

CMPSC240A – FINAL PROJECT
A Parallel Genetic Algorithm for the Travelling Salesperson Problem

MARCH 20, 2014
BY JAKOB OFTEBRO, EIRIK AASVED HOLST AND ULRIK SAGEN

Table of Contents
Abstract ... 2

Our approach to the problem .. 2

Problems we encountered ... 3

How the code works .. 4

Graphical preview of evolution .. 7

Performance tuning ... 7

Testing of the code .. 8

Strong scaling analysis .. 8

Weak scaling analysis ... 13

Improvements: .. 14

Concluding thoughts.. 14

Abstract
Since the beginning of the 20th century the Travelling-Salesman-Problem has been one

of the most intensively studied problems in optimization. By many considered the most

famous NP-Hard problem, it is often used as a benchmark for other optimization

methods. The problem is not solvable in polynomial time, but there exists several

methods of estimation that efficiently will approximate the problem within an error of 1%.

This report describes a method utilizing a Genetic Algorithm to estimate the TSP

problem on high-performance multi-core computers. It will go through our approach,

problems that occurred as well as graphs and statistical analysis of the algorithm in its

complete state.

Our approach to the problem

As we ventured into the task of estimating the Travelling Salesman Problem we were all

fairly novice when it came to the implementation and execution of estimation algorithms.

The course CS165A had recently introduced us to several Artificially Intelligent

algorithms. One of these was the search heuristic that mimics the process of natural

selection; The Genetic Algorithm. We had a fairly decent grasp on how we wanted to

test and rate our algorithm, but when it came to the modeling of the algorithm we knew

little.

We knew we wanted to use a Genetic Algorithm to approach the problem, but beyond

that we were unsure. To gain further insight we decided to look for other solutions on

the web. Our first plan was to use a sequential code by Marek Obitko. The code in

question was incredibly efficient, but after working on deciphering the methods used

and all the different heuristics we realized that

it was a bit too advanced for our liking, and

that we’d rather build our own code from

scratch than to try and parallelize Obitkos

code.

When it came to programming language we

wanted to use Java, as that was the language

in which we had most experience. While

searching the web for different

implementations of parallel extensions in Java

we found the open-source library MPJ-

Express. This is a library built on the MPI

libraries in C, and it is distributed under an

MIT license. It took us a while to make it work,

but after finally getting our “Hello Back” from

both our computer and the Triton machine

we were ready to begin writing our code.

Figure 1: Screenshot of Marek Obitkos genetic TSP
solver

We started off by creating an environment for the cities and the euclidean distances

between them. We created the classes Country and City containing all necessary

methods for this, these classes are more thoroughly described in our code-description

later. They contained methods to create a countryMatrix with size NxN and a certain

chance of a city on each spot, and a distanceMatrix that contained the distance

between every city. After a swift testing phase we established that the first classes

were working and thus we could start on the sequential methods to actually solve the

problem.

We decided to write our sequential code using a simple heuristic fitness-function that

basically counted the fitness of a path as the sum of the Euclidean distance between

the cities in a given order.

In the end we created a paint class to help us monitor how our code actually worked, to

see if it followed paths legal inside the world of the TSP, and later to see how it

approached problems that we knew the solution to. During parallelization we had to

make several alterations to the original code. We also implemented methods for the

code to support existing TSP problems, an important feature when it comes to testing

as described later. The parallelization of this code is thoroughly described in our code-

description paragraph.

Problems we encountered

It did not take long before we encountered minor difficulties. Our first apparent problem

was to find a way to check the validity of our solution. Our answer to this was to find

already solved problems, and compare results from our code to them. We did this by

hardcoding the solved problems into our code, and compared the distance our code

generated, to the optimal distance. Because our code is not guaranteed to find the

optimal solution, we decided to put a threshold at 3%. If the generated fitness is within

3% of the optimal solution, the program ends.

Another problem we encountered was how to send our self-made objects from one

processor to another. This turned out to be an impossible task, as MPJ-Express does

not support sending of objects at all. We solved this by only sending the important parts

of the objects as arrays of primitive variable types. This has both negative and positive

effects. The negative being that it takes time to extract the information from our objects,

and putting them into arrays. The positive effect is that less information is sent between

the processors, speeding up the sending and receiving of information.

