
Exam 2012 Computational Physics

Morten Vassvik ∗

Norwegian University of Science and Technology, Trondheim

The second order phase transitions of the Q-valued Potts model for Q = 2 and Q = 3 has been

investigated by having the spins in the Potts model placed on a square lattice in a temperature

gradient. This way I have been able identify the ordered and disordered regions of the system by

means of detecting damage spread across the lattice. I use the heat bath algorithm to evolve the

system towards steady state. I have calculated the correlation length critical exponent nu, which

diverges when the system undergoes a second order phase transition. I have also calculated the

corresponding temperature where this transition occurs. ν = 1.018± 0.024 and Tc = 1.1899± 0.0079

was found for the Q=2 system, while ν = 1.550 ± 0.0274 and Tc = 1.04188 ± 0.00194 was found for

the Q=3 system.

Introduction

For Q ≤ 4, the Potts model undergoes a second order
phase transition at a critical temperature T = Tc. For
Q ≤ 4, the phase transition is of second order and for
Q > 4 the transition is of first order. In this paper I
examine the cases where Q = 2 and Q = 3. A special
characteristic of a second order phase transition is that
the correlation length ξ diverges as:

ξ = a |T − Tc|−ν (1)

where a is a prefactor and ν is the correlation length
critical exponent. The correlation length in a first order
phase transition, on the other hand, does not diverge,
but spontaneously jumps to infinity.

Spins at a lower temperature than the critical region
will be magnetized (ordered), while spins at higher tem-
perature will be paramagnetized (disordered). The crit-
ical region is defined later. The critical region will be
identified using the concept of damage spreading, which
I use to measure the location and width of the critical
region. I use these quantities to calculate Tc and ν.

Theory

Model

The Potts model is defined through the Hamiltonian

H = K
∑
〈i,j〉

δσiσj (2)

where the spins σi take the integer values 1 ≤ σi ≤ Q,
K is a positive constant, and δσi,σj is a Kronecker-Delta
function. The sum is over nearest neighbours. For Q =
2, the Potts model is equivalent to the Ising model when
σi = 1

2 (3 + Si), J = K
2 and Si = ±1.

The spin system is on a 2D square lattice of size L. I
have oriented the lattice so that the spin in the lower-left
corner is at position (0, 0), and the spin in the upper-right
corner is at position (L− 1, L− 1).

Figure 1: Two spin systems of size L = 8 superimposed
on top of each other. Green means the spins are different.
Purple means spin up. Yellow means spin down. The
color gradient at the bottom denotes the temperature
gradient, from hot (red) to cold (blue).

The system is kept in a temperature gradient, where
the temperatures along the first column and last column
are kept constant at T = Tmin and T = Tmax, respec-
tively. The temperature varies linearly along the rows.
The gradient is defined as:

g =
Tmax − Tmin

L− 1
(3)

The temperature of each node (spin) is then defined
as follows:

T(i,j) = Tmin + g · i (4)

where the index i goes along the rows and j along the
columns.

∗I have collaborated with Isak Buhl-Mortensen, Christian Roca Catalá and Amund Hov. I have discussed results with Vegard Flovik,
Lalit Kumar and Eirik Lhaugen Fjrbu

1

A periodic boundary condition is implemented in the
direction perpendicular to the temperature gradient, in
the j-direction.

The concept of damage spreading works as follows: I
prepare two systems, identical apart from the spins in the

first column, with constant σ
(1)
(1,j) = 1 in the first system

and constant σ
(2)
(1,j) = 2 in the second. The same spins are

updated in both systems during the Monte Carlo updat-
ing scheme. The first system represents a system with
a small magnetic field at the first column and clusters
of spin 1 tend to form close to it. Likewise for the sec-
ond system. The spins at the last column are also held
constant, but this is not strictly necessary.

Define a quantity d(i,j) which is 1 if the spins in the
two systems are different and 0 if they are identical. I
use this to identify the interface that seperates the or-
dered from the unordered region: For each row j, search
for the first d(i,j) with value 1 starting from the i = L−1
edge. This is the profile of the interface. The profile is
characterized by its mean position (along the row) and
its width (fluctuation):

〈I〉 =
1

L

L−1∑
j=0

I(j) (5)

W 2 =
1

L

L−1∑
j=0

(I(j)− 〈I〉)2 (6)

where each I(j) is measured at a given Monte Carlo
”time” (sample time, not physical time).

