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Abstract

The paper presents an innovative approach to integrate Human and Organisational Factors (HOF) into risk analysis. The approach has

been developed and applied to a case study in the maritime industry, but it can also be utilised in other sectors. A Bayesian Belief Network

(BBN) has been developed to model the Maritime Transport System (MTS), by taking into account its different actors (i.e., ship-owner,

shipyard, port and regulator) and their mutual influences. The latter have been modelled by means of a set of dependent variables whose

combinations express the relevant functions performed by each actor. The BBN model of the MTS has been used in a case study for the

quantification of HOF in the risk analysis carried out at the preliminary design stage of High Speed Craft (HSC). The study has focused on

a collision in open sea hazard carried out by means of an original method of integration of a Fault Tree Analysis (FTA) of technical

elements with a BBN model of the influences of organisational functions and regulations, as suggested by the International Maritime

Organisation’s (IMO) Guidelines for Formal Safety Assessment (FSA). The approach has allowed the identification of probabilistic

correlations between the basic events of a collision accident and the BBN model of the operational and organisational conditions. The

linkage can be exploited in different ways, especially to support identification and evaluation of risk control options also at the

organisational level. Conditional probabilities for the BBN have been estimated by means of experts’ judgments, collected from an

international panel of different European countries. Finally, a sensitivity analysis has been carried out over the model to identify

configurations of the MTS leading to a significant reduction of accident probability during the operation of the HSC.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Despite the remarkable effort performed at different
levels to achieve a safe Maritime Transport System (MTS),
the occurrence of accidents and incidents at sea is still
increasing. Statistics published by the European Transport
Safety Council [1] reveal that in Europe maritime accidents
are responsible yearly for 140 deaths and 1.5 billion h of
goods loss and damages. Globally, the MTS is responsible
for 0.33 deaths per 100 million person-km, 4 times riskier
than the air transport system, that accounts for 0.08 deaths
per 100 million person-km. Grounding (32%), striking
atter r 2007 Elsevier Ltd. All rights reserved.
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(24%) and collision (16%) are the most frequent occur-
rences and they have the highest rate of casualties.
It is widely recognised that the human element plays the

major role in most accidents involving modern ships. Thus,
the Lord Carver report of the UK House of Lords summed it
up succinctly when stating that it ‘‘is the received wisdom that
four out of five ship casualties [y] are due to human error
[y]’’. Also national statistics shown in Fig. 1 (Transportation
Safety Board of Canada [2]), attribute 74% of the accidents at
sea to human errors and only 20% to technical failures. As
shown in Fig. 2, 45% of the accident reports assess the
misjudgement (mistake) of ship masters and pilots as
predominant causes; in another 42% of cases human errors
refer to lack of comprehension between the pilot and the
master, inattention of the pilot and of the officer of the watch
(OOW) or lack of communication among crew members.

www.elsevier.com/locate/ress
dx.doi.org/10.1016/j.ress.2007.03.035
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Fig. 1. Main causes of accidents at sea.
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Fig. 2. Types of human errors in accidents at sea.

Fig. 3. Components of the integrated system for application of the

Formal Safety Assessment (FSA) [8].
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Similar results are pointed out by a statistical ana-
lysis based on data of the Lloyds Informative Maritime
Service [3] concerning more than 15,000 accidents in a time
span of 10 years. Lloyds’ statistics show that an un-
corrected course and an excessive speed with respect to the
traffic in the sea zone are responsible for about 50% of all
the maritime accidents, particularly groundings. Moreover,
70–80% of the accidents are due to human mistakes or
other events attributed to the human behaviour.

While technical solutions will continue to play an important
role, there is widespread agreement that the key means of
tackling the human element contribution to accidents will be
via safety management, including inspection and training.

Starting with a deeper understanding of the role of the
human element in the safety performance of maritime
transport, a new issue is emerging; indeed, the official report
concerning the Zeebrugge incident (capsizing of a passenger
ship) [4] already pointed out that it was not due to a
coincidence of independent technical failures and human
errors, but a systematic change in the organisational
behaviour of operators under the influence of economic
pressure in a strongly competitive environment. Thus, a
systematic safety analysis of the MTS needs to be enlarged to
include interactions and effects of decisions taken by various
actors of the MTS, and workplace and context conditions,
including the economic pressure affecting the maritime sector.

Various parties (operators, shipyards, regulators and
government) in their respective working contexts are very
often involved in a sequence of events leading to an
accident; this is the most critical issue in developing an
effective risk or accident analysis. The error of the operator
onboard a ship is only the final act of a long and complex
chain of organisational and systemic errors (i.e. the so-
called latent failures). Rasmussen highlighted the conflict-
ing interactions between parties in MTS, evidenced by his
accident analysis of oil tankers and ferryboats [5–7].
The need for a systemic approach to analyse the MTS

safety is therefore clear, not only focused on mistakes and
violations of the operators, but also aimed at finding, if
they exist, the causes at the various levels of the socio-
technical system, which competes for determining the
accidents. The International Maritime Organisation
(IMO) provides a rational and systematic approach for
assessing risk in shipping activity: a comprehensive model
is suggested to take into consideration different influences
with an impact on the technical and engineering system of a
ship. In fact the Formal Safety Assessment (FSA) describes
a generic model (shown in Fig. 3) that considers the ship’s
technical and engineering system, in the centre of the
model, as related to the functions representing the
passengers and crew behaviour that subsequently is
influenced by management and the organisational struc-
ture; finally, the model shows the outer influence of the
environmental context that represents the influences of all
parties interested in shipping. Each subsystem is dynami-
cally affected by the others both directly and indirectly; a
complex model is requested to represent these relationships
between variables of each subsystem.
This approach and the necessity of incorporating human

