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Abstract

This study considers advanced statistical approaches for sequential data assimilation. These are explored in the context of
nowcasting and forecasting using nonlinear differential equation based marine ecosystem models assimilating sparse and noisy non-
Gaussian multivariate observations. The statistical framework uses a state space model with the goal of estimating the time evolving
probability distribution of the ecosystem state. Assimilation of observations relies on stochastic dynamic prediction and Bayesian
principles. In this study, a new sequential data assimilation approach is introduced based on Markov Chain Monte Carlo (MCMC). The
ecosystem state is represented by an ensemble, or sample, from which distributional properties, or summary statistical measures, can
be derived. The Metropolis-Hastings based MCMC approach is compared and contrasted with two other sequential data assimilation
approaches: sequential importance resampling, and the (approximate) ensemble Kalman filter (including computational comparisons).
A simple illustrative application is provided based on a 0-D nonlinear plankton ecosystem model with multivariate non-Gaussian
observations of the ecosystem state from a coastal ocean observatory. TheMCMC approach is shown to be straightforward to implement
and to effectively characterize the non-Gaussian ecosystem state in both nowcast and forecast experiments. Results are reported which
illustrate how non-Gaussian information originates, and how it can be used to characterize ecosystem properties.
© 2007 Elsevier B.V. All rights reserved.
Keywords:Marine ecosystem models; Data assimilation; State space models; Monte Carlo; Prediction; MCMC; Ensemble Kalman filter; Sequential
importance resampling; Ecological statistics; Stochastic models; Particle filters; Non-Gaussian; Differential equations
1. Introduction

Data assimilation is fundamentally a problem in
statistical estimation, i.e. combining dynamical models
and data to provide state or parameter estimates. Marine
ecosystem models for lower trophic levels (biogeochem-
ical and plankton models) typically take the form of time-
dependent nonlinear differential equations (Fennell and
Neumann, 2004), and are known to exhibit a wealth of
complex dynamical behaviour (Huisman and Weissing,
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2001; Edwards, 2001). These ecosystem models are
generally treated as deterministic, and frequently coupled,
as interacting tracers, to physical oceanographicmodels to
allow for transport and mixing (Oschlies and Schartau,
2005). Stochastic elements enter ecosystem models
through environmental forcing such as mixed layer
dynamics or rapid fluctuations in the light environment
(Marion et al., 2000; Edwards et al., 2004; Dowd, 2006).
Observations of marine ecological state variables are
complex data types coming from a variety of sources and
sensors (e.g. satellites, water samples, moored and
profiling instruments), and characterized by being sparse,
noisy and non-Gaussian in their distributions (Dickey,
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2003). A major challenge for marine prediction is the
identification and development of appropriate data
assimilation methods to integrate this variety of data
sources with marine ecosystem models.

Oceanographic data assimilation has generally been
divided into two approaches: (i) variational methods
for estimation of parameters (and initial conditions), and
(ii) sequential methods for state estimation. Parameter
estimation is concerned with model calibration: models
are considered as deterministic functions of the para-
meters, a cost function is then posed which measures the
discrepancy between the model and data, and optimiza-
tion procedures are used to minimize it (Lawson et al.,
1995; Vallino, 2000; Evans, 2003; Oschlies and Schartau,
2005). Sequential methods, on the other hand, are recur-
sive algorithms concerned with estimation of the ecolo-
gical state as the system evolves through time, in other
words nowcasting and forecasting (Bertino et al., 2003).
After model calibration, these sequential approaches
provide the basis for biological forecasting systems that
are emerging as part of ocean observing systems (Allen
et al., 2003; Pinardi et al., 2003). This study is concerned
with the identification and application of advanced statis-
tical methods for sequential data assimilation for non-
linear and non-Gaussian interdisciplinary oceanographic
studies.

The integration of modern statistical approaches into
oceanographic data assimilation is in its infancy. Methods
such as Markov Chain Monte Carlo (MCMC) have revo-
lutionalized Bayesian statistical computation (Gelman
et al., 2003). Indeed, the data assimilation problem has
long been formulated from a probabilistic perspective
using Bayesian principles (Jazwinski, 1970; van Leeuwen
and Evensen, 1996). However, for sequential data
assimilation, the main approach has been to formulate
approximate methods based on extensions of the Kalman
filter to treat nonlinear systems. For example, Pham et al.
(1997) introduced the singular evolutive extended Kal-
man (SEEK) filter based on an EOF approximation of the
updating equations. A popular Monte Carlo approach is
the ensemble Kalman filter, or EnKF (Tsuji and
Nakamura, 1973; Evensen, 1994). This uses stochastic
dynamic (Monte Carlo) prediction, but approximates the
Bayesian assimilation of observations with the Kalman
filter updating equations. It has been widely used in
oceanography (Evensen, 2003), including applications to
marine ecological data assimilation (Eknes and Evensen,
2002; Allen et al., 2003; Natvik and Evensen, 2003). An
exact statistical approach for sequential data assimilation
in nonlinear and non-Gaussian systems is sequential
importance resampling, or SIR (Gordon et al., 1993;
Kitagawa, 1996). SIR has become well established in the
statistical and signal processing literature (see texts by
Doucet et al. (2001) and Ristic et al. (2004)), with a few
pilot applications in data assimilation in physical ocean-
ography (van Leeuwen, 2003) and biogeochemical
modelling (Losa et al., 2003).

In this study, an alternative statistical approach for
sequential data assimilation is introduced based on an
MCMC approach. Like SIR, but unlike the EnKF, the
proposed MCMC method provides an exact solution for
general nonlinear and non-Gaussian data assimilation.
The well-known drawback of the SIR algorithm is that the
ensemble that represents the system state can degenerate
due to the repeated resampling (or bootstrapping) steps
that are fundamental to its operation (e.g. Arulampalam
et al., 2002). In recent work (Dowd, 2006), a modification
to the SIR algorithm was proposed to alleviate this prob-
lem of sample degeneracy by appending anMCMC post-
processing step to the SIR algorithm. However, it was
subsequently realized that the MCMC ideas developed in
Dowd (2006) could be adapted to stand-alone as a useful
and novel approach for sequential data assimilation. This
study explores this idea and develops and tests the
methodology, with an emphasis on estimation of the non-
Gaussian features of the ecological state.

The paper is structured as follows. Section 2 introduces
the statistical framework for treating the nowcasting and
forecasting problems of sequential data assimilation. It
also outlines the MCMC approach, and contrasts it to the
SIR and EnKF algorithms. Section 3 provides an illustra-
tion of the method with a simple application to a 0-D
nonlinear plankton model using non-Gaussian multivar-
iate observations from a coastal ocean observing system.
It is shown how the non-normal distributional information
for nowcasts and forecasts can be used to diagnose and
describe properties of the ecosystem state variables. The
computational performance of the candidate data assim-
ilation algorithms are also compared and contrasted. A
discussion and conclusions are given in Section 4.

