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Enabling a Powerful Marine and Offshore Decision-Support
Solution Through Bayesian Network Technique

A. G. Eleye-Datubo,1 A. Wall,1 A. Saajedi,1 and J. Wang1∗

A powerful practical solution is by far the most desired output when making decisions under

the realm of uncertainty on any safety-critical marine or offshore units and their systems. With

data and information typically being obtained incrementally, adopting Bayesian network (BN)

is shown to realistically deal with the random uncertainties while at the same time making

risk assessments easier to build and to check. A well-matched methodology is proposed to

formalize the reasoning in which the focal mechanism of inference processing relies on the

sound Bayes’s rule/theorem that permits the logic. Expanding one or more influencing nodal

parameters with decision and utility node(s) also yields an influence diagram (ID). BN and

ID feasibility is shown in a marine evacuation scenario and that of authorized vessels to

floating, production, storage, and offloading collision, developed via a commercial computer

tool. Sensitivity analysis and validation of the produced results are also presented.

1. INTRODUCTION

If all the information that could be known about a
maritime hazardous event/situation were obtainable
for its risk assessment, then the results of such stud-
ies that are accurately carried out would not be sub-
ject to uncertainty. Instead, data and information are
typically obtained incrementally. Thus, the inherent
uncertainty can be due to imperfect understanding
of the domain, incomplete knowledge of the state of
the domain at the time where a given task is to be
performed, randomness in the mechanisms govern-
ing the behavior of the domain, or a combination of
these. It is necessary then to model the assessment
domain such that the probabilistic measure of each
event becomes more reliable in light of the new in-
formation being received. In view of this, the domain
that is represented can be put out in an intuitive visual
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format as a Bayesian network (BN) model. The BN
reasoning system can be viewed as the generalization
of prepositional logic and resolution theorem proving
that incorporates the treatment of uncertainty for the
structure of the complex argument. Probability and
Bayes’s theory ensure that inferences based on the
network are sound.

As essential in a risk-based marine community,
reasoning with incomplete knowledge is one of the
fundamental features of human intelligence. Compe-
tent expert and engineering judgment (to compensate
for any lack of mature data) incorporated in a BN
can aid in providing its solid knowledge base. The
generic nature of this technique means that it can
be developed further and applied widely in marine
and offshore applications. With this philosophy in a
logical framework, adopting BN to formalize reason-
ing about system dependability will make assessments
easier to build, check, and certainly update.

The analogy of BN models can be further ex-
panded/transformed to output influence diagrams
(IDs) that are highly intuitive in the decision-making
process. Such diagrams aid the visibility of a large
number of interacting issues and their effects on the
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decision. They can also offer the benefit of a robust
practical solution that is required for achieved safety
at an affordable cost. Hence, the final scheme of the
BN can give a model in which reasoning is justified,
while it enables a powerful marine decision-support
solution that is easy to use, flexible, and appropriate
for the assessment task.

2. LITERATURE BRIEFING ON BN

Until 20 years ago, the issue of ordering possible
beliefs, both for belief revision and for action selec-
tion, was seen as increasingly important and prob-
lematic, and at the same time, dramatic new devel-
opments in computational probability and decision
theory directly addressed perceived shortcomings.
The key development (Pearl, 1988) was the discov-
ery that a relationship could be established between
a well-defined notion of conditional independence in
probability theory and the absence of arcs in a di-
rected acyclic graph (DAG). This relationship made
it possible to express much of the structural informa-
tion in a domain independent of the detailed numeric
information, in a way that both simplifies knowledge
acquisition and reduces the computational complex-
ity of reasoning. The resulting graphic models have
come to be known as BNs.

BNs are at the cutting edge of expert systems re-
search and development. Unlike the traditional rule-
based approach to expert systems, they are able to
replicate the essential features of plausible reasoning
(reasoning under conditions of uncertainty) and com-
bine the advantages of an intuitive visual representa-
tion with a consistent, efficient, and mathematical ba-
sis in Bayesian probability. Critically, they are capable
of retracting belief in a particular case when the basis
of that belief is explained away by new evidence. Be-
cause of the development of propagation algorithms
(Lauritzen & Spiegelhalter, 1988; Pearl, 1988; Rus-
sell & Norvig, 2003), followed by availability of easy-
to-use commercial software and growing number of
creative applications (Jensen, 1993; SERENE Con-
sortium, 1999), BN has caught the sudden interest of
research in different research fields since the early
1990s. Perhaps the greatest testament to the useful-
ness of Bayesian problem-solving techniques is the
wealth of practical applications that have been devel-
oped since then in areas of intelligent decision, safety
assessment, information filtering, autonomous vehi-
cle navigation, weapons scheduling, medical diagno-
sis, pattern recognition, and computer network diag-
nosis (Heckerman et al., 1995). Since most real-life

problems involve inherently uncertain relationships,
BN is a technology with huge potential for application
across many domains.

IDs, which further extend the notion of BNs by
including decision nodes and utility nodes, have been
used in human reliability assessment (Humphries,
1995) and decision making on explosion protection
offshore (Bolsover & Wheeler, 1999). A good ref-
erence work for the computational method under-
lying the implementation of them in Hugin is de-
scribed in (Jensen et al., 1994). The Hugin software
(Jensen, 1993) enables a powerful risk assessment so-
lution that is easy to use, flexible, and appropriate
for use on marine and offshore applications. Other
renowned program packages for BN building and in-
fluencing include MSBNx (Kadie et al., 2001), created
at Microsoft Research, and Netica (Netica, 2002), the
commercial program developed by Norsys Software
Corp.

3. SEMANTICS OF A BN

Fundamental to the idea of BNs is the concept of
modularity, whereby a complex system is built by com-
bining simpler parts of components that are related in
a causal manner. A BN provides factorized represen-
tation of a probability model that explicitly captures
much of the structure typical in human-engineered
models. More generally, a BN is a DAG that en-
codes a conditional probability distribution (CPD) at
its nodes on the basis of arcs received. Therefore, by
definition:

BN = DAG encoded with CPD.

The graphical structure of a BN (i.e., the DAG)
depicts a qualitative illustration of the interactions
among the set of random (i.e., chance) variables, such
as hazardous events, that it models. Numerically, a
BN represents the joint probability distribution (JPD)
among the modeled variables. This distribution is de-
scribed efficiently, exploring probabilistic indepen-
dencies among the modeled variables. Each node is
described by a probability distribution (PD) condi-
tional on its direct predecessors that has its values en-
tered into a conditional probability table (CPT), i.e.,
a matrix of conditional probabilities, associated with
the node. The encoded nodes with no predecessors
are described by prior PDs. Those with predecessors
are described by posterior PDs.
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4. BAYESIAN INFERENCE MECHANISM

Bayesian inference is a process by which obser-
vations of a real-world situation are used to update
the random uncertainty about one or more variables
characterizing aspects of that situation. It relies on
the use of Bayes’s rule/theorem (Bayes, 1763) as its
rule of inference, defining the manner in which uncer-
tainties ought to change in light of newly made ob-
servations. This subjective probability theory is only
part of the Bayesian inference mechanism. Together
with the applicable results of such probability con-
cepts as the product and sum rules, the concept of
conditional independence (Pearl, 1988), dependency
separated or d-separated (Pearl, 1988), the techniques
of marginalization (Vellido & Lisboa, 2001), and the
pattern of inference (Wellman & Henrion, 1993; Lau-
ritzen & Spiegelhalter, 1988; Pearl, 1988), it provides
the basic tool for both Bayesian belief updating and
for treating probability as logic. In order to apply these
tools, the prior probabilities and the likelihood prob-
abilities must be obtained.

