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ABSTRACT 

A methodology is presented for situations which are by nature imprecise and where 
quantitative data is either not available or appropriate. The concept of possibility theory 
and fuzzy logic are presented and the methodology' is illustrated by applications to 
reliability and risk assessment. It is shown that fuzzy logic is a potential tool for 
creating expert bases. 

INTRODUCTION 

In many scientific areas; such as operations research, management and decision analysis, a 
system is modelled using "soft" data which is often inaccurate, inexact and sometimes 
incomplete. Scientists have, until now, tended to formulate mathematical models using the 
rigid conceptual mould of Boolean logic. However, limitations and inadequacies of Classical 
methods are increasingly becoming obvious. In this paper, concepts of possibility theory 
and fuzzy logic are explored and applied to problems of reliability and safety engineering. 

FUZZY SET THEORY 

In Classical set theory, a set is defined bypan indicator function, which for any element 
of the set is either 0 or I. A fuzzy subset- A of a universe of discourse U={x] is defined 
as a mapping by which x is assigned a number in [0,1] indicating the extent to which x 
belongs to A. Given fuzzy sets A and B of U, the basic operations are: 

a) A : Complement of A defined by: 

u~(x)=1-UA(X) 

b) C=AaB : Conjunction of A and B defined by: 

Uc(X)=min{uA(x),uB(X)) 

c) D=AuB : Disjunction of A and B defined by: 

UD(X)=max(uA(x),uB(x)) 

d) R : A fuzzy relation from U=[x] and V=[y] is a fuzzy set of the Cartesian product 
U.V characterised by UR(X,y) , by which each pair (x,y) is assigned a number 
in [0,1]. 

e) min-max : Composition. Given a fuzzy relation from U to V and a fuzzy subset of A of U, 
a fuzzy subset B of V is obtained by the compositional rule of inference: 

B=AoR and UB(Y)=Mxax[min(uA(x),uR(x,y))] 

This operation is very similar to matrix multiplication. 

These basic operations in fuzzy set theory together with practical applications to risk and 
reliability are illustrated in reference 3. 

399 



400 A.Z. I~LImR and C. KARA-ZAITRI 

APPLICATION OF POSSIBILITY THEORY TO RELIABILITY ASSESSMENT 

It is essential to note that the concepts of probability and possibility are not equivalent. 
The fundamental distinction between the two concepts is that events with a high possibility 
do not necessarily have a high probability. As stated by Zadeh4: "What is possible may not 
be probable and what is improbable need not be impossible". 

Probability is the degree of likelihood and belief based on frequency and proportion. On 
the other hand, possibility is the degree of feasibility or ease of attainment 4. In practice 
and in every day semantics, possibility is used rather than probability particularly when the 
system is still at design stage and very little is. known about its components. Kara-Zaitri 
and Keller5 have shown the use of possibility concepts in fuzzy logic reliability 
applications. 

In many cases, it is convenient to express the membership function of the possibility 
distribution in terms of a standard function in an approximate fashion. A large number of 
different types of functionsl, 6 can be found in the literature for this purpose. In this 
paper, ~7 functions are utilised for describing the possibility of failure of components and 
systems. The parameters of the ~ function are: 

s : Scale 
ls : Left shape 
rs : Right shape 

~((x,s,ls,rs) = 0 xe[0,s-2.1s] 

(x-s+2.1s) 2 
= 2. xe[s-2.1s,s-ls] 

(2.1s) 2 

= I-2. .(x-s)2 xc[s-ls,s] 
(2.1s) 2 

= I-2. .(X-s}2 xE[s,s+rs] 
(2.rs) 2 

= 2. (x-s-2.rs)2 
2 xc[s+rs,s+2rs] 

(2.rsl 

= 0 xE[s+2.rs,1] 

When x=ls or x=rs, ~(x,s,ls,rs)=.5 (Cross-over point}. 

Suppose that the possibility of failure, Pt, of the standard parallel system (Pa,Pbl is 
required. Imagine that Pa and Pb are defined by: 

Pa=~(x,sa,lsa,rsa)=~(x,.4,.1,.05) 

Pb=~(x,sb,lsb,rsb)=~(y,.2,.05,.075) 

Hence, Pt is defined by: 

Pt=max~min(Pa,Pt/Pa)} so that Pa.(Pt/Pal=Pt 

Pt (Exact} is obtained using an especially written computer program (See fig.l). The time 
taken with this program was excessive and accordingly Dubois and Prade's approach 8 was 
utilised. 