2. Methods

2.1. Problem statement

The statistical framework for ecological data assim-
ilation is provided by the nonlinear and non-Gaussian
state space model (e.g. Dowd and Meyer, 2003),

xt ¼ ftðxt−1; ht; ntÞ ð1Þ

yt ¼ htðxt;/t; vtÞ ð2Þ
defined for t=1,… T. The first equation (Eq. (1)) is a
stochastic difference equation representing a Markovian



Fig. 1. The data assimilation cycle showing a single stage transition of
the ecological system. It starts with a nowcast distribution of the state
at time t−1, or p(xt−1|y1:t−1). This is used as the initial condition for a
forecast to time t using model dynamics to yield the p(xt|y1:t−1).
Finally, this forecast is combined with the observation yt to produce the
desired nowcast at time t, or p(xt|y1:t). See the text for further details.
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transition over a unit time interval (from time t−1 to
time t). It is identified with the numerical model for the
ecological dynamics. The ecosystem state variables at
time t are contained in the vector xt, which also includes
any spatial dimension (e.g. gridded fields being mapped
into vectors). The state evolution, or ecosystem dyna-
mics, is embodied in the operator ft, which may be time
dependent. The model depends on a set of parameters θt
which includes static rate constants, as well as time-
dependent parameters and forcing (including boundary
fluxes). The system noise nt includes stochastic
elements due to environmental forcing; in the estimation
context it can also be considered to incorporate model
errors due to structural uncertainty in the governing
equations.

The second equation (Eq. (2)) is the measurement
equation which incorporates observations on all or part
of the ecological state. The observation vector at time t
is given by yt, but may not be defined for all times (i.e.
missing values). Observations, yt, are related to the
ecosystem state, xt, through the measurement operator
ht. This depends on a parameter set, θt, and the mea-
surement errors vt. This allows for indirect and nonlinear
relations between the observations and the state (e.g.
measuring optical properties and modelling phytoplank-
ton). Note that the special case of direct measurements
of the complete ecosystem state implies that ht is the
identity matrix.

Designate the available observation set from times 1
through T inclusive as y1:T=(y1′, y2′,…, yT′)′ (that is, we
stack the observation vectors). Suppose we are interest-
ed in state estimates at some analysis time τ (i.e. for xτ).
Three classes of time-dependent estimation problems
can be defined corresponding to hindcasting (τbT),
nowcasting (τ=T) and forecasting (τNT). Statistically,
these correspond to the problems of smoothing, filtering
and prediction. In this study we focus on the filtering
(nowcasting) and prediction (forecasting) problems
using online recursive approaches for sequential state
estimation.

A complete description of the ecosystem state at any
time is given by the joint probability density function
(pdf) of xt defined for t=1,…, T. These pdfs embody all
information on the ecological state and are commonly
summarized in terms of measures of the central tendency
(the mean or mode), uncertainty (variance), and higher
order moments such as skewness and kurtosis. Relation-
ships between variables can also be summarized by
measures of dependence, such as covariance. The goal of
this study is to estimate the time evolving probability
distribution of the ecological state using both ecosystem
models and measurement information.
The target quantity to be computed by the sequential
data assimilation procedure is p(xt|y1:t), which is the
conditional pdf for the ecological state given all the
information (observations) up to and including time t
(where t=1,…, T). This is referred to as the filter, or
nowcast, density at time t. Note that while the condi-
tioning in the pdf only explicitly considers the
observations, it is implicit that the following also be
specified: the model equations, ft, along with the para-
meters (forcing), θt; the measurement operator, ht, with
its parameters, ϕt; and the statistics of both the system
noise, nt, and observation error, vt. Initial conditions, x0,
must also be provided.

Sequential estimation of the ecosystem state can be
conceptualized in the data assimilation cycle in Fig. 1. It
starts with an estimate of the ecological state at the current
time (i.e. a nowcast at time t−1). This is designated by
p(xt−1|y1:t−1) which is the pdf of xt−1 using measurements
up to and including time t−1. Two steps are then taken.
First, a prediction is made for time t using p(xt−1|y1:t−1) as
the initial conditions for the (stochastic) ecological model
dynamics in Eq. (1), including any external forcing or
boundary conditions. This yields the predictive density
p(xt|y1:t−1). Second, suppose an observation yt becomes
available at time t. This measurement information is
blended with the accumulated information on xt con-
tained in the forecast. This yields the nowcast at time t as
p(xt|y1:t). For sequential data assimilation, a recursive
sequence of these single stage transitions of the system is
applied to the entire analysis period of interest.

2.2. Analytic solution

The rules for manipulating the pdfs in order to carry
out the prediction and measurement steps of the data



Fig. 2. Ensemble based representation of a probability distribution.
The x-axis is the value of the state variable and the y-axis denotes
probability (probability density for the distributions, and probability
mass for the particles). The standard normal with mean zero and
variance one is shown (solid line). The ensemble members or particles
(short vertical lines) are shown in terms of their values (x-axis position)
and their probability (height above x=0). The estimated kernel
smoothed density determined from the ensemble is also given (dashed
line). Panel (a) shows the case of n=25 ensemble size, while panel
(b) shows the n=250 case.
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assimilation cycle are given by the following (c.f.
Jazwinski, 1970). The prediction step is

pðxtjy1:t−1Þ ¼
Z

pðxtjxt−1Þpðxt−1jy1:t−1Þdxt−1: ð3Þ

The predictive distribution p(xt|y1:t−1) is computed as a
product of the nowcast distribution, p(xt−1|y1:t−1), and a
transition density p(xt|xt−1). This latter quantity moves
the state forward one time step and is identified with the
model dynamics in Eq. (1). The measurement update
step occurs at time t when observational information yt
becomes available. The updating relies on straightfor-
ward application of Bayes' formula, i.e.

pðxtjy1:tÞ ¼ pðytjxtÞpðxtjy1:t−1Þ
pðy1:tÞ ð4Þ

and yields the desired nowcast density at time t. Note
that the joint pdf of the observations p(y1:t) in the
denominator acts simply as a normalizing constant and
modern computational Monte Carlo techniques (as
below) do not require its evaluation. The nowcast den-
sity at time t, p(xt|y1:t), (the posterior) is expressed as the
product of the likelihood p(yt|xt) and the forecast density
at time t, p(xt|y1:t−1), (the prior). The likelihood can be
evaluated based on the measurement Eq. (2).

These two steps can be combined into a single
expression for the single stage transition of the data
assimilation cycle by substituting Eq. (3) into Eq. (4)
to yield

pðxtjy1:tÞ~pðytjxtÞ
Z

pðxtjxt−1Þpðxt−1jy1:t−1Þdxt−1: ð5Þ

where the proportionality means that the denominator
can be dropped. This equation provides the basis for the
Markov Chain Monte Carlo based sequential data as-
similation procedure introduced below.