Figure 2: An interface profile of a large system at a
given MC sampling time given by the border of the green
cluster.

I use the theory by Sapoval, Rosso, and Gouyet to
determine the correlation length exponent ν. Since the
interface that separate the ordered from the disordered
region fluctuates across the critical region, I have that
W = ξ, the correlation length. The temperature differ-

ence across this region is given by

∆T = gW (7)

Thus, by combining equation (1) and (7):

W = a |∆T |−ν = a |gW |−ν (8)

which I can solve for W and get:

W = bg−
ν

1+ν (9)

where b = a1/(1+ν). Therefore, to find ν I plot W as a
function of the gradient g in a log-log plot, whose slope
I use to extract the critical exponent.

Due to the finite size of the system, I cannot deter-
mine the critical temperature directly. I determine an
effective critical temperature, Teff , which I can define
by combining equation (4) and (6):

Teff = Tmin + g 〈I〉 (10)

I extrapolate the lattice to infinity to find Tc. By using
finite size scaling analysis, I find:

Teff = Tc +Ag
1

1+ν (11)

Thus, if I plot Teff as a function of g1/(1+ν), I can find
Tc by setting g = 0 (L =∞)

Errors and Limitations

Due to the limited size of the systems, limitated simula-
tion time and the fact evolution of the system strongly
depend on the initial configuration, I am bound to get
some errors due to fluctuations. I will try to discuss some
of them here.

The size of the system scales as L2, that means that
the probability to choose an arbitrary spin at random is
1
L2 . This also means that if I double the system size, I
most likely need to do at least four times as many Monte
Carlo steps to start the measurements. Most likely I
need to do more, because of other effects and correla-
tions. I need to run the system until it has reached a
steady state, that is, the average position of the inter-
face, and therefore the fluctuations W and the effective
temperature Teff , will stay approximitely constant over
time. The time until reaching this steady state, tSS, var-
ied quite a lot. For systems of size L = 100, I had to wait
between 50 million and 200 million Monte Carlo steps
until I could start measuring. As the systems grow even
larger, this time increases dramatically: For instance, I
encountered a system of size L=500 that did not reach
steady state even after 15 billion steps. Therefore, to do
simulations on large systems requires a lot of time and
resources. It is essential to identify when the system is
in, or close to, steady state so that I know when I can
start measuring.

From equation (9), I can see that the fluctuations of
the interface increase as the gradient decreases (since ν
is positive), this is a natural consequence of increasing
the size of the system: If I keep the temperature con-
stant, but double the size, ∆T must stay constant and
naturally W must also increase. If I keep the size con-
stant, but increase the temperature range, I can lower
the fluctuations.

An observation worth mentioning is that the fluctua-
tion in 〈I〉, W , and Teff themselves are quite big, as can
be seen from Figure 3. The significance of these lessen

2

as the size of the system increases (and W/ 〈I〉 → 0 as
g → 0). The constant spins at the hottest column work
has the opposite effect as the spins at the coldest column.
The effect of these lessen as the system size increase, but
they need to be taken into account, since they are differ-
ent for each initial configuration.

One last source of error may be the random number
generator used to choose spin, specially if the period is
too small. An example of this can be seen in Figure 3,
where the low period of the RNG appear as a large-scale
periodic fluctuation. In this example I used the infamous
16807-LCG to generate all my random numbers. I there-
fore decided to change from 16807 to the better suited
Mersenne Twister algorithm[2] using the GNU Scientific
Library, which has a period of 219937 (compared to 230

for 16807).

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900 1000
 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35
I(x)

W(x)
T(x)

I(x) fit
W(x) fit
T(x) fit

Figure 3: ”Time” evolution of a system of size 100x100
with Tmax−Tmin = 1.2 run for 100 million Monte Carlo
steps. The upper and lower graphs are the interface 〈I〉
and the fluctuations W , respectively, both using the
left y-axis. The middle graph is Teff , calculated from
equation (10), and uses the right y-axis. The constant
fits are off because I started sampling from the first it-
erations. The x-axis has units (10 000x) Monte Carlo
steps. Steady state was reached at about 20 million
iterations.