We tried to implement a cross-over mutation(Combining two chromosomes by taking

the first half of the first chromosome and the second half of the second chromosome,

and visa versa) in the evolving phase. Unfortunately we found this to be very

challenging and decided against it. When implementing a cross-over mutation in TSP

you face one major problem. When crossing two chromosomes you need the part of the

chromosome being mutated together to contain exactly the same cities. If this is not true

you will receive chromosomes that both visit the same city twice, and that forget to visit

cities, something which obviously is unacceptable for a TSP solution. We found that the

logic and computation-time needed for such a feature to be implemented would

outweigh the possible converging-speedup that it would yield.

How the code works

Our code was built from the bottom up starting with the basic environment for the TSP

problem. It contains eight classes (see fig 3) that help with the logic and genetic-

methods, as well as a main loop that takes care of the parallelism and problem logistics.

Our method starts by creating a

Country object (see fig 3 (B)).

This class takes an input

argument that decides if it will

use a TSP instance from a text

file or if it will generate a random

problem with its makeCities()

method. The distances are then

calculated and stored in the 2D-

array distanceMatrix (see fig 2)

for easy use during the fitness-

calculation.

Figure 2: Distance matrix. Shows all the distances of a country with 11
cities. Position i,j holds the distance from city i to city j, and thus it is a
mirrored matrix with a zero diagonal.

When the program starts, an

initial population of randomly

generated chromosomes is

created and distributed to all

processors, so that each

processor has its own

subpopulation. Every processor

will then evolve and mutate their

subpopulation a set amount of

times (LOCAL_LOOP_COUNT).

Then each processor sends its

subpopulation to the root

processor. The root will mix all

the chromosomes from the

subpopulations, and send them

back out to the other processors

(GLOBAL_LOOP_COUNT).

The chromosomes are randomly

distributed on each processor.

This ensures a healthy mix of

chromosomes, and makes the

probability of being stuck (see fig

4) lower.

Every chromosome is a list of

numbers, each number

represents a city/node, and the

order of numbers represents when each city/node is visited. Numbers can only appear

once in every chromosome, and all numbers (from 1 to the number of cities) must be

included.

The evolution is done by sorting all
chromosomes based on their
fitness level, using the
calculateFitness() method. The
best ¼ of the chromosomes is
selected to carry on the next
generation. If a chromosome is
selected, it will be copied 4 times
and every copy is given a random

mutation. For every new generation, ¼ of the chromosomes will also be new, randomly
generated chromosomes. The chromosomes is now sent through something called

Figure 3: The eight classes and the most important methods/fields in
each class. (A) The Main class containing the run() method, as well as
the fields deciding the different loop counts. TRESHOLD decides how
close to optimal solution the code will terminate. (B) CountryClass, (C)
Evolution class, (D) City class, (E) PopulationLogic class, (F) Fitness
class, (G) Chromosome class. (H) PaintCountry class takes an array of
unuque numbers from 1 to n, paints the cities with their corresponding
coordinates and the path among them.

Figure 4: There is a possibility of getting stuck for a while at the
same solution. The code will eventually find a better path, but that
depends on chance (the new chromosomes in the population)

“random only improving mutation”. This means that every chromosome is first given a
random point-mutation(Swap two numbers), and then we test every single possible
point-mutation until we find one that improves its fitness level. This might seem
inefficient, but we found that this lets us find better solutions after fewer generations.

Graphical preview of evolution

Performance tuning
A challenge with our code was to figure out what combination of different values

produced the best performance. The numbers in question is LOCAL_LOOP_COUNT,

MUTATION_PROBABILITY and subPopulationSize.

Figure 5: Graphical evolution on a randomized Country with 72 cities. (A) Shows how one of the random
chromosomes looked before any evolution or fitness has been calculated. B, C and D shows the best
chromosome in the evolution at a certain time.

The mutation probability was the easiest to set. Our code has a good mutation method,

as all mutations will make the chromosome better. Because of this, every chromosome

is better of being mutated than not, thus we set the mutation probability to 100%.

Inner loop count was a bit harder to set a specific value for. We found that for different

types of tests and problems, different values yielded different results. On small

problems, a lower local loop count (<10) was more efficient because an answer was

found within a small amount of iterations. On bigger problems, more inner loops gave

better improvement from iteration to iteration and found optimal solutions faster. A

problem with many inner loop iterations is that even though the optimal solution has

been found, we will not know before all iterations is done. This means that the lowest

running time we will get is the time it takes for the code to finish all inner loop iterations.

The probability for this happening on big problems is low, and it is not a big issue.

The population size and sub population size was not that hard to set. We tested

different values, all exponents of 2. After a while, we found that this number was best to

make dependent on the number of processors we ran on. A sub population size of 128

gave good results all over, on both small and large problems. The population size is

thus set to 128 * “number of processors”.