2.3. Numerical solutions

2.3.1. Sampling based solutions
Numerical solutions for sequential data assimilation

for the general nonlinear and non-Gaussian case relies on
Monte Carlo methods (Kitagawa, 1987). These are based
on algorithms that generate samples or ensembles from
the desired nowcast (and forecast) distributions. These
ensembles can then be used to reconstruct approxima-
tions to the distributions of interest, or any summary
quantities desired (e.g. the mean and variance). Consider
a set of n realizations of the ecosystem state vector, each
of which is denoted by x(i) where i=1,…, n. Suppose
this sample is drawn from the (multivariate) probability
distribution p(x), as designated by the notation

fxðiÞgfpðxÞ; i ¼ 1; N ; n:

Here, superscript i is an index which refers to the ith
member of the ensemble, and the curly braces refer to the
entire set, or the ensemble itself. Hence, {x(i)} denotes
the sample from p(x) which has n elements. As the
ensemble size n→∞ it provides for an exact represen-
tation of the pdf of the random variable x.

Fig. 2 shows a illustration of such an ensemble based
representation of a pdf. Here, random samples of size
n=25 and n=250 have been drawn from the standard
normal distribution (the N(0,1)) using a random number
generator. The positions of these ensemble members
(or particles) are shown on the graph. Given this ensem-
ble, estimates for the underlying distributional para-
meters (the sample mean and sample variance) can be
determined and are shown on the plots. Clearly the larger
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ensemble gives answers that are closer to the true mean
and variance. The distribution itself can also be recon-
structed from the smoothed and scaled histogram, or
through kernel density estimation (Silverman, 1986). It
is seen in Fig. 2 that the larger ensemble yields an
estimated pdf much closer to the standard normal. This
simple idea of using samples to characterize distributions
is the basis for the Monte Carlo based data assimilation
methods outlined below.

This same sample based characterization of the eco-
system state can be applied to the single stage transition
of the data assimilation cycle as follows. The starting
point is an ensemble of n ecological states given as

fxðiÞt−1jt−1gfpðxt−1jy1:t−1Þ; i ¼ 1; N ; n ð6Þ

that represents the nowcast pdf at time t−1 (it is shown
how this is generated recursively below; for now assume
that it is given). The subscripting on x designates a
sample at time t−1 using information (data) up to and
including time t−1. The target distribution of the se-
quential estimation procedure is the nowcast ensemble
at time t represented as

fxðiÞtjt gfpðxtjy1:tÞ; i ¼ 1; N ; n: ð7Þ

Monte Carlo methods can be used to carry out the
transition from Eq. (6) to Eq. (7) for sequential data
assimilation. Sequential importance resampling (Gordon
et al., 1993; Kitagawa, 1996) offers an exact solution,
while the ensemble Kalman filter (Tsuji and Nakamura,
1973; Evensen, 1994) provides an approximate one.
Markov Chain Monte Carlo methods are another pos-
sible approach for exact solutions to the problem of
sequential data assimilation. However, these have not
been widely applied except as part of more comprehen-
sive SIR algorithms (Gilks and Berzuini, 2001; Lee and
Chia, 2002; Dowd, 2006). MCMC methods have not, to
the author's knowledge, been applied for sequential data
assimilation for marine systems. In the next section, a
flexible and general Metropolis-Hasting based MCMC
algorithm is proposed for sequential data assimilation.

2.3.2. MCMC for sequential data assimilation
Markov Chain Monte Carlo (MCMC) methods are

numerical methods which evaluate Bayes' formula to
generate ensembles drawn from a desired posterior (or
target) distribution (e.g. Gamerman, 1997; Gelman
et al., 2003). For Bayesian sequential data assimilation,
Eq. (5) indicates that the desired target distribution is
p(xt|y1:t), or the nowcast at time t. To obtain the pos-
terior via generation of an ensemble {xt|t

(i)}, we eval-
uate Eq. (5) using a Metropolis-Hasting MCMC
technique. The Metropolis-Hastings algorithm is the
basis for a general and flexible class of MCMC
methods (Metropolis et al., 1953; Hastings, 1970), and
below it is tailored to treat the problem of sequential
data assimilation.

The iterative procedure used to generate the target
ensemble {xt|t

(i)} is as follows. Suppose we are at the
i−1th iteration of the Metropolis-Hastings algorithm
and so the associated ensemble member, xt|t

(i−1), is
available. To generate the next member in the target
ensemble, xt|t

(i), the following steps are taken:

1. Generate a candidate xt|t−1⁎ as a sample from the fore-
cast density p(xt|y1:t−1). To do this, first randomly
choose one member of the nowcast ensemble at the
previous time {xt−1|t−1

(i) }, which is designated as xt−1|t−1⁎ .
This is then used as an initial condition for a forecast of
the stochastic dynamic model of Eq. (1), i.e.

x⁎tjt−1 ¼ f ðx⁎t−1jt−1; ht; n⁎t Þ; ð8Þ
where nt⁎ represents an independent realization of the
system noise.

2. Calculate the probability of accepting the candidate
x t|t−1⁎ as the ith ensemble member of the target dis-
tribution, i.e. as xt|t

(i). This probability is computed as

a ¼ min 1;
pðytjx⁎tjt−1Þ
pðytjxði−1Þtjt Þ

0
@

1
A: ð9Þ

3. Accept the candidate as the ith ensemble member
with probability α. This is carried out according to
the following rule. Draw z from Uniform(0,1) distri-
bution. Then

xðiÞtjt ¼
x⁎tjt−1 if zVa

xði−1Þtjt if zNa

(

Therefore given a starting value xt|t
(1), the algorithm

can be run n times (or indeed any number of times) to
generate the required ensemble {xt|t

(i)}, i=1,…, n. This
provides a draw from the target nowcast distribution at
time t, p(xt|y1:t). Pseudo-code for this algorithm is given
in Appendix A.

The MCMC algorithm offers significant advantages
for sequential data assimilation. First, it is easy to im-
plement. Appendix A shows that to sequentially generate
candidates, the ecosystemmodel is called as a subroutine
(called ModelForecast) for one step ahead stochastic
dynamic prediction of a single ensemble member. The
candidates are then included in the target ensemble using
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a simple accept/reject rule. The acceptance probability
(9) takes the form of a simple ratio of likelihoods
since here the candidates are drawn from the prior,
p(xt|y1:t−1) (Chib and Greenberg, 1995). The second
advantage is that the sequence generated is an inde-
pendence chain (Tierney, 1994). Candidates are drawn
independently from the predictive density and so have
no dependence on the current state of the algorithm.
Dependence only arises due to the fact that the chain
does not necessarily move (or accept the new candi-
date) every iteration so that ensemble members can be
repeated. This makes the acceptance probability α is
an important diagnostic for algorithm performance. As
a consequence of this independence, some well known
issues with MCMC are alleviated: the sequence effec-
tively mixes to rapidly explore the state space; and the
“burn-in” time is negligible since once the first candi-
date is accepted, the chain is generating draws from
the posterior.