reliability analysis into the FSA process [8], suggests the
use of a Risk Contribution Diagram (RCD) for modelling
the network of influences on an event in a complex system
[9] as development of Risk Contribution Tree (RCT)
described by FSA: this method allows the linkage between
failures at the operational level with their direct causes, and
the underlying organisational and regulatory influences.
Also Bayesian Belief Network (BBN) [10] has been used for

the purpose of integrating the analysis of human and
hardware failures and reflecting the hierarchical nature of
influence domains. Thus the BBNmodel can be regarded as a
RCD in which the effects of such factors are represented in
terms of conditional probabilities. Moreover, from a risk
reduction standpoint, the European Commission (EC)
funded a project, called S@S—Safety at Speed [11]—to
develop a Functional Model (FM) of the MTS. The FM
helps in identifying the critical interactions among actors that
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Fig. 4. Framework of the Hazard Analysis developed within the S@S

project.

Fig. 5. Sample of Bayesian Belief Network (BBN).

Table 1

Example of conditional probability table (CPT) for Xn

X1 State 1 State 2

X3 State 1 State 2 State 1 State 2

Xn State 1 0.9 0.2 0.5 0.3

State 2 0.1 0.8 0.5 0.7
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can trigger unwanted events and the parameters that can be
used to improve the situation. The objective of the project
was to develop a formal methodology for the safety design of
High Speed Craft (HSC) using state-of-the-art techniques and
tools [12]. At the same time, S@S wanted to promote a
safety-culture approach for integrating safety effectively in the
process of ship design. Specifically, the research project
developed a set of Fault Trees (FTs) representing different
hazards (collision, grounding, fire, flooding,y) and aiming
to support the selection of the best risk control option within
the design process of a HSC, as shown in Fig. 4.

The basis of a FM of the MTS was the identification of
the main parties involved in the MTS and a set of their
critical activities; each activity is modelled as a function.
The FM is then represented as a network of mutual
influences and interdependencies that allows an under-
standing of how changes within the MTS can propagate
and ultimately affect safety. In particular, the FM aims to
explain how Human and Organisational Factors (HOF)
can undermine safety and lead to unwanted events. The
FM of the MTS has been developed in three phases,
showing the increasing maturity of the model.

The paper proposes a model and a comprehensive
approach, based on Fault Tree Analysis (FTA) and BBN, to
integrate HOF within a risk analysis study. Previous versions
of the model have been presented [10,13]. With respect to the
latter, the present paper reports a complete evolution of the
model and a comprehensive approach. Specifically, a method
to study the impact of single organisational factors on the
overall safety performance of the system (namely an HSC), on
a quantitative basis, will be presented. Referring to the
‘‘Collision in Open Sea’’ FTA developed by the S@S project
[11], the results of a sensitivity analysis of HOF over the
probability of occurrence of both the basic events (BEs) and
the top event (TE) will be presented.

2. Bayesian Belief Network

A BBN is a Directed Acyclic Graph (DAG) consisting of
a set of nodes, representing variables with a finite set of
states, and edges, representing the probabilistic causal
dependence among the variables. The nodes with edges
directed into them are called ‘‘child’’ nodes and the nodes
from which the edges depart are called ‘‘parent’’ nodes (if
there is an edge from node X1 to another node X2, X1 is
called parent of X2; refer Fig. 5) and nodes without arches
directed into them are called ‘‘root’’ nodes (X3 in Fig. 5).
The DAG represents the structure of causal dependence
between nodes and gives the qualitative part of causal
reasoning in a BBN, thus the relations between variables
and the corresponding states give the quantitative part,
consisting of a Conditional Probabilistic Table (CPT)
attached to each node with parents, as shown in Table 1.
The chain rule says that a Bayesian Network is a

representation of the joint distribution over all the
variables represented in the DAG and the marginal and
the conditional probabilities can be computed for each
node of the network.
If U is an universe of variables:

U ¼ X 1;X 2; . . . ;X nf g, (1)

the joint probability of U is then:

PðUÞ ¼
Yn�1
i¼1

P X ijX iþ1; . . . ;X nð Þ. (2)

From the joint probability distribution P(U), various
marginal and conditional probabilities can be computed, e.g.
PðX iÞ, PðX ijX jÞ or PðX ijeÞ where, in general, e is an evidence:

e ¼ e1; e2; . . . ; emf g, (3)

that is an information received from external sources about the
possible states/values of a subset of the variables of the
network (1).
For a set of discrete variables, Xi, the evidence appears in

the form of a likelihood distribution over the states of Xi: if
an observation is given over some variables of the network,
the probability of occurrence of some events can be
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Fig. 6. Sample Directed Acyclic Graph (DAG) with ‘‘soft’’ (a) and ‘‘hard’’

(b) evidences.
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calculated given the evidence:

PðU jeÞ ¼
PðU ; eÞ

PðeÞ
. (4)

An evidence is called ‘‘hard’’ when it is an exact
observation of the state of the variables, whilst it is ‘‘soft’’
when a non-definite information is given, expressed in
terms of likelihood for the states of the variable [14], as
shown in Fig. 6.

In other terms, a probabilistic inference is given that is
capable to updating our belief about events given observa-
tions, then it is possible to perform a sensitivity analysis of
probabilities given different subsets of evidences.

