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The present paper proposes an approach for identifying target reliabilities for components of complex
engineered systems with given acceptance criteria for system performance. The target reliabilities for
components must be consistent in the sense that the system performance resulting from the choice of
the components’ reliabilities satisfy the given acceptance criteria, and should be optimal in the sense that
the expected utility associated with the system is maximized. To this end, the present paper first
describes how complex engineered systems may be modelled hierarchically by use of Bayesian probabi-
listic networks and influence diagrams. They serve as functions relating the reliabilities of the individual
components of the system to the overall system performance. Thereafter, a constrained optimization
problem is formulated for the optimization of the component reliabilities. In this optimization problem
the acceptance criteria for the system performance define the constraints, and the expected utility from
the system is considered as the objective function. Two examples are shown: (1) optimization of design of
bridges in a transportation network subjected to an earthquake, and (2) optimization of target reliabili-
ties of welded joints in a ship hull structure subjected to fatigue deterioration in the context of mainte-
nance planning.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Typically engineered systems are complex systems comprised
of geographically distributed and/or functionally interrelated com-
ponents, which through their connections with other components
provide the desired functionality of the system expressed in terms
of one or more attributes. This perspective may indeed be useful
for interpreting and modelling a broad range of engineered sys-
tems ranging from construction processes over water and electric-
ity distribution systems to structural systems. One of the
characteristics of engineered systems is that, while the individual
components may be standardized in regard to quality and reliabil-
ity, the systems themselves often cannot be standardized due to
their uniqueness. The performance of the systems will depend on
the way their components are interconnected to provide the func-
tionalities of the systems as well as on the choice of reliabilities of
their components. Thus, the design and maintenance of such sys-
tems effectively concern the requirements to the reliability of their
components, which can be translated from given requirements to
the attributes of the performance of systems in accordance with
the way the components are connected.
ll rights reserved.
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shijima).
Due to the complex nature of the problem, modelling and opti-
mization of such systems generally require that different levels of
analyses provided by different experts and supported by data are
integrated interdisciplinary. Taking basis in engineered structures,
at component level physical failure mechanisms may be analyzed,
such as yielding, fracture and corrosion. The component failure
modes now constitute the building stones for the development of
systems failure modes including the formation of failure modes
for sequences of sub-systems, for which the corresponding conse-
quences may be assessed. An optimization of the target reliability
for components of a given system, i.e., a system with a given inter-
relation between its components, must take basis in such analyses.
Seen in this light, it is useful to hierarchically establish models for
complex engineered systems which accommodate for the integra-
tion of the different levels of analyses. Such a hierarchical approach
may also prove to be beneficial as a mean of communication be-
tween professionals representing the expertise required for the
modelling of the performance of the different types of components,
sub-systems and systems.

The present paper addresses the problem outlined in the fore-
going in the context of a hierarchical system modelling developed
for risk assessment of engineered systems by the Joint Committee
on Structural Safety [1], where taking basis in structural systems a
framework is formalized in regard to how the hierarchical system
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model can be established and then applied to optimize the reliabil-
ity for components of structures based on specified requirements
to the acceptable risks for the considered structural system.

The present paper first provides a short summary of available
techniques on the modelling of complex systems. Following this,
a general approach for the optimization of the reliability of system
components with given criteria to the acceptable system risk is
proposed. The proposed approach is composed of three steps; (1)
adaptation of Bayesian probabilistic network and influence dia-
gram representation for hierarchical system modelling, (2) linking
of acceptance criteria for system level to component level through
the Bayesian probabilistic networks and the influence diagrams,
and (3) optimizing the target reliabilities of individual compo-
nents. The original contribution of the presented approach is the
effective use of the commonly available techniques, i.e. Bayesian
probabilistic networks, influence diagrams and generic algorithms
for constrained optimization problems. The approach suggested al-
lows for the assessment of optimal target reliabilities for the indi-
vidual components of systems for which the risk acceptance
criteria are specified in regard to the system performance. The pro-
posed approach is most useful in cases where (1) the components
that constitute the system or the sub-system can be categorized
into groups with identical probabilistic characteristics and/or (2)
the components are hierarchically related. Finally, two illustrative
examples are provided. The first example addresses the design of
bridges in a transportation network subject to earthquake hazards.
Through this example the individual steps of the proposed ap-
proach are explained. The second example considers a floating pro-
duction storage and offloading unit (FPSO), which constitutes a
typical complex engineered system. In this example, the target
reliabilities of welded joints subject to fatigue deterioration in
the framework of inspection and maintenance planning are opti-
mized with given acceptance criteria for the performance of the
ship hull structure as a whole.
2. Problem setting