2.3.3. Other candidate approaches
Here, two other statistical approaches for sequential

data assimilation are briefly reviewed and contrasted to
the MCMC approach (computational comparisons are
given in Section 3). The first method is sequential
importance resampling (SIR), which, like MCMC, pro-
duces exact solutions for sequential data assimilation.
The interested reader is referred to Ristic et al. (2004) for
details of the algorithm; summaries in a marine eco-
logical context are given in Losa et al. (2003) and Dowd
(2006). The second method considered, the ensemble
Kalman filter (EnKF), provides an approximate solution
for sequential data assimilation; implementation details
are given in Evensen (2003).

2.3.3.1. Sequential importance resampling. SIR
involves separate evaluations of both the prediction
step (3) and the measurement step (4). The starting point
is again the ensemble {xt−1|t−1

(i) } drawn from the nowcast
density at time t−1, p(xt−1|y1:t−1). Prediction can be
based on an ensemble forecast, i.e.moving each of the n
ensemble members forward one time step using the
stochastic dynamical model (1), i.e.

xðiÞtjt−1 ¼ f ðxðiÞt−1jt−1; ht; nðiÞt Þ: i ¼ 1; N ; n: ð10Þ

However, note that other proposal densities (other than
the prior or predictive density) are possible. In the
above, nt

(i) represents an independent realization of the
system noise for the ith ensemble member. This yields a
new ensemble {xt|t−1

(i) } which is a draw from the pre-
dictive density p(xt|y1:t−1). The measurement step (4)
then starts with the ensemble {xt|t−1
(i) }. Each of the n

ensemble members is assigned a weight w(i) according
to the likelihood

wðiÞ ¼ pðytjxðiÞt−1jtÞ; i ¼ 1; N n: ð11Þ

That is, ensemble members that are close to observations
will be given a higher weight, while those that are more
distant will be given a smaller weight. The probability
model used to evaluate the likelihood follows the mea-
surement distribution in Eq. (2). To generate the required
(target) ensemble {xt|t

(i)}, the ensemble {xt|t−1
(i) } is resam-

pled (with replacement) wherein members are chosen
with a probability proportional to their weight.

This weighted resampling procedure is at the core of
the SIR methods. Its main drawback is sample impov-
erishment wherein ensemble members with high weights
are chosen more frequently and the resultant target
sample {xt|t

(i)} may contain many repeats. Much research
effort has been aimed at developing modified SIR
schemes which alleviate these problems (Gilks and
Berzuini, 2001; Arulampalam et al., 2002; Dowd, 2006).

2.3.3.2. Ensemble Kalman filter. The ensemble Kal-
man filter also evaluates the prediction and measure-
ment steps separately. As with SIR, prediction relies on
ensemble forecasts via Eq. (10). However, the measure-
ment step is simplified by using the Kalman filter up-
dating equations which follow from the linear, Gaussian
version of the state space model (1)–(2).

To illustrate the procedure, consider a version of
Eq. (2) describing a linear observation equation defined
by a matrix H and having additive errors vt. Suppose the
forecast ensemble {x t|t−1

(i) } is available. The ith ensemble
member of the target nowcast at time t is determined as

x̃ðiÞtjt ¼ xðiÞtjt−1 þ KðyðiÞt −HxðiÞtjt−1Þ; i ¼ 1; N ; n ð12Þ

and the resultant ensemble {x̃ t|t
(i)} represents the nowcast at

time t. The tilde notation is used to emphasize that the
ensemble will not in general be a draw from p(xt|y1:t), but
only an approximation. As part of the updating procedure
(12), a measurement ensemble {yt

(i)} has been introduced
and is generated as yt

(i) =yt+vt
(i) for i=1,…, n where vt

(i) is
an independent realization of the observation error. The
Kalman gainmatrixK has also been used and is defined as

K ¼ PH VðHPH Vþ RÞ−1 ð13Þ

with P and R being the sample covariance matrices of the
forecast ensemble {xt|t−1

(i) } and the observation ensemble
{yt

(i)}, respectively.
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The ensemble Kalman filter therefore does not
evaluate directly Bayes formula in Eq. (4). Rather it
approximates the result by using the Kalman gain to
update each forecast ensemble member by taking its old
value and adding to it an increment based on the
discrepancy between the observation and the forecast.
For some cases, the EnKF can be transformed to an
exact procedure (Bertino et al., 2003; Evensen, 2003).
However, general observation error processes as in (2)
are not supported directly.

3. Application

3.1. Observations

Measurements of the ecosystem state are taken
from an observing system in Lunenburg Bay, Canada
(44.36°N, 64.26°W). Lunenburg Bay is a small (8 km
long), shallow (max depth 20 m) tidal embayment.
Observations for both phytoplankton and nutrients are
available. Phytoplankton observations were derived
from optical time series at three locations in the bay
using the algorithm of Huot et al. (submitted for
publication). Observations on inorganic nitrogen in-
cluded both nitrates and ammonia and were based on
biweekly water sampling at 5 stations in the bay. Units
for these ecological state variables were expressed in
μmol nitrogen l−1.
Fig. 3. Observations on phytoplankton and nutrients in Lunenburg Bay for 20
value on any given day is also shown (large circles).
Observations for phytoplankton, P, and nutrients, N,
from Lunenburg Bay are shown in Fig. 3. Since little
coherent spatial variation was evident (in either the
vertical or horizontal) in these variables, their daily
values have been spatially pooled and are reported
as time series. Phytoplankton observations have some
gaps but are generally available on a regular daily basis
(since they are derived from ocean optical data). The
median value cycles near 1 μmol N l−1 until after
day 250 when it rises to near two. Significant high
frequency variability is seen. In contrast, the in situ
nutrient observations are much more sparse and exhibit
significant sampling variability with few clear trends
evident.

The multiple observations on P and N for any given
day were treated as replicates and used to identify the
appropriate probability distributions and estimate their
(time-varying) parameters. Only distributions which
support non-negative values for the concentrations were
considered. For the P observations, a gamma(ν, β) distri-
bution was found to well characterize the observations.
The scale parameter was determined to be β=0.025, and
the shape parameter ν varied daily and depends on the
mean level, μ, of the process (i.e. ν=μ /β). For the N
observations, a lognormal distribution was chosen. The
mean of this distribution varied daily and its standard
deviation, σ, was found the be related to the mean, μ,
according the following regression equation: σ=0.67–
04. Available measurements are given by small black dots. The median
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0.25μ. For days with too few replicates for distribution
fitting, these relationships were assumed to be valid. The
gamma and lognormal distributions for P and N serve to
specify the observation Eq. (2), and hence the likelihood
used in the measurement step of Eq. (4) and elsewhere.