3. Applications of BBN in risk analysis

Scientific literature on risk analysis shows a recent
diffusion of the use of BBN [15]. BBN is mainly seen as
a tool allowing the analyst to exploit different information,
deterministic or probabilistic, emerging from the real
world, under the condition of complex relations between
a large number of variables. Reported applications
comprise a large range of risk analysis studies, such as:
the classification of components and subsystems of a
nuclear plant based on safety performance assessment [16],
the estimate of the unknown prevalence of a chronic
disease affecting a specified population [17], the assessment
of integrated fire prevention and protection systems [18],
the integration of different eutrophication models for
synthesis, prediction, and uncertainty analysis [19]. The
Bayesian approach provides also an aid for decision-
making as a tool for improving the qualitative analysis
throughout numerical procedures [20] and to find a suitable
reliability framework for dynamic systems [21].
In particular, the literature provides several frameworks

for analysing the organisational context of accidents in
order to improve the operational safety: the BBN model
allows obtaining the occurrences of operational accidents
that includes organisational factors, as the study of
organisational causes in commercial aviation [22], where
the high complexity of technical, HOF requires a quantita-
tive model to reduce the fatal accident rate. A strategy for
integration of the organisational risk in the FTA is also
proposed for aircraft maintenance planning [23] in order to
assess the impact on accident probability; purpose of this
model is to develop an explicit path from organisational and
management factors to the accidents. The same problem is
analysed in a framework on reduction of Signal Passed At
Danger (SPAD) incidents in rail crashes on UK rail network
[24]; in this case BBN is used to obtain possible configura-
tions of events leading to an accident and to understand the
interactions of actors in the organisation that contribute to
the incident. An application of BBN into a FSA of Large
Passenger Ships Navigation is reported in recent deliverables
of IMO Maritime Safety Committee [25,26]; the BBN is
used to develop simple models of selected hazards (e.g.
grounding or collision) incorporating few influencing factors
at the organisational level (e.g. safety culture).
Finally an example of BBN model is shown that helps

the decision making process at design level [27], where
BBN is used to estimate the distribution of the harm to
people produced by fire in a building.

4. Use of BBN for modelling HOF in risk analysis

Bayesian Networks are often used for causal representa-
tion of the phenomena involved in a complex system or
process, where information is based on expert knowledge.
This approach allows a better analysis of a dependable
system [28] as a result of additional capabilities of the BBN
respect to the FTA (e.g. common cause failure dependen-
cies, diagnostic reasoning). In this case a BBN is an
extension of FT, suitable for a great number of applica-
tions in risk analysis where the combined use of conven-
tional and non-conventional methods is needed.
The proposed approach uses BBN as a modelling tool to

quantify the organisational structure of a complex socio-
technical system in order to obtain a better estimate of the
probability of occurrence of an hazard, given a specific
configuration of critical HOF [10]. Indeed, the scope of the
BBN is to implement the organisational model so as to
analyse the propagation of influences amongst the functions
of different actors within the system (expressed as conditional
probabilities). Given a set of FTs representing relevant
hazards of the system under analysis, the BBN is then used
to modify the probability of occurrence of those BEs affected
by the capabilities and the level of performance of critical
organisational functions, as shown in Fig. 7.
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Fig. 7. Linkage between Bayesian Belief Network (BBN) and Fault Tree (FT) through the Bayes’ theorem.

Table 2

Conditional probability table (CPT) of the dummy organisational

configuration variable (Ok) of the BEk ‘‘Helmsman error’’

Crew knowledge High Low

Position Correct Incorrect Correct Incorrect

GPSa W O W O W O W O

Oi H-C-W 1

H-C-O 1

H-I-W 1

H-I-O 1

L-C-W 1

L-C-O 1

L-I-W 1

L-I-O 1

aW, working; O, out of order.
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The influence of organisational factors on the probability
of occurrence of a single BE has been estimated by means of
the basic Bayes theorem. To this end the concept of
‘‘organisational configuration variable’’ (O) has been intro-
duced, a fictitious variable acting as the conjunction between
the BBN model and the FT. The states of Ok are the j

mutually exclusive combinations of states of those variables
of the BBN model that influence BEk (Table 2). Thus, taking
into account the experts’ belief on the contribution of
organisational factors, it is possible to update the probability
of occurrence of the basic event (BEk), either technical or
human, given a certain knowledge over its correspondent
organisational configuration variable (Ok) as follows:

PðBEkjOj;kÞ ¼
PðOj;kjBEkÞPðBEkÞ

PðOj;kÞ
, (5)

where
�
 Oj,k is the jth state of the ‘‘organisational configuration
variable’’ representing the influence of the organisa-
tional factors on BEk; P(BEk|Oj,k) is the posterior
probability of occurrence of BEk given Oj,k;

�
 P(BEk) is the prior probability of occurrence of BEk

provided by statistical analysis of historical data or a
predictive model based on past data;

�
 P(Oj,k) is the probability of state j of the k ‘‘organisa-

tional configuration variable’’ estimated through the
BBN given a marginal distribution for the root nodes, as
the one described in Table 2;

�
 P(Oj,k|BEk) is the degree of belief in the occurrence of

Oj,k given the occurrence of BEk; the value of
P(Oj,k|BEk) was expressed through tables as the one
shown in Table 3, reporting the experts’ answer to
questions such as: ‘‘Given a Helmsman error, what is the
likelihood that it has occurred under the following
organisational context: High Crew Knowledge, Correct
Position and Working GPS?’’.
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Table 4

Ranking of the organisational configuration variables (Oj) according to

the number of Basic Events (BEs) they affects (minimal cutsets of the fault

tree identified 25 critical BEs)

