
and human failures. Figure 5.11 is an event tree representation of operator
actions involved in an offshore emergency shutdown scenario (Kirwan, 1990).
This type of event tree is called an operator action event tree (OAET) because
it specifically addresses the sequence of actions required by some initiating
event. Each branch in the tree represents success (the upper branch) or failure
(the lower branch) to achieve the required human actions described along the
top of the diagram. The probability of each failure state to the right of the
diagram is the product of the error and/or success probabilities at each node
of branch that leads to the state. The overall probability of failure is given by
summing the probabilities of all the failure states. The dotted lines indicate
recovery paths from earlier failures.

In numerical terms, the probability of each failure state is given by the
following expressions (where SP is the success probability and HEP the human
error probability at each node):

Fl = [SP 1.1 + HEP 1.1 x SP 1.2] x SP 1.3 x SP 1.5 x SP 1.6 x SP 1.7 x HEP 1.8
F2 = [SP 1.1 + HEP 1.1 x SP 1.2] x SP 1.3 x SP 1.5 x SP 1.6 x HEP 1.7
F3 = [SP 1.1 + HEP 1.1 x SP 1.2] x SP 1.3 x SP 1.5 x HEP 1.6
F4 = [SP 1.1 + HEP 1.1 x SP 1.2] x SP 1.3 x HEP 1.5
F5 = [SP 1.1 + HEP 1.1 x SP 1.2] x HEP 1.3 x HEP 1.4
F6 = HEP 1.1 x HEP 1.2

Total failure probability T is given by

T = F1 + F2 + F3 + F4 + F5 + F6

Further details about fault tree and event tree applications in quantitative risk
assessment (QRA) are given in CCPS (1989b).

5.7. QUANTIFICATION

Because most research effort in the human reliability domain has focused on
the quantification of error probabilities, a large number of techniques exist.
However, a relatively small number of these techniques have actually been
applied in practical risk assessments, and even fewer have been used in the
CPI. For this reason, in this section only three techniques will be described in
detail. More extensive reviews are available from other sources (e.g., Kirwan
et al., 1988; Kirwan, 1990; Meister, 1984). Following a brief description of each
technique, a case study will be provided to illustrate the application of the
technique in practice. As emphasized in the early part of this chapter, quanti-
fication has to be preceded by a rigorous qualitative analysis in order to ensure
that all errors with significant consequences are identified. If the qualitative
analysis is incomplete, then quantification will be inaccurate. It is also impor-
tant to be aware of the limitations of the accuracy of the data generally available
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for human reliability quantification. This issue is discussed in more detail in
Chapter 6.

5.7.1. The Quantification Process

All quantification techniques follow the same four basic stages:

5.7.1.1. Modeling the Task
This involves analyzing the task of interest and identifying which aspects
should be quantified. In some cases, the analyst will be interested in a prob-
ability for a discrete human action, for example, "what is the likelihood that
the control room operator will close the feed supply valve within 30 seconds
of an alarm?"

In other cases, the interest will be in quantifying a complete task, for
example, "What is the probability that a lifeboat will be successfully
launched?" In this case, quantification can be carried out at the global level of
the whole task, or the task can be broken down to task elements, each of which
is quantified (the decomposition approach). The overall probability of success
or failure for the whole task is then derived by combining the individual task
elements in some way.

Quantification at a global task level is essentially the same process as with
a single discrete operation. A single probability is assigned without explicit
reference to the internal structure of the task. There are arguments for and
against both the global and the decomposition approach. The advantages of
the decomposition approach are as follows:

• It can utilize any databases of task element probabilities that may be
available.

• Recovery from errors in individual task steps can be modeled.
• Consequences to other systems arising from failures in individual task

steps (e.g., the results of alternative actions as opposed to simply
omitted actions) can be modeled and included in the assessment.

• Effects of dependencies among task steps can be modeled.

Advocates of the global approach would argue that human activities are
essentially goal-directed (the cognitive view expressed in Chapter 2), and that
this cannot be captured by a simple decomposition of a task into its elements.
They also state that if an intention is correct (on the basis of an appropriate
diagnosis of a situation), then errors of omission in skill-based actions are
unlikely, because feedback will constantly provide a comparison between the
expected and actual results of the task. From this perspective, the focus would
be on the reliability of the cognitive rather than the action elements of the task.

On the whole, most quantification exercises have employed the decom-
position approach, partly because most engineers are more comfortable with



the analysis and synthesis approach, and partly because of the rather mecha-
nistic model of human performance that has been the basis for most work in
human reliability assessment.

5.7.1.2. Representing the Failure Model
The decomposition approach is used, it is necessary to represent the way in
which the various task elements and other possible failures are combined to
give the failure probability of the task as a whole. Generally, the most common
form of representation is the event tree (see Section 5.7). This is the basis for
THERP, which will be described in the next section. Fault trees are only used
when discrete human error probabilities are combined with hardware failure
probabilities in applications such as CPQRA (see Figure 5.2).

5.7.1.3. Deriving Error Probabilities for Task Steps
Error probabilities that are used in decomposition approaches are all derived in
basically the same manner. Some explicit or implicit form of task classification is
used to derive categories of tasks in the domain addressed by the technique. For
example, typical THERP categories are selections of switches from control panels,
walk-around inspections, responding to alarms and operating valves.