4.1. Bayes’s Theorem/Rule

In order to make probability statements about the
model parameters, the analysis must begin with pro-
viding initial or prior probability estimates for specific
outcomes or events of interest. Then from sources
such as a special report, a database, a case study,
etc., some additional information (i.e., data or evi-
dence) about the event, or an entirely new event(s),
is obtained. In light of this new information providing
new data belief, it is desirable to improve the state of
knowledge, and thus the prior probability values are
updated by calculating revised probabilities, referred
to as the posterior probabilities (these probabilities
provide the basis for action). Bayes’s theorem provides
a means for making these probability calculations. Es-
sentially, it is a relationship between conditional and
marginal probabilities, and is given for two events, A
and B, by Equation (1).

P(A| B) = P(B | A)P(A)

P(B)
. (1)

Each term in Bayes’s theorem has a conventional
name. The term P(A) is called the prior probability
of A. It is “prior” in the sense that it precedes any
information about B and this is what causes all the ar-
guments. P(A) is also the marginal (total) probability
of A. The term P(A | B) is called the posterior proba-
bility of A, given B. It is “posterior” in the sense that it

is derived from or entailed by the specified value of B.
The term P(B | A), for a specific value of B, is called
the likelihood function for A, given B and can also
be written as L(A | B). The term P(B) is the prior or
marginal (total) probability of B, but also one that pro-
vides evidence of interest for the probability update
of A. Its inverse is usually regarded as a normalizing
constant, α. With this terminology, the theorem may
be paraphrased as

posterior = likelihood × prior

evidence
→ P(A| B)

= αL(A| B)P(A). (2)

Generally, for an event B with states {b1, . . . , bm}, the
posterior probability on the event A can be computed
from the Bayes’s rule as

P(A| b1, . . . , bm) = P(b1, . . . , bm | A)P(A)

P(b1, . . . , bm)
. (3)

The process of Bayes’s theorem is repeated every time
new or additional information becomes available, so
that as Lindley (1970) puts it, “today’s posterior prob-
ability is tomorrow’s prior.” Thus, as the number of
pieces of evidence increases, the dependence of the
posterior on the original estimated prior decreases.

4.2. The Likelihood Function

The likelihood principle (Fisher, 1922; Edwards,
1992) states that all the relevant information in the
model is contained in the likelihood function (which is
of fundamental importance in the theory of Bayesian
inference). “Likelihood” is a solitary term used to rep-
resent such a function and is one of several informal
synonyms for “probability”; so sometimes, P(B | A) is
called the likelihood of A, given B, and is denoted by
L(A | B). The reason for this is that if, for example,
a1, . . . , an are possible states of event A with an ef-
fect on the event B in which b is known, then P(b | ai)
is a measure of how likely it is that ai is the cause.
Moreover, this is a simple, compelling concept that
has a host of good statistical properties and can be
derived from the reasoning logic as well as by expert
judgment.

5. STRUCTURAL EFFECTS ON THE
INFERENCE PROCESSING

One of the best features of BNs is that one can in-
corporate new node(s) as the data become available.
Thus, it follows that one “effect” can be a “cause” of
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a new/another node and a “cause” can also be the
“effect” of a new/another node. Owing to this addi-
tional capability of a BN model, it can constitute a
description of the probabilistic relationships among
the system’s variables that amount to a factorization
of the joint distribution of all variables into a series
of marginal and conditional distributions. Evidence
propagation may take place via a message-posting
scheme.

5.1. Joint Probability Distribution

A probabilistic model may consist of a set of vari-
ables X = {X1, X2, . . . , Xn}, which exploits condi-
tional independence to represent the JPD over X hav-
ing the product form (Pearl, 1988):

P(x1, . . . , xn)

= P(x1 | parent(X1))

× P(x2 | parent(X2)) . . . P(xn | parent(Xn))

=
n∏

i=1

P(xi | parents(Xi )). (4)

P(x1, x2, . . . , xn) gives the JPD and, like the CPD,
it is a table of values where one entry is made for each
possible combination of values that its variables can
jointly take. The JPD for a problem captures the prob-
ability information of every possible combination of a
set of variables, and their states. Once a JPD has been
defined for a problem, then it is possible, using it along
with the axioms of probability, to answer any proba-
bilistic query regarding any of the variables. This in-
cludes their value given additional evidence, that is,
their posterior probabilities, although the space, and
consequently, time complexity required in represent-
ing and manipulating the JPD is exponential in the
number of variables considered (D’Ambrosio, 1999).
For example, the JPD required to represent a system
with 20 binary values would have 220 (1,048,576) val-
ues. This causes a problem in the elicitation, storage,
and manipulation of these values, thus making the use
of JPDs unfeasible for any practical use. Fortunately,
when modeling most real systems, advantage is taken
of any inherent structure the system has by modeling
the system as a graph (D’Ambrosio, 1999).

In the general case, a JPD over a set of variables,
X = {X1, X2, . . . , Xn}, can be defined recursively us-
ing the product rule (Equation (5)):

P(X1, X2, . . . , Xn)

= P(X1 | X2, . . . , Xn)P(X2, . . . , Xn)

= P(X1 | X2, . . . , Xn)P(X2 | X3, . . . , Xn)P(X3, . . . , Xn)

= P(X1 | X2, . . . , Xn)

× P(X2 | X3, . . . , Xn) · · · P(Xn−1 | Xn)P(Xn). (5)

This factorization property of JPDs is referred
to as the chain rule of probabilities and is one that
allows any ordering of variables in the factorization.
Such a rule is especially significant for BNs, because
it provides a means of calculating the full JPD from
conditional probabilities, which is what a BN stores.
For example, the JPD for three events, A, B, and C,
can be expressed more compactly as:

P(A| B, C)P(B, C) = P(A, B, C)

= P(B | A, C)P(A, C). (6)

Then, in applying Equation (5), Bayes’s theo-
rem specifies the probability of an event A, given the
condition that an event B and an event C both occur
(B→A←C) as:

P(A| B, C) = P(B | A, C)P(A| C)

P(B | C)
. (7)

5.2. Belief Probability Update

Evidence is new information about a random vari-
able that causes a change about its PD. Newly avail-
able evidence is brought about when a particular state
of an event happens. The effect of such new evi-
dence will certainly propagate throughout the net-
work and thereby cause the posterior probabilities
of other events to iteratively be recalculated. This is
achievable by message posting along the edges (Pearl,
1988). Therefore, introducing the notion of evidence
is imperative in the reasoning with BN. Nonetheless,
it is worth noting that the real power and generaliza-
tion of BN is that entered evidence propagates in both
directions, even though the graph is directed.

Suppose there is an interest in a given event C (re-
ferred to as the query variable) having a joint prob-
ability P(c), over C. Before any evidence becomes
available, the propagation process consists of calcu-
lating the marginal probabilities P(Ci = ci), or simple
P(ci), for each Ci.

Now, suppose some evidence has become avail-
able to the event C. In this situation, the propaga-
tion process consists of calculating the conditional
probabilities P(Ci = ci | ε = e), or simple P(ci | e),
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where ε is a set of evidential nodes with known values
ε = e.

The newly available evidence, ε, can be decom-
posed into two subsets:� ε+

i , the subset of ε that can be accessed from Ci

though its parents (top-down), i.e., propagates
in the direction of the arcs.� ε−

i , the subset of ε that can be accessed from
Ci though its children (bottom-up), i.e., prop-
agates against the direction of the arcs.