2.1. Modelling of complex systems

The requirements to the probabilistic modelling of complex
engineered systems in the context of risk based decision making
concern the consistent and tractable representation of the physical
characteristics of the considered system and the appropriate
detailing to facilitate the assessment of the benefit associated with
different decision alternatives. In addition, of course the modelling
should facilitate an efficient analysis of the probabilities and conse-
quences required for the ranking of decision alternatives. Fault tree
analyses comprise classical techniques for the representation and
analysis of systems failure modes, see e.g. [2]. Assuming that com-
ponents in a system have only two states (failure and success) and
that the component failures are statistically independent, the prob-
ability that a predefined state of the system (top-event) occurs may
be quantitatively assessed [3]. Fault tree analyses have been ap-
plied to a variety of fields, e.g., among others, risk assessments of
nuclear power plants [4,5] and the reliability analysis of control
systems for gas turbine plants [3]. Fault tree analysis is from a
technical perspective relatively simple, and hence in many ways
attractive, however, for the same reason subject to important lim-
itations. Among these limitations, the difficulty in representing
dependencies between basic events as well as the problems asso-
ciated with updating based on new information should be men-
tioned. Bayesian probabilistic networks (BPNs) and influence
diagrams (IDs) seem to provide an interesting and promising alter-
native to the classical techniques for system analysis. Any fault
trees can be mapped into BPNs as is shown in [6]. The BPN ap-
proach for systems modelling has been utilized for the analysis
of structural systems, see e.g. [7]. The applications of BPNs in the
context of hierarchical modelling are briefly reviewed in the subse-
quent section.

When modelling the performance of systems it is important to
consider temporal aspects. Petri Nets provide a powerful platform
based on which temporal dependencies associated with e.g. repair
or replacement actions which may provoke cyclic references to
states of the components in the model can be accounted for, see
[8]. However, the evaluation of the reliability of a given system
through a Petri Net often takes basis in Monte Carlo simulation,
which in general requires a considerable amount of computational
effort, and the generic algorithms applicable to a broader range of
problems are not yet available. BPNs are not immediately appro-
priate for the representation of cyclic effects, however, by intro-
ducing time slices in a BPN (so-called dynamic BPN), BPNs may
also be applied for such analysis. Several efficient time slice BPN
algorithms have been developed for calculating probabilistic char-
acteristics of state variables of BPNs, e.g. expected values and con-
ditional probabilities, see e.g. [9]. It should be noted that a dynamic
BPN representation is equivalent to a Markov chain representation
[10].

Another approach for the probabilistic modelling and analysis
of complex systems is proposed by Der Kiureghian and Song
[11]. In this approach, the probability of an event of interest (re-
lated to the system performance) is formulated as a sum of the
probabilities of the mutually exclusive combinations of the compo-
nent states that govern this event. Upper and lower probability
bounds on the system performance are calculated based on an
out-crossing formulation and using linear programming tech-
niques. Moreover, it is shown in [11] that by aggregating several
components as ‘‘super-components” and applying the linear pro-
gramming method in a hierarchical way, the approach provides
reasonable probability bounds on the system performance with a
manageable computational effort. However, the applied scheme
for component aggregation affects the efficiency of the computa-
tion and the width of the obtained probability bounds. An optimi-
zation of the aggregation scheme in principle requires trial and
error, although general guidelines are provided in [11].

2.2. Bayesian hierarchical modelling

The applications of the Bayesian hierarchical models range
from, for instance, sociology, biology, environmental studies to
engineering. In experiments in sociology, e.g., experiments for
studying school effect in educational research, it is difficult to con-
trol all the experimental conditions. Ignoring dependences be-
tween the uncontrolled experimental conditions at different
levels – for the example of school effect, student level, classroom
level and school level – and applying simple statistical analysis
are proven to produce misleading results as is summarized in
[12]. Raudenbush and Bryk [12] propose a hierarchical approach
for studying school effect taking basis in the Bayesian multi-level
linear model proposed by Lindley and Smith [13]. It provides a flex-
ible statistical tool for estimating how variations in school policies
and practices influence educational processes, whereby the differ-
ent levels of interrelations are taken into account. Environmental
sciences face similar situations where due to the complex nature
of processes and interactions between systems, observing all the
relevant variables that may influence the process of interest is
not realistic. Furthermore, it is difficult to realize the identical con-
ditions in different experiments. Thus, the comprehensive use of
data obtained for different conditions is necessary for efficiently
estimating the parameters of the models, see [14]. In these con-
texts the Bayesian hierarchical models are employed in such ways
that the causal relation or interrelation of variables at different lev-



Fig. 1. Hierarchical modelling and translation of acceptance criteria.
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els in whole systems are first established based on scientific
knowledge without specifying the probabilistic characteristics of
the variables or assuming weak prior distributions. The parameters
of the variables are then estimated or updated using observed data.
Other applications of Bayesian hierarchical models can be found in
the area of pattern categorization/recognition, see e.g. [15,16]. Due
to the characteristics of the applications of the models for the pat-
tern categorizations or recognitions, it is important that these
models allow for promptly updating the parameters in the models
for a broader range of objects. To this end, flexible representations
and systematic learning algorithms which the BPN approach pro-
vides are extensively utilized. The Bayesian hierarchical approach
has been applied also for engineered complex systems. Among oth-
ers, Johnson et al. [17] applies the hierarchical model for estimat-
ing the reliability of missile systems, where the fault tree
analysis is extended using the Bayesian approach to accommodate
the integration of available expert knowledge and data.