A basic error probability is then assigned to tasks in each category or
subcategory. This probability may be derived from expert judgment or em-
pirical data. It usually represents the error likelihood under "average" condi-
tions. This probability is then modified by specifying a set of factors which
tailor the baseline probability to the specific characteristics of the situation
being assessed. Thus, a baseline probability of, say, 10" for the probability of
correctly operating a valve under normal conditions may be degraded to ICT
under the effects of high stress.

5.7.1.4. Combining Task Element Probabilities to Give Overall Task
Failure Probabilities
During the final stage of the decomposition approach, the task element prob-
abilities in the event tree are combined together using the rules described in
Section 5.3.3 to give the overall task failure probability. At this stage, various
corrections for dependencies among task elements may be applied.

5.7.2. Quantitative Techniques

To illustrate contrasting approaches to quantification, the following tech-
niques will be described in detail in subsequent sections:

THERP Techniques for human error rate prediction
SLIM Success likelihood index method
IDA Influence diagram approach



These techniques were chosen because they illustrate contrasting ap-
proaches to quantification.

5.7.2.1. Technique for Human Error Rate Prediction (THERP)

History and Technical Basis
This technique is the longest established of all the human reliability quantifi-
cation methods. It was developed by Dr. A. D. Swain in the late 1960s,
originally in the context of military applications. It was subsequently devel-
oped further in the nuclear power industry. A comprehensive description of
the method and the database used in its application, is contained in Swain and
Guttmann (1983). Further developments are described in Swain (1987). The
THERP approach is probably the most widely applied quantification tech-
nique. This is due to the fact that it provides its own database and uses methods
such as event trees which are readily familiar to the engineering risk analyst.
The most extensive application of THERP has been in nuclear power, but it
has also been used in the military, chemical processing, transport, and other
industries.

The technical basis of the THERP technique is identical to the event tree
methodology employed in CPQRA. The basic level of analysis in THERP is
the task, which is made up of elementary steps such as closing valves, operat-
ing switches and checking. THERP predominantly addresses action errors in
well structured tasks that can be broken down to the level of the data contained
in the THERP Handbook (Swain and Guttmann, 1983). Cognitive errors such
as misdiagnosis are evaluated by means of a time-reliability curve, which
relates the time allowed for a diagnosis to the probability of misdiagnosis.

Stages in Applying the Technique
PROBLEM DEFINITION. This is achieved through plant visits and discussions
with risk analysts. In the usual application of THERP, the scenarios of interest
are defined by the hardware orientated risk analyst, who would specify critical
tasks (such as performing emergency actions) in scenarios such as major fires
or gas releases. Thus, the analysis is usually driven by the needs of the
hardware assessment to consider specific human errors in predefined, poten-
tially high-risk scenarios. This is in contrast to the qualitative error prediction
methodology described in Section 5.5, where all interactions by the operator
with critical systems are considered from the point of view of their risk
potential.

QUALITATIVE ERROR PREDICTION. The first stage of quantitative prediction is
a task analysis. THERP is usually applied at the level of specific tasks and the
steps within these tasks. The form of task analysis used therefore focuses on
the operations which would be the lowest level of a hierarchical task analysis



such as that shown in Figure 5.6. The qualitative analysis is much less formal-
ized than that described in Section 5.5. The main types of error considered are
as follows:

• Errors of omission (omit step or entire task)
• Errors of commission
• Selection error

—selects wrong control
—mispositions control
—issues wrong command

• Sequence error (action carried out in wrong order)
• Time error (too early / too late)
• Quantitative error (too little / too much)

The analyst also records opportunities to recover errors, and various
performance shaping factors (called performance-influencing factors in this
book) which will subsequently be needed as part of the quantification process.

REPRESENTATION. Having identified the errors that could occur in the execu-
tion of the task, these are then represented in the form of an event tree (Figure
5.12). This event tree is taken from Swain and Guttmann (1983). The branches
of the tree to the left represent success, and to the right, failures. Although the
event tree in Figure 5.12 is quite simple, complex tasks can generate very
elaborate event trees. Error recovery is represented by a dotted line as in the
event tree shown in Figure 5.11.

Take Action IQ'4 No action until
alarm (3 people)

Correct Pair
of Switches

IO'2 Wrong pair of
switches

Take Action
IO'3 Failure to initiate action within
2 minutes after alarm (3 people)

Correct Pair
of Switches

IQ'2 Wrong pair of
switches

Step 4.8.1 not
done in time

Fy=F1 + F 2 + F 3 =IO-*

FIGURE 5.12. THERP Event Tree (Swain and Guttman, 1983).



QUANTIFICATION. Quantification is carried out in the THERP event tree as
follows:

• Define the errors in the event tree for which data are required. In Figure
5.12, these errors are:
—No action taken until alarm (action omitted)
—Failure to initiate action within 2 minutes of alarm
—Wrong pair of switches chosen

• Select appropriate data tables in Swain and Guttmann (1983). This
handbook contains a large number of tables giving error probabilities
for operations commonly found in control rooms or plants, for exam-
ple, selecting a switch from a number of similar switches. Because the
handbook was originally written for the nuclear industry, the data
reflect the types of operations frequently found in that industry. The
source of these data is not defined in detail by the authors, although it
appears to be partly based on the American Institute for Research
human error database (Munger et al., 1962) together with plant data
extrapolated and modified by the authors' experience.