For the probability of Ci = ci, given that e = e+
i

for a parent and e = ei
− for a child:

P(ci | e) = P
(
ci

∣∣ e−
i , e+

i

) = P
(
e−

i

∣∣ ci , e+
i

)
P

(
ci

∣∣ e+
i

)
P

(
e−

i

∣∣ e+
i

) .

(8)

Since Ci d-separates ε−
i from ε+

i (i.e., ε−
i ||ε+

i ,
where || stands for d-separation), conditional inde-
pendence can be used to simplify the first term in the
numerator and then 1/P(e−

i | e+
i ) can be treated as a

normalizing constant, α, so that:

P(ci | e) = αP
(
e−

i

∣∣ ci
)
P

(
ci

∣∣ e+
i

)
. (9)

According to the Bayes’s theorem conventional
interpretation (Equation (2)), posterior is prior
scaled by likelihood and normalized by evidence (so
�(posteriors) = 1), thus Equation (9) can be rewritten
as

P(ci | e) = αλi (ci )πi (ci ), (10)

where

λi(ci) represents P(e−
i | ci), a message passed

onto ci as likelihood evidence; and

Fig. 1. Evidence propagation via

message posting.

π i(ci) represents P(ci | e+
i ), a message passed

onto ci as prior evidence.

To compute the functions λi(ci) and π i(ci), sup-
pose a typical node Ci has parents B = {B1, . . . , Bm}
and children A = {A1, . . . , An} (see Fig. 1).

The evidence ε+
i can be partitioned into m disjoint

components, one for each parent of Ci:

ε+
i = {

ε+
B1Ci

, . . . , ε+
BmCi

}
, (11)

where the evidence ε+
Bj Ci

is the subset of ε+
i contained

in the Bj-side of the link Bj → Ci.
Similarly, the evidence ε−

i can be partitioned into
n disjoint components, that is:

ε−
i

{
ε−

A1Ci
, . . . , ε−

AnCi

}
, (12)

where the evidence ε−
Bj Ci

is the subset of ε−
i contained

in the Aj-side of the link Aj ← Ci.
Then, given an instantiation of b = {b1, . . . , bm}

of the parents of Ci, π i(ci) can be computed (i.e., top-
down propagation) via a recursive solution (Pearl,
1986; Castillo et al., 1997). Likewise, given an instan-
tiation of a = {a1, . . . , an} of the children of Ci, λi(ci)
can be computed (i.e., bottom-up propagation).

The CPTs of the events never change by enter-
ing new evidence; only the new-fangled/belief proba-
bility in each of its possible states is determined by
the belief probability in the states of the nodes to
which it is directly connected. The algorithm simulta-
neously updates belief for all the nodes, causing them
to become posterior probabilities, until the network
reaches equilibrium. In other words, the JPD of the
variables changes each time new information is learnt
about the observable variables. Such calculations for
the propagation of probabilities in a BN are usually
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tedious (Jensen et al., 1990). Therefore, Hugin is used
as the robust BN programming environment for mod-
eling and calculations (Jensen, 1993). This software
tool allows for interactive creation of the network,
maintenance of knowledge bases, and incorporates
new, efficient algorithms to support the execution of
Bayesian probability calculations, thus making a com-
plete probabilistic model.

6. INFLUENCE DIAGRAM

An ID was originally a compact representation
of a decision tree for a symmetric decision scenario:
one is faced with a specific sequence of decisions, and
between each decision one observes a specific set of
variables. Nowadays, an ID is a BN expanded with
utility functions and with variables representing deci-
sions, in order to provide decision-making capabilities
within the model. The utilities and decisions are both
represented using nodes of distinguishing shapes in
contrast to that of BN variables. In fact, the subset
of an ID that consists of only chance nodes is a BN.
Therefore, by definition:

ID = BN expanded with decisions

and utilities functions.

An ID that uses only these elements is a simple
but powerful communication tool, and one that can
also be used to perform a quantified assessment of the
decision problem. While the ID is very useful in show-
ing the qualitative structure of the decision problem
(Gámez et al., 2004) for the domain, the network must
also remain acyclic, and there must exist a directed
path that contains all decision nodes (usually drawn
as rectangles or squares) in the network. Decision-
makers are interested in making the best possible de-
cisions (i.e., the preferences) for an application, and
therefore utilities are associated with the state config-
urations of the network. Each utility node (normally
drawn as diamond-shaped or hexagons) has a utility
function that associates a utility to each configura-
tion of states of its parents (utility nodes do not have
children).

Making decisions influences the probabilities of
the configurations of the network and as such, the
algorithms for probability updating can be modified to
solving IDs. Its evaluation is done by setting the value
of the decision node to a particular choice of action
(i.e., best risk control option (RCO)), and treating
the node just as a nature node with a known value
that can further influence the values of other nodes.

The action’s utility is calculated first by calculating the
conditional probabilities for the parents of the utility
node using standard inference algorithm, and then
feeding the results to the utility function. One can
compute the expected utility (EU) of each decision
alternative (the global utility function is the sum of
all the local utility functions). The alternative with the
highest EU is chosen; this is known as the maximum
expected utility (MEU) principle.

6.1. Expected Utility

In order to assess the decision alternatives in D,
a utility table U(D, S) is needed to yield the utility
for each configuration of decision alternative and out-
come state for the determining variable. The EU of a
given decision alternative d is calculated by

EU(d) =
∑

S

P(S | d)U(d, S), (13)

where U(d, S) are the entries of the utility table in
the value node U. The conditional probability P(S | d)
is computed from CPT of the determining variable
having outcome states, s ∈ S, given that the decision
alternative d is fired.

6.2. Maximum Expected Utility

There is the presumption from utility theory (Von
Neumann & Morgenstern, 1964), and from decision
theory as well (North, 1968; French, 1988), that hu-
mankind is rational when inferring subjective value
(or utility) from choices (or preferences). This implies
that decisionmakers maximize their utility wherever
possible. Based on this, two principles are then used
to determine the existence of the utility function:� Utility principle: If a decisionmaker obeys the

axioms of utility, then there exists a real-valued
function, U, that operates on states such that
U(X) > U(Y) if and only if X is preferred to
Y, and U(X) = U(Y) if and only if there is no
preference between X and Y.� MEU principle: This implies that a rational
decisionmaker should choose an action that
maximizes EU of outcome states. Thus, given
that d1, d2, . . . , dk are the mutually exclusive
decision alternatives of D, the decision alter-
native d that gives MEU is:

MEU(d) = max
d

{EU(d1), EU(d2), . . . , EU(dk)}.
(14)
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Utility theory can be used in both decision mak-
ing under risk (where the probabilities are explic-
itly given) and in decision making under uncertainty
(where the probabilities are not explicitly given). The
theory can be expanded to application for safety-
based marine and offshore decisions through cost-
benefit evaluation, whereby utmost considerations, for
cost-effectiveness, are given to both cost and safety
(i.e., risk reduction). In such a case, evaluation of
RCOs according to values of implied cost of avert-
ing a fatality (ICAF), rather than the utility figures of
an outcome state, may enable initial comparing and
ranking of these options. The more attractive options
for realization would be those with the lower ICAFs.
The ability to map preferences (e.g., RCOs) into a
single numerical value for ranking follows from the
axioms of utility.

7. PROPOSED BN METHODOLOGY

A BN reasoning process has been developed to
provide a natural framework for maritime risk assess-
ment and decision support. A flow chart of the ap-
proach is shown in Fig. 2, and this format ensures that
the BN analysis is conducted in a disciplined, well-
managed, and consistent manner that promotes the
delivery of quality maritime decision-making results.
The depth or extent of application of the method-
ology should be commensurate with the nature and
significance of the problem. Nonetheless, the entire
methodology consists of nine key steps that have been
encapsulated within the following three modules:� Module 1: Visual BN Modeling (i.e., Steps 1

and 2).� Module 2: Inference Algorithm of Bayesian
Analysis (i.e., Steps 3 to 7).� Module 3: Reasoning Evaluation via an ID
(i.e., Steps 8 and 9).