Emphasizing the difference of the use of the Bayesian hierarchi-
cal models, the present paper appreciates the fact that input–out-
put relations of phenomena in engineering at different levels are
often quantitatively available in probabilistic terms. For instance,
given the geometry and material properties of an engineered com-
ponent, it is possible to calculate the probability of failure of the
component using data and by physical modeling and analysis tech-
niques, e.g. finite element methods. Fatigue deterioration can be
probabilistically modelled for given environments, with using
physical models and data, see [18]. As the events of interest such
as component failure and fatigue degradation are subject to given
circumstances, which themselves might be associated with uncer-
tainty, the probabilities of the events are appropriately represented
in terms of conditional probabilities. Therefore, in the context of
modelling of complex engineered systems, the main focus is how
the system can be hierarchically modelled using these conditional
probabilities of components at different levels.

As observed in the above the applications of Bayesian hierarchi-
cal models are rather diverse. However, all Bayesian hierarchical
models utilize generic algorithms developed for estimating param-
eters and/or obtaining conditional or posterior distributions. The
algorithms themselves are indifferent to the contexts where the
Bayesian hierarchical models are employed.

2.3. Optimization of engineering decisions under constraints

It is often the case that the optimization of decisions for engi-
neering systems must be performed under constraints. These con-
straints are typically given a priori to the decision problems in
terms of acceptance criteria regarding risks and/or practical opera-
tional limitations. Acceptance criteria are generally defined for the
attributes of the performance of systems considering the conse-
quences due to possible failures. Recent design codes e.g. [19] pro-
vide acceptance criteria in terms of minimum requirements to
structural performance. The Joint Committee on Structural Safety
[20] recommends different target reliabilities for engineered struc-
tures in accordance with the different magnitude of the conse-
quence of failure as well as the relative cost of safety measures.
Also, safety to personnel must be considered. Recently, a general
principle for evaluating the acceptability of a life saving measure
has been proposed using the concept of life quality index (LQI),
e.g. [21,22]. Based on the LQI principle it is possible to optimize
and specify requirements for the reliability of engineered systems
based on the costs of improving their reliability. Additionally, sev-
eral practical constraints, e.g., available budget, cost-benefit ratios
and allowable environmental impacts, may be given for projects
involving design and maintenance of engineered systems. Together
with acceptance criteria given from normative perspectives, these
exogenously given constraints constitute important boundary con-
ditions for the optimization of the performance of engineered
systems.

A number of approaches have been proposed for optimizing
decisions under constraints in engineering [23–25]. Thereby, one
of the central issues is how the optimization process can be trans-
formed in such ways that it allows for the utilization of commonly
available techniques for the probability calculations as well as for
numerical optimization. Royset et al. [23] propose algorithms for
reliability-based optimal design problems with which the required
calculations of reliability and optimizations are completely decou-
pled, hence, allowing for a flexible choice of the optimization algo-
rithm and the reliability calculation method. Guikema and Paté-
Cornell [24] propose a method for the optimization whereby the
performances of engineered systems are related discontinuously
to decision variables. These approaches are in fact highly sophisti-
cated and also efficient in the treatment of some optimization
problems. However, for the same reason they may be cumbersome
to apply in practical situations where complex engineered systems
are of interest, since different levels of models established by dif-
ferent experts must be reformulated to fit the format which these
approaches require. To overcome this difficulty Bayesian probabi-
listic network and influence diagram representations are employed
in the present paper as is described in the following sections.

2.4. Objective of proposed approach

The acceptance criteria mentioned in the foregoing may be seen
to constitute the boundary conditions, which any engineered sys-
tem must satisfy during its service life. The present paper takes
the standpoint that the acceptance criteria for systems are a priori
given. This situation is often the situation encountered in practice.
The goal of the present paper is to establish an approach for the
optimization of the target reliability for components of systems
for given system performance requirements in terms of acceptance
criteria, by minimizing life cycle costs for the design and operation
of the system, or more generally by maximizing the service life ex-
pected utility.

3. Proposed approach

3.1. Hierarchical system modelling with Bayesian probabilistic
networks

A hierarchical system modelling for complex systems facilitates
the representation of complex systems at an early stage of risk
analysis, e.g. at the concept evaluation, but may also serve to opti-
mize the final design as well as the management of the risk during
operation. Hierarchical BPN models appear suitable as a platform
for modelling complex systems, since they provide a causal and
mind mapping representation of the system characteristics and
functionalities. In Fig. 1 it is illustrated how the system functions
are represented in terms of a hierarchical aggregation of compo-
nents and their interrelations. At the same time the requirements
to the system performance may be disaggregated into reliability
performance requirements for the components. In what follows,
the proposed approach is explained in accordance with Fig. 1.