Implementation

For these simulations, I work in units where the constant
in the Hamiltonian, K, is 1. I use the heat bath algo-
rithm as the Monte Carlo updating scheme, and it works
as follows: First you choose a spin at random (sans the
first and last colums) and give it a new value q, chosen
so that 1 ≤ q ≤ Q and with probability proportional to
the local Boltzmann weigth

p̄(q) = e(δ(i−1,j),q+δ(i,j−1),q+δ(i+1,j),q+δ(i,j+1),q)/T(i,j) (12)

To do this, I form the sum

N =

Q∑
q′=1

p̄(q′) (13)

to normalize the Boltzmann weights. We then calculate

the cummulative probabilities

P (q) =
1

N

Q∑
q′=q

p̄(q′) (14)

for 1 ≤ q ≤ Q. We then pick a random number r uni-
formly distributed on the unit interval. If r < P (1), set
q = 1, otherwise if P (n − 1) ≤ r < P (n) set q = n. We
note that the old spin value is not present in choosing
the new value, only the adjacent spins are used1.

I let the system run until it has reached a steady state,
that is, 〈I〉has reached a plateu and is fluctuating about
its average value, which varies depending on L and the
temperature interval. From this moment on, I calculate
〈I〉, W 2, and Teff from equation (5),(6), and (10) respec-
tively. I do 100 000 iterations of the heat bath algorithm
between each sample, this is to get sufficient info about
large-scale fluctiations. When I have gathered 5000 sam-
ples, I calculate the average value and standard deviation
of 〈I〉, W 2, and Teff from these, which I use with equa-
tion (9) and (11) in order to find ν and Tc. I vary the size
of the system and the temperature range to get different
values for the gradient g.

I used GNUPLOT’s fit-function to fit my data to a
linear function, where I provided the uncertainties in 〈I〉,
W 2 and Teff as a third argument in addition.

Results and Discussion

Q=2

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-6 -5.5 -5 -4.5 -4 -3.5 -3

ln
(W

)

ln(g)

log-log W(g)

ln(W) vs ln(g)
fit: -0.483751(0.02836) - 0.504492(0.006048)*x

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

T
e
ff

g

Teff vs g

Teff vs g
fit: 1.12899(0.00079) + 0.783599(0.007304)*x

1This may be the origin of the name of the algorithm. The spins are located inside a ”heat bath”, surrounded by other spins of other
temperatures.

3

Figures 4 and 5: The log-log plot of equation (9)
and the plot of equation (11), respectively, for Q=2.
Regression with gnuplot gave ν = 1.018 ± 0.024 and
Tc = 1.12899± 0.00079

For Q = 2 I varied the system size from L = 50
to L = 230. At the same time, I varied the temper-
ature range from Tmax − Tmin = 0.6 to 2.0 centered
about Tc = 1/ln(1 +

√
2). The log-log plot of equa-

tion (9) is showed in Figure 4, from which I calculate
ν = 1.018 ± 0.024, which is within the theoretically ex-
pected value, ν = 1.

In Figure 5 you can see the plot of Teff vs the gra-
dient (ν = 1) with the same data points as was used to
calculate ν above, using the value of ν found above. We
find that Tc = 1.12899 ± 0.00079, which is close to the
expected theoretical value, Tc = 1/ ln(1 +

√
2) ≈ 1.134.

Q=3

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-5.5 -5 -4.5 -4 -3.5 -3

log W vs log g

W(x)
fit: -0.909194(0.01888) - 0.607903(0.004214)*x

 1.09

 1.1

 1.11

 1.12

 1.13

 1.14

 1.15

 1.16

 1.17

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

Teff vs g

Teff vs g**(1/(1+1.55))
fit: 1.04118(0.001094) + 0.440977(0.009358)*x

Figures 6 and 7: The log-log plot of equation (9)
and the plot of equation (11), respectively, for Q=3.
Regression with gnuplot gave ν = 1.550 ± 0.0274 and
Tc = 1.04188± 0.00194

For Q = 3 I varied the system size from L = 50 to
L = 190. At the same time, I varied the temperature
range from Tmax − Tmin = 0.6 to 1.8 centered about
Tc = 1/ ln (1 +

√
3) ≈ 0.99. The log-log plot of equa-

tion(9) is showed in Figure 6, from which I calculate
ν = 1.550 ± 0.0274, which is within the theoretically
expected value, ν = 1.