• Modify the basic data according to guidelines provided in the hand-
book, to reflect differences in the assumed "nominal" conditions and
the specific conditions for the task being evaluated. The major factor
that is taken in to account is the level of stress perceived by the operator
when performing the task.

• Modify the value obtained from the previous stage to reflect possible
dependencies among error probabilities assigned to individual steps in
the task being evaluated. A dependence model is provided which
allows for levels of dependence from complete dependence to inde-
pendence to be modeled. Dependence could occur if one error affected
the probability of subsequent errors, for example if the total time
available to perform the task was reduced.

• Combine the modified probabilities to give the overall error prob-
abilities for the task. The combination rules for obtaining the overall
error probabilities follow the same addition and multiplication proc-
esses as for standard event trees (see last section).

INTEGRATION WITH HARDWARE ANALYSIS. The error probabilities obtained
from the quantification procedure are incorporated in the overall system fault
trees and event trees.

ERROR REDUCTION STRATEGIES. If the error probability calculated by the
above procedures leads to an unacceptable overall system failure probability,
then the analyst will reexamine the event trees to determine if any PIFs can be
modified or task structures changed to reduce the error probabilities to an
acceptable level.



5.7.2.2. TJFfERP Case Study
The case study that follows is reproduced with permission from the Chemical
Manufacturers Association publication Improving Human Performance in the
Chemical Industry: A Manager's Guide, Lorenzo (1990). Another CPI case study
that uses THERP is documented in Banks and Wells (1992).

Assume that the system described below exists in a process unit recently
purchased by your company. As the manager, the safety of this unit is
now your responsibility. You are concerned because your process hazard
analysis team identified the potential for an operator error to result in a
rupture of the propane condenser. You have commissioned a human
reliability analysis (HRA) to estimate the likelihood of the condenser
rupturing as the result of such an error and to identify ways to reduce the
expected frequency of such ruptures

Propane
Vapor

Cooling
Water
Return

Liquid
Propane

Cooling
Water
Supply

FIGURE 5.13. Propane Condenser Schematic (Lorenzo, 1990).

System Description
Four parallel propane condensers, one of which is illustrated in Figure 5.13,
are designed with a 450-psig shell pressure rating and a 125-psig tube pressure
rating. The propane vapor pressure is controlled at 400 psig; the cooling water
flowing through the condenser tubes is normally maintained at 75 psig. Liquid
propane flows out of the condenser as soon as it condenses; there is no
significant inventory of liquid propane in the condenser. The two propane
isolation valves for each condenser are rising-stem gate valves with no labels.
The two water isolation valves for each condenser are butterfly valves with no
labels. Their handwheel actuators have position indicators.



A tube has failed in one of the four condensers about once every three
years. If a condenser tube fails, the affected condenser can be removed from
service by closing four isolation valves (propane vapor inlet valve), liquid
propane outlet valve, cooling water supply valve, and cooling water return
valve). However, if a tube fails, it is essential that the operator close the two
propane isolation valves before closing the two water isolation valves. Closing
the two water valves first would allow pressure to build on the tube side of
the condenser and rupture the tube head.

Analyzed System Conditions
• A tube has failed in the condenser.
• The low depropanizer pressure alarm has sounded in the control room.
• The experienced field operator has observed water and gas being

emitted from the hydrocarbon vent at the cooling tower. The field
operator shouts over the radio that a propane vapor cloud appears to
be forming and moving towards the control room.

• The control room operator has directed the field operator to isolate the
failed condenser as quickly as possible so that a unit shutdown will not
be necessary.

• The operator must close the valves by hand. If a valve sticks, there is
no time to go get tools to help close the valve—the process must be shut
down.

• The field operator has correctly identified the condenser with the failed
tube by the sound of the expanding propane and the visible condensa-
tion/frost on the shell.

Qualitative HRA Results
The first step of the analysis is to identify the human actions and equipment
failures that can lead to the failure of interest. An HRA event tree (Figure 5.14)
is then constructed to depict the potential human errors (represented by
capital English letters) and the potential equipment failures (represented by
capital Greek letters). The series of events that will lead to the failure of interest
is identified by an Fi at the end of the last branch of the event tree. All other
outcomes are considered successes even though the propane release is not
isolated in outcomes 82 and 83, so the process must be shut down.

Inspection of the HRA event tree reveals that the dominant human error is
Error A: the operator failing to isolate the propane valves first. The other
potential human errors are factors only if a propane isolation valve sticks open.
Based on these qualitative results alone, a manager might decide to periodically
train operators on the proper procedure for isolating a failed condenser and to
ensure that operators are aware of the potential hazards. The manager might



FIGURE 5.14. HRA Event Tree for Improper Condenser Isolation (Lorenzo, 1990).

also decide to require regular preventive maintenance on the propane isola-
tion valves to help ensure that they will properly close when required.

Quantitative HRA Results
This manager requested quantitative results, so the analyst must estimate the
probability of each failure or error included in the event tree. Data for all the
failures and errors in this particular problem are available in tables in the
Handbook, Swain and Guttman (1983). The analyst must modify these data as
necessary to account for specific characteristics of the work situation, such as
stress levels, equipment design features, and interoperator dependencies.
Table 5.1 summarizes the data used in this problem.