Organisational configuration variables (Ok) Number of critical

BEs affected

Performance of crew and personnel (PCP) 25/25

Training of crew and personnel (TCP) 9/25

Course information (CI) 6/25

Direction (D) 6/25

Table 3

Estimates of the P(Oj,k|BEk) for BEk ‘‘Helmsman error’’

Crew knowledge High Low

Position Correct Incorrect Correct Incorrect

GPSa W O W O W O W O

Oi 5% 5% 10% 10% 15% 15% 15% 25% 100%

aW, working; O, out of order.
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The proposed method of assigning probabilities is,
probably, one of the simplest ones and works well when
the number of factors is relatively small, as in the case of
Table 2. All possible combinations of the levels of the
factors are considered to form a partition of the measur-
able space and probabilities are assigned to each one of
them. When the number of factors exceeds 3, then a
possible simplification is given by identifying only the most
influential factors. Finally, (marginal) probability densities
could be specified for each factor and the joint density on
all factors could be obtained by using copulas. The choice
of proper correlations and kernels are difficult problems to
be solved. A thorough discussion of these approaches is
well beyond the scope of the current paper and the
interested reader is referred to the paper by Palomo et al.
[29], which deals with a different, but similar, problem.

The FTA of ‘‘Collision in open sea’’, developed by the
S@S project [11], has been used for the case study, providing
a quantification of the influences that some of the variables
of the BBN have on some BEs, specifically 38 human errors
and 26 technical failures. Indeed, the proposed approach
allowed identifying probabilistic correlations between 64
BEs of the FT and the BBN model of the organisational
functions within the MTS, represented by 64 organisational
configuration variables. Appendix A shows the graphical
representation of the BBN organisational model of the
MTS, while Appendix B reports the actors and their s
comprised in the model. This linkage can be exploited in
different ways, the most important one being to support the
identification and evaluation of risk control options for
HSC collision also at the organisational level.

4.1. On the hypothesis of independent BEs when connecting

FT with BBN

Integration of BBN and FTA leads to consider the
potential analytical problem of continuing to use Minimal
Cut Sets (MCSs) to resolve the FT. Indeed, the simplified
method of MCSs can be used only under the hypothesis of
independent BEs, while the BBN clearly establish a set of
common causal factors at an organisational level.

Moreover, the ‘‘beta factor’’ method [30], which is
generally used to compute the joint probability of dependent
BEs, only covers situations with different BEs affected by a
single common cause failure, and this is no longer the
situation faced. Table 4 shows the number of BEs affected
by the most important organisational configuration vari-
ables (Ok). Nevertheless, it is possible to consider that the
BBN model gives back the joint probability of the
organisational configuration variables, noted as P(Ok), thus
taking into consideration all the contributions of the
network of dependent factors, by means of the known
conditional probability tables and the correct use of the
Chain Rule [13]. Indeed the computation of P(Ok) is a
straightforward consequence of the structure of the BBN.
Once the BBN is laid down and all the conditional
probabilities from one level to the next one are provided,
along with the probability of the top level, then straightfor-
ward applications of the Chain Rule brings to compute all
P(Ok), at the bottom level of the BBN. Given a set of
evidences, the proposed integration of FTA and BBN is thus
able to directly provide the analyst with the joint probability
values of all the BEs affected by common organisational
factors and no further calculations are needed.

4.2. Setting of the operational and organisational conditions

within the BBN model

The capability of the BBN to increase the belief about
events is useful to analyse the effects of some subsets of
observations given when the ship operations are influenced
by certain design solutions, crew characteristics or other
Organisational Conditions (shipyard resources, regula-
tions, etc.) or by likely Operational Conditions (sea state,
traffic density, etc.).
In order to consider these observations into a risk

analysis of an hazard (e.g. collision in open sea) the Bayes’
theorem is used, where a set of (soft) evidences is
postulated as a non-definite information about Organisa-
tional or Operational Conditions [14]. If e is a set of
evidences:

e ¼ e1; e2; . . . ; emf g, (6)

the Bayes’ rule says that:

PðBEkjOj;k; eÞ ¼
PðOj;k; ejBEkÞPðBEkÞ

PðOj;k; eÞ
. (7)

Since conditional independence, given BEk, between Oj,k

and e implies that:

PðOj;k; ejBEkÞ ¼ PðOj;kjBEkÞPðejBEkÞ, (8)
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PðOj;k; eÞ ¼ PðOj;kÞPðeÞ, (9)

then Bayes’ Theorem implies:

PðBEkjOj;k; eÞ ¼
PðOj;kjBEkÞPðejBEkÞPðBEkÞ

PðOj;kÞPðeÞ
. (10)

Therefore results a new factor, as shown in:

PðejBEkÞ

PðeÞ
, (11)

that represents the influence that the evidence e has on the
probability of occurrence of BEk variable state:

posterior / likelihood
PðejBEkÞ

PðeÞ
prior. (12)

Thus multiplying the likelihood function and the prior of a
BE by this factor, it is possible to measure how much an
evidence influences the occurrence of a BE. By this rule the
BBN Organisational Model results in an inference engine
for the calculation of beliefs on BEs given observations
representing the influence of HOF on BEs.

For example in the case study two different categories of
independent variables (evidences) within the MTS have
been defined:
�

Fig

(Ok

(BB
Ship Design and Management Parameters—D&MP
(e.g., shipyard resources, crew characteristics, ship
operational requirements,y).