Fig. 2. Example of a BPN and conditional probability tables.
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Let A and E = (E1,E2, . . . ,En) denote the sets of possible actions
and possible states of a system respectively. The combination of
a 2 A and e 2 E specifies the joint probability conditional on the
action P[eja] and the consequences C(a,e) = (C1(a,e),C2(a,e), . . . ,
Cm(a,e)). In general these quantities are the functions describing
how the components and the sub-systems in the system are inter-
connected. However, in the following it is assumed that the inter-
connectivity is fixed. Note that the consequences C(a,e) may be a
vector when two or more attributes of the system performance
are considered, e.g. financial cost, fatalities and damages to the
qualities of the environment. It is assumed that the consequences
C(a,e) can be represented as an attribute-wise sum of the
consequences CA(a) associated with action a and the consequences
CE(e) associated with event e, namely

Cða; eÞ ¼ CAðaÞ þ CEðeÞ: ð1Þ

A Bayesian probabilistic network is a probabilistic model represen-
tation in terms of a directed acyclic graph that consists of nodes
representing uncertain state variables, so-called chance nodes and
edges that logically link the nodes, and conditional probability
assignments, see Fig. 2 for example, and see e.g. [26] for general
introduction. An influence diagram is an extension of Bayesian
probabilistic network that includes so-called decision nodes and
utility nodes in a graph in addition to chance nodes. Using the chain
rule for Bayesian probabilistic networks [26], the joint probability
P(Eja) can be decomposed as

PðEjaÞ ¼
Y

i

PðEijpaðEiÞ; aÞ; ð2Þ

where pa(Ei) is the parent set of Ei. From Eq. (2) it can be seen that
the joint probability P(Eja) can be built up by conditional probabil-
ities. Any marginal probabilities of the states of the subset of E can
be efficiently calculated from the joint probability P(Eja) with gen-
eric algorithms and software tools commonly available, see the
appendix of [27]. For the BPN shown in Fig. 2, the parents of E3

are the nodes E1 and E2, and the node E2 is a function of action A.
The joint probability is then written as

PðEjaÞ ¼ PðE3jE1; E2ÞPðE1ÞPðE2jaÞ: ð3Þ

Each term in Eq. (3) thus the joint probability is fully characterized
by the conditional probability tables shown in Fig. 2.

Let F(C,P) = (F1(C,P),F2(C,P), . . . ,Fl(C,P)) denote a vector function
of C(a,e) and P(Eja). For instance, the expected total cost, may be
one of the attribute of a system performance to be considered,
and is written as one element of F(C,P) as

FiðC; PÞ ¼
X

e2E

Ciðe; aÞPðejaÞ; ð4Þ
where Ci(�, �) represent the cost. The probability that the damage to
environmental quality exceeds a given threshold cacc may be an-
other element of F(C,P) and is written as

FjðC; PÞ ¼
X

e2E

I½Cjðe; aÞ > cacc�PðejaÞ; ð5Þ

where Cj(�, �) represents the environmental damage and I[�] is the
indicator function, which returns unity if the condition in the brack-
et is satisfied and zero otherwise. Such environmental damages
may be represented e.g. in terms of release volumes, the geograph-
ical release extent and/or temporal release extent of agents. The
conditional expected value of the number of fatalities given the
state Em = em may be other element of F(C,P) and is written as

FkðC; PÞ ¼
P

e02EnEm
Ckða; ðem; e0ÞÞPððem; e0ÞjaÞP

e02EnEm
Pððem; e0ÞjaÞ

; ð6Þ

where Ck(�, �) represents the number of fatalities and

e0 2 E n Em ¼ fE1; E2; . . . ; Em�1; Emþ1; . . . ; Eng:

Note that any functions represented in terms the elements of F(C,P)
can be systematically calculated by the algorithms developed for
the analyses of BPNs and IDs when the state variables
E = (E1,E2, . . . ,En) and their interrelations and the (conditional) prob-
abilities corresponding to the interrelations of the variables are de-
fined in an ID, see e.g. [26]. Thus, the remaining task for developing
models for engineered complex systems is to represent the physical
understanding, the relevant experience and the data available at
different hierarchical levels in terms of (conditional) probabilities
of states of variables or in terms of decision nodes or utility nodes,
and then link them together. Thereby, the general characteristic
that engineered systems are comprised and built up by compo-
nents, which are standardized by codes and industrial standards
in regard to quality and reliability may add value to the use of ob-
ject-oriented BPN representations. This special type of BPN models
allows for creating classes of BPNs, which are representative for
sub-systems that have identical characteristics, see e.g. [28,29].

3.2. Objective function and constraints

Having established the hierarchical system model in terms of
IDs, the objective function such as service life utility or expected
total cost may be assessed from the ID as a function of the chosen
action utilizing the functional representation of F(C,P) as shown in
the previous section, i.e.:

uðaÞ ¼ F1ðCða; �Þ; Pð�jaÞÞ: ð7Þ

Acceptance criteria are typically defined in regard to the functional-
ity or performance of the considered system measured in terms of
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risks and/or probability of failure. Since the design and maintenance
of a system usually specifically addresses the components of the
system, it is of interest how the acceptance criteria for the compo-
nents may be derived from the acceptance criteria specified for the
system performance. Thus, the optimization of reliabilities for com-
ponents in a system constitutes an inverse problem, see Fig. 1. The
acceptance criteria for the system performance can be related to the
target reliabilities for the components using the function type of
F(C,P) as is shown in the previous section as

FiðCða; �Þ; Pð�jaÞÞ 6 ci ði ¼ 2;3; . . . ;mÞ; ð8Þ

where Fi (i = 2,3, . . . ,m) represent the functions on the ID calculating
the quantities for which the acceptance criteria for the system are
defined, and ci are acceptance levels for the corresponding
quantities.

