
Norwegian University of Science and Technology

TDT4290 — Customer Driven Project

Group 2

BLOPP - Development of a prototype system for
treatment of asthmatic children, using Android

and Karotz

Jørgen Aaberg

Esben Aarseth

Eirik Skjeggestad Dale

Aleksander Gisvold

Yngve Svalestuen

May 22, 2013

Abstract

This project aimed to create three applications to motivate and remind asthmatic children to take their
medication. When children are on a medication plan, taking the medicine might be boring or stressful
because they are reminded of their asthma, are disturbed in their routine, or that the medication process
itself is scary. The use of an appealing figure like the rabbit robot Karotz provides a way to avoid some of
these concerns. In combination with a reminder and distraction application and an adult information and
settings application, the complete system could help leviate the burden of medicating asthmatic children.

The three applications were developed on two di↵erent platforms. The guardian application for con-
figuration, teaching and viewing a log, and a children application for teaching, reminding and distracting
during treatment were developed for the Android platform. A second application for reminding and dis-
tracting the children during treatment was made for Karotz. Through the agile software development
technique SCRUM, the project team completed five sprints of iterative study, planning, programming,
adaption and testing. The Android applications are written in Java, while the Karotz application is writ-
ten in JavaScript. A central database is written in MySQL with PHP sites for access through the internet
protocol HTTP.

The prototype system is developed for Sykehusapotekene i Midt-Norge as a part of NTNU’s course
TDT4290 — Customer Driven Project.

Keywords: BLOPP, Asthma, Gamification, Android, Karotz, SCRUM, Software development

Jørgen Aaberg Esben Aarseth

Eirik Skjeggestad Dale Aleksander Gisvold

Yngve Svalestuen

i

Contents

1 Introduction 1
1.1 Project Information . 1

1.1.1 Project Name . 1
1.1.2 Background . 1
1.1.3 The task . 2
1.1.4 Measurement of project e↵ort . 4
1.1.5 General terms . 4
1.1.6 Planned e↵ort . 4
1.1.7 Schedule of results . 4
1.1.8 Report Outline . 4

1.2 Customer Information . 4
1.2.1 Sponsor . 6
1.2.2 Partners . 6
1.2.3 Customer contacts . 6

2 Project Management 9
2.1 Members . 9
2.2 Roles . 9
2.3 Responsibilities among roles . 10
2.4 Weekly schedule . 12
2.5 Work Plan . 12

2.5.1 Phases . 12
2.5.2 Activities . 13
2.5.3 Person-hours per activity and phase . 13
2.5.4 Gantt Diagram . 13

2.6 Risk Analysis . 14
2.6.1 Internal Risks . 14
2.6.2 External Risks . 14
2.6.3 SWOT analysis . 14

2.7 Quality Assurance . 19
2.7.1 Language . 19
2.7.2 Customer Meeting . 20
2.7.3 Advisor Meeting . 20

3 Preliminary Studies 22
3.1 Children with asthma . 22

3.1.1 Tra�c Light Classification of Asthma Condition . 23
3.2 Parents with children a↵ected by asthma . 24
3.3 The concept of gamification . 25
3.4 Karotz . 27

ii

CONTENTS

3.4.1 Application Platform . 28
3.5 Pollen forecast . 29
3.6 Design workshop . 30

3.6.1 Results . 30
3.6.2 What was used in the further development . 37

3.7 Frameworks used in the Project . 37
3.7.1 Programming Languages, Message Formats and File Formats 37
3.7.2 Database . 39
3.7.3 Extra Tools used in the Project . 41
3.7.4 Design Principles . 44

3.8 Software Architecture . 45
3.8.1 MVC - Model View Controller . 45
3.8.2 4+1 View Model . 45

3.9 Privacy and security . 47

4 Development Methodology 50
4.1 Waterfall vs Agile development . 50

4.1.1 The Waterfall Method . 51
4.1.2 Scrum . 52
4.1.3 Kanban . 52

4.2 Choice of methodology . 54
4.2.1 Sprints . 55

5 Requirement Specifications 59
5.1 Use Cases . 59

5.1.1 Actors . 59
5.1.2 Textual Use Cases for GAPP . 61
5.1.3 Textual Use Cases for CAPP . 62

5.2 Functional Requirements . 62
5.2.1 GAPP - Guardian Application . 62
5.2.2 CAPP - Children’s Application . 71
5.2.3 Karotz Application . 72

