kink, the standard discretization
has errors of ±80%. The LOLEX method has the same variation as the standard method away from
kinks, while the variation is±2% close to the kink. Thus it is seen that the 3D LOLEX method performs
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Figure 17: Comparison of the Lervåg method and the LOLEX method for calculating normal vectors.
The LOLEX normal vectors are colored dark red, the Lervåg normal vectors are colored dark blue. A
minute difference can be seen.

much better than the standard method close to kinks in the level-set function. There is still a small
error, and part of this could be due to some elusive bug(s), but some deviation has to be expected
since we are reconstructing information that is missing from the level-set function. A deviation of this
magnitude is unlikely to have a large impact on simulations, in contrast to the errors from the standard
discretization.

(a) Standard discretization (b) LOLEX method

Figure 18: Comparison of the standard 3D curvature discretization (a) and the 3D LOLEX method (b).
The surfaces are colored according to the curvature, and the standard method is seen to give the wrong
result close to the kink, as the sphere should be uniformly colored. The yellow ring on the green plane
in (b) is a bug which has not been fixed.

To the author’s knowledge, improved curvature calculations in three spatial dimensions that handle
general topologies have not been reported before in the literature. Salac and Lu report results of 3D
simulations in [30], but it is not known how (or if) they handle problems like that illustrated in Figure 4.
They also do not discuss the problem of needing good normal vectors at the interface in order to solve
the reinitialization equation.

The fact that such calculations have not been reported previously is probably due to the
computational costs of 3D simulations. This cost is such that highly accurate (i.e. interface tracking) 3D
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simulations are not common. As an example, the 2D simulations reported by Macklin and Lowengrub
in [4] were performed on supercomputer hardware; this indicates that 3D simulations are still too
demanding to perform. The 3D simulations reported by Salac and Lu in [30] consider motion under
mean curvature, which is computationally much less expensive than fluid flow simulations. However,
given the current developments toward petascale supercomputers, and particularly the rapid evolution
in GPU-accelerated solvers, dynamic 3D level-set simulations of colliding bodies are beginning to come
within reach. When this happens, a method such as the present one will be necessary in order to get
accurate results.
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§5 Results from dynamic simulations using
LOLEX
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When I meet God, I am going to ask him two
questions: Why relativity? And why
turbulence? I really believe he will have an
answer for the first.

Werner Heisenberg
Proofread
chapter
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Summary of previous simulations

Skip this section,
has not been
rewritten yetT H E R E S U LT S O F P R E V I O U S S I M U L AT I O N S performed with the present codes are reported

here. These were completed during the author’s specialization project in the fall of 2011, and the
results reported here are from the author’s project report.

5.1.1 Droplet colliding with pool

W I T H T H I S M O T I VAT I O N , several numerical simulations of droplets colliding with pools were
performed using the new curvature calculation method. The basic case considered was a 0.6 mm

diameter droplet of methanol falling through air onto a pool of methanol from a height of 0.65 mm. A
second case was also considered, where the drop fell from a height of 2.5 mm. The droplet reached a
speed of 0.09 m/s in the first case, and 0.27 m/s in the second case, before colliding with the liquid pool.
Such velocities are in the lower end of the range of velocities studied experimentally. These cases were
also chosen because the old method fails to produce any interesting results here. The simulation of the
first case crashes when the droplet is 2.6∆x away from the pool, or after 0.01193 s.

The crash in this simulation using the old method is caused by the erroneous curvature field, which
induces an unphysical pressure field. A typical crash is shown in Figure 19. In Figure 20, the curvature
field is plotted alongside the (correct) curvature field that is calculated by the Salac and Lu method. This
demonstrates that the curvature is the culprit here, since the simulation using the Salac and Lu method
does not crash at this point, and the curvature calculation is the only difference between the two. Note
that the positive curvature indicated in two places (red areas) for the Salac and Lu method is indeed
correct.

For completeness, some further properties of the simulations above are provided here. As stated
previously, the only difference between the two simulations is the curvature calculation method. The
simulations were performed on a uniform 162×242 grid, which represented a 1.5 mm×2.25 mm
domain. 4 The droplet had a diameter of 0.6 mm, and was placed 0.65 mm above the pool. The density of
methanol was set to 792 kg/m3, while the surrounding air density was 1.2 kg/m3. The dynamic viscosity

4Using such a thin domain means that the edges of the domain influence the falling droplet, but a significantly larger domain
makes the computation too lengthy. The smaller domain used here already means the runtime is measured in days and weeks.
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(a) Frame just before crash (b) Frame of crash

Figure 19: The droplet colliding with the pool, showing how early the old method crashes. The distance
from the droplet to the pool is 2.6∆x in these figures. The velocity field is plotted, and is seen to diverge
spectacularly in Figure b). The same scale is used for the vector arrows in both plots.

(a) Old method (b) Salac and Lu method

Figure 20: Why the ordinary method fails: the curvature field is plotted in the last frame before the crash,
for the old method and for the Salac and Lu method (which does not crash in its next frame). The light
blue background indicates zero curvature, the dark blue indicates a negative value, and red indicates a
positive value. The curvature calculated by the Salac and Lu method is correct.
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was 560 · 10−6 Pa s for methanol and 20 · 10−6 Pa s for air. The surface tension was 2250 · 10−6 N/m, and
standard gravity (9.81 m/s2) was used. No-slip conditions were enforced on all boundaries.

Considering more numerical settings, the ILUK-preconditioned GMRES Poisson solver from the
PETSc library was used, with a desired residual of 1.0 · 10−12. Reinitialization of the level-set function
was performed every time step, using a maximum of 50 pseudo-time steps, but typically around 5 steps
were necessary to reach convergence of the reinitialization equation.5 The HCR-2 method was used for
the reinitialization. A CFL-number of 0.3 was used for the Navier-Stokes solver, while a CFL-number
of 1.0 was used for the reinitialization and for extrapolation of the velocity and curvature. There is
some potential for trouble in the CFL condition for the Navier-Stokes equations, as the CFL-coefficient
depends on the curvature field. This means that an erroneous curvature field, with κ becoming orders of
magnitude too large, could force the time step to become extremely small, which means that the code
will crash (or rather think that it has crashed). For details of the CFL condition used, see [14]. The total
runtime for the simulation was 11 days 4 hours on an Intel Core2 Q8400 processor, running on a single
core as the present codes are not parallelized. Apart from the settings mentioned here, the standard
settings of the level-set codes were used; there are too many to list them all, but the important ones are
given.