In Figure 7 you can see the plot of Teff vs the gra-

dient (ν = 1) with the same data points as was used to
calculate ν above using the value of ν found above. We
find that Tc = 1.04188 ± 0.00194, but I do not have a
theoretical value to compare it with. I have my doubts
that this is completely correct, since the points does de-
viate quite a bit from a straight line. This could mean
that my value of ν is slighty off. I unfortunately do not
have enough data to make any more statements about
this. If I had more time, I would definitively investigate
this further. Perhaps the burning algorithm explained in
[1] would give different results.

Other observations

The time until the system reach steady state varies
greatly, and the variation increases dramatically with in-
creased system size. For L = 100, I have observed values
of tSS ranging from 20 million iterations until 200 million
iterations. For L = 200, I observed values from 100 mil-
lion to 600 million. For L = 500, I had one case where it
did not reach steady state, even after 15 billion iterations.
This seems to depend strongly on the initial configura-
tion of the spins, especially after the first clusters have
formed in the ordered region. When the interface front
is very close to Tmin, it is going to compete with large
clusters of identical spins. The larger these clusters are,
the longer it seems to take for it to reach steady state.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 40 60 80 100 120 140 160 180 200 220 240

"stats3.dat" using 1:9

Figure 8: Time until steady state as a function of
system size.

In Figure 8 you can see a plot of tSS vs system size
for Q = 2, where the criterion Teff > Tc was used as a
criterion for when to start sampling. When I calculated ν
and Tc, I used the following criterion to determine when
to start sampling: I tried a few trial runs to observe how
much tSS fluctuated for a given size L. I then used these
numbers to set a roof of when to start sampling, varying
between 50 million iterations for small L (< 75), and up
to 800 million iterations for large L (> 200). I realize
that this is not an efficient way to decide if the system
is ready to be sampled, since I may risk waiting longer
than necessary before starting.

I also measured the fluctuation of the average val-
ues of 〈I〉, W , and Teff . The following were observed:
The fluctutations in 〈I〉 and W went down for increasing
temperature intervals. The opposite happened for Teff ,
where its standard deviation increased with increasing
temperature interval. Both of these make sense in the

4

light of equation (10) and (11). In Figure 9, where Teff
is plotted as a function of the gradient with error bars for
the y-values, you can see how severe the fluctuations are.
This means that the large uncertainty in the averages
themselves should be taken into account. I have regret-
tably not been able to do this, due to the lack of time.
For further research I would very much prioritize doing
the sampling process more properly and do the statistics
correctly, and most certainly do the regression correctly
while correctly taking into account all the different kind
of averages and uncertainties.

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

Teff vs g

T(x)
T(x) fit

Figure 9: Teff for Q = 3 with errorbars.

I have put several videos and plots on my home page2.
In the videos you can see the ”time evolution” of the sys-
tem with plots attached, from the initial configuration
and some time after steady state has been reached.

Conclusion

I have shown that the Q-states Potts model can be sim-
ulated and sampled by using heat bath algorithm. It
seems to give good results for Q = 2, and it also seems
to work to a certain extent for Q = 3. More research and
data gathering must be done to determine the reason for
the deviations from equation (11) for Q=3.

References

[1] A. Hansen and D. Stauffer, The three-dimensional
Ising model in a temperature gradient, Physica A,
189,611(1992)

[2] M. Matsumoto and T. Nishimura Mersenne Twister:
A 623-dimensionally equidistributed uniform pseu-
dorandom number generator ACM Trans. on Model-
ing and Computer Simulation Vol. 8, No. 1, January
pp.3-30 (1998)