3.2. Ecological model

The prototype ecological model for Lunenburg Bay
is a simple 0-D biogeochemical model with ecosystem
components: phytoplankton (P), nutrients (N) and de-
tritus (D). These prognostic variables are defined within
a finite volume and co-evolve according to the follow-
ing equations:

dP
dt

¼ N
kN þ N

gP−kP2 þ eP ð14Þ

dN
dt

¼ /D−
N

kN þ N
gP þ eN ð15Þ

dD
dt

¼ −/Dþ kP2 þ eD: ð16Þ

The state variables are in nitrogen concentration units.
All quantities used in this model are summarized in
Table 1. The deterministic part of the model is a sim-
plified version of Dowd (2005) and further details can
be found there. Additive dynamical noise (εP, εN, εD)
is appended to each of the equations as non-con-
servative source and sink terms (Bailey et al., 2004).
Table 1
State variables and parameters in the ecosystem model

Quantity Units Value Definition

State variables (xt)
P μmol nitrogen l−1 – Phytoplankton biomass
N μmol nitrogen l−1 – Inorganic nutrients
D μmol nitrogen l−1 – Organic detritus
γ d−1 – Phytoplankton growth rate

Parameters (θt)
kN μmol nitrogen l−1 2.5 Half-saturation for N

uptake by P
λ μmol nitrogen

l−1 d−1
0.05 Grazing loss of P

ϕ(t) d−1 0.02–0.1 Remaining rate of D
to N

gseas(t) μmol nitrogen
l−1 d−1

0–1 Seasonally varying growth
rate

a d−1 0.1 Decay/memory for γ

Explicit functional dependence on time (t) is indicated for parameters,
along with the range of their values. Here, l is litres and d is days.
These accounts for the exchange (advection and mix-
ing) of ecosystem components with the far field, so that
Eqs. (14)–(16) acts as an open system.

The daily averaged light-limited growth parameter
is also considered stochastic and time dependent. It
evolves according to the (Langevin) equation

dg
dt

¼ gseasðtÞ−agþ eg ð17Þ

where gseas(t) represents deterministic forcing corre-
sponding to the maximum light limited growth rate
computed using surface irradiance, attenuation, and a
photosynthesis–irradiance curves (c.f. Dowd, 2005). The
remaining terms are a decay term and a random forcing
term εγ. This stochastic dynamic parameter is treated as
an additional state variable (Kitagawa, 1998; Dowd,
2006). The decorrelation scale is set at 1 /a=10 days,
matching the meterological band and accounting for
the effects of fluctuations in light levels and mixing on
P growth.

This system of coupled, nonlinear stochastic dif-
ferential Eqs. (14)–(17) was discretized to yield a sto-
chastic difference equation corresponding to the system
model (1). A 4×1 vector thus describes ecosystem
state at any time t, i.e. xt=(Pt, Nt, Dt, γt)′. Initial
conditions in the form of an initial ensemble must also
be specified. These have simply been defined using a
normal distribution (truncated to be non-negative) over
a reasonable set of values. Note that once observations
are assimilated, initial condition have almost no effect
on the subsequent analysis for this 0-D ecosystem
model.

The system noise process for the ecosystem state
variables (εP, εN, εD) and the stochastic parameter (εγ)
are assumed normally distributed, zero-mean, and
independent through time. The variance of εγ was set
such that it had a level of 20% of the mean of the
seasonal growth curve. To specify the variance for the
ecosystem state variables consider its interpretation as
source and sink terms due to mixing. Denote εi,t as the
system noise for the ith element of the state vector xt
(similarly for xi,t). The quantity εi,t /Δt can then be
identified with the concentration flux in a time in-
crementΔt. If we assume Fickian diffusion wherein this
flux into the finite volume scales as K×(Δxi,t), where K
is an exchange coefficient and Δxi,t is a concentration
difference. Thus, var(εi,t) =Δt2 ×K2 ×Δxi,t

2 . For this
study, we assume K=0.5 day−1 (flushing time scale of
2 days), and Δxi,t=0.2xi,t. Note that these system noise
terms have been added in such a way as to ensure non-
negative concentrations.
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3.3. State estimation

Implementation of the MCMC data assimilation
method followed the pseudo-code of Appendix A. From
this algorithm it can been seen that there are two main
subroutines: (i) ModelForecast which corresponds to the
ecological model and moves the ecosystem state forward
one time increment (note that this is done for eachmember
of the ensemble); and (ii) Assimilate which incorporates
available measurements according to Bayes theorem by
applying the accept/reject rule. The solutions obtained by
the MCMC algorithm were verified by comparison to
analytic solutions provided by the Kalman filter for
simple linear, Gaussian cases. The consistency of the
MCMC and SIR solutions for the application here was
also verified for very large ensemble sizes.

As a baseline run, a very large ensemble size of
n=250,000 was used to ensure a close match with the true
target (posterior) distribution. (This is clearly an unreal-
istic ensemble size for practical application, but was here
used to provide an “exact” solution which facilitates
assessment of convergence and computational properties
of the algorithms in the next section). The acceptance
probabilities of theMetropolis-HastingMCMC algorithm
over time were examined and had a median of 0.65 with
an inter-quartile range of 0.14. Occasionally low
acceptance probabilities were associated with abrupt
shifts in the values of themeasurements. This is consistent
with Bayes' formula being a measure of the overlap of
Fig. 4. State estimates for the ecosystem variables and the stochastic dynami
90% confidence regions (gray shaded area). Median values for observations
the likelihood and the predictive density. Also note
that the algorithm as given can be easily altered to run
longer chains which may be themselves sub-sampled to
yield the desired target ensemble.

Fig. 4 shows nowcast results from the sequential
MCMC estimation procedure for the ecosystem state
variables and the stochastic dynamic growth parameter.
Two summary quantities are shown: the median and the
90% confidence region. The observed P are clustered
tightly around the median state, and the confidence
region contains most of the observations. The ecosystem
state variable N is also observable but with fewer and
much noisier measurements, and hence wider confi-
dence regions. Its blocky appearance is a result of the
sequential nature of the data assimilation cycle wherein
after analysis, a (smooth) prediction of the state forward
in time is made (with variance growth) followed by an
abrupt correction upon encountering the next observa-
tions (with variance collapse). The influence of the P
measurements on the N state is evident since these
variance adjustments are occurring at times with no N
observations (e.g. at day 130 and 270). The unobserved
state variable D is similarly indirectly influenced by the
P and N observations, but is smoothed and has a wider
confidence interval. The estimates for the dynamic
growth parameter show the imposed deterministic
seasonal cycle but also the fluctuations which are a
consequence of the need to alter the phytoplankton
growth rate in a manner consistent with the observations.
c growth parameter. Each panel shows the median (solid line) and the
on P and N are also shown (black dots).



Fig. 5. Skewness (panel a) and kurtosis (panel b) for the ecosystem
variables and the stochastic dynamic growth parameter.
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Note that near the end of the integration period, mass is
being added to the system (via the dynamical noise
terms) to account for the observed increases in P and N.