As stated, the simulation using the Salac and Lu method does not fail where the ordinary method
does, but this simulation also failed some time later, at 0.0123 s. This is shown in Figure 21, where the
velocity field does not go crazy, so it has not been plotted. In this simulation, the droplet does begin
merging with the pool, and the result looks reasonable up until the simulation fails. The merging of
the droplet and the pool happens almost completely at the right hand side, creating a thin finger of air
between the droplet and the pool. This is thought to be the cause of the failure, for two reasons. First
of all, after the merger there is only one body present in the calculation domain, and the Salac and Lu
method cannot work since it requires at least two bodies to be present. Thus, the ordinary method is
used for curvature calculation, and the result is incorrect, as is seen in Figure 21, where the large red area
is indicating an incorrect curvature field. This will again induce an unphysical pressure, which may have
caused the crash. Secondly, as mentioned, the CFL condition used includes the curvature field. As the
curvature field is erroneous in this case, the CFL condition could also be the cause of the crash. This has
not been investigated in further detail here, but will perhaps be considered in future work.

Since it seems somewhat unphysical that the merger of the droplet and the pool happens all the way
to one side, possible causes for this behaviour were investigated. Two questions were considerd: first
of all, why does the merger happen at the side (and not the middle), and second of all, why does it not
happen at both sides (symmetrically) in this symmetric case? Closer inspection of the frames just before
merging, as in Figure 22, gives an answer to the first question. It seems that the culprit may again be a
grid effect: the width of the air film is only one or two grid cells, which causes the interfaces to become
less smooth, even blocky-looking. This is caused by the same phenomenon as described earlier in ??,
in ??. Note that in Figure 22, the part of the grid that is in air is colored white, and the part that is in
methanol is colored dark grey. The blockiness is more pronounced at the sides, where the interface is
not parallel to the y-direction, as it is in the middle.

The answer to the second question seems to be that instabilities arising in the simulation break the
initial symmetry of the problem. This is discussed in more detail further down, in ??.

5.1.2 Diagonal simulation of droplet colliding with pool

A T T E M P T I N G T O W O R K A R O U N D T H E P R O B L E M of merging at one side, a new simula-
tion was performed where the physical situation was rotated 45◦ counter-clockwise relative to the

grid. The idea was that this would make the droplet merge with the pool at the middle, making the air
5When φ deviates from a signed distance function less than a given tolerance up to N grid cells out from the interface, we say

that the reinitialization equation has converged.
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Figure 21: The curvature field plotted in the final frame before the simulation crashed. Note the red
curvature field inside the air finger between the drop and the pool, which is incorrect. Note also the
wave in the pool surface that can be seen on the left-hand side.

Figure 22: A zoomed in plot of the curvature field, before the droplet has merged into the pool. The grid
is shown, and is colored white in air and dark gray in the fluid. It is seen that the interfaces have become
blocky, following the edges of grid cells instead of being smooth.
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fingers between the droplet and the pool shorter and less problematic. In this simulation, the edges of the
pool intersect the edges of the computational domain at 45◦ as well. Since the boundary conditions used
for the level-set function are just simple mirroring, this becomes a small problem, as mirroring boundary
conditions force the pool to intersect the domain boundaries at 90◦. This induces a wave motion in the
surface of the pool, making a direct comparison to the previous case more complicated. However, this
motion became damped out almost completely during the fall of the drop, so the difference should not
be very important.

While this approach was not successful in making the droplet and pool merge at the middle, it was
nonetheless more of a success than the previous simulation. In this case, the droplet merged at both the
left and the right end, trapping an air bubble below it. This is shown in Figure 23.

(a) t = 0.0296 (b) t = 0.02995 (c) t = 0.03035 (d) t = 0.03085

Figure 23: The droplet colliding with the pool in the diagonal simulation. This plot is zoomed in on the
droplet, the dark gray indicates methanol and the white indicates air.

In this case, the simulation does not crash, and can be continued for as long as one wants. After the
final frame shown in Figure 23, the waves on the right and left continue outwards, and the drop merges
completely with the pool. The simulation was continued until t = 0.05 s to see if anything interesting
happens, e.g. a secondary jetting, but the result is just wave motion in the pool. This could be due to
effects of the narrow domain, but for low kinetic energies such as here, the experimental results do not
show jetting either. It is not yet possible for the numerical simulations and the experimental conditions
to meet in the middle with regards to the impact velocity, so it is not known for sure at this time whether
“no jetting” is correct in this case.

The reader may also have noticed that three air bubbles were in fact produced between the methanol
droplet and the pool, but that the two smallest air bubbles disappeared. This is due to these small air
bubbles being at the limit of the grid resolution, with one of them containing three grid points and the
other four. As described previously in ??, such thin structures are destroyed by the reinitialization. The
largest air bubble, however, remains. It is an interesting question whether the formation of such bubbles
is physically realistic, or even typical, in droplet-pool collisions. The experimental techniques used by
the team at SINTEF Energy Research for imaging such collisions, presented further down, do not permit
a view of the interior of the fluids in motion. It is therefore not known whether such bubbles form.
However, no extensive literature search has been performed to see if other experimental data is available
to confirm or deny the existence of such bubbles. This may be done as part of future work, particularly if
such bubbles are seen to form in the numerical results for many different initial conditions.

A final interesting feature of this simulation that is worth mentioning is the two waves produced
on the pool surface by the droplet. Such waves are well-known from experiments, as is seen below in
Section 6.2, and it is reassuring to see that the simulation reproduces them. These waves start forming
before the droplet merges into the pool, and can be seen also in the previous simulation, e.g. on the
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left side in Figure 21. The first, smaller waves form due to the air between the droplet and the pool
pushing the water in the pool away. After the droplet has merged with the pool, the small waves are
dominated by larger capillary waves resembling those seen in dam-break simulations, as in Figure 23
(d).

J 5.2 j

Results from LOLEX on previous cases

U S I N G T H E LOLEX M E T H O D O N T H E S E C A S E S solves some problems
Complete
methanol-in-
air simulations,
report results J 5.3 j

Stability considerations for methanol-in-air case

New section

S T A B I L I T Y I S A LWAY S I M P O R T A N T in numerical simulations, but one cannot always get what
one wants. In the methanol-in-air case considered previously, the results are not stable. Particularly

the pressure field has large oscillations, suggesting that the results of this case are not to be trusted too
much. Some effort was made to understand the cause of these instabilities, and whether they could be
mitigated in a reasonable way.

As the pressure field is the most unstable, considering the numerical methods used for calculatingCalculating the pressure
here is numerically

more complicated and
time-consuming than for

compressible flow.

the pressure is an obvious starting point. In the present work, the pressure is calculated by solving a
Poisson equation, the result of using a projection method to decouple the incompressible Navier-Stokes
equations. When solving this Poisson equation, the freely available PETSc library is used, with several
different solvers appropriate to this equation. The alternatives include ILU-GMRES, ILU-BCGS, and
the HYPRE-BoomerAMG. ILU denotes the choice of preconditioner, and stands for Incomplete Lower-
Upper preconditioning. These different solvers were tested on the methanol-in-air case, the results are
shown in Figure 24.