�
 Operational Conditions—OC (e.g., weather and sea

state, traffic density,y).
. 8. Example of the use of the organisational configuration variable

) in linking appropriate variables of the Bayesian Belief Network

N) with a specific BEk of the Fault Tree (FT).
Referring, for example, to the BE ‘‘Confused by other
ship movements’’ (human error) its organisational config-

uration variable is defined by the combinations of states of
three variables of the MTS model: ‘‘Crew and Personnel
performance’’, ‘‘Traffic density’’ and ‘‘Hazard/failure iden-
tification’’. The network of dependencies within the BBN
directly or indirectly connects D&MP and OC variables
with the organisational configuration variable of the
considered BE, thus enabling a sensitivity analysis over the
probabilities of occurrence of the BE, i.e. P(Confused by
other ship movements|Oj), or TE, i.e. P(Collision|Oj), when
the probability of Oj is modified by different configurations
of D&MP or OC variables, as shown in Fig. 8.

5. Case study: a collision hazard for HSC

The proposed approach is applied to a case of interest: the
influence of critical organisational functions on the prob-
ability of collision in open sea of an HSC, given a set of
Operational Conditions. The connection between primary
variables (evidences) of the BBN and the BEs of the FT
allowed to estimate the impact of changes in the former to the
probability of occurrence of the TE (ship collision). The
original model [13] has been developed along three major
steps: MTS analysis, Qualitative Model Formulation, Quan-
titative Model Formulation. In the first step, a wide-spectrum
analysis of the MTS was led to identify the main actors and
their critical functions, referring to an ‘ideal’ situation in
which ‘everyone follows the rules’. This phase was carried out
through interviews to maritime operators, shipyards and
classification societies. Five main actors have been identified,
namely: the Operator (that represents the maritime com-
pany), the Shipyard, the Port, the Regulator (that represents
all the certification and regulatory bodies) and, finally, the
Environment, considered also from a socio-technical point of
view. Secondly, functions performed by each actor were
identified, under the hypothesis that the behaviours of the
actors are perfectly pertaining to the provisions and the safety
procedures. The description of the functions allowed to
clarify and better understand the roles and the duties of each
actor within the MTS, considered as a socio-technical system.
Thus the Structured Analysis Design Technique (SADT)
representation of the MTS was turned into a Bayesian
network representation, as it is reported as an example in
Fig. 9. The main difference between these two representations
is that the SADT representation is function driven, whilst the
BBN one is variable driven. Indeed, as shown in Fig. 9, the
function ‘To Follow Planned Course’ is explicitly represented
as a box, whilst the same function is implicitly represented by
the dependence of the Course Information variable on the
three variables Crew Knowledge, Position and GPS as
explicitly represented by the three arrows. As a final result,
the MTS was transformed in a complex network of
influences, where experts quantified the model by filling out
CPTs for each node of the network. A panel of six experts,
with relevant experience in managing risk in the maritime
sector, was involved in the process of quantification. They
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Table 5

List of critical basic events (BEs) ordered with the F–V Importance

function

No. Code Description F–V

Importance

1 BE46 Other ship fails to avoid close quarters 1

2 BE19 Confused by other ship’s movement 6.19e-1

3 BE63 Internal communication failure 5.07e-1

4 BE16 Assuming other ship will change

courses

3.15e-1

5 BE18 Bad evaluation of speed and course of

other ship

1.03e-1

6 BE13 Watch-keeping failure 2.73e-3

7 BE2 Fail to make use of radar 1.48e-3

To follow

planned course

GPS

Crew Knowledge

Position Course
information

Crew

knowledge

Position

GPS

Course

information

SADT BBN

Fig. 9. From Structured Analysis Design Technique (SADT) to Bayesian Belief Network (BBN) modelling.
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gave an estimate of the minimum and maximum likelihood in
every conditional influence involving two or more variables of
the network The elicitation process has be carried out with
recursive technique (e.g. Delphi method) in order to
guarantee the convergence of the results and the final results
were commented and adjusted again during further inter-
views.

5.1. FTA of the ‘‘collision in open sea’’ and selection of

critical BEs

The BEs of the Collision in Open Sea are referred to
three different categories:
�
 Human Errors.

�
 Automation and Mechanical Failures.

�
 Manoeuvring Errors.
The identification of the MCSs allowed to operate,
before the quantitative analysis, the selection of critical
BEs: it has been chosen to take into consideration only the
MCSs for which the sum of the probabilities generates at
least the 80% of the total probability of the TE:

Xn

i¼1

PðMCSiÞX0:8P TECollisionð Þ. (13)

By means of the Fussel–Vesely Importance function [30],
it has been also possible to order the BEs on the basis of
their influence on the TE:

IFVðBEÞ ¼

P
Ci :BE2Ci

PðMCSiÞP
Ci

PðMCSiÞ
, (14)

where Ci is the set of MCSi comprising BE.
The most relevant BEs for the hazard under analysis are

reported in Table 5. Such events contribute to determine
the probability of occurrence of the collision in accordance
with the FT theory [30] given the influence of the
organisational configuration variables (Ok):

PðTEjOj;kÞ ¼
X

Ci :BE2Ci

PðMCSijOj;kÞ. (15)

5.2. Definition of operational conditions and design and

management parameters

The sensitivity analysis of the collision hazard has been
carried out choosing appropriate settings for the opera-
tional and organisational conditions (evidences in Table 6).
To this end, two different operational conditions have been
set as reference navigation conditions for the analysis. The
first one, named ‘‘Mediterranean Sea’’, refers to a situation
of high traffic density with good weather-marine and traffic
conditions, whereas the second, named ‘‘North Sea’’, refers
to a navigation route with low traffic but heavy weather-
marine and traffic conditions (Table 7). Since the variable
can vary within the interval [0, 1], a value Y ¼ 0.1 indicates
a ‘‘weak’’ influence of the corresponding factor, whereas a
value of Y ¼ 0.9 denotes a ‘‘strong’’ influence.
5.3. Analysis of experiments and discussion of results

For each one of the navigation conditions (‘‘Mediterra-
nean Sea’’ and ‘‘North Sea’’) the D&MP have been
used as parameters of an experiment’s analysis in order
to evaluate the influence of HOF in different navigation
conditions:

DPðTEjOj;kÞ

DðOj;kÞ
!