2folk.ntnu.no/mortevas/

5

#include <iostream>
#include <cmath>
#include <ctime>
#include <fstream>
#include <g s l / g s l r n g . h>

using namespace std ;

const int Q = 3 ;
const double PI = 4∗atan (1 . 0) ;
const double Tc = 1 / log (1 + sqrt (Q)) ;
gsl_rng ∗r = gsl_rng_alloc (gsl_rng_mt19937) ; // per iod = 2ˆ19937 − 1

bool FIRST ;
int sampInt , samps , firstSamp , L ;
long long iter ;
double dT , g , Tmax , Tmin , Iavg , Wavg , Istd , Wstd , Tavg , Tstd ;

int ∗ spin1 , ∗ spin2 ;
double ∗ temp ;
int ∗∗ n ;
double ∗ iFace ,∗ wFace ,∗ tFace ;

int randIBM () ;
bool seedIBM (unsigned int seed) ;
int randIBM () ;
double randIBMf () ;
short randIBMs (int Q) ;

void heatBath () ;
void calcQuantities (ofstream &file1 , int & samp) ;

int main (int iArgc , char∗∗ cppArgv){
ofstream f2 ("stats.dat") ;
sampInt = 1e5 ;
samps = 5000 ;
iFace = new double [samps] ;
wFace = new double [samps] ;
tFace = new double [samps] ;

for (L = 25 ; L <= 125 ; L += 10){
cout << "L = " << L << endl ;
spin1 = new int [L∗L] ;
spin2 = new int [L∗L] ;
temp = new double [L] ;
n = new int ∗ [L∗L] ;
for (int ij = 0 ; ij < L∗L ; ij++){

n [ij] = new int [5] ;
}
for (dT = 0 . 2 ; dT <= 1 . 4 ; dT += 0 . 1){

cout << "dT = " << dT << " " << flush ;
iter = 0 ;
g = dT /(L−1);
Iavg = 0 . 0 , Wavg = 0 . 0 , Istd = 0 . 0 ;
Wstd = 0 . 0 , Tavg = 0 . 0 , Tstd = 0 . 0 ;
FIRST = true ;
seedIBM (abs (randIBM ())) ;

for (int i = 0 ; i < L ; i++){
temp [i] = (Tc − dT /2) + g∗i ;

}

6

for (int i = 0 ; i < L ; i++){
for (int j = 0 ; j < L ; j++){

int ij = j∗L + i ;
n [ij] [0] = ij ;
n [ij] [1] = ((i+1) == L ? ij−(L−1) : ij+1);
n [ij] [2] = ((j+1) == L ? ij−(L−1)∗L : ij+L) ;
n [ij] [3] = (i == 0 ? ij+(L−1) : ij−1);
n [ij] [4] = (j == 0 ? ij+(L−1)∗L : ij−L) ;

if (i != 0){
spin1 [ij] = randIBMs (Q) ;
spin2 [ij] = spin1 [ij] ;

}
else{

spin1 [ij] = 1 ;
spin2 [ij] = 2 ;

}
}

}

int i = 0 ;
while (i <= samps){

heatBath () ;
calcQuantities (f2 , i) ;
if (i % 1000 == 0 && i > 0)

cout << i << " " << flush ;
}
for (int i = 0 ; i < samps ; i++){

Iavg += iFace [i] ;
Wavg += wFace [i] ;
Tavg += tFace [i] ;

}
Iavg/=(samps) ;
Wavg/=(samps) ;
Tavg/=(samps) ;
for (int i = 0 ; i < samps ; i++){

Istd += (iFace [i] − Iavg)∗ (iFace [i] − Iavg) ;
Wstd += (wFace [i] − Wavg)∗ (wFace [i] − Wavg) ;
Tstd += (tFace [i] − Tavg)∗ (tFace [i] − Tavg) ;

}
Istd= sqrt (Istd/samps) ;
Wstd= sqrt (Wstd/samps) ;
Tstd= sqrt (Tstd/samps) ;

f2 << L << " " << dT << " " << Iavg << " " << Istd << " "

<< Wavg << " " << Wstd << " "

<< Tavg << " " << Tstd << " "

<< firstSamp << " " << g << endl ;
cout << "done" << endl << endl ;

}
delete [] spin1 ;
delete [] spin2 ;
delete [] temp ;
for (int i = 0 ; i < L∗L ; i++){

delete [] n [i] ;
}
delete [] n ;