As is seen from this figure, the choice of Poisson solver does nothing to reduce the instabilities. This
also rules out effects of the preconditioner, since the HYPRE-BoomerAMG method does not use ILU
preconditioning. It is noted that the GMRES method used much more CPU time than the other two
methods, as is expected.

Further investigations were made, varying the pressure reference method, the amount of
reinitialization and the CFL number. These simulations were all performed using the HYPRE-
BoomerAMG Poisson solver. None of these provided any improvement, except for decreasing the
CFL number. The simulations in Figure 24 all used a CFL number of 0.3, which is already quite low.
Decreasing it further to 0.1 gave the results in Figure 25. It is seen in this figure that decreasing the CFL
number reduces the erroneous pressure, but does not remove it completely. Reducing the CFL number
further would be too computationally intensive.

The conclusion of this is that the methanol-in-air case is too unstable for the present codes. The
(particle) Reynolds number in this case is Re ≈ 430, and the Weber number is W e ≈ 2.1, at the time of
impact with the surface. The density ratio between the two fluids is 760 : 1. This Reynolds number is
quite high, as is the density ratio, so new simulations were considered with a lower Reynolds number
and density ratio.Report switch to

water-in-decane,
experiments
there
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(a) GMRES (b) BCGS (c) HYPRE-BoomerAMG

Figure 24: Comparison of different Poisson solvers on an unstable case. The top of a falling bubble of
methanol in air is shown, colored according to the pressure. The variation in pressure inside the bubble
is unphysical, appearing and disappearing again in just 50 time steps.

(a) CFL 0.3 (b) CFL 0.1 (c) Previous frame

Figure 25: Effect on stability of reducing the CFL number. The CFL number is reduced from 0.3 to 0.1,
which reduces the instability somewhat, but does not remove it. The frame prior to the one in (a) and
(b) is shown in (c); here, no trace of the instability is seen. The frame prior to (a) and (b) is identical to (c)
with regards to the pressure.
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Results from LOLEX on new cases

C O N S I D E R I N G T H E WAT E R - I N - D E C A N E case presented above, several simulations were
performed using the given data for fluid densities etc. Some simulations were performed to match

the experiments in [40], where the bubble is gently placed onto the interface. Other simulations were
performed using a higher initial fall height, such that the droplet has a non-zero velocity when impacting
the surface.

These simulations, with a lower density difference and higher viscosity in the surrounding fluid,
proved to be much more stable than the methanol-in-air simulations. The pressure field is shown in
Figure 26. It is symmetric and looks like it should. It is also free of oscillations from timestep to timestep,
in contrast to the methanol-in-air simulations.

Figure 26: Contour plot of the pressure field just before merging. The pressure field is seen to be
symmetric and sensible.

After this test case was seen to be stable, at least regarding the pressure, the effects of grid refinement
and domain width was studied.

Complete
diagonal
simulations,
report results

Complete
water-decane
simulations,
report results

Complete
axisymmetric
simulations,
report results

Jetting simulation: pressure wave! Magic happens! Is it physical or numerical? We don’t
know...

Discuss
difference 2D/ax-
isymmetric,
Venturi effect
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Effects of reinitialization on merging
New section

R E I N I T I A L I Z AT I O N I S A N E C E S S A RY C O M P O N E N T of level-set simulations, but it is also
a source of errors; particularly mass loss if excessive amounts is used. In the context of colliding

bodies, it causes another problem: when the initial merging of bodies occurs, the surface tension induces
large interface speeds. An example of this is shown in Figure 27. Here the level-set function of a droplet
merging with a pool is shown for the 2D case. The color indicates the values of φ, and the color map is
set such that the color should be either red (outside droplet) or blue (inside droplet) when more than
∆x away from the interface. It is seen that the φ in Figure (a) which has been reinitialized frequently is
incorrect, and that it fails to realize the entrained bubble seen in Figure (b). In Figure (a), reinitialization
was used every time step. This is a large amount chosen in order to illustrate the problem; in practice it
is more typical to reinitialize around every 10 time steps. In Figure (b), reinitialization was used every 50
time steps. Completely turning off reinitialization turns out to cause its own problems, as seen in Figure
(c). Thus, reinitialization should be performed about every 50-100 time steps. Tests using every 50 and
every 100 time steps did not show any difference.

(a) Heavy reinitialization (b) Light reinitialization (c) No reinitialization

Figure 27: Level set function of a droplet merging with a pool. In (a), reinitialization was used every time
step. In (b), reinitialization was used every 50 time steps. In (c), no reinitialization was used. The color
indicates the value of φ, and should be either blue or red when more than∆x away from the interface.
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§6 Comparison to experimental data
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It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are. If it
doesn’t agree with experiment, it’s wrong.

Richard Feynman

Write summary
of water-decane
experimentsJ 6.1 j

Introduction

A S S E E N I N T H E P R E V I O U S C H A P T E R , numerical simulations of two-phase flow with
merging is still difficult and computationally intensive. The experimental results available, by

contrast, are numerous and accurate.
The first class of experiments discussed here come from the experimental group at SINTEF Energy

Research and NTNU’s Department of Energy and Process Engineering, particularly from the PhD thesis
and postdoctoral work by He Zhao. These experiments have attempted to characterize the different flow
regimes that are interesting in the context of LNG condensation. The experiments have been performed
with various liquids falling through various gases. These experiments are relevant for the methanol-in-air
simulations reported above.

The second class of experiments is due to Chen et al. [40]. These experiments consider fluid-fluid
interfaces between water and various light fluids, e.g. decane. Falling drops of water are seen to merge
with or bounce on a pool of water. These experiments were the inspiration for the water-in-decane
simulations above.

The main experimental technique used for studying droplet-pool impacts is high-speed shadowgraphy
using a laser as light source. For a detailed description of such an experimental setup, the reader is referred
to the PhD thesis by He Zhao [41]. If nothing else is stated, the images in this chapter are from this
PhD thesis. The purpose of this chapter is to briefly demonstrate the main situations that are observed
experimentally, and to compare with the current numerical simulations where possible. The various
cases are sorted after the perceived difficulty in simulating them numerically; the first case has already
been simulated, and the last case is probably too difficult to simulate using the present numerical
methods.

J 6.2 j

Droplet merging with pool

T H E F I R S T C L A S S O F E X P E R I M E N T S presented here is that of droplets merging completely
with the pool of liquid. This corresponds to the numerical simulations presented in the previous

chapter. According to the flow characterization presented in [41, Chapter 5.1], complete merging is the
expected behaviour for the velocities considered in the numerical simulations presented previously. The
closest experimental result considered in [41] to the numerical simulation is with a 0.3 mm diameter
methanol droplet, impacting the pool at 2.2 m/s. This is a smaller droplet, but it travels faster, and it has
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a higher kinetic energy. Part of the experimental observations of this droplet are shown in Figure 28.
Comparing this to Figure 23, the results look somewhat similar. Since the numerical simulation droplet is
moving slower, the time between images is larger, but the qualitative agreement looks good. In particular,
the fact that the top of the droplet is essentially undisturbed both in Figure 23 (d) and in the middle
frame in Figure 28 is encouraging. The formation of a surface wave also looks to be similar.