DPðTEjOj;kðNorth SeaÞÞ

DðD&MPÞ
;

DPðTEjOj;kðMediterranean SeaÞÞ

DðD&MPÞ
:

8>>><
>>>:

(16)

The objective was to evaluate, using a Design of
Experiment (DOE) project, the sensibility of the conditional
probabilities of the BE—P(BEk|Oj,k)—and, therefore, of the
TE—P(TE|Oj,k)—to a variation of the organisational
factors given a navigation conditions. The analysis on the
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Fig. 10. Sensitivity analysis of the Design & Management Parameters

(D&MP) over the probability of occurrence of BE19—‘‘Confused by other

ship’s movement’’.

Table 6

Classification of operational conditions (OC) and Design & Management

Parameters (D&MP)

Evidence Importancea Correlated Bes

Crew & Personnel Characteristics 3.83 12/12

Compliance with IMO regulations 1.83 9/12

Climate 1.75 11/12

Traffic density 0.66 2/12

Visibility & sea state 0.66 3/12

aMean value of the F–V Importance index of the influenced basic events

(BEs).

Table 7

States of Operational Conditions (OC) evidences

Evidence Mediterranean Sea North Sea

Y N Y N

Bad climate 0.1 0.9 0.9 0.1
Traffic Density 0.9 0.1 0.1 0.9
Bad visibility & Sea State 0.1 0.9 0.9 0.1
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combined effects of the D&MP of the MTS has taken into
account two classes of evidences:
Fig. 11. Sensitivity analysis of the Design & Management Parameters
�

(D&MP) over the probability of collision—P(TE|Oj,k)—under different

Operational Conditions (OC).
CREW—this class comprises only the variable ‘‘Crew &
Personnel Characteristics’’, evaluating an organisational
characteristic of the Operator of the ship.

�
 IMO—this class comprises two variables of the organisa-

tional model of the MTS: ‘‘Compliance with IMO
regulations’’ and ‘‘IMO regulations’’. The former evalu-
ates the degree of compliance to the IMO regulations of
the Operator’s activities, whereas the latter refers to the
quality and transparency of the IMO regulations as such.

This framework provides a 22 experiment with two factors
(CREW and IMO) of two states (+ and �). It is possible to
plot the results of the analysis in a graph highlighting the
quantitative variation of the probability of occurrence of a
single BE (e.g. BE 19—‘‘Confused by other ship’ s movement’’
shown in Fig. 10) when the combination of factors changes.
The representation makes evident that crew and personnel are
the factors with the greatest influence on the BE.

The same kind of analysis can also be carried out for the
TE, as shown in Fig. 11. Moreover, it is possible to verify
the existence of interactions between factors. The greater
importance of the variable ‘‘Crew’’ with respect to ‘‘IMO’’ is
evident again. The difference in P(TE) values in case of
‘‘Mediterranean Sea’’ or ‘‘North Sea’’ navigation conditions
(i.e., for different Operational Conditions), can be high-
lighted also with the same state of the two factors. The
results (ref. Fig. 11) allow to say that the importance of the
factor Crew is even greater in case of bad sea conditions (i.e.,
HSC operation in North Sea) and, since there is no evidence
of inter-crossed effects (i.e. improving the characteristics of
the crew, always a smaller reduction in probability of
occurrence is obtained due to a wider application of the
norms suggested by the IMO); evidently trained and
educated crews tend to reduce the safety improvement
supported by of the compliance to standard procedures.
The analysis carried out highlighted the great effect of

risk reduction, in case of collision, imputable to the human
factors and, in particular, to the factor ‘‘Crew’’ (an order
greater than ‘‘IMO’’). Nevertheless, a positive (+) state of
the evidence ‘‘Crew & Personnel Characteristics’’ and
‘‘Personnel Characteristics’’ presupposes a strategy of
selection and training of the crews aimed at risk reduction.

6. Conclusions

The use of Bayesian Belief Network (BBN) modelling in
Formal Safety Assessment (FSA) has been suggested in a
recent document (7 February 2006) submitted by the Japan
body of maritime safety to the IMO Maritime Safety
Committee (MSC\81\18-1) [9]. In the conclusions the
document suggests the use of BBN as a risk analysis tool,
since the complexity of the system cannot be correctly
modelled only by a Risk Contribution Tree (i.e. the joint
use of FTs and Event Trees).
This paper has proposed a coherent approach to exploit

BBN in developing better risk models of complex socio-
technical systems, particularly when the need of taking into
account Human and Organisational Factors (HOF) is crucial.
Under this point of view the proposed approach is consistent
and should be carefully used as human error analysis technique
when the expert’s elicitation process is critical for performing
quantitative analyses in case of lack of data and statistics [8].
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Unlike other methods of integration between Fault Tree
(FT) and BBN documented in literature (e.g. the method
proposed by Mohaghegh and Mosleh [23]) the proposed
approach does not require any further calculation to correctly
take into account the dependencies among the basic events
(BEs) of the FT established by the BBN model. Moreover, as
the proposed method of calculation uses the BBN model only
to modify a prior probability of the BEs and does not generate
them directly, it results in a simpler quantification process of
the BBN when the elicitation of experts’ judgements is used.
Indeed an expert is more comfortable (and reliable) in
estimating the probability that a set of organisational factors
are able to increase/reduce a known generic probability of
occurrence of a certain basic event, instead of directly estimate
the probability of occurrence of the basic event given a
postulated set of organisational factors.