3.3. Optimization of actions for components of complex system

Since several combinations of target reliabilities for different
components in a system may satisfy the prescribed acceptance cri-
teria for the system, the optimal combination of target reliabilities
for components may be identified as the combination of the target
component reliabilities associated with action a which maximizes
the expected utility u using Eqs. (7) and (8) formulated in accor-
dance with the previous sections as

Maximize uðaÞ ¼ F1ðCða; �Þ; Pð�jaÞÞ s:t:
FiðCða; �Þ; Pð�jaÞÞ 6 ci ði ¼ 2;3; . . . ;mÞ: ð9Þ

Since the functions Fi (i = 1,2, . . . ,m) are readily calculated, the prob-
lem is reduced to a standard non-linear constrained optimization
problem for which efficient algorithms are available, see e.g. [30].

4. Example 1

This example considers the simple optimization of the design of
bridges subject to earthquake hazards. The aim of this example is
to explain in detail how the proposed approach may be applied
in practical situations. The bridges b1, b2 and b3 geographically con-
nect the location a with c, and thus constitute the system compo-
nents in a transportation network system, see Fig. 3. It is assumed
that the state of the system is fully described through the combina-
tions of the states of the three bridges, and hence, the failures of
e.g. the road sections besides the bridges in the network are not
Fig. 3. Transportation network system.

Fig. 4. Classes of BPNs for Earthquake h
considered. The system failure is assumed to be defined as the joint
failures of all three bridges. The objective function to be minimized
is the expected discounted total cost, which consists of the initial
cost and the expected cost associated with the failures of bridges.
The acceptance criteria are assumed to be given for (1) the ex-
pected number of fatalities in the system given that an earthquake
occurs as 10, and (2) the conditional probability that the system
fails given that an earthquake occurs as 1%. The life time consid-
ered in the design of the bridges is 100 years, and it is assumed that
an earthquake occurs at most once in the system’s life time. The
discounting rate applied for evaluating the future costs is assumed
equal to 3% per annum.

4.1. Model description

The earthquake hazard is modelled in the earthquake class BPN
as is shown in Fig. 4 (left). It consists of five nodes, namely, ‘‘Sce-
nario”, ‘‘Time”, ‘‘V1”, V2” and ‘‘V3”. The node ‘‘Scenario” contains
different possible earthquake scenarios with corresponding proba-
bilities. The term scenario may refer to an earthquake occurring at
different seismic zones and different faults, or more specifically,
different combinations of the values of ground motion intensities
at different locations. The latter corresponds to the cases where
the joint probability density of ground motion intensities at differ-
ent sites is identified by seismic hazard analyses and thereafter the
joint probability density is discretized into a finite number of prob-
abilities corresponding to the intervals of the ground motion inten-
sities at different sites. When the different combinations of the
values of ground motion intensities are taken as the identifiers of
the scenarios, the spatial correlations between the intensities at
different locations can be suitably considered in the earthquake
hazard model. In this example, however, for illustrative purposes
only one scenario ‘‘eq1” is considered.

The node ‘‘Time” specifies the probability of the yearly discret-
ized time T when the scenario eq1 occurs. T is assumed to follow a
geometric distribution with an occurrence probability for each
year given as mDt = 0.01. The nodes ‘‘V1”, ‘‘V2” and ‘‘V3” represent
the logarithms of the peak ground accelerations (cm/s2) at the
locations where the bridges are to be built, and are assumed to fol-
low normal distributions given the scenario eq1 with the parame-
ters shown in Table 1. When the probabilistic characteristics are
implemented into the conditional probability table in BPNs they
have to be discretized. The intervals and the upper and lower
bounds must be chosen carefully assuring the efficiency and accu-
racy of the discretizations. They are chosen in this example as
shown in Table 1. Note that the BPN in Fig. 4 (left) assumes that
‘‘V1”, ‘‘V2” and ‘‘V3” are conditionally independent given the sce-
nario. The nodes ‘‘Time”, ‘‘V1”, ‘‘V2” and ‘‘V3” (surrounded by the
bold line) are output nodes, and are connected to other nodes in
the BPN for the transportation network system, Fig. 5.

The bridges are modelled in the Bridge class BPN as shown in
Fig. 4 (right). The bridges b1, b2 and b3 are assumed to be identically
modelled through the Bridge class BPN. However, the different
probabilities in the input nodes ‘‘V”, ‘‘X” and ‘‘Theta2” (highlighted
azard (left) and for Bridge (right).



Table 1
Assumed distributions of nodes in BPNs and ID

Variables Distributions Bounds
Earthquake class BPN

Scenario P[Scenario = eq1] = 1
V1jeq1 Normal (ln200,0.5) [0,9]
V2jeq1 Normal (ln300,0.5) [0,9]
V3jeq1 Normal (ln400,0.5) [0,9]
Timejeq1 Geometric (0.01) [1,100]

Bridge class BPN
A Normal (ln2,0.1) [0,2]
Theta1 Normal (ln1,0.1) [�0.5,0.5]

ID for transportation network system
Theta2 Normal (ln1,0.1) [�0.5,0.5]
X1, X2 and X3 given design alternative a1 Normal (ln600,0.1) [0,9]
X1, X2 and X3 given design alternative a2 Normal (ln800,0.1) [0,9]
X1, X2 and X3 given design alternative a3 Normal (ln1000,0.1) [0,9]

Normal (l,r) abbreviates the normal distribution with the mean l and the standard deviation r, and Geometric (p) abbreviates the geometric distribution with occurrence
probability p. The geometric distribution is discretized by the interval of 1 and the Normal distributions are discretized by the interval of 0.1 when implemented into the
conditional probability tables in the BPNs. The last column shows the upper and lower bounds in the corresponding conditional probability tables.