Figure 28: High-speed imagery of a 0.3 mm diameter methanol droplet merging completely with a pool
of methanol at a velocity of 2.2 m/s. Figure from [41, Figure 5.11].

To further study the agreement of the simulations with experimental results, a simulation should be
performed with exactly the same parameters as used in this experiment. The reason this has not been
done presently, is that the time it would take to simulate a fall giving a 2.2 m/s collision velocity is much
too large to be feasible using the present code.

J 6.3 j

Droplet partially merging with pool

A L L N U M E R I C A L S I M U L AT I O N S P R E S E N T E D I N T H I S W O R K end up with the droplet
merging completely with the pool, or the simulation crashing before this can be established.

Experimentally, however, a well-defined range of initial conditions give rise to partial merging, either with
the drop pinching off during merging, or with jetting from the waves induced in the pool. Reproducing
either of these two scenarios would be a major milestone. The experimental results presented here
are intended to demonstrate how these phenomena look, giving a clearer view of future hopes and
prospects.

The first sub-case of partial merging, which is pinch-off of the merging drop, happens for flow
regimes where the kinetic energy is not very high. This suggests that simulating such cases should not be
very demanding. However, the experimental results showing this type of merging are for fluids like water,
which have high surface tension. This is a complicating factor in the numerical simulations, as higher
surface tension is more demanding to simulate numerically. It also produces a higher pressure inside the
droplet, so the situation where the drop merges with the pool becomes more demanding to simulate as
well. With sufficiently small time steps, such simulations may be carried out, but it would be preferable
to find experimental cases for pinch-off with fluids like methanol or n-pentane. An experimental case
with a pinch-off is shown in Figure 29. In this case, a 0.12 mm water droplet impacts with a pool of
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water at 0.29 m/s. A simulation like this could probably be carried out if the obstacles presented in the
previous chapter are overcome, and would be a very nice result if the numerical simulations mathced the
experimental results.

Figure 29: High-speed imagery of a 0.12 mm diameter water droplet merging partially into a pool of
water, at a velocity of 0.29 m/s. The droplet pinches off, and leaves a smaller droplet behind. Figure
from [41, Figure 5.17].

The second sub-case of partial merging is called jetting, where the droplet first merges completely
with the pool, and a jet then emerges from the pool. Such cases happen for much higher kinetic energies
than the first sub-case, and will be more demanding to simulate numerically, not only because of the long
fall times needed but also because the velocities involved are one or two orders of magnitude larger than
for the numerical simulations presented here. With this fact in mind, the author is not very optimistic
about attaining such results numerically, but an attempt will perhaps be made. The experimental result
presented in Figure 30 showing such a case is for a 0.26 mm diameter n-pentane droplet impacting a pool
of n-pentane at 5.9 m/s. Note that in this figure, a significant time period has passed between the first and
the second row of images. During this period, there is a lot of motion inside the pool of liquid n-pentane,
but this is not visible to the high-speed camera, so these removed frames are not very interesting. The
first row of frames indicates that this collision is pretty violent, underscoring the author’s pessimism
towards simulating this case numerically.

J 6.4 j

Droplet bouncing off the pool

T H E F I N A L E X P E R I M E N T A L C A S E presented here is the droplet bouncing off the pool. The
author is near-certain that this result cannot be replicated numerically using the present methods,

because this phenomenon requires a large surface tension, and because this phenomenon is believed to
be greatly dependent on the properties of the surrounding gas, which is not very accurately modeled at
present (it is e.g. treated as incompressible) [42]. In addition to this, the gas film between the droplet and
the pool is very thin, and a very fine grid will be required to model this accurately. This last obstacle could
be partially overcome by using a non-uniform grid, which is possible in the present codes.

In spite of these challenges, the experimental result is still presented here. In this case, the droplet
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Figure 30: High-speed imagery of a 0.26 mm diameter n-pentane droplet impacting a pool of n-pentane
at 5.9 m/s. After some time, the surface of the pool rebounds and ejects a jet. Note that some time has
passed between the first and the second row of images. Figure from [41, Figure 5.6].

and pool contained 1-propanol, and the 0.24 mm diameter droplet impacted the pool at 1.14 m/s. The
velocity of the droplet bouncing up again was 0.29 m/s, and the droplet emerges completely from the
pool and hangs in the air for some time, before falling back down again. This is shown in Figure 31. Note
that in this figure, several frames have been removed between the first and second picture in the second
row; in these frames, not much is happening that is visible to the imaging apparatus. This experimental
result is truly fascinating, in that the entire drop emerges back out of the pool after first having almost
merged with it. A replication of this result numerically would be a remarkable feat.

J 6.5 j

Concluding remarks

T H E E X P E R I M E N T A L R E S U LT S presented in this section span a range of initial conditions that
is currently larger than that available to numerical simulations. Contrasting with this is the ultimate,
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Figure 31: High-speed imagery of a 0.24 mm diameter 1-propanol droplet impacting a 1-propanol pool
at 1.14 m/s, and bouncing back again. Note that several frames have been removed between the first and
second frames in the second row, as indicated by a larger gap. Figure from [41, Figure 5.14].

perhaps optimistic goal of the numerical effort: to replace experimental work, which is costly and
time-consuming, requires attention to HSE for most working fluids, and provides much less data about
what is going on (particularly inside the fluids). The experimental results that have been presented here
represent both short- and long-term goals for the numerical simulations to reach for, and it will be
interesting to see how far it is possible to go using the present methods.
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§7 Concluding remarks and future prospects
J 7.1 j

Conclusions

W I T H T H E P R E S E N T N U M E R I C A L S I M U L AT I O N S . . . Fix lettrine
indentation for
W and A.J 7.2 j

Future prospects

At present, it seems the LOLEX method is the only general method for improved calculation of
geometric quantities that also scales easily to 3D

Mention
increasing
resolution of
φ while keeping
N-S resolution
low

Mention filtering
approach as
in e.g. Vliet
and Verbeek,
SCIA93LVPV.pdf

55



56



References
[1] Norwegian Petroleum Directorate. FactPages V.2 (2011). Available online. [1]

[2] Gisvold, M. Eventyret på Melkøya. Gemini Research Magazine (2004). Avaliable online. [1]

[3] Tamura, I. et al. Life cycle CO2 analysis of LNG and city gas. Applied Energy 68, 301 – 319 (2001).
Available online. [1]

[4] Macklin, P. & Lowengrub, J. Evolving interfaces via gradients of geometry-dependent interior
Poisson problems: application to tumor growth. Journal of Computational Physics 203, 191 – 220
(2005). Available online. [1, 3.1, 3.2, 3.3, 5, 4.1.1, 4.3, 4.4]