There is a written procedure for condenser isolation, but it is normally a
simple step-by-step task that is second nature to the operator and is performed
from memory. However, under the threat of a potential vapor cloud explosion,
the operator may forget to close the propane valves first (Error A). The HEP
in Handbook Table 20-7 #5 footnote (.01) is increased by a factor of 5 per Handbook
Table 20-16 #6a to account for stress.

The probability of a valve sticking open is unaffected by the operator's
stress level, but the probability of the operator failing to detect the stuck valve
(Error B) is increased. The HEP in Handbook Table 20-14 #3 is increased by a
factor of 5 per Handbook Table 20-16 #6a.

Closes PIV

^Closes water
valve first

POV closed

PIV closed

PIV sticks open

Detects stuck open PIV

Closes stuck
open PIV

Fails to detect
stuck open PIV

POV sticks
open Closes water

valve in error

Detects stuck open PIV ^ Fails to detect
stuck open POV

Closes stuck open POV
Closes water

valve in error



TABLE 5.1

Events Included in the HRA Event Tree (Lorenzo, 1990)

FAILURE
SYMBOL

A

Ii

Ii

6

C

FAILURE DESCRIPTION

Operator fails to close the propane
valves first

Propane inlet valve sticks open

Propane outlet valve sticks open

Operator fails to detect a stuck valve

Operator chooses to close the
cooling water valves to stop the
propane release

ESTIMATED
RROBABILITY

.05

.001

.001

.025

.25

DATASOURCE

T20-7 #5 footnote x 5,
per T20-1 6 #6a

T20-1 4 footnote

T20-1 4 footnote

T20-14#3x5,per
T20-16 #6a

T20-16#7a

The third potential human error (Error C) is that the operator will decide
to close the cooling water valves even though he/she diagnoses that a propane
valve is not closed. The likelihood of such an error (a dynamic decision in a
threatening situation) is listed as 0.25 in Handbook Table 20-16 #7a.

The analyst can then calculate the total probability of failure (Fx) by
summing the probability of all failure paths (Fi-s). The probability of a specific
path is calculated by multiplying the probabilities of each success and failure
limb in that path. (Note: The probabilities of success and failure sum to 1.0 for
each branch point. For example, the probability of Error B is 0.025 and the
probability of Success b is 0.975.) Table 5.2 summarizes the calculations of the
HRA results, which are normally rounded to one significant digit after the
intermediate calculations are completed.

TABLE 5.2

Human Reliability Analysis Results
(Lorenzo, 1990)

Fi = A = 5.0 X lO'2

F2 = aI1B =2.4 XlO"5

F3 = aZ1bC =2.3 XlO"4

F4 = aa1Z2B = 2.4 X 10"5

F5 = aa122bC = 2.3XlO"4

FT=Fi +'- + F5 =.05



Finally, the HRA analyst would calculate the expected frequency of
condenser ruptures as a result of improper isolation. The frequency of con-
denser tube failures is 0.33 per year (1 every 3 years), and the calculated
probability of improper isolation is 0.05. Multiplying these two numbers
shows the expected frequency of improper isolation of a failed condenser is
0.017 per year, or about once every 60 years. The manager can use this number
to help compare the costs and benefits of improvements proposed as a result
of the HRA or other studies.

For example, the same process hazards review team that spurred the
manager's original concern might have suggested (1) installing a pressure
relief device on the tube side of the exchanger, or (2) removing the propane
isolation valves (which would require that the unit be shut down in the event
of a condenser tube failure). In addition, the HRA team may have suggested
(3) increasing operator training and (4) more frequent maintenance of the
propane isolation valves. Based on the quantitative HRA results and estimates
of the consequences of a condenser rupture, the manager can decide whether
the benefits of the proposed changes outweigh their costs. The manager can
then choose the best way to apply loss prevention resources.

5.7.2.3. The Success Likelihood Index Method (SLIM)
History and Technical Basis
The SLIM technique is described in detail in Embrey et al. (1984) and Kirwan
(1990). The technique was originally developed with the support of the U.S.
Nuclear Regulatory Commission but, as with THERP, it has subsequently been
used in the chemical, transport, and other industries. The technique is intended
to be applied to tasks at any level of detail. Thus, in terms of the HTA in Figure
5.6, errors could be quantified at the level of whole tasks, subtasks, task steps
of even individual errors associated with task steps. This flexibility makes it
particularly useful in the context of task analysis methods such as HTA.

The basic premise of the SLIM technique is that the probability of error
associated with a task, subtask, task step, or individual error is a function of
the PIFs in the situation. As indicated in Chapter 3, an extremely large number
of PIFs could potentially impact on the likelihood of error. Normally the PIFs
that are considered in SLIM analyses are the direct influences on error such as
levels of training, quality of procedures, distraction level, degree of feedback
from the task, level of motivation, etc. However, in principle, there is no reason
why higher level influences such as management policies should not also be
incorporated in SLIM analyses.

In the SLIM procedure, tasks are numerically rated on the PIFs which
influence the probability of error, and these ratings are combined for each task
to give an index called the success likelihood index (SLI). This index is then
converted to a probability by means of a general relationship between the SLI



and error probability which is developed using tasks with known probabilities
and SLIs. These are known as calibration tasks.