6 System Design 73
6.1 Architectural Description . 73
6.2 Software architecture . 73

6.2.1 Logical View . 75
6.2.2 Development View . 76
6.2.3 Process View . 79

6.3 Architecture Rationale . 84
6.4 Database . 84

6.4.1 Databse Implementation . 84
6.4.2 Database Access Layer . 86

7 Overall Test Plan 88
7.1 Test methods . 88

7.1.1 Black-box testing . 88
7.1.2 White-box testing . 89

7.2 Test levels . 89
7.2.1 Unit testing . 89
7.2.2 Module testing . 89

iii

CONTENTS

7.2.3 Integration and System testing . 89
7.3 Testing approach . 90

8 Sprint 1 93
8.1 Sprint Plan . 93
8.2 Sprint backlog . 94
8.3 Design and Implementation . 94

8.3.1 User Interface Layer . 94
8.3.2 Application Logic Layer . 95
8.3.3 Data Persistence Layer . 95

8.4 Testing and Results . 95
8.4.1 Testing . 95
8.4.2 Results . 95

8.5 Sprint Retrospective . 95
8.5.1 Sprint Burndown Chart . 96

9 Sprint 2 102
9.1 Sprint Plan . 102
9.2 Sprint backlog . 103
9.3 Design and Implementation . 103

9.3.1 User Interface Layer . 104
9.3.2 Data Persistence Layer . 105
9.3.3 Database Access Layer . 105

9.4 Testing and Results . 106
9.4.1 Testing . 106
9.4.2 Results . 106

9.5 Sprint Retrospective . 106
9.5.1 Sprint Burndown Chart . 109

10 Sprint 3 113
10.1 Sprint Plan . 113
10.2 Sprint backlog . 114
10.3 Design and Implementation . 114

10.3.1 User Interface Layer . 114
10.3.2 Application Logic Layer . 114
10.3.3 Data Persistence Layer . 116
10.3.4 Karotz . 116

10.4 Testing and Results . 116
10.4.1 Testing . 116
10.4.2 Results . 117

10.5 Sprint Retrospective . 121
10.5.1 Sprint Burndown Chart . 121

11 Sprint 4 126
11.1 Sprint Plan . 126

11.1.1 CAPP . 127
11.1.2 GAPP . 127

11.2 Sprint backlog . 127
11.3 Design and Implementation . 129

11.3.1 User Interface Layer . 129
11.3.2 Application Logic Layer . 130

iv

CONTENTS

11.3.3 Data Persistence Layer . 130
11.3.4 Karotz . 131

11.4 Testing and Results . 132
11.4.1 Testing . 132
11.4.2 Results . 132

11.5 Sprint Retrospective . 133
11.5.1 What went well? . 133
11.5.2 What shall we start doing? . 133
11.5.3 What could have gone better? . 133
11.5.4 What should we stop doing? . 133
11.5.5 Sprint Burndown Chart . 134

12 Sprint 5 137
12.1 Sprint Plan . 137
12.2 Sprint backlog . 137
12.3 Design and Implementation . 139

12.3.1 User Interface Layer . 139
12.3.2 Application Logic Layer . 139
12.3.3 Data Persistence Layer . 140

12.4 Testing and Results . 140
12.4.1 Testing . 140
12.4.2 Results . 159

12.5 Sprint Retrospective . 160
12.5.1 What went well? . 160
12.5.2 What shall we start doing? . 160
12.5.3 What could have gone better? . 160
12.5.4 What should we stop doing? . 160
12.5.5 Sprint Burndown Chart . 160
12.5.6 Screenshots . 163
12.5.7 GAPP - Screenshots . 163

13 Usability Testing 168
13.1 What is usability testing . 168
13.2 How to do usability testing . 168
13.3 Usability testing in our project . 169