Fig. 5 shows the time evolution of the skewness and
kurtosis over the analysis period. This is reported for the
Fig. 6. Marginal (diagonal plots) and joint distribution (off diagonal plots) fo
reported for the ecosystem state variables P, N and D and are based on kern
nowcast ecosystem state variables and the stochastic
dynamic growth parameter (note that the first two
statistical moments, the mean and the variance, of the
nowcast state are not reported since their values are
evident from Fig. 4). These higher order statistical
moments provide an indication of the extent of non-
Gaussianity in the estimated pdf of the ecosystem state.
For most of the analysis period, the state variable P has
skewness near zero and a kurtosis near three. This
indicates that the nowcast P distribution is not so far
from a normal distribution. The reason for this near-
normality is that P is observed at nearly all analysis
times and the gamma distribution used to characterized
these measurements itself resembles a normal. This
feature influences the results of the Bayesian data
assimilation with the nowcast pdf taking on features of
the observation distribution. The remaining state vari-
ables N, D and γ are more non-Gaussian: they are left
skewed, and the kurtosis is greater than three implying
they have heavier tails (or are more outlier prone) than
the normal distribution.

Another feature of Fig. 5 is the growth in the
skewness and kurtosis between observation times, and
its abrupt decrease at observation times (this is parti-
cularly evident for the observed N, but also found in
other state variables). This feature has the same origin
as the variance growth and collapse discussed above.
These higher order moments grow between observation
r the nowcast (filter) distributions, p(xt|y1:t), for day t=245. These are
el smoothed density estimates.
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times due to nonlinear dynamical prediction (uncon-
strained by observations) that generates non-Gaussian
distributions (e.g. Miller et al., 1999). At times when
direct observations of the state variables are available,
the Bayesian assimilation reduces these higher mo-
ments consistent with the postulated distributions of the
observations.

The sequential data assimilation procedure can also
be used to construct probability distributions for the
ecosystem state at any given time. Fig. 6 shows the
marginal and joint distributions for the nowcast eco-
system state, p(xt|y1:t), at a particular analysis time
(t being day 245). These distributions are con-
structed by kernel smoothed density estimation. The
marginal distributions for P, N and D can be com-
pared to the time series results reported for day 245
in Figs. 4 and 5). At day 245, Fig. 6 indicates the
marginal distribution for P is symmetric with skew-
ness and kurtosis near that of a normal distribution.
The marginal distributions for D and N are clearly
non-Gaussian being left skewed and with light tails.
The joint distributions are a statement of the relation
between the ecosystem state variables; at this analy-
sis time they suggest little in the way of dependence
structure for the nowcast state variables.

To examine the role of nonlinear dynamical prediction
in changing the probability distributions of the ecosystem
Fig. 7. Marginal (diagonal plots) and joint distribution (off diagonal plots) for
on a τ=30 day forecast. These are reported for the ecosystem state variables
state, forecast (predictive) distributions are next consid-
ered. Fig. 7 shows a predictive distribution for day 245
based on a 30 day forecast (i.e. starting from day 215).
Compared to the nowcast distribution in Fig. 6, the
marginals of the forecast ecosystem state all have a larger
variance and are all left skewed. The joint distributions
indicate a greater dependence structure (e.g. higher
covariance). This latter feature is due to the fact that the
forecasted state depends more on the linkages imposed on
the state variables by the ecological dynamics, and less on
observational information (a 30 day forecast suffices to
effectively ‘forget’ the observational information).

To further examine the relative roles of the dynamics
and the observations in setting the dependence structure
amongst the ecosystem state variables consider the
following. The strength of the relationship between two
ecosystem state variables can be measured by their
mutual information (e.g. Kantz and Schreiber, 2003),
according to the formula,

Iðxi;t; xj;tÞ ¼
Z Z

pðxi;t; xj;tjy1:tÞ

� log
pðxi;t; xj;tjy1:tÞ

pðxi;tjy1:tÞpðxj;tjy1:tÞ dxi;tdxj;t:

Here I(xi,t,xj,t) designates the mutual information be-
tween two of the ecosystem state variables xi,t and xj,t at
the forecast (predictive) distributions, p(xt+τ|y1:t), for day t=245 based
P, N and D and are based on kernel smoothed density estimates.
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time t (here i and j are one of P, N, or D, and i≠ j) . This
measure may be thought of as a generalization of cor-
relation (e.g. a correlation of 0.5 corresponds to a mutual
information of 1.2 for variables that follow a bivariate
normal). However, unlike correlation it is not restricted
to measuring only linear relationships. The quantities on
the right hand side involve both the joint and marginal
distributions of the ecosystem state. These quantities are
produced as part of the statistical data assimilation
procedure, examples of which were given for a single
analysis time in Figs. 6 and 7.

Fig. 8 reports the time evolution of the mutual infor-
mation for pairwise combinations of the ecosystem
state variables (P and N; P and D; N and D). For the
nowcast (filter) density in panel (a) we see relatively
weak relationships between the variables (note the
vertical scale). The strongest relationship are between
N and unobserved D, while the weakest is between P
and N (which are both observed). The temporal pattern
is one wherein the highest mutual information occurs at
times with the fewest observations, consistent with the
notion of the ecosystem dynamics imposing depen-
dence structure. Panel (b) shows corresponding results
for 30 day forecasts. In all cases, the mutual information
is much higher than for the nowcasts as a consequence
of the dynamical linkages between the variables playing
a larger role (since observations have little influence
on the ecosystem state for 30 day forecasts). Here P and
D show the strongest relationship, and P and N the
weakest.
Fig. 8. Mutual information for pairwise combinations of the ecosystem
state variables P, N and D. Panel (a) shows the case for the nowcast
distributions, and panel (b) shows the case for distributions based on
30 day forecasts.
3.4. Computational aspects

Numerical experiments were carried out to assess the
efficiency and effectiveness of the proposed MCMC
sequential data assimilation procedure, and to com-
pare it to the other candidate approaches (SIR and the
EnKF). The purpose is to examine the performance of
the algorithms for various ensemble sizes in terms of
their ability to approximate the “exact” solution (i.e.
the one reported in Section 3.3 and computed nu-
merically using the large ensemble of n=250,000).
Note that ensemble size is directly proportional to
the number of model runs at each time step, and is
the primary quantity determining the computational
load (but recall that there is also a resampling step
for SIR, and matrix inversions are required for the
EnKF).

Fig. 9 shows convergence of theMCMCmethod as a
function of ensemble size in terms of the statistical
moments (the mean, variance, skewness and kurtosis).
Each graph shows the root mean squared difference
between the exact solution and those computed using
various ensemble sizes. This is done for each of the
ecosystem state variables (including the growth rate
parameter), and for each of the four statistical moments.
In every case there is a general pattern of the moments
converging to the true solution with increasing en-
semble size for all variables. P is well constrained by
frequent observations and converges smoothly. How-
ever, in some cases (e.g. the kurtosis of N and D) the
convergence does not always decrease with increasing
ensemble size. This highlights the role of sample var-
iation, as well as the difficulty in adequately sampling
the tails of the distributions even for relatively large
samples.