Stages in Applying the Technique
PROBLEM DEFINITION, QUALITATIVE ERROR PREDICTION AND REPRESENTATION.
The recommended problem definition and qualitative error prediction ap-
proach for use with SLIM has been described in Section 5.3.1 and 5.3.2. The
fact that PIFs are explicitly assessed as part of this approach to qualitative error
prediction means that a large proportion of the data requirements for SLIM
are already available prior to quantification. SLIM usually quantifies tasks at
whatever level calibration data are available, that is, it does not need to
perform quantification by combining together task element probabilities from
a data base. SLIM can therefore be used for the global quantification of tasks.
Task elements quantified by SLIM may also be combined together using event
trees similar to those used in THERP.

QUANTIFICATION PROCEDURE. In order to illustrate the SLIM quantification
method, the case study developed in the earlier part of the chapter based on
the chlorine tanker filling example will be used. The following operations from
Figure 5.6 will be used to illustrate the method.

2.1.3 Close test valve
4.1.3 Close tanker valve
4.4.2 Secure locking nuts
4.2.3 Secure blocking device on valves

• Form groups of homogenous operations.
The first stage is to group together operations that are likely to be influ-

enced by the same PIFs. The four operations in the above set all involve
physical actions for which there is no immediate feedback when incorrectly
performed. Two of the operations, 4.1.3 and 4.4.2 are noted in Figure 5.8 as
having significant consequences if they occur. It is legitimate to assume
therefore, that the error probability will be determined by the same set of PIFs
for all the operations in this set.

• Decide on the relevant PIFs.
Ideally, data bases will have been developed within a company such that

predetermined PIFs are associated with particular categories of task. If this is
not the case, the analyst decides on a suitable set of PIFs. In this example, it is
assumed that the main PIFs which determine the likelihood of error are time
stress, level of experience, level of distractions, and quality of procedures. (See
Section 5.3.2.6.)

• Rate each operation on each PIF.
A numerical rating on a scale of 1 to 9 is made for each operation on each

PIF. Normally the ends of the scale represent the best or worst PIF conditions.



For example, a high level of time stress would be represented by a rating of 9,
which would imply an increased level of errors. However, in the case of level
of experience, 9 would represent the optimal rating corresponding to a highly
experienced operator. The fact that the same rating value can have a different
significance with different PIFs needs to be taken into account by the analyst.
With the computer program that is available for the SLIM technique, Embrey
(1994), these adjustments are made automatically. The ratings shown in Table
5.3 are made for the operations.

These ratings can be interpreted as follows. In the case of the Time Stress
PIF, all the operations have a high level of time stress, apart from close test
valve, where stress is low. The operators are very experienced in carrying out
all the tasks. Distractions are moderately high for close test valve, but other-
wise low. Procedures are poor for secure locking nuts and secure blocking
device, but above average for the other two tasks.

• Assign weights if appropriate
Based on the analyst's experience, or upon error theory, it is possible to

assign weights to the various PIFs to represent the relative influence that each
PIF has on all the tasks in the set being evaluated. In this example it is assumed
that in general the level of experience has the least influence on these types of
errors, and time stress the most influence. The relative effects of the different
PIFs can be expressed by the following weights:

Time Stress 0.4
Distractions 0.3
Procedures 0.2
Experience 0.1

It should be noted that the analyst should only assign weights if he or she
has real knowledge or evidence that the weights are appropriate. The assign-
ment of weights is not mandatory in SLIM. If weights are not used, the
technique assumes that all PIFs are of equal importance in contributing to the
overall likelihood of success or failure.

TABLE 5.3

PIF Ratings

OPERATION TIME STRESS EXPERIENCE DISTRACTIONS PROCEDURES

Close test valve 4 8 7 6

Close tanker valve 8 8 5 6

Secure locking nuts 8 7 4 2

Secure blocking device 8 8 4 2



TABLE 5.4

Rescaled Ratings and SLIs

PlFs

OPERATIONS TIMESTRESS EXPERIENCE DISTRACTIONS PROCEDURES SLIs

Close test valve 0.63 0.88 0.25 0.63 0.54

Close tanker valve 0.13 0.88 0.50 0.63 0.41

Secure locking nuts 0.13 0.75 0.63 0.13 0.34

Secure blocking device 0.13 0.88 0.63 0.13 0.35

Weights 0.4 0.1 0.3 0.2

• Calculate the Success Likelihood Indices
The SLI is given by the following expression:

SUj = ^RijWi

where SLIy is the SLI for task;; Wi is the normalized importance weight for the
zth PIF (weights sum to 1); and Rij is the rating of task on the zth PIF. The SLI
for each task is the weighted sum of the ratings for each task on each PIF.

In order to calculate the SLIs, the data in Table 5.3 have to be rescaled to
take into account the fact that the some of the ideal points are at different ends
of the rating scales. Rescaling also converts the range of the ratings from 1 to
9 to O to 1. The following formula converts the original ratings to rescaled
ratings:

RR = [1 - ABS (R - IP)]/[4 + ABS (5 - IP)]

where RR is the rescaled rating; R is the original rating, and IP is the ideal value
for scale on which the rating is made.

The accuracy of this formula can be verified by substituting the values 1
and 9 for scales where the ideal point is either 1 or 9. The formula converts the
original ratings to 0.0 or 1.0 as appropriate. Values of ratings between 1 and 9
are converted in the same way.

Using this formula on the ratings in Table 5.3 produces Table 5.4, which
contains the rescaled ratings, the assigned weights for the PIFs and the
calculated Success Likelihood Indices for each task.