Wxe[sa-lsa,sa],Vye[sb-lsb,sb],4we[O,1];w:Pa(x):Pb(y) or 

x=sa+2.1sa (wf~-1)/-2 and y=sb+2.1sb (~-I)/-2 

but z=x.y=sa.sb+ (4~w-1)/-2~sa.2.1sb+sb.2.1sa)-2.1sa.lsb.(w-1) 

This is a second order equation in w and consequently it cannot be expressed in terms of a 
function. However if isa.lsb is very small compared with sa and sb, then; 

( z - s a . s b )  2 
w : 1-2.- 

( 2 . ( s a . l s b + s b . l s a ) }  2 

Therefore; 

~(x,sa,lsa,rsa).~(y,sb,lsb,rsbl~(z,sa.sb,sa.lsb+sb.lsa,sa.rsb+sb.rsa) 
and hence Pt=~(z,.08,.04,.04) 
Pt(Approximate) is also plotted in Fig.1. 
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A similar approach can be utilised for the determination of the membership function of the 
possibility of failure of a series system. 

For Example, Pa=~(x,.4,.1,.05) 
Pb=~(y,.2,.05..1) 

Hence, Pt is defined by: 

Pt=max{min(Pa,(Pt-Pa)/(1-Pa)] 
Pt=~(z,.52,.11,.10) 

Both approximate and exact resulting possibility distributions are shown in Fig.2. 

APPLICATION OF FUZZY CONTROL TO SAFETY STUDIES 

Nowadays, almost every system has instrumentation 9 whose unique role is to protect the 
system and people involved from the occurrence of undesired events. It is understood that 
as long as the protective system is working, these events cannot occur. Sprinklers, pop-off 
valves are examples of some protective systems. 

For example, consider an Automatic Fire Detection System (AFDS). The latter consists of two 
major parts namely fire detectors and control panels. In classical AFDS systems, control 
panels either give an alarm or do not give an alarm. Intermediate states of the control 
system such as situations where there is a deviation from normal which is not significant 
enough to give a full alarm are not usually accounted for. Studies in the U.K. have shown 
that the ratio of false/unwanted and real alarms was far too large. In such circumstances 
the concept of fuzzy logic and particularly that of fuzzy implications can be used as a tool 
to reduce the number of unwanted alarms and hence increase the reliability of the system 
but still maintain a high degree of safety. 

A one dimensional fuzzy implication 9'I0 has the following general form: 

"if A then B". A and B are fuzzy sets in the Universes U A and U B. The 
membership function of this simple implication is given by: 

UAxB(X,y}=min(uA(x),uB(Y}) 
Given "If A then B" and A' (another fuzzy set of U), the corresponding B' can be computed 
by the min-max composition. 

UB,(Y):max[min(uA,(X),UAxB(X,Y)) ] 

In order to use this concept in AFDS, the B's are 'crisp' rather than fuzzy. Imagine that 
the set of required safety actions is defined by: 

A={AI ,A2,A3} 
and AI : No action required 

A2 : Prewarning (Warning light in control panel) 
A3 : Full alarm (Fire brigade must attend} 

Suppose that heuristic considerations resulted in the following three conditions only: 

I. If smoke density is low then Action I 
2. If smoke density is medium then Action 2 
3. If smoke density is high then Action 3 

Linguistic variables describing smoke densities and safety actions are defined by the 
following fuzzy sets; 

Low 
Medium 
High 

Units of smoke density 
I 2 3 4 5 
I .8 .6 .4 .2 Action I 
.6 .8 I .8 .6 Action 2 
.2 .4 .6 .8 I Action 3 

Safety actions 
AI A2 A3 
I 0 0 
0 I 0 
0 0 I 

The three conditional statements represent the expert base knowledge from which the fuzzy 
algorithm S is obtained. In this case; 
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S = (Low x Action I) U {Medium x Action 2) U (High x Action 3) 

or 

and hence, 

S = $I U $2 U $3 

s l, 00001 s 1001 886 s3EE 000 4 
L2 0 .6 0 

s 16 88 il 
The control action for a given smoke density is determined according to the compositional 
rule. The procedure for choosing the required control action is determined by the truth 
value methodology5. 