In building a BN model, one can first focus on
specifying the qualitative structure of the domain
(Module 1) and then on quantifying the influences.
When finished, one is guaranteed to have a complete
specification of the PDs. Then, following evidence
propagation (Module 2), an intuitive evaluation for
decision making is enabled through added nodes of
decisions and utilities (Module 3). Hugin is used as
the robust BN programming environment for the risk
modeling and its probability calculations. Explana-
tions for each of the steps in these underlying modules
are given as follows:

Step 1—Setting of Domain for Accident Category
Information: Very important to the BN process
is available information and failure data col-
lected from every possible source, especially
those from regulatory practice, databases and
networks, tests, experiments, physical mod-
els, simulations, and analytical models. Expert
judgment is utilized throughout the under-
standing of the domain and also in assigning
valuable figures where data are not available.
As observed data becomes available, they can
be used to update, refine, or replace the esti-
mates provided by subject matter experts. In
this sense then, whenever there are uncertain-
ties, e.g., in respect of data or expert judgment,
the significance of these uncertainties and lim-
itations will be identified, so as to assess the
degree of reliance that should be placed on the
available data.

Step 2—Creation of Nodes and Establishment
of Probabilistic Relations: For the first step
in constructing the BN, the development of
the graphical representation, indicating the
relevant variables (nodes) and dependencies
(arcs), is important, not only because it deter-
mines the level of detail to be used in the subse-
quent functional model building, but also be-
cause it provides a straightforward means of
analyzing and communicating causal assump-
tions that are not easily expressed using stan-
dard mathematical notation (Pearl, 2000).

In general, the problem under consideration
is characterized by a number of functions or
parameters (i.e., the relevant variables). These
relate to, for example, a cause event, A, or an
effect event, B, and can be mapped as labeled
nodes into the network pane. Identified influ-
ence relationships between nodes are estab-
lished such that an arc connection is placed be-
tween an influencing (parent) node and an in-
fluenced (child) node. The terminating arrow-
head of the arcs is then set to point at the child
nodes.

Step 3—Formulation of CPTs and Prior Prob-
abilities: The inference consists of comput-
ing the conditional probabilities with the BN;
thus, the next step will be to specify the states
and to input values for a CPT (i.e., the con-
ditional probability matrix) of each node. In
other words, evidence can be entered to the
network by manually setting probabilities in
the network. The result of the associated tables
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Fig. 2. Flow chart of a proposed BN reasoning framework.

gives the prior probabilities, such as P(A) and
P(B), for the nodes. However, nodes without
any parents give probabilities that are marginal
instead of the conditional ones.

Step 4—Normalization of Probability Values in
the CPT: The probability of the marginal and
conditional terms being true is nonzero, and
becomes 1 after normalization (i.e., the belief
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values are normalized on a scale from 0 to
1). Thus, the process in this step is to nor-
malize the probability values in every column
of CPTs. This normalizing (with an encoded
inverse value that gives the normalizing con-
stant, α) has to be done independently for each
state of each manifestation across the set of
effects.

Step 5—Processing of Data via Bayesian Infer-
ence Induction: The Bayesian inference is en-
abled via the formula: P(A | B) = αL(A | B) ×
P(A), which indicates that the likelihood func-
tion, L(A | B), is the instrument to pass from
prior PD, P(A), to posterior PD, P(A | B), via
Bayes’s theory. L(A | B) is induced via LP.

Step 6—Propagation of Evidence: One has to
keep in mind that entered evidence propagates
in both directions, even though the graph is
directed.

Step 7—Generation of Posterior Probabilities:
The beliefs computed after evidence is entered
to improve the state of knowledge, and thus
the prior probability values, are updated by
calculating revised probabilities, referred to as
the posterior probabilities, P(A | B). Posterior
marginal probabilities, P(A) and P(B), can be
obtained via the marginalization process.

If feedback is required due to availabil-
ity of new data, then the calculated posterior
probabilities may become the new prior prob-
abilities for future risk assessment. However,
they proceed forward to provide the basis for
action.

Step 8—Creation of Decision Node(s) for Pre-
ferred RCOs: Initializing the network retracts
all findings entered in the risk analysis domain.
An ID should be constructed so that one can
see exactly which variables (represented by
discrete chance nodes) are known at the point
of deciding for each decision node. Where the
state of a chance node is known at the time of
making a decision, one must add a link from the
chance node to the decision node. Where the
state of a chance node is known before some
given decision, and this chance node has im-
pact on another chance node that is also known
before the decision, only the last chance node
needs to have a link to the decision node. This
means that there only needs to be a directed
path from a chance node to a decision node if
the chance node is known before the decision
is made.

Evaluation of the ID is done by setting
the value of the decision node to a particular
choice of action (i.e., best RCO), and treating
the node just as a nature node with a known
value that can further influence the values of
other nodes.

Step 9—Creation of Utility Node(s) for Values
of Achievable Benefits: The action’s utility is
calculated first by calculating the conditional
probabilities for the parents of the utility node
using the standard inference algorithm, and
then feeding the results to the utility function.
The utility figures can be given in terms of
property, health, finances, liability, people, en-
vironment, public confidence, etc. When prop-
agating, one can follow the EU of choosing
each decision in the next decision node in the
decision sequence in the node list pane. The
best of the RCOs provides the MEU. How-
ever, the ranking of the RCOs resulting from
the domain case study should aim to be used
by decisionmakers at all levels and in a variety
of contexts without a requirement of specialist
expertise.

8. MARITIME APPLICATION OF
REASONING IN BAYESIAN MODELS

To illustrate the universal applicability of BNs and
IDs to decision-making problems, it is best to imagine
trying to model a situation in which causality plays a
role but where an understanding of what is actually
going on is incomplete. Thus, things need to be de-
scribed probabilistically and by inference. Therefore,
the demonstration of the modeling and reasoning per-
spective of this powerful tool is given in the following
settings:� A typical ship evacuation in an accidental risk

contribution scenario (a marine case study).� Authorized vessels to floating, production,
storage, and offloading (FPSO) installation
collision scenario (an offshore case study).

8.1. Case Study of a Typical Ship Evacuation
in an Accidental Risk Contribution Scenario

The safety of people onboard a ship in distress is
very much dependent on an effective emergency es-
cape, evacuation, and rescue (EER) operational sys-
tem (final barrier to avoid fatalities) being in place and
being enabled in due time. As the EER system in place
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Fig. 3. Risk contribution from major hazards leading to a marine evacuation scenario.

would have to be activated due to the occurrence of
some major accident situations, a risk contribution
tree (RCT) of the underlying situations may well pro-
vide a suitable platform for putting out a BN ship
evacuation model. A generic RCT for effecting the
evacuation modeling is shown in Fig. 3. It comprises a
contribution fault tree and an escalation event tree for
the accident categories of fire, collision, and flooding
events, together with an evacuation event tree rel-
evant to the accident categories. Each contribution
fault tree of the RCT also has the integration of in-
fluencing factors (e.g., technical, organizational, and
human factors).