• Convert the Success Likelihood Indices to Probabilities
The SLIs represent a measure of the likelihood that the operations will

succeed or fail, relative to one another. In order to convert the SLI scale to a
probability scale, it is necessary to calibrate it. If a reasonably large number of
operations in the set being evaluated have known probabilities (for example,



as a result of incident data having been collected over a long period of time),
then it is possible to perform a regression analysis that will find the line of best
fit between the SLI values and their corresponding error probabilities. The
resulting regression equation can then be used to calculate the error prob-
abilities for the other operations in the group by substituting the SLIs into the
regression equation.

If, as is usually the case, there are insufficient data to allow the calculation
of an empirical relationship between the SLIs and error probabilities, then a
mathematical relationship has to be assumed. The usual form of the assumed
relationship is log-linear, as shown below:

log(HEP) = A SLI + B (1)

where HEP is the human error probability and A and B are constants
This assumption is based partly on experimental evidence that shows a

log-linear relationship between the evaluation of the factors affecting perform-
ance on maintenance tasks, and actual performance on the tasks, Pontecorvo
(1965). In order to calculate the constants A and B in the equation, at least two
tasks with known SLIs and error probabilities must be available in the set of
tasks being evaluated.

In the example under discussion, it is found that there were few recorded
instances of the test valve being left open. On the other hand, locking nuts are
often found to be loose when the tanker returns to the depot. On the basis of
this evidence and the frequency that these operations are performed, the
following probabilities were assigned to these errors:

Probability of test valve left open = 1 x 10"4

Probability of locking nuts not secured = 1 x 10"

These values, and the corresponding SLIs for these tasks (from Table 5.4),
are substituted in the general equation (1). The resulting simultaneous equa-
tions can be used to calculate the constants A and B. These are substituted in
the general equation (1) to produce the following calibration equation:

log(HEP) = -2.303 SLI + 3.166 (2)

If the SLI values from Table 5.4 for the other two tasks in the set are
substituted in this equation, the resulting error probabilities are as follows:

__0

Task A: Probability of not opening tanker valve = 1.8 x 10
Task B: Probability of not securing blocking device = 7.5 x 10~3

• Perform Sensitivity Analysis
The nature of the SLIM technique renders it very suitable for "what if"

analyses to investigate the effects of changing some of the PIF values on the



resulting error probabilities. For example, there are high levels of time stress
for both of the above tasks (rating of time stress = 8, best value = 1). The effects
of reducing time stress to more moderate levels can be investigated by assign-
ing a rating of 5 for each task. This changes the SLI, and if the new SLI value
is substituted in equation (2) the probabilities change as follows:

Task A: Probability of not opening tanker valve = 5.6 x 10~5

Task B: Probability of not securing blocking device = 2.4 x 10

An alternative intervention would be to make the procedures ideal (rating
= 9). Changing the ratings for procedures to this value for each task (instead
of reducing time stress) produces the following results.

Task A: Probability of not closing tanker valve = 3.2 x 10
Task B: Probability of not securing blocking device = 1.3 x 10

Thus the effect of making the procedures ideal is an order of magnitude
greater for Task B compared with Task A (see Table 5.5). This is because the
procedures for Task A were already highly rated at 6, whereas there was room
for improvement with Task B which was rated 2 (see Table 5.3).

TABLE 5.5
Effects of Improvements in Procedures on Error Probabilities Calculated
Using SLIM

Task A

Task B

ORIGINAL ERROR
PROBABILITY

1.8x10~3

7.5 x 10"3

AFTER IMPROVEMENTS IN
PROCEDURES

3.2 x 1(T4

1.3X10"4

RATIO BEFORE/ AFTER
IMPROVEMENTS

5.6

57

Conclusions
The SLIM technique is a highly flexible method that allows considerable
freedom in performing what-if analyses. In common with most human reli-
ability quantification techniques, it requires defensible data, preferably from
a plant environment, to be effective. In the absence of such data, the calibration
values have to be generated by expert judgments made by experienced plant
personnel.

5.7.2.4. The Influence Diagram Approach
History and Technical Basis. The influence diagram approach (IDA) (also known
as the sociotechnical approach to human reliability (STAHR) (see Phillips et
al., 1990) is a technique that is used to evaluate human error probabilities as a



function of the complex network of organizational and other influences that
impact upon these probabilities. Unlike most other techniques, IDA is able to
represent the effects of not only the direct influences of factors such as
procedures, training, and equipment design on error likelihood but also the
organizational influences and policy variables which affect these direct fac-
tors. As described in Phillips et al. (1990), it is possible to construct a generic
Influence Diagram to represent these relationships. In the case study that will
be used to illustrate the application of the influence diagram to human error
probability evaluation, a more specific diagram (Figure 5.15) will be used,
based on a study by Embrey (1992).

The basic steps in carrying out an IDA session are described in Phillips et
al. (1990). A group of subject matter experts are assembled who have a detailed
knowledge of the interactions between indirect and direct PIFs which deter-
mine error probability. The influence diagram is then constructed using
insights from this expert group. Once the diagram has been developed, the
experts are asked to assess the current state of the lowest level factors (i.e.,
project management and assignment of job roles in Figure 5.15). The assess-
ment made is the probability (or "balance of evidence") that the factor being
considered is positive or negative in its effects on error. This evaluation is
performed on all the bottom level influences in the diagram, using scales
similar to those used to evaluate PIFs described in Figure 3.1. Once these
individual factors have been evaluated, based on an objective evaluation of
the situation being assessed, the next stage is to evaluate the combined effects
of the lowest level influences on higher level influences, as specified by the
structure of the influence diagram.