[5] Mallet, V., Keyes, D. & Fendell, F. Modeling wildland fire propagation with level set methods.
Computers and Mathematics with Applications 57, 1089 – 1101 (2009). Available online. [1]

[6] Melicher, V., Cimrak, I. & Keer, R. V. Level set method for optimal shape design of MRAM core.
Micromagnetic approach. Physica B: Condensed Matter 403, 308 – 311 (2008). Proceedings of the
Sixth International Symposium on Hysteresis Modeling and Micromagnetics. Available online.
[1]

[7] Osher, S. & Fedkiw, R. P. Level set methods: An overview and some recent results. Journal of
Computational Physics 169, 463 – 502 (2001). Available online. [1, 2]

[8] Osher, S. & Sethian, J. A. Fronts propagating with curvature-dependent speed: Algorithms based
on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12 – 49 (1988). Available
online. [1, 2.1]

[9] Hartmann, D., Meinke, M. & Schröder, W. The constrained reinitialization equation for level set
methods. Journal of Computational Physics 229, 1514 – 1535 (2010). Available online. [2.1]

[10] Pilliod, J. E., Jr. & Puckett, E. G. Second-order accurate volume-of-fluid algorithms for tracking
material interfaces. Journal of Computational Physics 199, 465 – 502 (2004). Available online. [2.1]

[11] Sussman, M., Smith, K., Hussaini, M., Ohta, M. & Zhi-Wei, R. A sharp interface method for
incompressible two-phase flows. Journal of Computational Physics 221, 469 – 505 (2007). Available
online. [2.1]

[12] Smereka, P. Semi-implicit level set methods for curvature and surface diffusion motion. Journal of
Scientific Computing 19, 439–456 (2003). Available online. [2.1, 3.1, 4.1.1, 4.2]

[13] Peng, D., Merriman, B., Osher, S., Zhao, H. & Kang, M. A PDE-based fast local level set method.
Journal of Computational Physics 155, 410 – 438 (1999). Available online. [2.1]

[14] Kang, M., Fedkiw, R. P. & Liu, X.-D. A boundary condition capturing method for multiphase
incompressible flow. Journal of Scientific Computing 15, 323–360 (2000). Available online. [2.1,
4.4, 5.1.1]

[15] Sussman, M., Smereka, P. & Osher, S. A level set approach for computing solutions to
incompressible two-phase flow. Technical Report, Department of Mathematics, UCLA (1994).
Available online. [2.2, 2.2, 2.2]

[16] Chopp, D. L. Computing minimal surfaces via level set curvature flow. Journal of Computational
Physics 106, 77 – 91 (1993). Available online. [2.2]

57

http://factpages.npd.no/factpages/Default.aspx?culture=en&nav1=field&nav2=PageView|Producing&nav3=2053062
http://www.ntnu.no/gemini/2004-03/32-37.htm
http://dx.doi.org/10.1016/S0306-2619(00)00062-3
http://dx.doi.org/10.1016/j.jcp.2004.08.010
http://dx.doi.org/10.1016/j.camwa.2008.10.089
http://dx.doi.org/10.1016/j.physb.2007.08.036
http://dx.doi.org/10.1006/jcph.2000.6636
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/j.jcp.2009.10.042
http://dx.doi.org/10.1016/j.jcp.2003.12.023
http://dx.doi.org/10.1016/j.jcp.2006.06.020
http://dx.doi.org/10.1016/j.jcp.2006.06.020
http://dx.doi.org/10.1023/A:1025324613450
http://dx.doi.org/10.1006/jcph.1999.6345
http://dx.doi.org/10.1023/A:1011178417620
ftp://ftp.math.ucla.edu/pub/camreport/cam94-5.pdf
http://dx.doi.org/10.1006/jcph.1993.1092


[17] Lervåg, K. Y. Simulation of two-phase flows with varying surface tension. Master’s thesis, NTNU
(2008). Available online. [2.3, 2.4, 2.6]

[18] Denaro, F. M. On the application of the Helmholtz–Hodge decomposition in projection methods
for incompressible flows with general boundary conditions. International Journal for Numerical
Methods in Fluids 43, 43–69 (2003). Available online. [2.3]

[19] Rottmann, K. Matematisk Formelsamling (Spektrum Forlag, 2003). [2.3]

[20] Kraichnan, R. H. Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech.
47, 525–535 (1971). Available online. [2.3]

[21] Fedkiw, R. P. & Liu, X. D. The Ghost Fluid Method for viscous flows. Presented at the "Solutions
of PDE" Conference in honour of Prof. Phil Roe (1998). Available online. [2.4]

[22] Fedkiw, R. P., Aslam, T., Merriman, B. & Osher, S. A non-oscillatory Eulerian approach to
interfaces in multimaterial flows (the Ghost Fluid Method). Journal of Computational Physics 152,
457 – 492 (1999). Available online. [2.4]

[23] Jiang, G.-S., Shu, C.-W. & L, I. Efficient implementation of weighted ENO schemes. J. Comput.
Phys 126, 202–228 (1996). Available online. [2.5, 2.6]

[24] Ketcheson, D. I. & Robinson, A. C. On the practical importance of the SSP property for
Runge–Kutta time integrators for some common Godunov-type schemes. International Journal for
Numerical Methods in Fluids 48, 271–303 (2005). Available online. [2.5]

[25] Spiteri, R. J. & Ruuth, S. J. A new class of optimal high-order strong-stability-preserving time
discretization methods. SIAM Journal on Numerical Analysis 40, pp. 469–491 (2003). Available
online. [2.5, 2.6]

[26] Versteeg, H. & Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite
Volume Method (2nd Edition) (Prentice Hall, 2007), 2 edn. [2.5]

[27] Hansen, E. B. Numerical simulation of droplet dynamics in the presence of an electric field. Ph.D.
thesis, NTNU (2005). [2.6]

[28] Lervåg, K. Y. Calculation of interface curvature with the level-set method. In Sixth National
Conference on Computational Mechanics MekIT’11 (Trondheim, Norway, 2011). Available online.
[3.1]

[29] Lervåg, K. Y. Calculation of the interface curvature and normal vector with the level-set method
(2012). To be submitted. [3.1, 4.3]

[30] Salac, D. & Lu, W. A local semi-implicit level-set method for interface motion. Journal of Scientific
Computing 35, 330–349 (2008). Available online. [3.1, 4.4]

[31] Lervåg, K. Y. & Ervik, Å. Curvature calculations for the level-set method. In ENUMATH 2011
Proceedings Volume (Leicester, England, 2011). [3.1]

[32] Ervik, Å. Curvature calculation for two-phase fluid interfaces using the level-set method. Project
Report, Norwegian University of Science and Technology (NTNU) (2012). Available online. [3.2,
3.4.2, 4.1, 4.2]