The frequency (F) and potential loss of life (PLL)
values shown in Fig. 6 are derived from incident
databases. Frequency distributions need to be con-
verted into PDs for use in BN, while the PLLs can
be applied in cost-effectiveness calculations for use in
ID. Since a failure frequency, F, in marine assessments
is well expressed in terms of per vessel operating year,
the overall F values in the RCT can be considered as
their failure rate, λ, value. If the failure were to follow
an exponential distribution, then an equivalent prob-
ability value, P(t), for a failure state for the vessel’s
operational life expectancy, t, is given by:

P(t) = 1 − e−λt . (15)

From the case study RCT, this distribution may
be used, since it is similar to the discrete Poisson dis-
tribution when the occurrence of the event is 0. So, for
example, given that a ship has an operational life ex-

pectancy of 25 years, evacuation being necessary can
be calculated as:

P(evacuation necessary)

= 1 − e−(1.75×10−2×25) = 0.355.

For some typical EER operation (as based on
cause-to-effect relationship), a free-fall lifeboat and
a rescue boat may be utilized. Thus, a simplified evac-
uation model to ensure the safety of people onboard
a vessel in a distress situation can be represented by
the BN model in Fig. 4. Most importantly, the aim of
this model and the proceeding analysis is to show how
BN can be applied in marine risk assessment while at
the same time giving a clearer picture of how a BN
model actually works.

To start with, this case study setting has been mod-
eled in a perspective such that “evacuation being nec-
essary” does not imply that free-fall lifeboats will not
be launched, but that there is a high probability on

Fig. 4. Simplified BN showing a marine evacuation scenario.
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Fig. 5. CPT for “free-fall lifeboat.”

their launch (or usage). This is modeled in the BN by
filling in a CPT for the “free-fall lifeboat” node (Fig. 5).

This CPT is actually the conditional probability
of the variable “free-fall lifeboat,” given the vari-
able “evacuation.” The possible values (launch or
no launch) for “free-fall lifeboat” are shown in the
first column. Note that a probability is provided
for each combination of events (four in this case).
The particular values in this table suggest that the
use/launch of free-fall lifeboats is unlikely to increase
(8% chance), but once evacuations are necessary,
their use is very likely to increase (96% chance). Now,
let the use/launch of a rescue boat be considered. To
model the uncertainty about whether or not the use of
a rescue boat will increase when evacuation is neces-
sary, added to the graph is a new node “rescue boat”
and an arc from “evacuation” to the new node. Al-
though there might not be a great chance that free-
fall lifeboats will not be launched, rescue boats may
not be quickly responsive in this setting of the evacu-
ation. Therefore, the CPT for “rescue boat” (Fig. 6) is
different from the one for “free-fall lifeboat.”

The CPT associated with the node “evacuation”
is somewhat different in nature. This node has no
“parent” node in this example, and consequently,
only needs to be assigned a CPT without conditions
(Fig. 7).

Determining the probabilities of CPTs is done in
several ways. In an instance as this example, it might
be a simple case of assigning the probabilities based
on the statistical data obtained from a marine incident

Fig. 6. CPT for “rescue boat.”

Fig. 7. CPT for “evacuation.”

database, or from experts with good experience to
predict the subjective probabilities.

Having entered the probabilities, the BN can now
be used to do various types of analysis. The most im-
portant use of BN in this case study is in revising prob-
abilities in the light of actual observations of events
(in BN modeling, these are called evidences for the
maritime BN).

The values of these conditional probabilities can
be used to obtain the unconditional probabilities. For
example, the unconditional probability that free-fall
lifeboats will be launched can be calculated as follows:

P(free-fall lifeboat launch)

= (P(free-fall lifeboat launch | no-evacuation)

× P(no-evacuation)) + (P(free-fall

lifeboat launch | evacuation necessary)

×P(evacuation necessary))

= (0.08 × 0.645) + (0.96 × 0.355) = 0.392.

The rule used here to compute the unconditional
probability is called marginal probability. Now the un-
conditional probability that free-fall lifeboats will be
launched is known to be 0.392 (i.e., 39.2%).

By running the BN for this evacuation scenario,
as can be seen in Fig. 8, Hugin gives to the left the node
list pane and to the right the modeled network pane.
The monitor window placed near the corresponding
node in the network pane gives exactly the same as
those in the node list pane, and thus they are not al-
ways necessary (as they can take up too much space).
They are used mainly for nodes that have special inter-
est. As can be seen from the node list pane, as well as
that in the monitor window, the unconditional prob-
ability that rescue boats will be launched is 26.3%.

Here comes the beauty of BNs. Suppose the
launching of free-fall lifeboats is known to increase.
In this case, the evidence that “free-fall lifeboat =
launch” is entered, and then this evidence can be used
to determine:
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Fig. 8. BN showing results for unconditional probabilities in evacuation scenario.

� The updated probability of the necessary evac-
uation effected.� The updated probability that the use of a rescue
boat also increases.

Using Bayes’s rule (as presented in Equation (1)),
the probability of occurrence for necessary evacua-
tion can be calculated as:

P(evacuation necessary | free-fall lifeboat launch)

=

{
P(free-fall lifeboat launch | evacuation)

×P(evacuation necessary)

}
P(free-fall lifeboat launch)

= 0.96 × 0.355/0.392 = 0.869.

Using marginal probability, the probability that
there will be a rescue boat launch (see Fig. 9) can be
calculated as:

Fig. 9. BN showing propagated results when free-fall lifeboat is launched.

P(rescue boat launch)

= (P(rescue boat launch | no-evacuation)

×P(no-evacuation))

+ (P(rescue boat launch | evacuation necessary)

× P(evacuation necessary))

= (0.05 × 0.131) + (0.65 × 0.869) = 0.571.

Entering pieces of evidence and using them to
update the probabilities in this way is called propa-
gation. Fig. 9 shows the results with “evidence” node
for free-fall lifeboats being launched represented by
an evidence bar in both the node list pane and in its
monitor window in Hugin. As would be expected, the
probability of occurrence for necessary evacuation in-
creases dramatically to 86.9% when launch of free-fall
lifeboats has been observed. This update is due to di-
agnosis (i.e., bottom-up) inference from the “free-fall
lifeboats” node to the “evidence” node. Furthermore,
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Fig. 10. Fire, collision, and flooding

added as parent nodes of evacuation.

Fig. 11. CPT for each parent node of evacuation.

Fig. 12. New evacuation CPT reflecting conditional probabilities due to parent nodes.

the updated probability of occurrence for evacuation
being necessary results in bringing up the probabil-
ity for launching of rescue boats to 57.1%, by way of
causal (i.e., top-down) inference.

Now, there lies the provision that the major ma-
rine accidents of fire, collision, and flooding, which
are often variables for external factors, may lead to
evacuation. The use of such information has to imply
that a new node is created and added as parents to the
evacuation node, for each of these accident categories
(Fig. 10).

These new root nodes (i.e., nodes without par-
ents) of evacuation require a CPT without conditions,

Fig. 13. A suitable alarm added as

individual child node to fire and flooding.

as they do not have other influences acting on them
(Fig. 11).

For the evacuation node, on the other hand, an
expanded new CPT is used to reflect the fact that
it is now conditional on its three parent nodes (i.e.,
“fire,” “collision,” and “flooding”). In other words,
the evacuation CPT provides “P(evacuation | fire, col-
lision, flooding)” (see Fig. 12).

Given that in the event of fire or/and flooding an
alarm will be triggered, a suitable alarm node as child
node (shown as the highlighted nodes in Fig. 13) can
each be linked from the nodes of “fire” and “flooding,”
respectively.
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Fig. 14. CPT for individual alarm nodes

of fire and flooding.

Fig. 15. BN showing marginalized probabilities of evacuation node and its parents.

Since each of the new alarm nodes acts on entirely
different accident events, their respective CPTs pro-
vide input values of different conditional probabilities
(Fig. 14).