Fig. 5. ID for transportation network system (cost).
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with bold dashed line) facilitate the differentiation between the
resistances of the bridges and the corresponding probabilities of
failure. In the Bridge class BPN, S denotes the load effect, which
is represented by

S ¼ V þ A; ð10Þ

where A represents the logarithm of the soil amplification factor. A
is assumed to follow a normal distribution with the parameters gi-
ven in Table 1. The resistance R of the bridge is modelled as

R ¼ X þH ¼ X þ ðH1 þH2Þ; ð11Þ

where X specifies the design of the bridges and H represents the
uncertainties associated with the resistance of the bridge. H can
be decomposed into two types of uncertainties, H1 and H2. H1 is
the uncertainty associated with individual realizations of bridges,
and can be assumed independent between the different bridges,
whereas H2 denotes the common uncertainty that affects all real-
izations of bridges thus introduces the statistical dependence. For
example, uncertainty on material geometry or uncertainties associ-
ated with construction work may belong to the former type of
uncertainty. Modelling and statistical uncertainties belong to the
latter type of uncertainty. The assumed probabilistic characteristics
of H1 and H2 are shown in Table 1. The failure of a bridge, which is
defined as the event R < S, is denoted by the Boolean node ‘‘F”, and
the probability of failure is expressed as

P½F ¼ ‘true’� ¼ P½R < S�: ð12Þ

The node ‘‘F” is the output node from the Bridge class BPN and is
utilized for the assessment of consequences in the ID, see Fig. 5.

Fig. 5 shows the ID for the whole transportation network sys-
tem. ‘‘Earthquake” is an instance of the Earthquake class BPN,
and ‘‘Bridge_1”, ‘‘Bridge_2” and ‘‘Bridge_3” corresponding to b1,
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b2 and b3, respectively, are instances of the Bridge class BPN, for
which only input and output nodes are shown. The node ‘‘Fsys”
represents system failure, which is connected with the nodes
‘‘F1”, ‘‘F2” and ‘‘F3” representing the individual failures of the
bridges b1, b2 and b3, respectively. These are required for checking
if the acceptance criterion is satisfied for the conditional probabil-
ity of system failure given that an earthquake occurs. The node
‘‘Theta2” specifies the probability distribution of the common
uncertainty H2, see Table 1. Finally, the decision node ‘‘D” repre-
sents the set of design alternatives for the three bridges. Three de-
sign alternatives a1, a2 and a3 are considered for each bridge, hence,
there are 33 = 27 possible actions in the decision node. The nodes
‘‘X1”, ‘‘X2” and ‘‘X3” represent the probability distribution of state
of the bridges b1, b2 and b3 respectively, corresponding to the
choice of the design alternatives, see in Table 1. For each action,
the corresponding initial cost is defined in the utility node ‘‘Cx”
whose values are shown in Table 2. The utility node ‘‘Ce” defines
the discounted failure costs for all combinations of the states of
the three bridges for each year up to 100 years. The failure costs as-
sumed in the example are shown in Table 3. From the utility nodes
‘‘Ce” and ‘‘Cx” the expected discounted total cost is calculated. Sim-
ilarly, the expected number of fatalities in the system given that an
earthquake occurs can be calculated with a similar ID as the one
shown in Fig. 6. In the figure input and output nodes of the in-
stances of the class BPNs (earthquake class, bridge class, design
class and consequence class) are abbreviated. The summary of
Table 2
Initial costs

Design alternative Initial cost (Monetary unit)

Design alternative a1 10
Design alternative a2 11
Design alternative a3 12

Table 3
Failure costs and fatalities

State of Bridge

Bridge 1 F NF
Bridge 2 F NF F NF
Bridge 3 F NF F NF F NF F NF

Failure cost (Monetary unit) 0 10 10 50 10 50 50 200
Fatality 0 10 10 20 10 20 20 30

Failure costs are not discounted. F and NF are abbreviations for failure and no
failure, respectively.

Fig. 6. ID for transportation network system (fatality).
the magnitudes of the consequences are given in Table 3. Failure
costs and fatalities shown in the tables should be considered as
the expected values over possible consequences given the states
of the bridges when an earthquake occurs. In practice the develop-
ment of the table requires that the consequences must be analyzed
for all possible combinations of the states of all bridges in the net-
work. While it requires considerable efforts, it allows for flexibility
considering the significance of each bridge in the network, e.g. con-
sideration of the topology of network.