The case study of a collision hazard for an HSC has
demonstrated that the BBNmodelling of HOFs can be used in
risk analysis to identify further opportunities of risk mitigation
acting at the organisational and regulatory level of the MTS.

The proposed model could also be used as a tool for
supporting retrospective analyses based on incident reporting or
Fig. A.1. Overall Bayesian Belief Network (BBN) m
accident investigation, such as the identification of latent failures
at the organisational level. Moreover, since the probabilities of a
generic BBN are updateable given a set of evidences collected
from the field, the BBN model of organisational risk factors is
updateable over time exploiting data provided by accident/
incident databases (e.g. IMO, MAIB) and/or gathered from
voluntary reporting systems (e.g. CHIRP).
Finally, further areas of application should be explored

considering the proposed model as a support tool for
safety management and decision-making at different levels
(policy, design or operating procedures, etc.) and for
different stakeholders of the maritime industry. As a
matter of fact, while for the policy makers and regulators
the objective is safety with affordability as a requirement, for
the industry (e.g., ship operators, shipyards, port) the
objective is affordability with safety as a requirement. The
proposed approach is suitable for further extensions on the
side of economic analysis in order to help the regulators to
evaluate the economic impact over the entire MTS of
postulated safety standards, and the business actors in
identifying the most efficient way to achieve safety
improvements.
Appendix A

Overall Bayesian Belief Network (BBN) model of the Maritime Transport System (MTS) (Fig. A.1).
odel of the Maritime Transport System (MTS).
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Appendix B

List of functions of Bayesian Belief Network (BBN) divided into actors (Table B.1).
Table B.1

List of functions of Bayesian Belief Network (BBN) divided into actors

Actors Operator Port Environment Shipyard Regulatory

bodies

Functions Procedures & quality

requirements

Procedures & quality

requirements

Data on incident/

accident

Training IMO standards

Training of crew &

personnel

Avalilability of Dock/

Wharf

Visibility and sea state External resources Classification

rules

Availability of

maintenance equipment

Training Traffic density Technical requirements IMO

regulations

Manning of crew &

personnel

Operation plan Non technical

requirements

Classification

societies advices

Operation plan Cargo (& Pax) handling Internal resources

Maintenance plan Ship handling Management of resources

Maintenance of ship Personnel performance Personnel performance

Performance personnel &

crew

Manning of personnel Design characteristics

Course selection Personnel characteristics Ship characteristics

Course information Traffic management

(VTS)

Propulsion plant

Speed Order of arrival/departure Electrical plant

Planned Speed Climate Auxiliaries

Direction Security checks Command & control

Planned direction Safety checks (Port

inspections)

General outfitting &

furnishing

Cargo (& Pax) loaded/

unloaded

Good & services providers Hull structure

Ship efficiency Operations in port Good & services providers

Hazard/failure

identification

Compliance with IMO

regulations

Manufacturing

restrictions

Climate Management of Human &

technical resources

Know-how

Ship operational

requirements

Availability of

productions tools

Crew & personnel

characteristics

Climate

Compliance with IMO

regulations

Personnel characteristics

Management of human &

technical resources

Wheater & sea state
References

[1] European Transport Safety Council (ETSC). EU trans-port accident,

incident and casualty databases: current status and future needs, 2001

/http://www.etsc.beS.

[2] Transportation Safety Board of Canada (TSB). Safety study of the

operational relationship between ship master/watchkeeping officers

and marine pilots, 1998 /http://www.bst.gc.caS.

[3] Mathes S, Nielsen K, Engen J, Haaland E. ATOMOSR II—Final

Report. Brussels: European Commission, 1997.

[4] Rasmussen J. Risk management in a dynamic society: a modelling

problem. Saf Sci 1997;27:183–213.

[5] Shell. A study of standards in the oil tanker industry, Shell

international marine limited, May 1992.

[6] Estonia. Accident investigation report; part report covering technical

issues on the capsizing on 28 September 1994 in the Baltic sea of the

ro-ro passenger vessel MV ESTONIA, The Joint Accident Investi-
gation Commission, Stockholm: Board of accident investigation;

1995.

[7] Stenstrom B. What can we learn from the ESTONIA accident? Some

observation on technical and human short-comings, in The Cologne

Re Marine Safety: Seminar, 27–28 April, Rotterdam, 1995.

[8] International Maritime Organization (IMO). Guidelines for the

application of Formal Safety Assessment (FSA) for use in the IMO

rule-making process, 2002 /http://www.imo.orgS.

[9] Formal Safety Assessment. Consideration on utilization of Bayesian

network at step 3 of FSA, Maritime Safety Committee, 81st session,

2006, MSC 81/18/1.

[10] Pedrali M, Cagno E, Trucco P, Ruggeri F. Towards the integration of

human and organisational factors in risk assessment. A case study for

the marine industry, second international asranet colloquium,

Barcelona, Spain, 2004.