Analyzing from the fact that the JPD
“P(evacuation, fire, collision, flooding)” is known,
the unconditional probability that evacuation is
necessary, “P(evacuation ‘necessary’)” can be given
by marginalizing out the “fire,” “collision,” and
“flooding” variables. Hugin computes the marginal
probability as 35.54% or 0.355 (Fig. 15). Note that
Hugin also gives the values of 0.304 and 0.19 as the
marginal probability of the “fire alarm” and “flooding
alarm,” respectively.

In this initialized situation, the root nodes are
characterized by their prior probabilities. It is shown

Fig. 16. BN showing propagated results of evacuation evidence to its parent nodes.

in Fig. 15 that the probability of fire being in its de-
structive state is 0.20, the probability of collision be-
ing in its capsize state is 0.19, and the probability of
flooding being in its sinking state is 0.09. Suppose it
is observed that “evacuation is necessary,” then this
entered evidence increases the belief in all of the
possible causes (namely, “destructive” for fire, “cap-
size” for collision, and “sinking” for flooding) based
on diagnostic inference. Specifically, applying Bayes’s
theorem yields a revised probability for fire in de-
structive state of 0.388 (up from the prior probabil-
ity of 0.20), a revised probability for collision in cap-
size state of 0.374 (up from the prior probability of
0.19), and a revised probability for flooding in sinking
state of 0.217 (up from the prior probability of 0.09)
(Fig. 16). Nonetheless, these revised probabilities are
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Fig. 17. BN showing propagated results of both evacuation and flooding evidence.

subject to change by the provision of some additional
observation(s), for example:� The additional evidence firmly on the vessel

sinking due to flooding; or� The additional evidence that the fire alarm is
activated.

If additional evidence would be firmly on the ves-
sel “sinking due to flooding” as the more likely cause,
then adding this evidence and applying Bayes’s rule
would cause the increased probability of “destruction
by fire” and “capsize by collision” to drop to 0.208
and 0.20, respectively (as shown by the monitor win-
dows of Fig. 17), thus “explaining away” the “destruc-
tion by fire” and “capsize by collision” as a cause for
the “evacuation being necessary.” This phenomenon
is due to intercausal inference.

Conversely, if it is discovered that the fire alarm
is activated, then entering this evidence and applying
Bayes’s rule would yield the revised probabilities of
0.83 for destruction by fire, 0.259 for capsize by colli-
sion, and 0.144 for sinking by flooding (as shown by
the monitor windows of Fig. 18). Thus, the odds are
that the destructive fire, rather than capsize due to

Fig. 18. BN showing propagated results of both evacuation and fire alarm evidence.

collision and sinking due to flooding, has caused the
evacuation to be necessary. Once again, it is said that
the necessary evacuation has been “explained away.”

Now, going back to when only evacuation being
necessary is observed, the launch of free-fall lifeboats
and rescue boats are seen to have a probability of
0.96 and 0.65, respectively (Fig. 19), as induced by
causal inference. However, when the additional evi-
dence of “flooding by sinking” is entered, these re-
spective probabilities remain unchanged (Fig. 20). It
is said that the “evacuation” node d-separates all of its
respective parent nodes from each other.

The notion of d-separation (which follows from
human perception) can also be noticed where only
evidence is given for “flooding by sinking.” In this
case, evacuation being necessary increases from a
probability of 0.355 (see Fig. 14) to 0.856 (Fig. 21),
but the probability values in the nodes for “fire” and
“collision” stay the same (refer to Fig. 15), as they are
not the cause for the increase in probability of the
“evacuation” being necessary. Thus, the path from the
“flooding” node to these other nodes is blocked at the
evacuation node. However, the probability values for
the launch of free-fall lifeboats being 0.393 and rescue
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Fig. 19. BN showing evacuation evidence propagation to free-fall lifeboats and rescue boats.

Fig. 20. Flooding and evacuation evidence propagation to lifeboats and rescue boats.

Fig. 21. BN showing evidence of flooding being propagated to evacuation.
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Fig. 22. Simplified ID showing a marine

evacuation domain.

Fig. 23. Encoded inputs in both the nodes of optimal survival and life-saving.

boats being 0.263 (Fig. 8) increase to 0.834 and 0.564,
respectively (Fig. 21).

From the analysis so far, although the launch of
“free-fall lifeboat” and “rescue boat” both depend on
“evacuation” being necessary, “rescue boat” launch
appears to output a probability value that is less than
that of the “free-fall lifeboat” launch. The risk ana-
lyst has the opportunity to do something about this
outcome situation. Thus, a decision node that de-
pends upon the rescue boat is added into the model,
thereby converting the network into an ID. This new
type of node will permit the modeling of an effec-
tive decision-support solution that outputs optimal
survival for those onboard the vessel.

Before the ID is finished, a utility function, which
gathers information for the potential benefits that
come with the different implementation options, and
as well, enabling the risk analyst to calculate the EU
of the optimal survival, needs to be specified. Given
the outcome state of “free-fall lifeboat,” a value node
of life-saving, based on the value of lives saved, is
created for specifying these quantitative benefits as a
function of the decision. Fig. 22 presents the overall
view of this evacuation domain ID.

Where a formal safety assessment study has been
undertaken for such an evacuation scenario, various
RCOs can be identified as decision alternatives based
on their cost effectiveness. For the purpose of this case
study, the optimal survival node has been issued with
four hypothetical alternatives, RCO1, RCO2, RCO3,
and RCO4, for which the utility value of saving life
for the “launch” of “free-fall lifeboat” is specified as
£0.25M, £0.26M, £0.24M, and £0.23M, respectively.
The “no launch” case, on the other hand, is quantified
as £0.008M, £0.007M, £0.009M, and £0.008M, respec-
tively. Fig. 23 shows the quantitative inputs for both
the optimal survival decision node and the life-saving
utility node (unit is in 106 GBP). As seen, the tabular
format for the decision node for optimal survival gives
just the listing of the entire decision alternatives.

Hugin can then calculate the EU for all of the
RCOs as follows:

EU(RCO) = P(no-launch of lifeboat | RCO)

× U(RCO, no-launch of lifeboat)

+ P(launch of lifeboat | RCO)

× U(RCO, launch of lifeboat).
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Fig. 24. ID showing initialized values for optimal survival EU.

When no observations are made, the EU values
for RCO1, RCO2, RCO3, and RCO4 are assigned
with £0.10M, £0.11M, £0.10M, and £0.10M, respec-
tively (Fig. 24). On another note, if an RCO implies
large economic benefits with safety implications, it
would display a lower net cost of averting a fatal-
ity (NetCAF). Thus, NetCAF may be used in place
of EU to identify which RCOs are justifiable from a
commercial or combined commercial and safety point
of view.

Once any observation is made, it propagates the
evidence by message passing and therefore updates
the free-fall lifeboat probability. This, in turn, recalcu-
lates the EU values for the four decision alternatives.
As the best RCOs are those that give the MEUs of
optimal survival decision, the RCOs can be ranked
accordingly for use in the decision-making process.
The MEU is calculated as:

MEU(RCO) = max
RCO

{EU(RCO1), EU(RCO2),

EU(RCO3), EU(RCO4)}.
In a worst-case scenario, collision might cause

damage to the structural integrity of the vessel. As
a result, capsize and flooding might result in the sink-
ing of the ship. Since those onboard the vessel need to
survive such a disaster, the RCOs for optimal survival
are given a ranking profile according to their MEU.

The MEU order ranking is RCO2 (£0.23M), RCO1
(£0.22M), RCO3 (£0.21M), and RCO4 (£0.20M), as
shown in the monitor window in Fig. 25. Thus, the rec-
ommendation is for RCO2 and RCO1 to be given top
priority with respect to implementation of the optimal
survival strategy.

