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Abstract 
Since the beginning of the 20th century the Travelling-Salesman-Problem has been one 

of the most intensively studied problems in optimization. By many considered the most 

famous NP-Hard problem, it is often used as a benchmark for other optimization 

methods. The problem is not solvable in polynomial time, but there exists several 

methods of estimation that efficiently will approximate the problem within an error of 1%. 

This report describes a method utilizing a Genetic Algorithm to estimate the TSP 

problem on high-performance multi-core computers. It will go through our approach, 

problems that occurred as well as graphs and statistical analysis of the algorithm in its 

complete state.  

Our approach to the problem 

As we ventured into the task of estimating the Travelling Salesman Problem we were all 

fairly novice when it came to the implementation and execution of estimation algorithms. 

The course CS165A had recently introduced us to several Artificially Intelligent 

algorithms. One of these was the search heuristic that mimics the process of natural 

selection; The Genetic Algorithm. We had a fairly decent grasp on how we wanted to 

test and rate our algorithm, but when it came to the modeling of the algorithm we knew 

little. 

 

We knew we wanted to use a Genetic Algorithm to approach the problem, but beyond 

that we were unsure. To gain further insight we decided to look for other solutions on 

the web. Our first plan was to use a sequential code by Marek Obitko. The code in 

question was incredibly efficient, but after working on deciphering the methods used 

and all the different heuristics we realized that 

it was a bit too advanced for our liking, and 

that we’d rather build our own code from 

scratch than to try and parallelize Obitkos 

code.  

 
When it came to programming language we 

wanted to use Java, as that was the language 

in which we had most experience. While 

searching the web for different 

implementations of parallel extensions in Java 

we found the open-source library MPJ-

Express. This is a library built on the MPI 

libraries in C, and it is distributed under an 

MIT license. It took us a while to make it work, 

but after finally getting our “Hello Back” from 

both our computer and the Triton machine 

we were ready to begin writing our code.  

Figure 1: Screenshot of Marek Obitkos genetic TSP 
solver 



 

We started off by creating an environment for the cities and the euclidean distances 

between them. We created the classes Country and City containing all necessary 

methods for this, these classes are more thoroughly described in our code-description 

later. They contained methods to create a countryMatrix with size NxN and a certain 

chance of a city on each spot, and a distanceMatrix that contained the distance 

between every city.  After a swift testing phase we established that the first classes 

were working and thus we could start on the sequential methods to actually solve the 

problem.  

 

We decided to write our sequential code using a simple heuristic fitness-function that 

basically counted the fitness of a path as the sum of the Euclidean distance between 

the cities in a given order.  

 

In the end we created a paint class to help us monitor how our code actually worked, to 

see if it followed paths legal inside the world of the TSP, and later to see how it 

approached problems that we knew the solution to. During parallelization we had to 

make several alterations to the original code. We also implemented methods for the 

code to support existing TSP problems, an important feature when it comes to testing 

as described later. The parallelization of this code is thoroughly described in our code-

description paragraph. 

 

Problems we encountered 

It did not take long before we encountered minor difficulties. Our first apparent problem 

was to find a way to check the validity of our solution. Our answer to this was to find 

already solved problems, and compare results from our code to them. We did this by 

hardcoding the solved problems into our code, and compared the distance our code 

generated, to the optimal distance. Because our code is not guaranteed to find the 

optimal solution, we decided to put a threshold at 3%. If the generated fitness is within 

3% of the optimal solution, the program ends. 

 

Another problem we encountered was how to send our self-made objects from one 

processor to another. This turned out to be an impossible task, as MPJ-Express does 

not support sending of objects at all. We solved this by only sending the important parts 

of the objects as arrays of primitive variable types. This has both negative and positive 

effects. The negative being that it takes time to extract the information from our objects, 

and putting them into arrays. The positive effect is that less information is sent between 

the processors, speeding up the sending and receiving of information. 

 



We tried to implement a cross-over mutation(Combining two chromosomes by taking 

the first half of the first chromosome and the second half of the second chromosome, 

and visa versa) in the evolving phase. Unfortunately we found this to be very 

challenging and decided against it. When implementing a cross-over mutation in TSP 

you face one major problem. When crossing two chromosomes you need the part of the 

chromosome being mutated together to contain exactly the same cities. If this is not true 

you will receive chromosomes that both visit the same city twice, and that forget to visit 

cities, something which obviously is unacceptable for a TSP solution. We found that the 

logic and computation-time needed for such a feature to be implemented would 

outweigh the possible converging-speedup that it would yield.  