Testing of the code

As stated earlier, the testing of the code was a slight concern for us as we began

working on the project. We knew that we wanted to test how our code worked on

existing problems, but the fact that we had no way other than brute force to find the real

optimal path gave us some trouble. Luckily, our previous professor Teofilo Gonzales

showed us an online TSP library with over 80 solved TSP instances, as well as their

solution.

This library became a core part of our testing-procedures as we finally had a way to

confirm whether our program found solutions close to or equal to the optimal path. We

used these libraries to see how many iterations, or how much time, was needed to

reach a certain THRESHOLD value, and thus we had a valid benchmark for our

algorithms performance.

Strong scaling analysis

The queue for requesting nodes on Triton was extremely long when we were trying to

test it there, so the code was primarily tested on our multi core laptops. We ran the

problem on a known problem and measured the time it took to reach a threshold of 7%

from the optimal solution. We did this on one, two, four and eight processors to get an

idea of the parallel efficiency and scaling of the problem. We ran the code 16 times on

each number of processors and calculated the average: Here are the plots:

Figure 6: Runtime in seconds to reach a threshold of 7% from the optimal solution. The code ran 16 times on one,
two, four and eight processors

Figure 7: Average runtime in seconds to reach a threshold of 7% from the optimal solution on one, two, four and eight
processors

Figure 8: Parallel Efficinecy on a known problem of n = 52 on one, two, four and eight processors

The code was also ran for a fixed time of t = 16 seconds and then returned how close it

was to the known optimal solution. Here are the plots:

Figure 9: Percentage from optimal after a fixed runtime of t = 16 seconds. The code ran on one, two, four and eight
processors

Figure 10: Average percentage from optimal after t = 16 seconds on one, two, four and eight processors

After hours of waiting for nodes on Triton we finally got some assigned, and started testing
there. We ran the problem of 64 cities (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ≈ 1.27 ∗ 1089) with fixed number
of iterations and plotted runtime and parallel efficiency for 1, 2, 4, 8, 16, 32, 64 and 128
processors. As shown, there is an almost linear scale up when the code runs on just one
node (up to 16 processors), but when more nodes are used, the amount of message
passing between the processors is so vast that the scale up is roughly constant, i.e.
doubling the number of processors don’t change the runtime. As mentioned, this is not
because of a low potential parallelism, but because there is just too much communication.
In the outer loop, all processors send all their chromosomes to the root processor and gets
a random mixed subpopulation in return. This part takes up the majority of runtime when the
number of processor gets big (>32). To have a large number of inner loops and a rather
small number of outer loops may seem like a solution to this, but it tend to get stuck at a
local maximum more often when that is the case. The subpopulations needs a mix every
now and then to boost the evolution.

Figure 11: Runetime to finish a fixed number of nested loops on 1, 2, 4, 8, 16, 32, 64 and 128 processors

Weak scaling analysis

The algorithm runs eight outer loops and eight inner loops and returns the time it takes

to complete. The problem size varies almost proportional to the square root of the

number of processors.

Figure 12: Parallel efficiency for a fixed number of nested loops. The drop after 16 processors is when the inifiband is
utilized. This causes a major time consumer on data exchange and message passing

Figure 13: Weak scaling on a fixed number of nested loops. The problem size increases
proportionally to the square root of the number of processors

Improvements:
We would like to make our code prevent itself from being stuck. This can be done by

making the code “reset”, or replace all chromosomes with new ones, when it has not

improved over a set amount of iterations. When this is done. The best chromosomes

will be stored, to prevent the code to potentially delete the best solution we can find. If

we can implement this, it means that our code will, eventually, find the optimal solution

every time.

Concluding thoughts
After the completion of this project, we are left with a lot of knowledge about how

performance tuning, parallel computing and genetic algorithms work. When it comes to

the genetic algorithm we found that this seems like a really good way of finding good or

optimal paths in the TPS problem. Our code found solutions much faster than we

anticipated. But in the future we would look at methods to decrease the computation

needed, to reduce the running time on larger problems.

After looking over our test results it became apparent that the time spent on sending

and receiving information became too large as the number of processors and nodes

increased. This threw light on a big problem in our code; We send a lot of information

between processors. After more testing, we found a solution at the cost of performance:

increase the local loop count. This was a compromise we didn’t like because it meant

Figure 14: Parallel efficiency in the form of weak scaling

that our code had a higher risk of getting stuck. We will look into better ways of handling

the amount of communication between processors, but this turns out to be a big setback

when it comes to solving TSP with parallelized genetic algorithms, because the

chromosomes must include an amount of information that is proportional to the problem

size.