This process is repeated for combinations of these variables on the factors
that directly impact on the probability of success or failure for the scenario

PROBABILITY OF
HUMAN ERROR

AVAILABILITY OF
EFFECTIVE

OPERATING
INSTRUCTIONS

FEEDBACK FROM
OPERATIONAL
EXPERIENCE

USE OF TASK
ANALYSIS

POLICY FOR
GENERATING

INSTRUCTIONS

PROJECT
MANAGEMENT

FIGURE 5.15 Influence Diagram (Embrey, 1992).

QUALITY OF TRAINING TIME PRESSURE
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COMPLEXITY
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OFJOB
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being evaluated. These numerical assessments are combined to give weights
which are then used to modify unconditional probability estimates that the
error will occur given various positive or negative combinations of the influ-
ences assessed earlier. The unconditional probability estimates have to be
derived by another technique such as absolute probability judgment, SLIM,
or from any field data that may be available.

Case Study
In the influence diagram for operator errors given in Figure 5.15, the main level
1 factors influencing the probability of error are quality of training, availability
of effective operating instructions and time pressure on the operator. Two
factors are specified as influencing the quality of training. These are the extent
to which task analysis was employed to generate the training specification,
and the use of feedback to modify the existing training regime in the light of
operational experience. The availability of effective operating instructions is
modeled as being dependent upon two policy factors. The first of these is the
policy for developing instructions, which ensures that procedures are kept up
to date, and are designed according to accepted standards. The other policy
factor is project management, since this influences the early definition of work
required, so that appropriate instructions will be available at the workplace
when required.

Project management also influences the likelihood that staffing levels will
be adequate for the tasks required. This latter factor, together with the extent
to which appropriate jobs are assigned to individuals, and the complexity of
the jobs, all influence the level of time pressure likely to be felt by the operator.
The detailed calculations, which show how the probability of human error is
influenced by changes in the sociotechnical factors in the situation, are given
in Appendix 5A.

5.8. SUMMARY

This chapter has provided an overview of a recommended framework for the
assessment of human error in chemical process risk assessments. The main
emphasis has been on the importance of a systematic approach to the qualita-
tive modeling of human error. This leads to the identification and possible
reduction of the human sources of risk. This process is of considerable value
in its own right, and does not necessarily have to be accompanied by the
quantification of error probabilities.

Some examples of major quantification techniques have been provided,
together with case studies illustrating their application. It must be recognized
that quantification remains a difficult area, mainly because of the limitations
of data, which will be discussed in Chapter 6. However, the availability of a



systematic framework within which to perform the human reliability assess-
ment means that despite data limitations, a comprehensive treatment of
human reliability within CPQRA can still yield considerable benefits in iden-
tifying, assessing, and ultimately minimizing human sources of risk.

5.9. APPENDIX 5A: INFLUENCE DIAGRAM CALCULATIONS

Commentary on the Calculations

This commentary is provided to clarify the calculations in the following tables.
In Table 1, the assessment team is asked to evaluate the evidence that feedback
from operational experience is used to develop training. In order to make this
evaluation, they will be provided with an "indicator77 in the form of a scale
specifying the nature of the evidence that should be taken into account. For
example, the end of the scale defining the ideal situation would include
conditions such as: "Results from operational experience fed directly to the
training department,7' and "evidence that training regime is modified as a
result of feedback.7' The other end of the scale would describe the worst case
situation, for example, "No feedback from operational experience into train-
ing.77 In the example cited, the evidence strongly indicates that feedback is not
used effectively in developing training.

What is the weight of
evidence for feedback from
operational experience in

developing training?

Good

.20

Poor

.80

nr~| What is the weight of
"̂""̂  evidence for use of task

analysis in developing
training?

Used

.20

Not Used

.80

[ 3 I For Quality of Training

If

feedback
is:

Good

Good

Poor

Poor

and

Task Analysis
is:

Used

Not Used

Used

Not Used

then

Unconditional Probability (weighted sum)
that Quality of Training is high vs. low is:

weight of evidence that
Quality of training is

high
is:

.95

- .80

.15

.10

.254

low
is:

.05

.20

.85

.90

.746

Joint Weight
(feedback x

Task Analysis)

.04 (.20 x . 20)

.16 (.20 x . 80)

.16 (.80 x . 20)

.64 (.80 x . 80)



I! 4 I What is the weight of
^Baa^ evidence that Policy for

generating instructions is:

Effective

.30

Ineffective

.70

pf] What is the weight of
evidence that Project

Management is:

Effective

.10

Ineffective

.90

I 6 I For Availability of Effective Operating Instructions

If

Policy for
generating
instructions

is:

Effective

Effective

Ineffective

Ineffective

and

Project
Management

is:

Effective

Ineffective

Effective

Ineffective

then

Unconditional Probability (weighted sum)
that Effective Operating Instructions are

available vs. not available is:

weight of evidence that
operating instructions are

available
is:

.90

.60

.50

.05

.255

not
available

is:

.10

.40

.50

.95

.744

Joint Weight
(Policy x
Project

Management)

.03 (.30 x. 10)

.27 (.30 x . 90)

.07 (.70 x. 10)

.63 (.70 x . 90)

Table 2 contains a similar assessment to Table 1 but for the use of task
analysis. As illustrated in Table 3, the assessment team is then asked to
evaluate the weight of evidence that the quality of training will be high (or
low) given various combinations of the influencing factors feedback and use
of task analysis. Of course, such evaluations are difficult to make. However,
they utilize whatever expert knowledge is possessed by the evaluation team,
and factor this into the analysis. They also allow the assessors to factor into
their evaluations any interactions among factors. For example, the combined
effects of poor feedback and nonuse of task analysis may degrade the quality
of training more strongly than either influence in isolation. Each of the condi-
tional assessments is then weighted by the results of stages 1 and 2 and the
products added together to give an estimate of the unconditional probability
that the training is adequate.