The performance of the sequential MCMC method
was also compared to the other candidate approaches.
This was done in terms of the convergence of the overall
distributions to the exact solution. The measure for this
was based on a time-averaged Kullback–Leibler diver-
gence given as

hK−Li ¼
Z

p̃ðxtjy1:tÞlog p̃ðxtjy1:tÞ
pðxtjy1:tÞ dxt

� �
: ð18Þ

The Kullback–Leibler divergence (Kullback and Lei-
bler, 1951) is the quantity inside the angle brackets on
the right hand side and measures the discrepancy be-
tween two probability density functions. Here, these two
distributions are the “exact” target distribution p(xt|y1:t)
(computed via sequential MCMC procedure with n=
250,000) and the approximate distribution p̃ (xt|y1:t)



Fig. 9. Convergence to the exact solution of the statistical moments (mean, variance, skewness, kurtosis) for the sequential MCMCmethod for each of
the model variables. Results are reported as root-mean-square difference between approximate solution (calculated for various ensemble sizes) and
the exact solution.
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(computed using various ensemble sizes and for each
of the three candidate sequential data assimilation ap-
proaches). For reporting purposes, the Kullback–Leibler
Fig. 10. Convergence to the exact solution of the overall distribution as comp
the time averaged Kullback–Leibler divergence for various ensemble sizes.
considered for each of the four model variables.
divergence has been time averaged over the entire
analysis period, as denoted by the angle brackets in
Eq. (18). Fig. 10 shows the convergence of the different
uted by the sequential MCMC method. Results are reported in terms of
Each of the three candidate methods (the MCMC, SIR and EnKF) are
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sequential data assimilation procedures to the target
distribution as a function of the ensemble size. Both SIR
and MCMC converge to the true solution with increas-
ing ensemble size in an almost identical fashion. As
expected, the (approximate) ensemble Kalman filter
does not converge to the true solution with increasing
ensemble size. However, a notable point is that for
nb1000 the ensemble Kalman filter appears to be
slightly closer to the true solution than the other meth-
ods. This is likely due to the smearing of the ensem-
ble through use of the Kalman gain equations (van
Leeuwen, 2003). Note that raw unsmoothed and nor-
malized histograms (not kernel smoothed density esti-
mates) of the SIR and MCMC ensembles were used in
computing Eq. (18). However, by instead making use of
kernel smoothed density estimation (Silverman, 1986),
this result might change.

To further examine the performance of the ensemble
Kalman filter, the convergence of the first two mo-
ments (the mean and variance) is shown in Fig. 11.
Higher order moments are not reported here since the
EnKF is not intended to produce such estimates (in
Fig. 11. Convergence to the exact solution of the mean (panel a) and
variance (panel b) of the ensemble Kalman filter for each of the model
variables. Results are reported as root-mean-square difference between
approximate solution (calculated for various ensemble sizes) and the
exact solution.
fact, it was found that skewness and kurtosis from the
EnKF in some cases actually diverged with increasing
ensemble size). The mean and variance of state vari-
able P is best estimated, while the variable N is esti-
mated poorly. However, while the mean and variance
do not converge to their true values with increas-
ing ensemble size, they quickly reach an asymptotic
equilibrium value. For the mean this occurs after
n=100, while for the variance it occurs after about
n=1000.

4. Discussion and conclusions

Sequential data assimilation is of central interest for
problems in marine prediction, as well as the basis for
emerging operational forecasting systems (Pinardi
et al., 2003). This study examined advanced Bayesian
statistical data assimilation for nowcasting and forecast-
ing in marine ecological systems. These approaches
are designed to give full consideration to nonlinear
dynamics, as well as to emerging data types charac-
terized by complex spatial and temporal structure and
non-normal distributions. Existing sequential data
assimilation techniques mainly rely on approximations
based on the Kalman filter, usually involving linear-
ization and/or dimension reduction (see Bertino et al.,
2003). An alternative Monte Carlo based method is the
ensemble Kalman filter (Evensen, 2003). The EnKF
approximates the Bayesian measurement update step,
and so cannot fully account for general non-Gaussian
measurements. The more general case of strong dyna-
mical nonlinearities and non-normal observational dis-
tributions requires a fully Bayesian approach (Dowd
and Meyer, 2003; van Leeuwen, 2003). The state space
model was put forth here as a comprehensive statis-
tical framework for the data assimilation problem. Its
general solution for the nonlinear and non-Gaussian case
has a Bayesian probabilistic formulation (Jazwinski,
1970). Here, a novel and straightforward sequential
data assimilation technique was offered based on a
Markov Chain Monte Carlo (MCMC) approach. This
provided for an exact solution in terms of a time evolv-
ing ensemble (or sample) that represents the probability
density function governing the multivariate ecological
state.

Markov Chain Monte Carlo (MCMC) methods are a
class of approaches for computational Bayesian statis-
tics (e.g. Gamerman, 1997). They have revolutionalized
statistical applications, but have been little applied to the
problem of oceanographic data assimilation. MCMC
has, however, been used for parameter estimation in
plankton models (Harmon and Challenor, 1997). Dowd
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and Meyer (2003) also considered it for hindcasting
using a simple ecosystem model with general purpose
Bayesian software (BUGS, Spiegelhalter et al., 1995).
There it was found that this Gibbs sampling MCMC
software was not readily tailored to time-dependent
systems used for dynamical modelling. In this study, it
was shown how the Metropolis-Hastings algorithm
can be adapted for sequential data assimilation. The
algorithm is straightforward to apply with complex
ecosystem models, being highly modular and having
the ecosystem model called simply as a subroutine. The
MCMC algorithm works simply through stochastic dy-
namic prediction (ensemble forecasting), and a simple
acceptance/rejection rule for the assimilation of obser-
vations. Unlike SIR, the approach does not rely on
resampling and consequently does not exhibit sam-
ple (ensemble) degeneracy, a problem that itself has
been the subject of a great deal of research effort
(Arulampalam et al., 2002; Dowd, 2006). The MCMC
data assimilation approach introduced in this paper
produces an independence chain (Tierney, 1994), and so
effectively eliminates the well-known MCMC issues of
“burn-in”, and facilitates mixing of the chain.