}
delete [] iFace ;
delete [] wFace ;
delete [] tFace ;

7

f2 . close () ;

return 0 ;
}

int randIBM (){
static int IBM = time (0)∗2 + 1 ;
return (IBM ∗16807) ;

}
bool seedIBM (unsigned int seed){

gsl_rng_set (r , seed) ;
}
double randIBMf (){

return (gsl_rng_uniform (r)) ;
}
short randIBMs (int Q){

return (1 + int (Q∗randIBMf ())) ;
}

void heatBath (){
int x , y , q , q1 , q2 , ij ;
double r , dE , N1 , N2 ;
double ∗ pbar , ∗ p , ∗ P , ∗pbar2 , ∗p2 , ∗P2 ;

pbar = new double [Q] ;
p = new double [Q] ;
P = new double [Q] ;
pbar2 = new double [Q] ;
p2 = new double [Q] ;
P2 = new double [Q] ;

for (int samp = 0 ; samp < sampInt ; samp++){

x = int ((L − 2)∗ randIBMf () + 1) ;
y = int (L∗randIBMf ()) ;
ij = y∗L + x ;
q = randIBMs (Q) ;
r = randIBMf () ;
N1 = 0 ;
N2 = 0 ;
for (int k = 0 ; k < Q ; k++){

dE = 0 ;
dE += (spin1 [n [ij] [1]] == k+1) ;
dE += (spin1 [n [ij] [2]] == k+1) ;
dE += (spin1 [n [ij] [3]] == k+1) ;
dE += (spin1 [n [ij] [4]] == k+1) ;
pbar [k] = exp (dE/temp [x]) ;
N1 += pbar [k] ;
dE = 0 ;
dE += (spin2 [n [ij] [1]] == k+1) ;
dE += (spin2 [n [ij] [2]] == k+1) ;
dE += (spin2 [n [ij] [3]] == k+1) ;
dE += (spin2 [n [ij] [4]] == k+1) ;
pbar2 [k] = exp (dE/temp [x]) ;
N2 += pbar2 [k] ;

}
for (int k = 0 ; k < Q ; k++){

p [k] = pbar [k] / N1 ;
p2 [k] = pbar2 [k] / N2 ;

}
for (int k = 0 ; k < Q ; k++){

P [k] = 0 . 0 ;

8

P2 [k] = 0 . 0 ;
for (int l = 0 ; l <= k ; l++){

P [k] += p [l] ;
P2 [k] += p2 [l] ;

}
}
for (int k = 0 ; k < Q ; k++){

if (r < P [k]) {
q1 = k+1;
break ;

}
}
for (int k = 0 ; k < Q ; k++){

if (r < P2 [k]) {
q2 = k+1;
break ;

}
}
spin1 [ij] = q1 ;
spin2 [ij] = q2 ;
iter++;

}
delete [] pbar ;
delete [] p ;
delete [] P ;
delete [] pbar2 ;
delete [] p2 ;
delete [] P2 ;

}

void calcQuantities (std : : ofstream &file1 , int& samp){
static int MAX ;
if (L < 100)

MAX = 2e8 ;
else if (L < 150)

MAX = 4e8 ;
else if (L < 200)

MAX = 5e8 ;
else if (L < 250)

MAX = 6e8 ;
else

MAX = 8e8 ;
double I = 0 , W2 = 0 ;
for (int j = 0 ; j < L ; j++){

int i=0;
for (i = L−1; i > 0 ; i−−){

if (spin1 [j∗L + i] != spin2 [j∗L + i])
break ;

}
I += (i+1);

}
I /= L ;
if (iter > MAX && temp [0] + g∗(I) > Tc){

for (int j = 0 ; j < L ; j++){
int i=0;
for (i = L−1; i > 0 ; i−−){

if (spin1 [j∗L + i] != spin2 [j∗L + i])
break ;

}
W2+= (i+1 − I)∗ (i+1 − I) ;

}
W2 /= L ;
if (FIRST){

9

FIRST = false ;
firstSamp = iter ;

}
iFace [samp] = I ;
wFace [samp] = sqrt (W2) ;
tFace [samp] = temp [0] + g∗(I) ;
samp++;

}
}

10

