

FEBRUAR 2012

AT-329 COLD REGIONS FIELD INVESTIGATIONS

GNSS-systemer

Kristoffer Sandstad Hansen

Arvid Engelmark Hofgaard

Herman Bjørn Smith

SAMMENDRAG

Onsdag 22. februar 2012 ble det gjennomført feltmålinger for å bestemme koordinater for Store Norske Spitsbergen Kulkompani AS miljøundersøkelsesboringer på kullkaien ved Longyearbyen, Svalbard.

Etter opprettelse av en lokal basestasjon på kullkaien og benyttelse av fasemottaker ble koordinatene for boringene bestemt, som vist i Tabell 1. Koordinatene er gitt i EUREF89 UTM sone 33.

Målepkt.	E	N	H _{m.s.l.}
P1	512332,270	8685559,908	3,632
5	512362,031	8685598,150	2,920
6	512349,020	8685610,394	3,076
8	512319,466	8685603,102	2,683
9	512337,829	8685615,376	3,364
10	512351,449	8685636,833	1,431
F2	512391,462	8685712,188	1,722

Tabell 1: Koordinater og høyder av borehullene

Målepunktenes posisjon i forhold til hverandre er vist i Figur 1.

Figur 1: Målepunktenes posisjon

Målingen av de enkelte punktene ble utført ved "Real time kinematic"-undersøkelse. Dette ble gjort etter at den lokale basestasjonen ble bestemt med statisk undersøkelse fra kjente punkter i Longyearbyen. Utstyret som ble benyttet var Leica Viva på den håndholdte Roveren og Leica 1200 på Basestasjonen.

Nøyaktigheten i målingene er på centimeternivå, og vurderes som tilstrekkelig.

AT-329 COLD REGIONS FIELD INVESTIGATIONS

CONTENTS

SAMMENDRAG
INTRODUKSJON
TEORI
ABSOLUT OG RELATIV MÅLING
KODEMÅLING4
FASEMÅLING1
REAL TIME KINEMATIC (RTK)
STATIC SURVEY 1
METODE
RESULTATER
GEOIDEHØYDE
POSISJON AV MILJØUNDERSØKELSESBORINGER 4
HØYDEPROFIL
VURDERING AV RESULTATENE
KILDER
VEDLEGG 1: Oppmålte og korrigerte punkter10

INTRODUKSJON

Første del av faget AT-329 Cold Regions Field Investigation på UNIS omhandler GNSS-systemer og nøyaktig bestemmelse av hvor man gjør sine undersøkelser. Onsdag 22. februar 2012 ble det gjennomført feltmålinger for å bestemme koordinater for Store Norske Spitsbergen Kulkompani AS miljøundersøkelsesboringer på kullkaien. I tillegg ble et profil oppmålt etter "stop-and-og"-prinsippet.

TEORI

ABSOLUT OG RELATIV MÅLING

Absolut måling innebærer direkte posisjonering fra satellitter med rover (se *kodemåling* nedenfor). Relativ måling skjer derimot med hjelp av en basestasjon oppsatt på en posisjon med kjente koordinater. Rovernes posisjonering korrigeres da ut ifra posisjoneringsfeilen oppmålt av basestasjonen, se *Real Time Kinematic*.

KODEMÅLING

Kodemålingens posisjonering starter med at satellittene sender sine posisjoner med et tidsmarkert signal (kode) til roveren (navigasjonsenheten), som bestemmes ved å bruke sine innebygde atomklokker. Dette signalet mottas etter tiden Δt , og posisjonen bestemmes ved beregning av avstander fra en rekke satellitter. Dette gjøres i samsvar med s = v × Δt , der v er hastigheten på signalet. Δt er forskjellen mellom satellittens og roverens tid, hvor satellittklokkens feil er ubetydelig i størrelse. Roverens ofte enklere klokker genererer tidsforskjellen δM hvilket forårsaker en målefeil på mellom 30-300 cm.

FASEMÅLING

For relativ måling blir det ofte brukt en annen måleteknikk som krever mer avanserte GNSSmottakere. Mottakeren produserer signaler med samme frekvens som de dopplerforskyvne signalene fra satellittene. Sistnevnte inneholder ingen tidsmarkører og kan dermed ikke benytte s,v,tformelen. I stedet måles signalenes fase og dermed kan antall svingningsperioder mellom satellitter og roveren enkelt beregnes hvilket gir en nøyaktighet på millimeternivå.