13.3.1 Paper prototype test . 169
13.3.2 Usability testing of the distraction . 172

14 Further Work 179
14.1 Improvements . 179

14.1.1 Wifi access and caching of database records . 179
14.1.2 Security and privacy . 180
14.1.3 Rewardsystem . 180
14.1.4 Distraction sequence for children . 181
14.1.5 User testing of the guardian application . 181
14.1.6 Web application . 181
14.1.7 Support for more children . 182

14.2 Ideas and minor improvements . 182

v

CONTENTS

15 Evaluation 185
15.1 Work Process . 185

15.1.1 Development Methodology . 185
15.1.2 Development Process . 187
15.1.3 Work Load . 187

15.2 The Final Product . 188
15.3 Functional Requirements completed . 189
15.4 Concluding Remarks . 191

Appendices 198

A Paper Prototype 199
A.1 About paper prototyping . 199
A.2 Usability Testing with a paper prototype . 199

A.2.1 Testprocedures . 199
A.2.2 The testpersons tasks . 200
A.2.3 The testgroups tasks . 200

B Document templates 202
B.1 Agenda . 202
B.2 Status reports . 202

C Karotz Manuscript 204

D Coding Templates 210
D.1 Coding Style . 210

D.1.1 Package conventions . 210
D.1.2 Indentation . 210
D.1.3 Curly Brackets . 210
D.1.4 Naming Conventions . 211
D.1.5 Android views . 211
D.1.6 Code Examples . 211
D.1.7 LaTeX folder structure . 212

E Class diagram 215
E.1 Class Diagram GAPP . 215
E.2 CAPP - Children Application . 221
E.3 Karotz Application . 227

F Article from Adressa 230

G Abbreviations 234

vi

List of Figures

2.1 Gantt project overview . 14

3.1 Ventoline . 23
3.2 Flutide . 23
3.3 A Nebulizer machine . 24
3.4 Karotz: A bunny-shaped robot . 27
3.5 Flatnanoz . 28
3.6 Nanoztag . 28
3.7 Main menu view from design workshop . 32
3.8 Change health state view from design workshop . 32
3.9 Change health state as pop up from design workshop . 33
3.10 Start medication view from design workshop . 33
3.11 Pick child view from design workshop . 34
3.12 Distraction view from design workshop . 34
3.13 Distraction view 2 from design workshop . 35
3.14 Rewards view from design workshop . 35
3.15 Log view from design workshop . 36
3.16 phpMyAdmin screenshot . 40
3.17 Postman screenshot . 43
3.18 Graphical view of MVC . 46

4.1 Graphical representation of the waterfall method[2] . 51
4.2 Graphical representation of the SCRUM method[1] . 54

5.1 Use Case diagram for GAPP . 60
5.2 Use Case diagram for CAPP . 60

6.1 Logical View for the system . 75
6.2 GAPP package diagram . 77
6.3 GAPP package diagram . 78
6.4 Karotz package diagram . 79
6.5 Sequence diagram for medication completed . 80
6.6 Sequence diagram for changing medication plan . 81
6.7 Sequence diagram for notification and medication on Karotz 82
6.8 Implemented Database Architecture . 85

8.1 Sprint 1 burndown chart . 97

9.1 Sprint 2 burndown chart . 109

10.1 Sprint 3 burndown chart . 122

vii

LIST OF FIGURES

11.1 Sprint 4 burndown chart . 134

12.1 Sprint 5 burndown chart . 161
12.2 GAPP main menu . 163
12.3 Available plans in GAPP . 163
12.4 A medication plan in GAPP . 164
12.5 Register treatment in GAPP . 164
12.6 Choose among medicines to view more information . 164
12.7 Medicine specific information . 164
12.8 Medicine log in GAPP . 165
12.9 Main menu in CAPP . 166
12.10Start a treamtment in CAPP . 166
12.11Amount of stars collected in CAPP . 166

13.1 Paper prototype . 170
13.2 Usability test CAPP distraction . 174
13.3 Usability test Karotz distraction . 175
13.4 Usability test CAPP instructions . 176