A number of entered evidence circumstances for
this model can be investigated. For example, even with
the accidental evidence of all root nodes entered, the
calculated MEU emerges again with a ranking order
of the RCOs as RCO2, RCO1, RCO3, and RCO4, al-
though higher MEU values are reached in this setting
(as displayed in the node list pane of Fig. 26).

In the initialized situate, however, it is imperative
to determine how “sensitive” the BN ship evacuation
model output node results for “evacuation,” “free-fall
lifeboat,” “rescue boat,” and “optimal survival” are
to the input change in variation between the range
of lowest and highest possible values that each key
event node of “fire,” “collision,” or “flooding” (as well
as any combination of these events) can take. If the
model follows the real-world phenomena, then an in-
crease/decrease in the rate or probability at which any
of its input event(s) may occur would certainly result
in the effect of a relative increase/decrease in the rate
or probability of occurrence of its output events.

For example, a partial sensitivity analysis for
±20% change to the probability of fire spreading can
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Fig. 25. ID showing propagated results of both collision and flooding.

Fig. 26. ID showing optimal survival MEU after entered evidence on all key root nodes.

provide a more realistic setting for which risk analysts
and decisionmakers can well determine the response
in terms of change in magnitude and direction of the
resulting output events. To do this sensitivity analysis,
the lowest probability value in the range, which is 0.16
(i.e., −20% of the initial probability of fire spreading
value), replaces the initial input value of 0.20; and
then using marginal probability, the probabilities of
evacuation being necessary, free-fall lifeboat launch,
and rescue boat launch are calculated as 0.339 (≈
−4.7% change), 0.378 (≈ −3.7% change), and 0.253
(≈ −3.8% change), respectively (see Fig. 27). Like-

wise, the MEU for optimal survival becomes £0.10M
for RCO1, £0.10M for RCO2, £0.10M for RCO3, and
£0.09M for RCO4.

In repeating the sensitivity analysis calculation af-
ter substituting the highest probability value in the
range, which is 0.24 (i.e., +20% of the initial prob-
ability of fire spreading value), the probabilities of
evacuation being necessary, free-fall lifeboat launch,
and rescue boat launch are calculated as 0.372 (≈
+4.7% change), 0.406 (≈ +3.7% change), and 0.273
(≈ +3.8% change), respectively (see Fig. 28). Simi-
larly, the MEU for optimal survival becomes £0.11M
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Fig. 27. ID showing model output values for an initialized −20% of P(fire spreading).

Fig. 28. ID showing model output values for an initialized +20% of P(fire spreading).

for RCO1, £0.11M for RCO2, £0.10M for RCO3, and
£0.10M for RCO4.

From the sensitivity study, the effects of the±20%
variation in P(fire spreading) reveal that this input pa-
rameter is a linear function with respect to the proba-
bility of the evacuation model outputs. Although the
decision for optimal survival is sensitive to the state
value of P(fire spreading), it does not quite reveal the
ranking order in the ±20% variation setting.

To establish well the best-ranking order for P(fire
spreading), a graphical form of the sensitivity analy-
sis may be considered. Based on just varying P(fire
spreading) through [0, 1], as can be seen in Fig. 29,
it is clear that RCO2 gives the best decision alterna-
tive while RCO4 gives the worst option to implement.
RCO1 appears to overlap with RCO3, but in the re-

gion of P(fire spreading) equals 0.0 to 0.1 and 0.9 to
1.0, RCO1 can clearly be identified as a definite better
option over RCO3. Therefore, the overall decision al-
ternative ranking based on P(fire spreading) is given
as RCO2, RCO1, RCO3, and RCO4.

8.2. Case Study of Authorized Vessels to FPSO
Collision Scenario

To offload oil for shipment to market, a ship-
shaped FPSO vessel, being stationed in one location
will typically be routinely serviced by supply/standby
vessels and shuttle tankers moor at the stern of the
FPSO. In a well-known generic scenario, FPSOs can
be collided by these ships. They have a risk profile dif-
ferent from fixed platforms and commercial trading
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Fig. 29. Effect of varying P(fire

spreading) for optimal survival ranking.

tankers and, in addition, passing ships also pose a col-
lision risk if an FPSO is close to a sailing route.

The frequency of collision between a shuttle
tanker and an installation, or storage unit, is esti-
mated to be 0.0046/year due to failure of the dy-
namic positioning system. It is assumed that 20% (i.e.,
0.0009/year) of shuttle tanker collisions occur after
loading operations are complete and the fully loaded
vessel is leaving the field. This relatively low percent-
age is due to the fact that the shuttle tanker is holding
and maintaining position, in order to achieve loading,
and is aware of the installation’s location. In addition,
it is usual practice to perform shuttle tanker loading
operations at a safe distance from the facility. The re-
maining 80% (i.e., 0.0037/year) of shuttle tanker col-
lisions are assumed to occur while the tanker is empty
and on approach to the facility. Fig. 30 gives the fault

Fig. 30. Fault tree to estimate frequency

of collisions of an FPSO by authorized

vessels.

tree to estimate frequency of collisions of an FPSO by
authorized vessels (Husky Oil, 2000).

The failure of the dynamic positioning system on
a maintenance support vessel, causing a collision, is
estimated to be 0.0137/year (see Fig. 30).

The evaluation of an FPSO’s collision and con-
tact damage risks needs some special technique(s);
thus a BN, as shown in Fig. 31, is created in Hugin to
model this scenario for the FPSO not being able to
take measures in avoiding a collision by the autho-
rized vessels maneuvering within close proximity of
it. With the ship lifetime and overall production sys-
tem very conservatively set to 20 years of operation
for a lifetime probability in the Bayesian analysis, ap-
propriate probabilities were assigned into the CPT of
each node in the model domain. These were based
on the failure rates derived from WOAD Statistical
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Fig. 31. BN of authorized vessels-FPSO

collision scenario with conditional

probability tables.

Report (1998) (see Table I) and from the assessments
carried out by Husky Oil (2000).

When the net is compiled in “run” mode (Fig. 32),
the ship-FPSO collision network window is split into
two by a vertical separation, and this gives the initial
situation to the left with the node list pane and to the

Table I. Probability Values from Failure Frequency for Offshore

Mobile Units During 1980–1997

Failure

Frequency of

Mobile Units Probability

Type of Accident (1000 Unit-Years) (at t = 20 Years)

Anchor failure 8.35 0.15

Blowout 10.73 0.19

Capsize 6.56 0.12

Collision 2.78 0.05

Contact 11.53 0.21

Crane accident 4.07 0.08

Explosion 2.78 0.05

Falling load 8.05 0.15

Fire 13.02 0.23

Foundering 5.27 0.10

Grounding 3.18 0.06

Helicopter accident 0.60 0.01

Leakage 3.28 0.06

List 5.86 0.11

Machinery failure 1.39 0.03

Off position 11.53 0.21

Spill/release 9.44 0.17

Structural damage 17.09 0.29

Towing accident 5.86 0.11

Well problem 14.01 0.24

Other 2.48 0.05

right with the network pane. The probabilities of a
node in a certain state are viewed by double clicking
it in the node list pane.

To find the probability of the shuttle tanker and
the support vessel being in a loss of position failure
state, given the information that collision with the
FPSO takes place, this fact is entered by double click-
ing the state “impact” of the Collision-“FPSO” node
(Fig. 33). The figure shows the probability of the shut-
tle tanker being lost while empty to be the most dis-
turbing quantity of the “Shuttle Tanker” node (i.e.,
49.75%). Likewise, the “Support Vessel” node now
indicates an increase in failure probability to 64.77%.