[33] Adalsteinsson, D. & Sethian, J. A. A fast level set method for propagating interfaces. Journal of
Computational Physics 118, 269 – 277 (1995). Available online. [3.3]

58

http://ntnu.diva-portal.org/smash/get/diva2:348658/COVER01
http://dx.doi.org/10.1002/fld.598
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=366777
http://www.math.ucsb.edu/~xliu/publication/paper/cam98-44.ps
http://dx.doi.org/10.1006/jcph.1999.6236
http://dx.doi.org/10.1006/jcph.1996.0130
http://dx.doi.org/10.1002/fld.837
http://www.jstor.org/stable/4100965
http://www.jstor.org/stable/4100965
http://folk.ntnu.no/lervag/files/lervag_mekit2011.pdf
http://dx.doi.org/10.1007/s10915-008-9188-6
http://www.pvv.org/~asmunder/projectreport.pdf
http://dx.doi.org/10.1006/jcph.1995.1098


[34] Adalsteinsson, D. & Sethian, J. A. The fast construction of extension velocities in level set methods.
Journal of Computational Physics 148, 2 – 22 (1999). Available online. [3.4.2, 7, 3.4.2]

[35] Ferger, W. F. The nature and use of the harmonic mean. Journal of the American Statistical
Association 26, pp. 36–40 (1931). Available online. [4.1.1]

[36] Newman, T. S. & Yi, H. A survey of the marching cubes algorithm. Computers and Graphics 30,
854 – 879 (2006). Available online. [4.1.1]

[37] Macklin, P. & Lowengrub, J. An improved geometry-aware curvature discretization for level set
methods: Application to tumor growth. Journal of Computational Physics 215, 392 – 401 (2006).
Available online. [4.3]

[38] Flynn, P. & Jain, A. On reliable curvature estimation. In Computer Vision and Pattern Recognition,
1989. Proceedings CVPR ’89., IEEE Computer Society Conference on, 110 –116 (1989). Available
online. [4.4]

[39] Tang, C.-K. & Medioni, G. Curvature-augmented tensor voting for shape inference from noisy 3D
data. Pattern Analysis and Machine Intelligence, IEEE Transactions on 24, 858 –864 (2002). Available
online. [4.4]

[40] Chen, X., Mandre, S. & Feng, J. J. Partial coalescence between a drop and a liquid-liquid interface.
Physics of Fluids 18, 051705 (2006). Available online. [5.4, 6.1]

[41] Zhao, H. An Experimental Investigation of Liquid Droplets Impinging Vertically on a Deep Liquid
Pool. Ph.D. thesis, NTNU (2009). [6.1, 6.2, 28, 29, 30, 31]

[42] Qian, J. & Law, C. K. Regimes of coalescence and separation in droplet collision. Journal of Fluid
Mechanics 331, 59–80 (1997). Available online. [6.4]

59

http://dx.doi.org/10.1006/jcph.1998.6090
http://www.jstor.org/stable/2278257
http://www.sciencedirect.com/science/article/pii/S0097849306001336
http://dx.doi.org/10.1016/j.jcp.2005.11.016
http://dx.doi.org/10.1109/CVPR.1989.37837
http://dx.doi.org/10.1109/CVPR.1989.37837
http://dx.doi.org/10.1109/TPAMI.2002.1008395
http://dx.doi.org/10.1109/TPAMI.2002.1008395
http://dx.doi.org/10.1063/1.2201470
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=5596756


Appendices
The routines presented here constitute the main routines of the current method. Their interdependence
is shown in Figure 32 for the case of curvature calculation. For the routines boun_extra_small,
boun_extra_large, patdown and reinit_smallphi, only interfaces are given (Listing 4) since they
have been described previously.

J Appendix A j

Flowchart for LOLEX curvature calculations
Update the code
in appendices to
the final version
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Main simulation routine

calc_curvatures(phi)
Loop overi,j

Use
LOLEX
method?

curvature_normal(i,j,phi)

create_local_phi(i,j) curvature_loc(i,j,loc_phi)

boun_extra_small(locphi_temp) reinit_smallphi(locphi_temp)

yes

Figure 32: Flowchart of curvature calculation routines.
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Main curvature calculation routine

Listing 1: Main routine� �
1 subroutine calc_curvatures(phi)

! Main curvature calculation routine
3 implicit none

real, dimension(ib1:ibn ,jb1:jbn), intent(in) :: phi
5 ! ib1=1-3, ibn=imax +3. 3 ghost cells are required by WENO -5.

integer :: i,j
7 !

! Initialize curvature field:
9 w(:,:,nwcur )=0.0

curv_max =0.0
11 !

! When using the present method , we need to have values of phi beyond
13 ! ib1:ibn etc.

phi_larger(ib1:ibn ,jb1:jbn)=phi !Module variable
15 ! Extrapolate to ghost cells

call boun_extra_large(phi_larger)
17 !

! Calculate the curvature at all points on the grid close to an interface
19 do j=1,jmax

do i=1,imax
21 if (.not. lcalc_all_curvs) then

!
23 ! Only calculate curvatures near interfaces

if (sign (1.0, minval(phi(i-1:i+1,j-1:j+1))) &
25 == sign (1.0, maxval(phi(i-1:i+1,j-1:j+1)))) cycle

endif
27 !

if (maxval(w(i-1:i+1,j-1:j+1,nwlsq))>lls_eta) then
29 !

! Present method
31 call create_local_phi(i,j)

w(i,j,nwcur)= curvature_loc(i,j,loc_phi)
33 !

else
35 !

! Ordinary method
37 w(i,j,nwcur)= curvature_local(i,j,phi(i-1:i+1,j-1:j+1))

endif
39 !

! Store the max curvature for use e.g. in time -step estimation
41 !

curv_max=max(curv_max ,abs(w(i,j,nwcur )))
43 enddo

enddo
45 end subroutine calc_curvatures� �
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Main LOLEX routine

Listing 2: Routine that builds the local φ� �
1 subroutine create_local_phi(i,j)

! Create local level set functions at and around the cell (i,j)
3 ! We create one for each body present in the domain.

implicit none
5 integer , intent(in) :: i,j

!Local variables
7 integer :: i0,j0,bodyno ,neigh_bodies ,pointcase ,neighs ,n,s,e,w,&

body ,i1,j1,radi ,bodypoints ,j2
9 integer , parameter :: unchecked =-10, nobody=-5, dep=1, indep=0, removed=-1

integer , dimension(ilmax ,jlmax) :: bodies , depend
11 real, dimension (0: ilmax +1,0: jlmax +1) :: lookphi

real, dimension(ilb1:ilbn ,jlb1:jlbn ,loc_maxbodies) :: locphi_temp
13 real :: s1,s2,t1,approx_d

logical :: lremoved_body
15 !---------------------------------------------------------------------------

!
17 loc_phi (:,:,:,:)=1e10 ! Module variable

locphi_temp (:,:,:,:)=1e10
19 !