[11] The European Commission. S@S Project, Competitive and Sustain-

able Growth (GROWTH), 2003 /http://cordis.europa.eu/growth/S.

http://www.etsc.be
http://www.bst.gc.ca
http://www.imo.org
http://cordis.europa.eu/growth/


ARTICLE IN PRESS
P. Trucco et al. / Reliability Engineering and System Safety 93 (2008) 823–834834
[12] Birmingham R, McGregor J, Delautre S, Astrugue J. Risk evaluation

at the preliminary design stage of a high-speed craft. J Ship Prod

2004;20(3):183–7.

[13] Trucco P, Di Giulio A, Randazzo G, Pedrali M. Towards a

systematic organisational analysis for improving safety assessment

of the maritime transport system, in safety and reliability. In: Bedford

T, Van Gelder PHAJM, editors. Swets&Zeitlinger, Lisse, ESREL’03,

2003, pp. 513–21.

[14] Madsen AL, Kjaerulff UB. An Introduction to Bayesian Network

and Influence Diagram, 2005.

[15] Jensen FV. Bayesian Networks and Decision Graphs. New York,

USA: Springer-Verlag; 2001.

[16] Ha JS, Seong PH. A method for risk-informed safety significance

categorization using the analytic hierarchy process and Bayesian

belief networks, Department of Nuclear and Quantum Engineering,

Korea Advanced Institute of Science and Technology, 373-1,

Guseong-Dong, Yuseong-Gu, Daejeon 305-701, South Korea,

2003.

[17] Giove S, Nordico M, Silvani S. Stima della prevalenza dell’insuffi-

cienza renale cronica con reti Bayesiane: analisi costo efficacia delle

strategie di prevenzione secondaria, Università di Venezia—ULSS 12

Veneziana, Working Paper 3.134, 2003.

[18] Gulvanessian H, Holicky M. Determination of actions due to fire:

recent developments in Bayesian risk assessment of structures under

fire, Building Research Establishment, Garston, Watford, UK,

Klokner Institute, Prague, Czech Republic, 2001.

[19] Borsuk ME, Stowl CA. Reckhow KH. A Bayesian network of

eutrophication models for synthesis, prediction, and uncertainty

analysis, division of environmental science and policy, Nicholas

School of the Environment and Earth Sciences, Duke University,

P.O. Box 90328, Durham, NC 27708-0328, USA, 2003.

[20] Aspinall WP, Woob G, Voight B. Evidence-based volcanology:

application to eruption crises, department of geosciences, Penn State

University, University Park, PA 16802, USA, Department of Public
Health and Primary Care, Cambridge University, Fenner’s, Gresham

Road, Cambridge CB1 2ES, UK, 2003.

[21] Boudali H, Dugan JB. A discrete-time Bayesian network reliability

modelling and analysis framework. Reliab Eng Syst Saf 2004;87:

337–49.

[22] Luxhøj JT. Probabilistic causal analysis for safety risk assessments in

commercial air transport, Workshop on investigating and reporting

of incidents and accidents (IRIA), September 16–19, 2003, Williams-

burg, VA.

[23] Mohaghegh Z, Mosleh A. A causal modeling framework for assessing

organizational factors and their impacts on safety performance. In:

Proceedings of the eighth international conference PSAM, New

Orleans, Louisiana, USA, 2006.

[24] Marsh W, Bearfield G. Using Bayesian Networks to model accident

causation in the UK railway industry. In: Proceedings of the seventh

international conference PSAM, Berlin, Germany, 2004.

[25] Formal Safety Assessment. Passenger ship safety: effective voyage

planning for passenger ships, Formal Safety Assessment—large

passenger ships navigation, Sub Committee on Safety of Navigation,

50th session, 2005, NAV 50/11/1 /http://research.dnv.com/skj/

FSALPS/FSA-LPS-NAV.htmS.

[26] Formal Safety Assessment. FSA Study on ECDIS/ENCs. Maritime

Safety Committee, 81st session, 2006, MSC81/24/5 /http://research.

dnv.com/skj/FSA-ECDIS/ECDIS.htmS.

[27] Hanea D, Cooke R, Ale B. The methodology to build the network

used in a Bayesian Belief Net approach. In: Proceedings of the eighth

international conference PSAM, New Orleans, Louisiana, USA, 2006.

[28] Bobbio A, Portinale L, Minichino M, Ciancamerla E. Improving the

analysis of dependable systems by mapping fault trees into Bayesian

networks. Reliab Eng Syst Saf 2001;71:249–60.

[29] Palomo J, Insua DR, Ruggeri F. Modelling external risks in project

management. Under revision for Risk Analysis, 2005.

[30] Bedford T, Cooke R. Probabilistic risk analysis, foundations and

methods. Cambridge, UK: Cambridge University Press; 2001.

http://research.dnv.com/skj/FSALPS/FSA-LPS-NAV.htm
http://research.dnv.com/skj/FSALPS/FSA-LPS-NAV.htm
http://research.dnv.com/skj/FSA-ECDIS/ECDIS.htm
http://research.dnv.com/skj/FSA-ECDIS/ECDIS.htm

	A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation
	Introduction
	Bayesian Belief Network
	Applications of BBN in risk analysis
	Use of BBN for modelling HOF in risk analysis
	On the hypothesis of independent BEs when connecting FT with BBN
	Setting of the operational and organisational conditions within the BBN model

	Case study: a collision hazard for HSC
	FTA of the ’’collision in open sea’’ and selection of critical BEs
	Definition of operational conditions and design and management parameters
	Analysis of experiments and discussion of results

	Conclusions
	References