D.1 Java Classes . 212
D.2 Java Interfaces . 213

E.1 Activities in GAPP . 216
E.2 Activity interaction GAPP . 217
E.3 JSON parsers in GAPP . 218
E.4 JSON posters in GAPP . 219
E.5 JSON models in GAPP . 220
E.6 Models in GAPP . 220
E.7 Adapters in GAPP . 221
E.8 Other classes in GAPP . 222
E.9 Activities in CAPP . 223
E.10 Adapters in CAPP . 224
E.11 Available plans in GAPP . 224
E.12 JsonModels in CAPP . 224
E.13 JsonParsers in CAPP . 225
E.14 JsonPosters in CAPP . 226
E.15 Misc classes in CAPP . 226
E.16 Services in CAPP . 227
E.17 Class diagram for the Karotz application . 228

viii

List of Tables

1.1 High level functional requirements . 3
1.2 Chapters and their respective description . 5
1.3 Customer contacts . 6
1.4 Stakeholders . 8

2.1 Members of developer team . 10
2.2 Internal Risks . 15
2.3 External Risks . 16

3.1 Purpose of the 4+1 View Model . 47

5.1 Actors within the system . 61
5.2 Use Case 1 for GAPP, log in . 62
5.3 Use Case 2 for GAPP, change status . 63
5.4 Use Case 3 for GAPP, log . 63
5.5 Use Case 4 for GAPP, Pollen feed . 64
5.6 Use Case 5 for GAPP, guidelines . 65
5.7 Use Case 6 for GAPP, reward . 66
5.8 Use Case 7 for GAPP, medication settings . 66
5.9 Use Case 8 for GAPP, register medication . 67
5.10 Use Case 9 for GAPP, reminder . 68
5.11 Use Case 1 for CAPP, log in . 68
5.12 Use Case 2 for CAPP, reward . 69
5.13 Use Case 3 for CAPP, start treatment . 69
5.14 Use Case 4 for CAPP, reward . 70

7.1 Test template . 90
7.2 List of tests . 91

8.1 Backlog for sprint 1 . 99
8.2 Unit test 1.1, GAPP GUI . 100
8.3 Unit test 1.2, CAPP GUI . 100
8.4 Sprint 1 burndown chart . 101

9.1 Backlog for sprint 2 . 103
9.2 Unit test 2.1, CAPP distraction sequence . 107
9.3 Unit test 2.2, database connection . 107
9.4 Unit test 2.3, SQL queries . 108
9.5 Sprint burndown chart, Sprint 2 . 111

10.1 Backlog for sprint 3 . 115

ix

LIST OF TABLES

10.2 Unit test 3.1: Alarm when turned o↵ . 117
10.3 Unit test 3.2: Calendar colors . 118
10.4 Unit test 3.3: Karotz Notification . 118
10.5 Unit test 3.4: Karotz distraction . 119
10.6 Unit test 3.5: Several doses in a medication . 120
10.7 Sprint Retrospective, Sprint 3 . 123

11.1 Backlog for sprint 4 . 128
11.2 Unit test 4.1: instructions . 132
11.3 Sprint Retrospective, Sprint 4 . 135

12.1 Backlog for sprint 5 . 138
12.2 Unit test 5.1, add child.php . 141
12.3 Unit test 5.2, add plan dose.php . 142
12.4 Unit test 5.3, dose is taken.php . 143
12.5 Unit test 5.4, get available child states.php . 144
12.6 Unit test 5.5, get child.php . 145
12.7 Unit test 5.6, get child state.php . 146
12.8 Unit test 5.7, get doses for current state.php . 147
12.9 Unit test 5.8, get instructions.php . 148
12.10Unit test 5.9, get log days for child.php . 149
12.11Unit test 5.10, get log for child.php . 150
12.12Unit test 5.11, get plan.php . 151
12.13Unit test 5.12, register medicine taken.php . 152
12.14Unit test 5.13, remove plan dose.php . 153
12.15Unit test 5.14, remove plan medicine at time.php . 154
12.16Unit test 5.15, set child state.php . 155
12.17USABILITY5.1 . 156
12.18INTEGRATION5.1 . 157
12.19INTEGRATION5.2 . 158
12.20INTEGRATION5.3 . 159
12.21Sprint Retrospective, Sprint 5 . 162

13.1 The tasks for CAPP . 171
13.2 The tasks for GAPP . 171

15.1 Functional requirements completion . 190

B.1 Status reports . 203

C.2 Manuscript for the Karotz . 207
C.1 Manuscript actions for Karotz . 208

D.1 Naming convention . 211

x

Chapter 1

Introduction

This chapter contains a brief introduction to the project and the layout of the report. It gives an overview
of project goals, and the documentation of the development process. This introduction also explains the
background for the given project and how the project’s success is measured.