! First of all , we need to determine how many bodies are present in the
21 ! square surrounding our point (i,j,k).

!
23 ! lookphi is phi in the square we look at. radi is the "radius" of square

radi=(ilmax -1)/2 + 1 ! + 1 gives us boundaries for phi outside 7x7 square
25 lookphi (:,:)= phi_larger(i-radi:i+radi ,j-radi:j+radi) ! Module variable

!
27 ! Bodyscan routine: creates bodies (:,:) array.

! Mark all cells as unchecked
29 bodies (:,:) = unchecked

! bodyno is used to count body 1, body 2 etc.
31 bodyno = 0

lremoved_body = .false.
33 do j0 = 1, jlmax

do i0 = 1, ilmax
35 if (bodies(i0,j0) == unchecked) then

if (lookphi(i0,j0) < 0) then
37 bodyno = bodyno + 1

bodies(i0,j0) = bodyno
39 bodypoints = 0

! Find all points in this body:
41 call patdown(lookphi ,bodies ,bodyno ,bodypoints ,i0,j0)

! If this body has less than three points , forget it
43 if (bodypoints < 3) then

! All the body is within the 5x5 square around i0,j0
45 ! Remove all markings with bodyno in this square.

!write (*,*) "Removing body of size", bodypoints
47 do j1 = max(1,j0 -2), min(jlmax ,j0+2)

do i1 = max(1,i0 -2), min(ilmax ,i0+2)
49 if (bodies(i1,j1) == bodyno) then

bodies(i1,j1) = removed
51 end if

end do
53 end do

! Decrement bodyno , so that this body is forgotten.
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55 bodyno = bodyno - 1
! Set boolean to say that a body has been removed

57 lremoved_body = .true.
end if

59 else
bodies(i0,j0) = nobody

61 end if
end if

63 end do
end do

65 ! Store the number of bodies found
loc_bodies = bodyno

67 !
! Now we construct one phi for each body present.

69 ! The next sub -task in this is to classify whether this point is
! "dependent" or "independent ". We skip this if only one body has been

71 ! found.
!

73 depend (:,:) = indep
if (loc_bodies > 1 .or. lremoved_body) then

75 do j0 = 1, jlmax
do i0 = 1, ilmax

77 ! Only check cells outside a body (excludes removed bodies as well)
if (bodies(i0,j0) < -1) then

79 ! Loop over all neighbours of this point. If we find more than one
! different positive value in the bodies (:,:) array , this point is

81 ! dependent.
neigh_bodies =0

83 do j1 = max(1,j0 -1), min(jlmax ,j0+1)
! Skip centre point:

85 if (j1 /= j0) then
! If this neighbour is inside a body (possibly a removed body):

87 if (bodies(i0,j1) > 0 .or. bodies(i0,j1) == removed) then
! If we have already found another neighboring body:

89 if (neigh_bodies /= 0 .and. bodies(i0,j1) /= neigh_bodies) then
! Mark as dependent

91 depend(i0,j0) = dep
end if

93 neigh_bodies=bodies(i0,j1)
end if

95 end if
end do

97 ! Same procedure for i direction
do i1 = max(1,i0 -1), min(ilmax ,i0+1)

99 if (i1 /= i0) then
if (bodies(i1,j0) > 0 .or. bodies(i1,j0) == removed) then

101 if (neigh_bodies /= 0 .and. bodies(i1,j0) /= neigh_bodies) then
depend(i0,j0) = dep

103 end if
neigh_bodies=bodies(i1,j0)

105 end if
end if

107 end do
end if

109 end do
end do

111 end if
!

113 ! For each body present , we now extract the relevant phi.
!

115 ! Set a sensible initial value of phi.
locphi_temp (:,:,:,:) = 2*dx(1)
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117 !
! Loop over the bodies present (main loop)

119 do body = 1, loc_bodies
! Loop over the 7x7 square , and copy phi where appropriate.

121 do j0 = 1, jlmax
do i0 = 1, ilmax

123 if (bodies(i0,j0) == body) then
! Inside this body , copy

125 locphi_temp(i0,j0,body) = lookphi(i0,j0)
elseif (bodies(i0,j0) == nobody .and. depend(i0,j0) == indep) then

127 ! Outside bodies , and independent region , copy
locphi_temp(i0,j0,body) = lookphi(i0,j0)

129 !
elseif (depend(i0,j0) == dep) then

131 !
! Explicit reconstruction following Adalsteinsson et. al.

133 !
pointcase = 0

135 approx_d = 0
! find out which case this is

137 neighs = 0
n = 0; s=0; e=0; w=0; ! north , south , east , west

139 ! Check points north and south
do i1 = max(1,i0 -1), min(ilmax ,i0+1), 2

141 if (bodies(i1,j0) == body) then
neighs = neighs + 1

143 if (i1 == max(1,i0 -1)) then
s = 1

145 else
n = 1

147 end if
end if

149 end do
! Check points east and west

151 do j1 = max(1,j0 -1), min(jlmax ,j0+1), 2
if (bodies(i0,j1) == body) then

153 neighs = neighs + 1
if (j1 == max(1,j0 -1)) then

155 w = 1
else

157 e = 1
end if

159 end if
end do

161 ! Set pointcase
! Case 1 (Case a)

163 if (neighs == 1) then
pointcase = 1

165 else if (neighs == 3) then
pointcase = 3

167 else if (neighs == 2) then
if (n+e == 2 .or. n+w == 2 .or. s+e == 2 .or. s+w == 2) then

169 ! Corner case
pointcase = 2

171 else
pointcase = 4

173 end if
end if

175 !
! Compute the distance

177 if (pointcase == 1) then
! Set (i1,j1) to the relevant neighbour
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179 i1 = i0; j1 = j0;
if (n==1) i1 = i0 -1

181 if (s==1) i1 = i0+1
if (w==1) j1 = j0 -1

183 if (e==1) j1 = j0+1
! The distance is given by this formula:

185 approx_d = lookphi(i0,j0)/( lookphi(i0,j0)-lookphi(i1,j1))
else if (pointcase == 2) then

187 ! find the relevant corner , extract data from this later
i1 = i0; j1 = j0;

189 if (n==1) i1 = i0 -1
if (s==1) i1 = i0+1

191 if (w==1) j1 = j0 -1
if (e==1) j1 = j0+1

193 ! Corner is now given by (i,j).
! Compute s1 and t1

195 s1 = lookphi(i0,j0)/( lookphi(i0,j0)-lookphi(i1,j0))
t1 = lookphi(i0,j0)/( lookphi(i0,j0)-lookphi(i0,j1))

197 ! Compute the distance given by Eq. (20) in report
if (s1**2 + t1**2 > 0) then

199 approx_d = s1*t1/sqrt(s1**2 + t1**2)
else

201 approx_d = 0
end if

203 else if (pointcase == 3) then
! Set (i1,j1) to the neighbour which is _not_ relevant