REAL TIME KINEMATIC (RTK)

Med RTK gjøres relativ måling gjennom oppsetting av basestasjonen med minst en kjent posisjon. I og med at den nøyaktige plasseringen av en slik stasjon er kjent, kan basen kontinuerlig beregne posisjoneringsfeilen fra satellittene. Avstandsforskjellen mellom basen og en rover innenfor noen kilometer er ubetydelig i forhold til avstanden til de enkelte satellitter. Hver satellitts beregningsfeil bør være den samme for base og rover. Dermed kan roverens posisjon korrigeres med data fra basestasjonen, data som kommuniseres via GSM, 3G og mobilt Internett.

Mange land bygger opp et nettverk av permanente basestasjoner på kjente posisjoner, eksempelvis SATREF CPOS fra Statens kartverk. Leica har satt opp nettverket SmartNet som dekker deler av Europa. Med denne typen nettverk, trenger brukeren ikke å sette opp sin egen basestasjon, bare koble sin rover til det eksisterende nettverket og laste ned korreksjonsverdiene via mobiltelefon eller datamaskin. Med faste installasjoner oppnås en høyere nøyaktighet og posisjoner i et standardisert koordinatsystem.

Så snart roveren er innstilt i forhold til basestasjonen, dvs bestemmelse og overføring av posisjoneringsfeil, kan flere posisjoner måles etter hverandre. Dette blir kalt *Stop and Go* og fungerer så lenge roveren holder kontakt med satellittene. Hvis kontakten brytes må oppstarten gjøres på nytt, som i statisk måling, hvor oppstart gjøres for hver måling.

STATIC SURVEY

Ved en *static survey* er man *a*vhengig av 3 punkter med gode koordinater og 4 baselinjer for å bestemme de nye koordinatene. Man er også avhengig av "*post processing*"-etterbehandling av data. Denne etterbehandlingen ble gjort med Leica Geo Office og resultatet ble presentert til oss av professor Terje Skogseth. Det oppstod et problem under målingen da to av punktene registrerte, men ikke lagret data. Men med den etterbehandlede dataen var vi i stand til å korrigere den dataen vi senere skulle måle, slik at vi kom frem til korrekte verdier. Innmålingstiden på basestasjonen bør være på 30-60 min, og resultatene blir mer presise jo lenger en måler (Total Logging time). Mengden data som innhentes bestemmes av det såkalte "Logging time interval", tiden mellom hver datalagring. Kortere tidsintervall gir bedre data, men også mer data å prosessere.

METODE

Det ble utført to forskjellige oppgaver. Først ble borehullene registrert. Senere målte gruppen en rekke punkter som skulle brukes til å lage et lengdeprofil. Begge ble målt med "Stop & Og"-prinsippet, RTK. Utstyret som ble benyttet var Leica Viva på den håndholdte Roveren og Leica 1200 på Basestasjonen. Den lokale basestasjonen sin nøyaktige posisjon kunne bestemmes og korrigeres ut fra kjent base i Longyearbyen, NP124. Et basepunkt kan enten være et lokalt punkt (hvor det er oppnådd gode, kjente koordinater) eller et landsdekkende nettverk nevnt ovenfor. De norske nettverkene dekker 100 % av fastlandet. Det finnes ikke noe slikt nettverk på Svalbard, og vi var dermed nødt til å benytte oss av lokale basepunkt. Dagen før vi utførte feltarbeidet var professor Terje Skogseth ute og etablerte en slik basestasjon. Denne etableres ved en *static survey*.

For å oppnå gode koordinater på de punktene man skal måle er det viktig med tilstrekkelig satellittdekning. Man trenger minimum kontakt med 4 satellitter som skal krysspeile de 4 ukjente parameterne X,Y,Z koordinat i tillegg til Tid. Krysspeilingen blir mer nøyaktig desto mer spredt satellittene er. Vi benyttet oss av både GLONASS og GPS-navigeringssystem, og hadde dermed god dekning av satellitter. Satellittene bør ligge høyere enn en "cut-off"-vinkel på 10 grader fra horisonten, da resultatene blir unøyaktige hvis de ligger under her. Dette kommer av støy i atmosfæren, og da spesielt ionosfæren.

Når man skal lese av koordinatene, er det flere ting som kan spille negativt inn, og gjøre resultatene unøyaktig. Noen av disse kan være:

- Feil informasjon om satellittbanen
- Feil ved klokken i satellitten
- Ionosfærisk refraksjon
- Troposfærisk refraksjon
- Multisti-signal
- Mottager støy

Noen av disse feilkildene kan man forminske ved å benytte seg av relativ måling. Den største bidragsyteren til feilmåling kommer fra ionosfærisk refraksjon. Multisti-signal oppstår i de tilfeller hvor signalet kan bli reflektert og sendt videre til mottager. Dette kan unngås om man er bevisst på hvor man måler. Jo lenger unna en refleksjonsflate målingen utføres, jo mindre spiller den inn på feilmarginen.