In Section 1.1 we give details on the project, including project name, background, task, terms, planned
e↵ort and result schedule.

In Section 1.2 we give detailed customer information including information on the sponsor, partners,
customer contacts, project group, and and overview of a�liates. The a�liates include a table of stake-
holders.

1.1 Project Information

1.1.1 Project Name

The name of this project is “BLOPP”, and was decided by the customer. BLOPP stands for “Barns
LegemiddelOPPlevelse” (“Children’s experience with medication”).

1.1.2 Background

Many children today have to take inhalation medicines because of chronic or acute lung disease such as
asthma. Children often find it di�cult to use the medication correctly, boring or even scary to take them,
which means they might object or forget to take them. Parents also sometimes apply the medication
incorrectly, apply the wrong treatment, or even forget to give the medication to their children. This may
lead to reduced e↵ect of the medication, and the lung disease may worsen and last longer, causing increased
pressure on the public health services, increased health related cost and lost working hours for the parents.

1.1.3 The task

Our task was to implement two Android applications, one application for the parents, Guardian Application
(GAPP), and one application for children, Children Application (CAPP). In addition, an application for
the Karotz platform should be created to assist and to an extent substitute the GAPP and CAPP mobile
applications.

The high level functional requirements for these applications are to be found in Table 1.1. The functional
requirements for all applications are described in more detail in Section 5.2

1

CHAPTER 1. INTRODUCTION

Description

GHR1 The application must alert the parent(s) when it is time for a medica-
tion/treatment for their child.

GHR2 The application must log the health status of their child, according to
section 3.1.1.

GHR3 The application should log pollen casts for the area the child is in, and
which medications were taken each day.

GHR4 The application must store medical plans for their child. These plans
concern asthma medications, and contains which medicines should be
taken at which times.

GHR5 The application must provide instructions on how to use di↵erent medi-
cations. These instructions may be pictures or text, provided by NAAF.

CHR1 The application should distract the children during a treatment.

CHR2 The application should gamify their experience with medication.

KHR1 The application should alert children and parent(s) when it is time for
a medication/treatment for the children.

KHR2 The application should distract the children during a treatment.

KHR3 The application should encourage children to take medication through
interactivity and gamification.

Table 1.1: High level functional requirements. GHR: GAPP requirement, CHR: CAPP requirement, KHR:
karotz application requirement

2

CHAPTER 1. INTRODUCTION

1.1.4 Measurement of project e↵ort

The customer was seeking a documented prototype of a system which could be used for future development
and for getting additional funding for further development of the project. The customer wanted the
prototype tested on children su↵ering from diseases causing breathing problems and their parents, in order
to determine whether or not such a system was an adequate solution to the problem. The system should be
compatible with Android v4.0 or newer versions, and should be intuitive to use. The resulting prototype
should be well documented to ensure that further development would be able to continue development
after the end of the project.

1.1.5 General terms

We were to make two applications for Android devices and one for Karotz. Originally the customer wanted
the smart phone applications made for iOS, but since we did not have Apple computers and iPhones, and
the customer did not have the funding to provide them, we switched to the Android platform. We had at
our disposal a Karotz robot with a yellow and a green Nanoz controller, a Github repository, an AgileZen
board and could request an Android tablet to be used for testing if necessary.

1.1.6 Planned e↵ort

The course description states an expected e↵ort of 25 hours per week per student. The course lasted for
13 weeks, resulting in a total expected e↵ort of 325 hours per student, at a total of 1625 for the team
altogether.