205 i1 = i0; j1 = j0;
if (n==0) i1 = i0 -1

207 if (s==0) i1 = i0+1
if (w==0) j1 = j0 -1

209 if (e==0) j1 = j0+1
! Go opposite side from (i1,j1) to find t1

211 if (i1<i0) i1=i0+1
if (i1>i0) i1=i0 -1

213 if (j1<j0) j1=j0+1
if (j1>j0) j1=j0 -1

215 t1 = lookphi(i0,j0)/( lookphi(i0,j0)-lookphi(i0,j))
! Now find s1 and s2:

217 if (i1/=i0) then
i1 = i0

219 j1 = j0 - 1
else

221 j1 = j0
i1 = i0 - 1

223 end if
s1 = lookphi(i0,j0)/( lookphi(i0,j0)-lookphi(i0,j1))

225 if (i1 /= i0) i1 = i0+1
if (j1 /= j0) j1 = j0+1

227 s2 = lookphi(i0,j0)/( lookphi(i0,j0)-lookphi(i1,j0))
! Take the minimum of s1 and s2 in s1, then use formula from case

229 ! 2 above
s1 = min(s1,s2)

231 if (s1**2 + t1**2 > 0) then
approx_d = s1*t1/sqrt(s1**2 + t1**2)

233 else
approx_d = 0.0

235 end if
else if (pointcase == 4) then

237 i1 = i0; j1 = j0;
! Set (i,j) to one of the interesting neighbours , the other will

239 ! be on the opposite side
if (n==1) i1 = i0 -1
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241 if (w==1) j1 = j0 -1
! Calculate s1 and s2, take their minimum.

243 s1 = lookphi(i0,j0)/( lookphi(i0,j0)-lookphi(i1,j0))
if (i1 /= i0) i1 = i0+1

245 if (j1 /= j0) j1 = j0+1
s2 = lookphi(i0,j0)/( lookphi(i0,j0)-lookphi(i1,j0))

247 approx_d = min(s1,s2)
else

249 write (*,*) "Error: independent point was marked as dependent"
approx_d =0.5

251 end if
!

253 ! Set the approximate distance as the value in localphi
!write (*, *) "Distance set to", approx_d*dx(1)

255 locphi_temp(i0,j0,body) = approx_d*dx(1)
else if (bodies(i0,j0) == removed) then

257 ! A body has been removed. This value will be overridden by reinit
! anyway , so the default 2*dx(1) is okay. Do nothing.

259 else
! This means that we hit a point belonging to the other body. Do

261 ! nothing.
end if

263 end do
end do

265 !
if (loc_bodies > 1 .or. lremoved_body) then

267 call boun_extra_small(locphi_temp (:,:,body))
call reinit_smallphi(locphi_temp (:,:,body))

269 end if
end do

271 !
! After finishing this , including reinitialization , we do not need the full

273 ! 7x7 square any more. The kinks in phi have been removed , so we can revert
! to 3x3.

275 !
loc_phi (:,:,:) = locphi_temp (3:5 ,3:5 ,:)

277 end subroutine create_local_phi� �
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J Appendix D j

patdown routine

Listing 3: Marking a body� �
1 recursive subroutine patdown(phi ,bodies ,bodyno ,bodypoints ,i0,j0)

! Input variables
3 real, dimension (0: ilmax +1,0: jlmax+1), intent(in) :: phi

integer , dimension(ilmax ,jlmax), intent(inout) :: bodies
5 integer , intent(inout) :: bodypoints

integer , intent(in) :: i0, j0, bodyno
7 ! Local variables

integer :: i,j
9 integer , parameter :: unchecked =-10

!
11 ! Increment our counter of points in this body

bodypoints = bodypoints + 1
13 ! Loop over all the eight neighbours of (i0,j0)

do i = max(1,i0 -1), min(ilmax ,i0+1)
15 do j = max(1,j0 -1), min(jlmax ,j0+1)

! Skip the centre of the 9-cell square
17 if ( i /= i0 .or. j /= j0) then

if ( bodies(i,j) == unchecked .and. phi(i,j) < 0.0 ) then
19 ! Mark this cell as belonging to body no. bodyno

bodies(i,j) = bodyno
21 ! Call this subroutine again on this interesting cell

call patdown(phi ,bodies ,bodyno ,bodypoints ,i,j)
23 end if

end if
25 end do

end do
27 end subroutine patdown� �
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J Appendix E j

Interfaces to routines not listed

Listing 4: Interfaces to routines not listed in full here� �
1 interface

subroutine boun_extra_small(b)
3 ! Extrapolate the scalar b from inner domain to the ghost cells

! across the boundary.
5 ! This version has inner domain 1:ilmax and total domain ilb1:ilbn. It

! extrapolates to zeroth order , i.e. just copies outwards.
7 implicit none

real, dimension(ilb1:ilbn ,jlb1:jlbn), intent(inout) :: b
9 integer :: i,j

end subroutine boun_extra_small
11 !

subroutine reinit_smallphi(fi)
13 ! "Main" routine for reinitialization of local phi. Returns

! a reinitialized local phi.
15 implicit none

real, dimension(ilb1:ilbn ,jlb1:jlbn), intent(inout) :: fi
17 ! Local variables

logical :: locrein =.true., l_updated_s =.false.
19 real :: cfl_reinit =0.5, tau_reinit =8.0

integer :: maxit_reinit =3
21 end subroutine reinit_smallphi

end interface� �
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J Appendix F j

Curvature averaging routine

Listing 5: Curvature calculation with averaging� �
function curvature_loc(i,j,loc_phi)

2 implicit none
integer , intent(in) :: i,j

4 real, intent(in), dimension (3,3, loc_maxbodies) :: loc_phi
real :: curvature_loc

6 !
! Local variables

8 real, dimension(loc_maxbodies) :: curv
real :: k1,k2,phi1 ,phi2

10 integer :: body
integer ,save :: index_debug =0

12 !
! If there is just one body , we do ordinary calculation. If there are two

14 ! bodies , we use a weighted average.
do body = 1, loc_bodies

16 curv(body) = curvature_local(i,j,loc_phi(:,:,body))
end do

18 if (loc_bodies == 1) then
curvature_loc = curv (1)

20 else if (loc_bodies ==2) then
k1=curv (1); k2=curv (2); phi1=loc_phi (2,2,1); phi2=loc_phi (2,2,2);

22 ! Weighted harmonic mean:
!curvature_loc = (phi1+phi2 )/( phi1/k2 + phi2/k1)

24 ! Weighted arithmetic mean:
curvature_loc = (phi1*k2 + phi2*k1)/( phi1+phi2)

26 else
write (*,*) "Error !!! Curvature average does not support @>@2 or 0 bodies!"

28 write (*,*) "Returning zero curvature , results will be wrong!"
curvature_loc = 0

30 end if
!

32 end function� �
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