4.2. Results

The expected discounted total costs, the expected number of
fatalities and the probabilities of system failure given that an
earthquake occurs for the 27 possible actions are calculated using
the established IDs. The result is shown in Fig. 7. At the bottom of
the figure the correspondence between the actions and the combi-
nations of the design alternatives for the three bridges is also
shown. The optimal action consistent with the two acceptance cri-
teria regarding the expected number of fatalities and conditional
probability of system failure given the occurrence of an earthquake
is identified as action 25 (design alternative a3 for the bridges b1

and b2, and design alternative a1 for the bridge b3); action 17 re-
sults in the minimum expected discounted total cost, but it does
not satisfy the acceptance criteria. The strategy behind action 25
may be interpreted as follows; considering the non-linear relation
between the number of failed bridges and the failure costs, a
sound strategy may be to avoid, by all means, the simultaneous
failures of the three bridges in an economically efficient way,
which may be realized with higher reliabilities for one or two of
the three bridges and comparatively low reliability for the other
bridge(s). Since the earthquake hazard is smallest for bridge b1,
the highest reliability of the system can be realized most effi-
ciently through bridge b1 and be realized relatively efficiently for
the bridge b2, by adopting the design alternative a3 for the bridges
b1 and b2; corresponding to the highest design resistance in the
three design alternatives. At the same time, by accepting a rela-
tively higher failure probability for bridge b3, the expected dis-
counted total cost can be reduced. This becomes clearer by
comparing action 25 with action 9, which is composed of the same
set of design alternatives but applied for different bridges, i.e., a1

for the bridge b1 and a3 for the bridges b2 and b3. Action 9 requires
the same initial cost as action 25, and results in almost the same
amount of the expected discounted total cost, but significantly
high conditional probability of system failure given an earthquake.
This strategy seems tricky, and may not be considered in practical
situations where typically the resistances of structures may be de-
signed in a proportional way to the magnitudes of hazards. How-
ever, from a system optimization point of view, this is the best
strategy that satisfies the acceptance criteria given for the system.
It should be noted that in practical situations decision makers
might accept slightly higher costs to further reduce the risk of
fatalities (e.g. Action 27 instead of Action 25 in this example).
However, if the objective function and the constraints are estab-
lished to fully represent the decision maker’s preference, such a
subjective decision may lead to sub-optimal decisions.

4.3. Discussion

The hierarchical Bayesian approach provides a clear perspective
of how the whole system should be built up using the modules rep-
resentative of different levels of analyses. In this example, the
transportation network system can be built up with four modules,
i.e., earthquake module represented by the earthquake class BPN, a
bridge module represented by the bridge class BPN, a design mod-
ule and a consequence module, see Fig. 5. These modules can be
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built up separately, whereas the interfaces between the modules
must be specified. Such a module oriented modelling in the hierar-
chical Bayesian approach not only enhances the integration of the
knowledge of different experts, experience and data available at
different levels, but also increases the productivity of risk assess-
ments, since the modules are re-useable.

Updating of the probabilistic characteristics in BPNs is of prac-
tical use, although this aspect is not emphasized in the example.
For instance, when the data on the damage states of the bridges
and the load effects are obtained after the occurrence of an earth-
quake, the uncertainties associated with the resistance of the
bridges can be updated by conditioning the corresponding nodes.
Hence, the updated probability can be used for future risk
assessment.

While only a small number of discrete action alternatives are
considered in this example, there are other cases where a large
number of discrete action alternatives or continuous action alter-
natives are to be considered. In such cases it is not feasible to per-
form the ID analysis for every action, thus adaptation of efficient
algorithms for solving optimization problems under constraints
are needed. In this context, IDs serve as the function in the process
of calculating the value of the expected utility and the values of the
quantities for which acceptance criteria are defined which then in
turn can be implemented into optimization algorithms. In the next
example, it is shown how this may be realized using commonly
available software tools.
5. Example 2

Optimal reliability for components in Floating Production Stor-
age and Offloading Units (FPSOs) subject to fatigue deteriorations
is considered in this example. The main function of FPSOs is to pro-
duce and store oil at offshore oil fields with given requirements to
reliability in production and safety to persons and environment.
Typically considered events of system failure for FPSOs are:



Fig. 9. Hierarchical modelling of hull structure.
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� Loss or damage of ship due to loss of buoyancy or explosions/
fires.

� Loss of production due to reduced functionality.
� Loss of lives due to foundering or explosion/fires.
� Leaks and other damages to the quality of the environment.

Considering the hull as an assembly of components, the hull
may be considered to comprise an assembly of tanks tied together
with deck plates, tank partitions, and bottom and side plates. The
individual components are furthermore stiffened by girders and
web frames to ensure a sufficient structural integrity of the hull,
see Fig. 8. The corresponding hierarchical model representation is
shown in Fig. 9.

The hull components as described above have basically two
functions, namely, to ensure that the overall ship has a sufficient
structural integrity and provide the means for containing cargo
and ballast. Failure of the components of the hull at this level
can be assumed as the events of:

� Loss of or reduced structural integrity.
� Loss of containment due to explosion.
� Leaks of the individual tanks.

Considering now the individual components as outlined in the
above these may be viewed upon as assembly of plates connected
by welded joints. Failure of these components may lead to:

� Crack or pit through plate thickness.
� Reduced overall plate thickness.
� Joint stiffness reduction or failure.