1.1.7 Schedule of results

The applications were scheduled to be completed within November 10th. The time we had left after this,
was used for fixing critical errors, and completing the report.

1.1.8 Report Outline

The report is outlined in Table 1.2.

1.2 Customer Information

The customer of this project is ”Sykehusapotekene i Midt-Norge”.

1.2.1 Sponsor

The sponsor of this project is Extrastiftelsen.

1.2.2 Partners

The Norwegian University of Technology and Science are partner in this project. Norges Astma og Allergi-
forbund (NAAF) has also been included in the work, both for feedback and helpful information. Table 1.3
shows relevant contacts for the customer.

1.2.3 Customer contacts

Table 1.3 gives an overview of the contact information for the customers.

3

CHAPTER 1. INTRODUCTION

Chapter Description
Chapter 1: Introduction Contains a short description of the project, its goals and purpose

and what the report consists of.
Chapter 2: Project Manage-
ment

Contains a description of how the group is organized and what
responsibilities lies on each of the group members. A risk analy-
sis for the project is also included in this chapter, as well as the
work plan which describes the di↵erent phases, activities and a
Gantt Diagram for the project. Quality Assurance techniques
are also discussed, which include meetings, coding templates and
document templates.

Chapter 3: Preliminary Studies Contains a documentation of the preliminary studies done ahead
of the implementation of the applications, including a report of
the design workshop done early in development, development
methodology, frameworks and tools used in the project, the
Karotz platform and information about asthma.

Chapter 4: Development
Methodology

Contains description and discussion about the various develop-
ment methods considered for the project, and an analysis of
SCRUM, the chosen methodology.

Chapter 5: Requirement Speci-
fications

Contains an overview of the requirement specifications for the
system, through use cases and functional requirements.

Chapter 6: System Design Contains a collection of requirements and design choices for
the prototype, including use cases, architectural description and
documentation of the database.

Chapter 7: Overall Test Plan Describes how the team will do testing throughout the project.
Chapter 8-12: Sprint 1-Sprint 5 Contains the goals, backlogs, test tables, results and reviews for

the respective sprints.
Chapter 13: Usability Testing Contains a description of usability testing in general, and reports

and discussion from the usability tests done in the project.
Chapter 14: Further Work Contains a description of what has been implemented and what

the next logical steps are based on the current state of the sys-
tem.

Chapter 15: Evaluation Contains the evaluation and description of how the project was
executed.

Table 1.2: Chapters and their respective description

Name Email
Ole Andreas Alsos oleanda@idi.ntnu.no
Elin Høien elin@hoien.no
Marikken Høiseth marikken.hoiseth@ntnu.no
Hanne Linander hanne.linander@gmail.com

Table 1.3: Customer contacts

4

mailto:oleanda@idi.ntnu.no
mailto:elin@hoien.no
mailto:marikken.hoiseth@ntnu.no
mailto:hanne.linander@gmail.com

CHAPTER 1. INTRODUCTION

Project Group

• Cand Pharm Elin Bergene, Sykehusapotekene i Midt-Norge (Hospital pharmacies in Central Norway)

• PhD Ole Andreas Alsos, Norsk Senter for Elektronisk Pasientjournal (NSEP) (Norwegian Center for
Electronic Patient Journal) and Institute for Computer Science (IDI), NTNU (Ph.D as of 2011). Ole
is also working part time at BEKK Consulting.

• Scholarship Marikken Høiseth, Institute for Product Design (IPD), NTNU.

• Bo Alexander Gleditsch, communication advisor NAAF.

• Rose Lyngra, senior advisor NAAF.

A�liates

The project is in close collaboration with the following a�liates:

• Sykehusapotekene i Midt-Norge (SHAP) will be a test arena for the result of the project. They will
work further with the results.

• Norsk Senter for Elektronisk Pasientjournal (NSEP). NTNUs activities within health informatics is
gathered at NSEP. The project will take advantage of the academic community and the infrastructure
at NSEP (o�ces and usability lab).

• Department for product design (IPD) at NTNU will consult upon design.

• Department for computer and information science arranges the course and will provide an advisor
for the group, Tobias B. Iversen.