If it is taken that the shuttle tanker completely
(100%) maintains its position, then it can be seen, as
in Fig. 34, that the support vessel would have failed
drastically in positioning fault (i.e., 91.7%) for there
to be a 100% collision impact on the FPSO.

On another note, where collision on the FPSO
occurs at either the shuttle tanker being lost while
empty (Fig. 35) or while full (Fig. 36), then the Sup-
port Vessel node indicates a 50:50 chance of having a
positioning fault or maintaining its position.

Evidence identified for nodes being in any state
can be added as a node with the links attached from it
to these nodes. Some resulting events known to occur
due to collision with an FPSO have been identified
herein. Some of these, as highlighted in Fig. 37, include
spills/release, ignition, explosion, and human injury.
Note that the probability values shown in the figure
are those for the initial situation in the “run” mode.

When the collision-to-FPSO is set at 100%
impact, except for the Ignition node, the failure
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Fig. 32. Initial situation in the BN of authorized vessels-FPSO collision scenario.

Fig. 33. Probability of impact for Collision-“FPSO” set to 100%.

Fig. 34. Collision-“FPSO” impact probability set to 100% in shuttle tanker maintained position.

Fig. 35. Collision-“FPSO” impact probability set to 100% in shuttle tanker loss while empty.
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Fig. 36. Collision-“FPSO” impact probability set to 100% in shuttle tanker loss while full.

Fig. 37. Addition of evidence and resulting events from the Collision-“FPSO” situation.

probability value of each highlighted node is in-
creased (note from Fig. 38). Those that have signif-
icantly increased by a wider margin are especially
the Spill/Release node and the Human Injury node.
The Ignition node has remained the same in prob-
ability value, since it is only a piece of evidence
for explosion and fire outbreak, and not a result-
ing incident of the collision to the FPSO in this
scenario.

With the Explosion node set to a failure of 100%
blast during a 100% impact on collision with the
FPSO, the probability of 96.66% indicates a high
amount in certainty for structural damage to happen
(Fig. 39). The same can be said for the Human Injury
node, which now has a probability value of 84.26%.
As such, a great deal of attention will have to be
paid to increasing safety for these represented nodes.
Thus, the risk analyst and decisionmakers might find

it appropriate to consider modeling out an ID for
explosion.

Other such pieces of typical evidence as the
human element (with states such as “error” and
“intervention”), weather condition (with sea states
of “calm,” “harsh,” “adverse,” and “severe”) (see
Fig. 40), electrical/electronic aspects, etc., can be made
into new nodes and added to diversify the range of the
BN applicability in this scenario.

The scenario settings for this case study can en-
able a dominant decision in a marine and offshore
risk assessment study. Nonetheless, as extensions to
the scenario network may lie in the discrepancy of
the risk analyst and decisionmakers, the author has
chosen to keep the network to an acceptable size. It is
best, however, that the risk analyst is aware, in tackling
a scenario effectively, of being twisted in the complex-
ities that very large BNs bring.
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Fig. 38. Situation for resulting events from Collision-“FPSO” impact probability set to 100%.

Fig. 39. Situation for resulting events with Collision-“FPSO” and explosion failure set to 100%.

Fig. 40. Some added typical evidence for

a shuttle tanker loss of position.
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9. BENEFITS AND LIMITATIONS OF BNs

In BNs, each representation possesses particu-
lar advantages and disadvantages that make it more,
or less, suitable for its intended purpose. These have
been recognized and thus outlined in Sections 9.1 and
9.2, respectively.

9.1. Strengths of BNs

The Bayesian framework offers several advan-
tages over alternative modeling approaches. The most
important of these advantages are:� It provides intuitive visual representation with

a sound mathematical basis in Bayesian prob-
ability that translates into a genuine cause and
effect relationship.� Being probabilistic in its approach, it facili-
tates a meaningful communication of uncer-
tainty. It is consistent with the risk assessment
paradigm, and allows decisions to be made
based on expected values.� It is capable of combining diverse data, expert
judgment, and empirical data. By incorporat-
ing expert judgment, the method is not para-
lyzed by a lack of observational data.� It allows easy updating of prediction and infer-
ence in a statistically rigorous manner when
observations of model variables are made.
Deleting or adding new information does not
also require the whole network to be revised.� The assessment endpoints are chosen so that
they are of vital interest to stakeholders and
decisionmakers, and can be easily conceived
in terms of utility for use in formal decision
analysis.

These particular advantages offered by BN make
it very useful in situations where uncertainty is
unavoidable—Bayesian methods provide a mecha-
nism to model the uncertainty. Thus, such methods can
also be used where normal optimization and decision-
making techniques are difficult to apply.

9.2. Difficulties of Using BNs

In spite of their remarkable power and potential
to address inferential processes, there are some inher-
ent limitations and liabilities to BNs. These drawbacks
include the following:� They cannot easily incorporate unobserved

variables, owing to the fact that the size of the
internal CPT for a child node can very quickly
become quite large.

� There is computational complexity/difficulty
(filling in of details of numerical recipe, com-
puter time, convergence monitoring), which
is exponential in the number of nodes. These
complex models with large numbers of param-
eters, which are often referred to as nonpara-
metric (NP), become NP-hard in complexity
as they approach general multiply-connected
networks.� Likelihood functions are not always solvable
analytically (rather, heuristics are extensively
used in practice).

The complexity of inference is usually associated
with large probabilistic dependencies recorded during
inference. However, a large model is preferable to a
smaller one only if it provides a sufficiently large im-
provement of fit to offset the penalty for its additional
complexity.

10. CONCLUDING REMARKS

A BN could be used to model the components
that affect risk and how they interact. Besides, the
graphical nature of a BN makes the model intuitive
for users to understand. The process of performing
Bayesian updating involves selecting a prior PD, cal-
culating the normalizing constant, formulating the
likelihood function, and then calculating the poste-
rior PD. The likelihood function incorporates the ob-
jective information, while the prior distribution can
include subjective information known about the dis-
tributions of the model parameters. Therefore, the
posterior distribution incorporates both the objective
and the subjective information into the distributions
of the model parameters. Hence, BNs are well suited
for modeling maritime safety-critical systems predic-
tion and risk analysis.

The methodology that has been proposed uses
BNs to combine evidence from different information
sources for a quantitative assessment of a generic
scenario. A program tool, such as Hugin, can allow
the model user to adjust the probabilities of states of
nodes based on observed information. The software
can also propagate this change through the network,
and update the conditional probabilities at each node
based on the new information.

As shown in both the ship evacuation and the
authorized vessels to FPSO installation collision sce-
nario case studies, by using BNs and a tool such as
Hugin, it is possible to show all the implications and
results of a complex Bayesian argument based on
the underlying Bayes’s theorem. This theorem is the
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fundamental principle governing the process of log-
ical Bayesian inference that determines what con-
clusions can be made with a degree of confidence
based on the totality of relevant evidence available.
The probabilistic predictions give stakeholders and
decisionmakers a realistic appraisal of the chances
of achieving desired outcomes. The results from the
case studies, as well as other renowned state-of-the-
art research work, do indicate that BNs give a sound
and transparent approach to modeling marine oper-
ational risk. Thus, BN is an integrative model that
can be used effectively within the existing decision-
making process. BNs can also be expanded to form
IDs, which permits rapid development of a practical
decision model. The value of IDs as a communication
tool has been confirmed. Their use is highly intuitive
and they provide a compact alternative to decision
trees such that, during review, persons who are not
risk analysts are able to interpret the diagrams and
propose improvements to the decision model.
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