Thus, the losses or damages at component level may lead to
the hull failure or undesired economic and environmental losses
as well as loss of lives given the way how the components are
interconnected. The problem in this example is to optimize the
target reliabilities for the welded joints in plate and tank partition
components given the requirements to the functionality/conse-
quence of the ship hull, e.g. the probability of hull failure. It is
emphasized in this example how commonly available software
tools can be used in accordance with the proposed approach.
For this purpose a software tool is developed using Hugin� for
BPN/ID representation and Microsoft Excel� (hereafter Excel) for
the optimization algorithm as well as the user interface. In the
subsequent section, the overview of the software tool develop-
ment is illustrated.

5.1. Optimization of target reliability for welded joints in components

The developed software tool provides an easy interface to ob-
tain the optimal target reliabilities for welded joints subjected to
fatigue deterioration. Excel is used as a platform for integrating
the various computational modules and storing information re-
quired for calculations. The Excel platform is linked dynamically
to the Hugin ActiveX server (hereafter Hugin). In order to use the
Fig. 8. Hierarchy of ship hu
software tool the user has to define, through Hugin files, the BPNs
corresponding to the hierarchical model of the hull structure as de-
scribed above. The outputs, i.e. optimized target reliabilities for all
welded joints, are written into the Excel file.

In Fig. 10, the illustration of the hierarchical Bayesian represen-
tation of the ship hull structure is given. Two BPNs in the top of the
figure represent the performances of tanks. The tank performances
are characterized by the states of the plates that constitute the
tanks. As is described above, at this level the possible consequences
due to component failures are capacity reduction, explosion and
environmental damage due to leaks. The ID in the bottom of the
figure concerns how the component failures may propagate and
lead to further consequences at system level. Here, three attributes
of the consequences are identified, i.e. economic loss, loss of lives
and environmental damage measured in terms of leak intensities.
These BPNs and ID are interconnected as shown in the figure. In
the entire ID the conditional probability tables are assumed estab-
lished with the help of experts, see e.g. Fig. 11 (which is the condi-
tional probability table for node ‘‘Explosion_1” as implemented
into a Hugin file), whereas the nodes that represent the compo-
nents serve as root nodes whose probabilities are represented in
terms of unconditional probabilities, which are derived from the
target reliabilities for welded joints in each components. Therefore,
by changing the target reliabilities for the welded joints which are
set in the Excel file, the unconditional probabilities for the compo-
nents are changed accordingly. In turn, the corresponding probabi-
listic characteristics, e.g. expected total cost or probability of ship
hull failure are changed and stored in the Excel file, see Fig. 12. This
process is made automatically through ActiveX. The design and
service life maintenance cost for the different welded joints is in
general a function of the target reliability in regard to fatigue fail-
ure, and this is implemented as a VBA code in the Excel file. For the
assessment of the relationship between the reliability of the
welded joints subjected to fatigue failure and the service life cost,
the iPlan software described in [31] may be utilized. Finally, the
optimal target reliabilities for welded joints are obtained using
the Solver add-in provided in Excel – target reliabilities correspond
to ‘‘changing cells”, and acceptance criteria for the ship hull corre-
spond to ‘‘constraints” in the Solver add-in.
ll structure considered.



Fig. 10. ID for the tanks and the hull structure.

Fig. 11. Illustration of conditional probability table.

Fig. 12. User interface of developed software tool.
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5.2. Results and discussion

In this illustrative example, the acceptable probability of system
failure is set as 10�3 per annum which constitutes the boundary con-
dition in the optimization problem. The objective function is the ex-
pected total cost including the inspection cost, the repair cost and
the failure cost due to ship hull failure. As is shown in Fig. 12, different
optimal target reliabilities are obtained for the components in differ-
ent tanks, reflecting the different contribution to the system failure.
The set of these optimal target reliabilities correspond to the set of
the target reliabilities that satisfy the acceptance for the probability
of system failure and that minimizes the expected total cost.

Although in this example, the exposure to the ship hull struc-
ture, e.g. wave load, is not directly considered and thus the failures
of the individual tanks are assumed to be independent, it is possi-
ble to take into account the exposures which may introduce the
correlation between the failures of the components and/or sub-
systems by adding the node for the exposure scenario in the ID
as is found in the previous example.

6. Conclusions

The present paper proposes a framework for the modeling and the
optimization of reliabilities for components in complex engineered
systems subject to requirements specified in terms of system perfor-
mance. It is shown how the identification of the target component
reliabilities that are optimal and consistent with given acceptance cri-
teria for system performance can be treated as an optimization prob-
lem with constraints. Appreciating the perspective that engineered
systems are built up by standardized components which through
their connections with other components provide the desired func-
tionality and that the system performance will depend on the way
the components are interconnected, the proposed framework takes
basis in a hierarchical system modelling facilitated by use of (ob-
ject-oriented) BPNs and IDs. Using the established BPNs and IDs it is
possible to calculate the objective function such as service life utility,
and the quantities for which the acceptance criteria are given, both of
which are required for solving the optimization problems with con-
straints. Two examples are shown: (1) optimization of the design of
bridges in a transportation network subject to earthquake hazards,
and (2) optimization of target reliabilities of welded joints in a ship
hull structure subject to fatigue deterioration in the context of main-
tenance planning. The first example serves as the introduction how
the proposed approach is implemented step by step. The second
example illustrates how complex engineered system may be mod-
elled and how the target component reliabilities may be optimized
using commonly available software tools.
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