How the code works 

Our code was built from the bottom up starting with the basic environment for the TSP 

problem. It contains eight classes (see fig 3) that help with the logic and genetic-

methods, as well as a main loop that takes care of the parallelism and problem logistics.  

 

Our method starts by creating a 

Country object (see fig 3 (B)). 

This class takes an input 

argument that decides if it will 

use a TSP instance from a text 

file or if it will generate a random 

problem with its makeCities() 

method. The distances are then 

calculated and stored in the 2D-

array distanceMatrix (see fig 2) 

for easy use during the fitness-

calculation.  

Figure 2: Distance matrix. Shows all the distances of a country with 11 
cities. Position i,j holds the distance from city i to city j, and thus it is a 
mirrored matrix with a zero diagonal. 



 

When the program starts, an 

initial population of randomly 

generated chromosomes is 

created and distributed to all 

processors, so that each 

processor has its own 

subpopulation. Every processor 

will then evolve and mutate their 

subpopulation a set amount of 

times (LOCAL_LOOP_COUNT). 

Then each processor sends its 

subpopulation to the root 

processor. The root will mix all 

the chromosomes from the 

subpopulations, and send them 

back out to the other processors 

(GLOBAL_LOOP_COUNT).  

The chromosomes are randomly 

distributed on each processor. 

This ensures a healthy mix of 

chromosomes, and makes the 

probability of being stuck (see fig 

4) lower. 

 

Every chromosome is a list of 

numbers, each number 

represents a city/node, and the 

order of numbers represents when each city/node is visited. Numbers can only appear 

once in every chromosome, and all numbers (from 1 to the number of cities) must be 

included. 

The evolution is done by sorting all 
chromosomes based on their 
fitness level, using the 
calculateFitness() method. The 
best ¼ of the chromosomes is 
selected to carry on the next 
generation. If a chromosome is 
selected, it will be copied 4 times 
and every copy is given a random 

mutation. For every new generation, ¼ of the chromosomes will also be new, randomly 
generated chromosomes. The chromosomes is now sent through something called 

Figure 3: The eight classes and the most important methods/fields in 
each class. (A) The Main class containing the run() method, as well as 
the fields deciding the different loop counts. TRESHOLD decides how 
close to optimal solution the code will terminate. (B) CountryClass, (C) 
Evolution class, (D) City class, (E) PopulationLogic class, (F) Fitness 
class, (G) Chromosome class. (H) PaintCountry class takes an array of 
unuque numbers from 1 to n, paints the cities with their corresponding 
coordinates and the path among them. 

Figure 4:  There is a possibility of getting stuck for a while at the 
same solution. The code will eventually find a better path, but that 
depends on chance (the new chromosomes in the population) 



“random only improving mutation”. This means that every chromosome is first given a 
random point-mutation(Swap two numbers), and then we test every single possible 
point-mutation until we find one that improves its fitness level. This might seem 
inefficient, but we found that this lets us find better solutions after fewer generations. 
 

 



Graphical preview of evolution 

Performance tuning 
A challenge with our code was to figure out what combination of different values 

produced the best performance. The numbers in question is LOCAL_LOOP_COUNT, 

MUTATION_PROBABILITY and subPopulationSize. 

 

Figure 5: Graphical evolution on a randomized Country with 72 cities. (A) Shows how one of the random 
chromosomes looked before any evolution or fitness has been calculated. B, C and D shows the best 
chromosome in the evolution at a certain time. 



The mutation probability was the easiest to set. Our code has a good mutation method, 

as all mutations will make the chromosome better. Because of this, every chromosome 

is better of being mutated than not, thus we set the mutation probability to 100%. 

 

Inner loop count was a bit harder to set a specific value for. We found that for different 

types of tests and problems, different values yielded different results. On small 

problems, a lower local loop count (<10) was more efficient because an answer was 

found within a small amount of iterations. On bigger problems, more inner loops gave 

better improvement from iteration to iteration and found optimal solutions faster. A 

problem with many inner loop iterations is that even though the optimal solution has 

been found, we will not know before all iterations is done. This means that the lowest 

running time we will get is the time it takes for the code to finish all inner loop iterations. 

The probability for this happening on big problems is low, and it is not a big issue. 

 

The population size and sub population size was not that hard to set. We tested 

different values, all exponents of 2. After a while, we found that this number was best to 

make dependent on the number of processors we ran on. A sub population size of 128 

gave good results all over, on both small and large problems. The population size is 

thus set to 128 * “number of processors”.  

 

Testing of the code 

As stated earlier, the testing of the code was a slight concern for us as we began 

working on the project. We knew that we wanted to test how our code worked on 

existing problems, but the fact that we had no way other than brute force to find the real 

optimal path gave us some trouble. Luckily, our previous professor Teofilo Gonzales 

showed us an online TSP library with over 80 solved TSP instances, as well as their 

solution.  