RESULTATER

Alle resultater er gitt som koordinater i EUREF89 UTM sone 33.

Den lokale basestasjonen, P1's, posisjon ble bestemt ut fra gjennomsnittet av posisjonene bestemt utfra punkt NP124 og 9402. Forskjellen på den faktiske posisjonen av P1 og den benyttede posisjonen av P1 under målingene, Pullert1, ble brukt for å korrigere de oppmålte resultatene. Tabell 2 viser disse resultatene, med nødvendig korrigering, Δ , av oppmålte koordinater.

	E	Ν	H _{ellipse}		
NP124	514280,549	8683206,137	66,801		
P1 _{NP124}	512332,265	8685559,905	35,4431		
9402	513764,316	8683919,365	34,36		
P1 ₉₄₀₂	512332,275	8685559,911	35,432		
P1, avg.	512332,27	8685559,908	35,43755		
Pullert1	512322,776	8685560,14	29,016		
Δ	9,49415	-0,23205	6,42155		

Tabell 2: Bestemmelse av P1's posisjon, og nødvendig korrigering av oppmålte resultater.

GEOIDEHØYDE

Det benyttede GNSS-systemet gir punktets høyde over jordens ellipsoidiske overflate. Høyde over gjennomsnittlig havnivå er definert som ellipsoidisk høyde minus geoidisk høyde, og områdets høyde over jordens geoideoverflate måtte dermed bestemmes.

Tabell 3 viser geoidisk høyde for kjente punkter som kunne beregnes ved at både ellipsoidisk høyde og høyde over gjennomsnittlig havnivå var kjent.

Kjent pkt.	H_{geoide}
NP124	31,901
BH82	31,773
NP136	31,74

Tabell 3: Geoidisk høyde for kjente punkter

Posisjon av punktene nevnt i Tabell 3, samt lokal basestasjon, P1, og de oppmålte punktene er vist i Figur 2.

Figur 2: Posisjon av oppmålte punkter og kjente fastpunkter

Figur 2 dannet grunnlaget for å lage en geoidisk høydemodell. På grunn av usikkerheten en slik modell innleder og fordi de oppmålte punktene befinner seg innenfor et relativt begrenset område, ble den geoidiske høyden for alle punkter bestemt til å være 31,806 meter, ved hjelp av vektorregning.

Denne verdien for området stemmer godt overens med hva som vises i "Long wave lenght geoidal height model of Svalbard area" beregnet fra EGM96 "Global geopotential model in meters". De geoidiske høydene er referert til GRS80 ellipsioden.

POSISJON AV MILJØUNDERSØKELSESBORINGER

Etter korreksjon for P1's posisjon og geoidehøyde, ble den nøyaktige posisjonen av borehullenes koordinater og høyder bestemt som vist i Tabell 4.

Målepkt.	E	Ν	$\mathbf{H}_{,\mathrm{ellipse}}$	H_{geoide}	H _{m.s.l.}
P1	512332,270	8685559,908	35,438	31,806	3,632
5	512362,031	8685598,150	34,726	31,806	2,920
6	512349,020	8685610,394	34,882	31,806	3,076
8	512319,466	8685603,102	34,489	31,806	2,683
9	512337,829	8685615,376	35,170	31,806	3,364
10	512351,449	8685636,833	33,237	31,806	1,431
F2	512391,462	8685712,188	33,528	31,806	1,722

Tabell 4: Koordinater og høyder for oppmålte punkter

Målepunktenes posisjon i forhold til hverandre er vist i Figur 3.

AT-329 COLD REGION FIELD INVESTIGATIONS

Figur 3: Målepunktenes posisjon

HØYDEPROFIL

Høydeprofilet over gjennomsnittlig havnivå er vist i Figur 1, korrigert for P1's korrekte posisjon og geoidehøyde.

Figur 4: Høydeprofil over gjennomsnittlig havnivå

De oppmålte punktenes koordinater, distanse fra første måling og høyde over gjennomsnittlig havnivå er vist i Tabell 5.