This study has repeatedly emphasized that ecological
state variables do not, as a rule, follow a normal distri-
bution, but rather have a non-Gaussian structure that is not
readily described by parameteric probability distributions.
It is well known that nonlinear models generate non-
Gaussian distributions (Miller et al., 1999), as does the
Bayesian assimilation of non-normal observations. To
examine these features, a test application was undertaken
using a 0-D nonlinear plankton ecosystem model and
multivariate non-Gaussian observations from a coastal
ocean observatory. Such a stochastic ecosystemmodel is a
core element of the “weak constraint” approach, including
stochastic environmental variations as well as model
errors (Marion et al., 2000; Dowd, 2006). The application
also treated an unknown parameter (the phytoplankton
growth rate) as dynamic variable following a pre-defined
stochastic process. The resultant ensemble that described
the ecosystem state was used to construct marginal and
joint distributions of the ecosystem state variables. It was
also used to compute summary statistics like the median
and confidence intervals, as well as measures of non-
normality like skewness and kurtosis. It was shown how
the ecosystem model imposed dependence structure on
the ecosystem variables due to dynamical linkages
(especially evident for forecasts). To effectively treat the
non-Gaussian information that emerges from this data
assimilation approach, some ideas from information
theory have been suggested: mutual information provided
a general measure for the dependence structure between
state variables; and the Kullback–Leibler divergence was
used to assess the convergence of the algorithms towards
the true solution.

An important practical consideration for ensemble
based statistical data assimilation methods is their effi-
ciency and effectiveness in characterizing the ecosystem
state. Towards this end, computational and convergence
properties of various sequential Monte Carlo methods
(MCMC, SIR and the EnKF) were examined in the
context of a simple ecosystem model. It was found that
MCMC and SIR had similar convergence towards the
exact solution. The approximate ensemble Kalman filter
also proved efficient with respect to recovering approx-
imate values for the mean and the variance, at least until
the ensemble size exceeded 100–1000, after which it
could no longer approach the true solution. The en-
semble size is the primary determinant of the compu-
tational load required for sequential data assimilation
(SIR also requires resampling and the EnKF requires
evaluating matrix expressions and inverses). An impor-
tant general point, which is demonstrated in the analysis
of this study, is that the ensemble size required for data
assimilation will depend on the quantity desired. That is,
an estimate for the mean state (or its variance) will
require much smaller ensembles that if higher order
moments (skewness or kurtosis) or full probability dis-
tributions are of interest.

An outstanding research question is the extent to
which these ensemble based Bayesian data assimilation
approaches can be adapted for problems of more rea-
listic dimensions, such as multi-compartment ecosystem
models coupled to three-dimensional ocean circulation
models (e.g. Oschlies and Schartau, 2005). In contrast to
the example in this study, these problems are described
by PDE based biophysical models with the state vector
containing spatial information on the prognostic eco-
system models, and typically having dimensions of 105

or greater (the effective degrees of freedom is much
less). The challenge is to keep the ensemble size as small
as possible, while maintaining adequate performance of
the data assimilation algorithm (this study provided
some general approaches to quantitatively measure this
tradeoff.) For physical systems, Brusdal et al. (2003)
applied an EnKF with a state vector of 106 and an
ensemble size of 150, and van Leeuwen (2003) used a
modified SIR procedure with an ensemble size of 495
and a state vector dimension of 2×105. Studies of
coupled biophysical models using an EnKF have been
successful with ensemble sizes of 100 to 200 (Allen
et al., 2003; Natvik and Evensen, 2003), while SIR
based applications have used ensemble sizes of 1000
(Losa et al., 2003). The MCMC approach operates on
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similar principles to SIR and should have comparable
ensemble size requirements.

All of the ensemble based sequential data assimi-
lation methods rely on forecasting via Monte Carlo
integration. They differ only in the way in which ob-
servations are assimilated. The MCMC approach to
Bayesian data assimilation uses stochastic dynamic pre-
diction after which the candidate ensemble member is
evaluated for inclusion in the final ensemble (charac-
terizing the target pdf) using an accept/reject step. In
general, this procedure will preferentially accept ensem-
ble members that are closest to the observations. The
acceptance probability is a key measure for the com-
putational efficiency of Metropolis-Hastings methods
(Chib and Greenberg, 1995). It will made highest when
forecasts closely match new observations. The system
noise is a key determinant for maximizing the accep-
tance probability as it dictates the spreading of the
ensemble and how many particle will intersect with
regions of state space where the measurement pdf takes
on non-negligible values. To improve ensemble fore-
casts for Bayesian data assimilation other possibilities
should also be considered. For example, Chorin and
Krause (2004) develop an approach to populate the state
space with particles (ensemble members) in the regions
into which the dynamics are expanding. Another pos-
sibility is to smear the ensemble by adding ‘jitter’ to the
ensemble members, or perhaps by sampling from kernel
smoothed density estimates or fitted parameteric forms
of distributions. Adaptive approaches which use a var-
iable ensemble size to ensure that the ensemble well
represents the ecosystem state are readily implemented
via the MCMC algorithm.

In summary, advanced statistical approaches for the
data assimilation problem are currently being widely
applied in Statistics and Engineering. These treat general
nonlinear dynamics and non-Gaussian measurements
using modern Bayesian computational approaches. It is
timely to consider the adaptation of these approaches to
oceanographic data assimilation. They are ideally suited to
problems in marine ecology and biogeochemistry due to
their strong nonlinearities and structural uncertainty, along
with the need to use ecological measurements having
complex spatial and temporal structure. This study re-
presents an initial step towards bringing these statistical
approaches to bear on the data assimilation problem, and
to allow researchers to consider non-Gaussian aspects of
the problem. The implementation of these probabilistic
approaches to data assimilation is surprisingly straight-
forward, and it is hoped that this work will encourage
marine modelling community to experiment with these
novel statistical data assimilation procedures.
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Appendix A. Pseudo-code for Metropolis-Hastings
MCMC

⁎⁎Sequential MCMC data assimilation main program

FOR t=1 to T
IF t is a measurement time

{xt|t
(i)} = Assimilate(yt, {xt− 1|t − 1

(i) })
ELSE IF t is NOT a measurement time

FOR i=1 to N
xt|t
(i) =ModelForecast(xt − 1|t − 1

(i) , θt, nt
(i))

END FOR
END IF

END FOR

⁎⁎Subroutine for M-H MCMC measurement update

SUBROUTINE {xt|t
(i)} = Assimilate(yt, {xt− 1|t− 1

(i) })
- initialize xt|t

(1) (with, for example, yt or the median of
{xt− 1|t− 1

(i) })
FOR i=2 to N

- choose random pre-trial particle xt− 1|t − 1⁎ from
ensemble {xt− 1|t− 1

(i) }
- generate trial particle
xt|t − 1
⁎ = ModelForecast(xt − 1|t − 1

⁎ , θt, nt⁎)
- compute acceptance probability as:

a ¼ min 1;
pðyt jx⁎tjt−1Þ
pðyt jxði−1Þtjt Þ

� �
- draw z from Uniform(0,1) and set

xðiÞtjt ¼
x⁎tjt−1 if zVa

xði−1Þtjt if zNa

(

END FOR
RETURN
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