 

This library became a core part of our testing-procedures as we finally had a way to 

confirm whether our program found solutions close to or equal to the optimal path. We 

used these libraries to see how many iterations, or how much time, was needed to 

reach a certain THRESHOLD value, and thus we had a valid benchmark for our 

algorithms performance.  

 

Strong scaling analysis 

The queue for requesting nodes on Triton was extremely long when we were trying to 

test it there, so the code was primarily tested on our multi core laptops. We ran the 

problem on a known problem and measured the time it took to reach a threshold of 7% 

from the optimal solution. We did this on one, two, four and eight processors to get an 



idea of the parallel efficiency and scaling of the problem. We ran the code 16 times on 

each number of processors and calculated the average: Here are the plots: 

 

 
Figure 6: Runtime in seconds to reach a threshold of 7% from the optimal solution. The code ran 16 times on one, 
two, four and eight processors 



 

 
Figure 7: Average runtime in seconds to reach a threshold of 7% from the optimal solution on one, two, four and eight 
processors 

 
Figure 8: Parallel Efficinecy on a known problem of n = 52 on one, two, four and eight processors 

  



The code was also ran for a fixed time of t = 16 seconds and then returned how close it 

was to the known optimal solution. Here are the plots:

 

Figure 9: Percentage from optimal after a fixed runtime of t = 16 seconds. The code ran on one, two, four and eight 
processors 

 
Figure 10: Average percentage from optimal after t = 16 seconds on one, two, four and eight processors 



After hours of waiting for nodes on Triton we finally got some assigned, and started testing 
there. We ran the problem of 64 cities (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ≈ 1.27 ∗ 1089)  with fixed number 
of iterations and plotted runtime and parallel efficiency for 1, 2, 4, 8, 16, 32, 64 and 128 
processors. As shown, there is an almost linear scale up when the code runs on just one 
node (up to 16 processors), but when more nodes are used, the amount of message 
passing between the processors is so vast that the scale up is roughly constant, i.e. 
doubling the number of processors don’t change the runtime. As mentioned, this is not 
because of a low potential parallelism, but because there is just too much communication. 
In the outer loop, all processors send all their chromosomes to the root processor and gets 
a random mixed subpopulation in return. This part takes up the majority of runtime when the 
number of processor gets big (>32). To have a large number of inner loops and a rather 
small number of outer loops may seem like a solution to this, but it tend to get stuck at a 
local maximum more often when that is the case. The subpopulations needs a mix every 
now and then to boost the evolution.  
 

 

  

Figure 11: Runetime to finish a fixed number of nested loops on 1, 2, 4, 8, 16, 32, 64 and 128 processors 



Weak scaling analysis 

The algorithm runs eight outer loops and eight inner loops and returns the time it takes 

to complete. The problem size varies almost proportional to the square root of the 

number of processors.  

 

 

  

Figure 12: Parallel efficiency for a fixed number of nested loops. The drop after 16 processors is when the inifiband is 
utilized. This causes a major time consumer on data exchange and message passing 

Figure 13: Weak scaling on a fixed number of nested loops. The problem size increases 
proportionally to the square root of the number of processors 



Improvements: 
We would like to make our code prevent itself from being stuck. This can be done by 

making the code “reset”, or replace all chromosomes with new ones, when it has not 

improved over a set amount of iterations. When this is done. The best chromosomes 

will be stored, to prevent the code to potentially delete the best solution we can find. If 

we can implement this, it means that our code will, eventually, find the optimal solution 

every time. 

Concluding thoughts 
After the completion of this project, we are left with a lot of knowledge about how 

performance tuning, parallel computing and genetic algorithms work. When it comes to 

the genetic algorithm we found that this seems like a really good way of finding good or 

optimal paths in the TPS problem. Our code found solutions much faster than we 

anticipated. But in the future we would look at methods to decrease the computation 

needed, to reduce the running time on larger problems. 

 

After looking over our test results it became apparent that the time spent on sending 

and receiving information became too large as the number of processors and nodes 

increased. This threw light on a big problem in our code; We send a lot of information 

between processors. After more testing, we found a solution at the cost of performance: 

increase the local loop count. This was a compromise we didn’t like because it meant 

Figure 14: Parallel efficiency in the form of weak scaling 



that our code had a higher risk of getting stuck. We will look into better ways of handling 

the amount of communication between processors, but this turns out to be a big setback 

when it comes to solving TSP with parallelized genetic algorithms, because the 

chromosomes must include an amount of information that is proportional to the problem 

size. 