To evaluate the proposed procedure, a set of three smoke densities is tested against the 
expert knowledge of the system. The three densities are: 

Test No. 
I 
2 
3 

Description I 2 3 4 5 
Low I .8 .6 .4 .2 
Between low and medium .8 I .8 .6 .4 
More medium than low .6 .7 .9 .5 .3 

The results of the computation are as follows: 

Action Test I Test 2 Test 3 
Action I I .8 .7 
Action 2 .8 .8 .9 
Action 3 .6 .6 .6 

The results are interpreted so that the safety action that has the highest grade of 
membership is to be carried out. Note that, in test 2, because the smoke density is 
between low and medium ('half way'}, the algorithm S resulted in either action I (no actior 
or action 2 (warning}. From this, it is clear that subjective assessment of the smoke 
density alone is not sufficient and that additional variables have to be included. For 
example, the rate of change of smoke density may be of interest. Consequently, the 
conditions may be: 

If smoke density is medium AND rate of change of density is low then no action OR 
if smoke density is medium AND rate of change of density is high then warning. 

The intelligence interface of the expert system decides in exactly the same way as the one 
dimensional and one variate case. 

APPLICATION TO FAILURE MODE AND EFFECT ANALYSIS 

The methodology described earlier can also be implemented to model failure mode and effect 
analysis. FMEA, by definition, is a systematic approach to system fault diagnosis, which 
is capable of producing a comprehensive model or understanding of system fault behaviour. 
Each item is considered in relation to its likely modes of failure and the effects of 
failure. In brief, FMEA is: 

Cause ~Effect 

This can be translated into the following model; 

if C11 and C12 and ...... C1n then E I 

if C21 and C22 and ...... C2n then E 2 

if Cml and Cm2 and ...... Cmn then E m 
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Where C.. represents a fuzzy cause of the ith conditional statement and the jth variable. 
l 

E i represents the corresponding ith effect (n variables and m conditions). 

Given a set of causes, the unknown effect can be computed using the min-max method in 
exactly the same way as the fuzzy controller example. This approach is very useful because 
it can predict, based on the expert base system, the effect of combination of certain 
causes that have not occurred before. Furthermore, a separate simulation program can be 
used with the expert system to create perhaps fictitious causes and compute corresponding 
effects. This way, many hazards and accidents, that have not been accounted for during the 
study can be highlighted and subsequently analysed in great detail. 

In addition, the approach in FMEA can be reversed; i.e. 

Effect - infer - Cause 

Here again, fuzzy logic can be applied as a diagnostic tool using a subjective expert base. 
For example, the relationship between symptoms in the process variables and the corresponding 
hazards can be expressed as a set of conditional statements such as: 

If Sij and Sij+1 and ...... then H i 

Where S.. is a fuzzy symptom of the ith conditional statement and the jth variable. The 
diagnos~ of an unknown hazard causing the set of symptoms S is achieved by computing the 
membership function for that hazard. 

CONCLUSIONS 

The concept of possibility has a close relationship with every day semantics and is 
therefore of potential value in supplying information and interpreting results of reliability 
and safety assessments. 

Adding and multiplying fuzzy possibilities of failure expressed as functions requires a 
moderate extra amount of computation compared with classical methods. 

The concept of fuzzy logic controllers to increase system reliability is significant because 
it handles heuristic rules in a straight forward manner. 

Since the fundamental operation (min-max operation) in fuzzy logic is relatively simple, it 
can be readily implemented on computers for the study of complex systems. 

Fuzzy logic could progressively be included in safety studies to guarantee that protective 
systems would only work when necessary. Unwanted or undesired events could then be kept 
at a minimum. 

The fuzzy approach to failure mode and effect analysis is convenient because knowledge 
about causes and effects of failures is usually described with a large uncertainty content. 

Fuzzy logic is a valuable tool for creating expert bases. These, in turn, can be utilised 
as a diagnostic means by which hazardous events can be identified. 
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