• Norges Astma og AllergiForbund (NAAF). The project has been created by NAAF. NAAF will
provide expertise about the user groups of the final applications. NAAF will work further with the
results of the project.

Stakeholders

A stakeholder is a person, group or an organization that has interest in a project. The di↵erent stakeholders
of this project are listed in Table 1.4. This table also contains a short rationale for why each party has
been listed, and what their main concerns for the applications are.

5

CHAPTER 1. INTRODUCTION

Stakeholder Rationale
NAAF Wants to see whether this is a possible solution to make it easier

for children to take their medicine. Also interested in proof-of-
concept.

Sykehusapotekene i Midt-Norge Cooperates with NAAF to find out if there is an easier way to
make children take their medicine.

Developers Wants the applications to be a success, as it is their work. The
level of success also a↵ects the degree in one of their courses.

NTNU Wants the project to be a success to front the research that is
done by the university.

Children diagnosed with asthma Needs something to make it easier to go through with each treat-
ment.

Parents of children diagnosed
with asthma

Needs instructions on how to use medicines correctly. Needs
reminders about when to give their children their medicines.
Needs an organized way to see what medicines have been taken
earlier. Wants their children to su↵er less during medication,
and be happier about taking their medicine.

Extrastiftelsen Main funder of the project.

Table 1.4: Stakeholders

6

Chapter 2

Project Management

2.1 Members

Table 2.1 shows an overview of the names, email addresses and phone numbers for the members of the
developer team.

2.2 Roles

Early in the planning phase, on August 24th 2012, the group held a meeting to distribute team roles for the
project. We discussed which parts were needed for a system fitting the description, and we decided on four
main parts: GUI, back-end, database and Karotz. In addition, proper development requires testing so we
saw the need for a person in charge of testing, and a person in charge of general quality assurance. We also
needed a high-level system architect who could keep the project well-structured and easily maintainable,
especially considering that the system spans over at least three di↵erent subsystems (database, Karotz and
Android applications). Since the group was to keep close contact with both the customer and the group
advisor, responsibilities were assigned to these roles as well. There would also be a need to write reports
for meetings with these third parties, so a secretary was necessary. At last, the group had already decided
to use an agile development model, so a person in charge of this was needed as well (“Scrum master”).

We have identified the following roles for the project.

• Test Master - Eirik

• Scrum Master - Aleksander

• Customer Contact - Aleksander

• Advisor Contact - Esben

• Document Owner - Yngve

• Secretary - Jørgen

• Karotz Developer - Yngve

• Database Manager - Yngve

• System Architect - Esben

• Quality Assurance manager - Jørgen

7

CHAPTER 2. PROJECT MANAGEMENT

Name Email Phone number
Esben Aarseth esbena@stud.ntnu.no 48062321
Aleksander Gisvold aleksg@stud.ntnu.no 46692443
Jørgen Aaberg jorgeaab@stud.ntnu.no 98866209
Eirik Skjeggestad Dale eiriksd@stud.ntnu.no 90138539
Yngve Svalestuen yngvesva@stud.ntnu.no 99101640

Table 2.1: Members of developer team

2.3 Responsibilities among roles

In the following section all roles and their responsibilities are explained.

Test Master The test master is responsible for developing a test plan, initiate testing and follow up
on test results. The test master will have the last vote in whether a test is passed or not. The
test master will be responsible for making sure all parts of testing is done, including unit testing,
integration testing, system testing and acceptance testing with the customer.

Scrum Master Scrum master is accountable for removing impediments to the ability of the team to
deliver the sprint goal. The scrum master is no team leader, but is a kind of bu↵er between the
development team and distracting influences. The scrum master is responsible for ensuring that the
scrum process is used as intended.

Customer Contact The customer contact is responsible of all contact with the customer outside of
the customer meetings. This includes sending meeting invitations, clarifying questions outside of
customer meetings and other inquiries to the customer. The customer contact works as a single-
point two-way communicator, to reduce amount of communication points.

Advisor Contact The advisor contact is responsible of all contact with the advisor outside of the advisor
meetings. Including sending meeting invitations, clarifying questions outside of advisor meetings and
other inquiries to the advisor. Advisor contact works as a single-point two-way communicator, to
reduce amount of communication points.