AT-329 COLD REGION FIELD INVESTIGATIONS

	E	N	Dist	H _{m.s.l.}
H1	512313,3	8685673,309	0,000	2,417
H2	512305,975	8685685,539	14,256	2,431
H3	512304,369	8685687,881	17,096	2,496
H4	512302,497	8685691,348	21,036	3,266
H5	512300,421	8685693,891	24,318	4,658
H6	512299,907	8685695,631	26,133	3,616
H7	512298,853	8685698,289	28,992	2,584
H8	512296,472	8685703,532	34,750	2,437

Tabell 5: Posisjon av høydeprofilets punkter

Punktenes posisjon er vist i Figur 5.

Figur 5: Høydeprofilets punkter

VURDERING AV RESULTATENE

Bestemmelsen av den lokal basestasjonen, P1's, posisjon ble gjort gjennom baselinjer fra de kjente punktene NP124 og 9402. Figur 6 viser den lokale basestasjonens posisjon i forhold til disse kjente punktene.

Figur 6: Lokal basestasjons posisjon i forhold til kjente punkter

Man ser tydelig at begge de kjente punktene ligger i samme retning i forhold til P1. Ved en optimal geometri ville de kjente punktene ligget fordelt på flere kanter av P1, samt at antallet minst burde vært tre, helst fire.

Baselinjene mellom de tre punktene bør forme et fullstendig triangel mellom punktene hvis målingene er nøyaktige og ikke inneholder store feil. Dette er kontrollert i Tabell 6.

	dX	dY	dZ	dHgt
NP124-P1	-1727,5942	-2480,8	453,4707	-31,3579
NP124-9402	-547,1788	-681,36	114,9452	-32,4414
9402-PI	-1180,4124	-1799,44	338,5131	1,072
Totalt	-0,003	-0,0012	0,0124	0,0115

Tabell 6: Kvalitetskontroll av baselinjer

Man ser tydelig av Tabell 6, at ved å gå rundt triangelet ender man tilnærmet opp i samme punkt. Baselinjene har dermed kun en usikkerhet på millimeternivå i geosentrisk X- og Y-retning, samt under 1,3 cm både i geosentrisk Z- retning og absolutt høyde mellom punktene.

Roveren viste under målingene av borehull og høydeprofil en nøyaktighet ned mot millimeternivå. Nøyaktigheten for disse målingene har, i tillegg til overnevnte feilmarginer, usikkerhet ved om antennestangen ble satt i korrekt posisjon og holdt helt vertikalt. Den totale presisjonen, ned mot et par centimeter må allikevel kunne sies å ha vært svært god. Dette fordi, en presisjon ned mot 1 centimeter er det maksimale som kan oppnås og er tilstrekkelig for dette formål.

KILDER

- Forelesninger i AT-329, Terje Skogseth, 20. 24 februar 2012
 - GNSS (GPS) part 1, system and measurements
 - Reference systems
 - Data processing, base stations

Målepkt.	E	Ν	$\mathbf{H}_{ellipse}$	E _{cor}	N _{cor}	H _{cor, ellipse}	\mathbf{H}_{geo}	H _{m.s.l.}
5	512352,537	8685598,382	28,304	512362,0312	8685598,15	34,72555	31,806	2,91955
6	512339,526	8685610,626	28,46	512349,0202	8685610,39	34,88155	31,806	3 <i>,</i> 07555
9	512328,335	8685615,608	28,748	512337,8292	8685615,38	35,16955	31,806	3,36355
10	512341,955	8685637,065	26,815	512351,4492	8685636,83	33,23655	31,806	1,43055
F2	512381,968	8685712,42	27,106	512391,4622	8685712,19	33,52755	31,806	1,72155
8	512309,972	8685603,334	28,067	512319,4662	8685603,1	34,48855	31,806	2,68255
H1	512303,806	8685673,541	27,801	512313,3002	8685673,31	34,22255	31,806	2,41655
H2	512296,481	8685685,771	27,815	512305,9752	8685685,54	34,23655	31,806	2,43055
H3	512294,875	8685688,113	27,88	512304,3692	8685687,88	34,30155	31,806	2,49555
H4	512293,003	8685691,58	28,65	512302,4972	8685691,35	35,07155	31,806	3,26555
H5	512290,927	8685694,123	30,042	512300,4212	8685693,89	36,46355	31,806	4,65755
H6	512290,413	8685695,863	29	512299,9072	8685695,63	35,42155	31,806	3,61555
H7	512289,359	8685698,521	27,968	512298,8532	8685698,29	34,38955	31,806	2,58355
H8	512286,978	8685703,764	27,821	512296,4722	8685703,53	34,24255	31,806	2,43655

VEDLEGG 1: Oppmålte og korrigerte punkter