Similar assessments are performed to evaluate the probability that effec-
tive operating instructions are available (Table 6) that staffing levels are
adequate (Table 9) and that time pressure will be high or low (Table 10). In
this latter case, since three influences impact upon time pressure, eight joint
assessments need to be made.



If 7 I! What is the weight of
^^ evidence for Assignment of

Job Roles?

Good

.50

Poor

.50

I 3 I What is the weight of
^saBr^ evidence for Task

Complexity?

High

.60

Low

.40

fjTj For Staffing Levels

If

Project
Management

is:

Effective

Ineffective

then

Unconditional Probability (weighted sum)
that Staffing Levels are adequate vs.

inadequate is:

weight of evidence that
Staffing Levels are

adequate
is:

.60

.20

.24

inadequate
is:

.40

.80

.76

Weight
(Project

Management)
(from 5)

.10

.90

[I 10 I For Time Pressure

If

Staffing

levels
are:

Adequate

Adequate

Adequate

Adequate

Inadequate

Inadequate

Inadequate

Inadequate

and

Assignment

of Job Roles
is:

Good

Good

Poor

Poor

Good

Good

Poor

Poor

and

Project

Management
is:

High

Low

High

Low

High

Low

High

Low

then

Unconditional Probability (weighted sum) that
Time Pressure is high vs. low is:

weight of evidence
for time pressure

being
high
is:

.95

.30

.90

.25

, .50

.20

.40

.01

.3981

low
is:

.05

.70

.10

.75

.50

.80

.60

.99

.6019

Joint Weight
(staffing levels

x job roles x task
complex.)

.072 (.24 x .50 x .60)

.048 (.24 x .50 x .40)

.072 (.24 x .50 x .60)

.048 (.24 x .50 x .40)

.023 (.76 x .50 x .60)

.015 (.76 x . 50 x . 40)

.023 (.76 x .50 x .60)

.015 (.76 x .50 x .40)



Although these combined assessments are arduous, it should be noted
that the evaluations of the effects of combinations of influences may be
regarded as applicable across a range of systems, and hence would only need
to be performed once for a generic model. The system specific evaluations
would then be the simpler level 2 assessments set out in Tables 1,2,4,5,7, and
8. As discussed earlier, guidance for performing these assessments could be
provided by the use of PIF scales delineating the conditions for the least and
most favorable ends of the scales. Similar scales can be used to make direct
evaluations of the level 1 influences, if the assessments described earlier are
judged to be too difficult. Even if the full assessments are made, it is useful to
compare these with the indirect assessments to check convergence.

The final stage of the procedure is to generate an overall unconditional
probability of human error (Table 11). This is achieved by assigning prob-
abilities of error to combinations of the three first level influences quality of
training, availability of operating instructions and time pressure. These con-
ditional probabilities are generic, in that they could apply to any system. They
are made specific to the situation under consideration by multiplying them by
the assessed probabilities of the level 1 influences, as derived from the earlier
analyses. These products are then summed to give the overall unconditional
probability of error occurrence in the situation being evaluated.

I Ii I For the task modeled

If

Quality of
Training

is:

High

High

High

High

Low

Low

Low

Low

and

Effective
Operating

Instructions
are:

Available

Available

N. available

N. available

Available

Available

N. available

N. available

and

Time
Pressure

is:

Low

High

Low

High

Low

High

Low

High

then

Assessed Unconditional Probability of
success vs. failure is:

the

probability of

success
is:

.99

.978

.954

.90

.90

.78

.54

.00

.58

failure
is:

.01

.022

.046

.10

.10

.22

.46

1.00

.42

Joint Probabilities
(training quality

x instructions x time
pressure.)

.0390 (.25 x .26 x .60)

.0258 (.25 x .26 x .40)

.1137 (.25 x . 74 x . 60)

.0752 (.25 x .74 x .40)

.1145 (.75 x . 26 x . 40)

.076 (.75 x .26 x .40)

.3341 (.75 x. 74 x. 60)

.2209 (.75 x .74 x .40)



The SLIM method described earlier is particularly suitable for the deriva-
tion of the conditional probabilities in Table 11, since it evaluates probabilities
as a function of variations in PIFs that correspond to the level 1 factors used
in this example. Each of the eight conditions in Table 11 can be treated as a
separate task for evaluation by SLIM, using common weights for each factor
across all conditions, but differing ratings to reflect the differing conditions in
each case. SLIM requires calibration data to be supplied for the two end-point
conditions, but this is considerably less onerous than evaluating probabilities
for all conditions. Another source of probabilities to include in Table 11 would
be laboratory experiments where the first level influencing factors were varied
systematically.
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