Document Owner The Document owner is responsible of finding a suitable tool for writing the report in
LATEX, and finding solutions with problems regarding LATEX. The document owner is also responsible
for making sure all the correct documents is added to the report, and will let the group know if
something is missing.

Secretary Secretary is responsible for taking notes during all internal, customer and advisor meetings.
Meeting reports should meet a specific standard, given by the project compendium. It is the respon-
sibility of the meeting report master to ensure this standard is followed.

Karotz Developer The robot bunny, named Karotz, has an API for implementing features for controlling
the robot with an application. The Karotz developer is responsible for developing the Karotz specific
part of the system.

Database manager The database manager is responsible for selecting a suitable database tool for the
applications. The role also includes the responsibility of managing the database architecture and
connections towards the database.

System architect The system architect is responsible of the overall architecture of the source code. The
architect has final vote in decisions regarding architecture specific problems.

8

mailto:esbena@stud.ntnu.no
mailto:aleksg@stud.ntnu.no
mailto:jorgeaab@stud.ntnu.no
mailto:eiriksd@stud.ntnu.no
mailto:yngvesva@stud.ntnu.no

CHAPTER 2. PROJECT MANAGEMENT

Quality assurance manager The quality assurance manager has the overall responsibility for the ap-
plications and reports quality.

2.4 Weekly schedule

The development team had the following fixed weekly schedule:

• Customer meeting: Monday 12:15-13:00

• Advisor meeting: Monday 13:15-14:00

Rooms were reserved on demand. There were also at least one day a week were the development team
works together in the same room.

2.5 Work Plan

2.5.1 Phases

Planning phase

In this phase, a lot of time went to researching development methodology, di↵erent useful technologies
(like LATEX, di↵erent frameworks, customer needs, etc.), and deciding upon a template for the software
architecture. This phase was scheduled for completion by September 16th.

Development

This phase started as soon as the planning phase was completed and approved by the customer. It included
development of the di↵erent applications and testing continuously. This phase was scheduled for completion
by November 15th.

Report Writing

This phase included writing the necessary documentation of the final code. A lot of work was put into
writing the report during the development phase. However, as the report would be large, and we would
need the time to make corrections and add content. This phase was scheduled for completion by November
20th.

Planning of presentation

Planning of the presentation was started after this report was completed. This phase was scheduled for
completion the day before the actual presentation November 22nd.

2.5.2 Activities

We identified some big tasks that needed to be done during the project lifetime. These tasks were essential
to make the project a success.

The identified tasks are:

• Workshop

• Usability tests

• Integration tests

9

CHAPTER 2. PROJECT MANAGEMENT

Figure 2.1: Gantt project overview

• Export applications and wrap up the source code

• Project presentation

• Final report correction

2.5.3 Person-hours per activity and phase

We planned the following person hours per phase. These numbers are based on the estimated project e↵ort
according to the class sta↵, and how long we thought each phase would take. As the activities identified
in Section 2.5.2 are activities “baked into” the di↵erent sprints during development, we have not included
estimation for these (for instance, it is hard to know so early how many usability tests we need). Also, we
would write the report continuously, and this is considered a subtask of both development and planning.
For each sprint we planned to use 175 hours on development.

• Development: 875 hours

• Planning: 425 hours

• Meetings: 125 hours

• Report completion: 30 hours

• Presentation planning: 30 hours

2.5.4 Gantt Diagram

Figure 2.1 shows the Gantt Diagram for the whole project period.

2.6 Risk Analysis

This section contains the risk analysis we did before the project was started. The analysis helped the team
detect the most relevant risks for the project, in order to be prepared if such a problem should occur. This
allowed the team to make some preemptive measures as well as draw up strategies for handling a number
of possible situations. In addition to a listing of internal and external risks, this section contains a SWOT
analysis for a deeper understanding of the di↵erent relations in the project, both internal and external.

2.6.1 Internal Risks

Table 2.2 contains issues that the group identified as possible internal risks for the project.

10

CHAPTER 2. PROJECT MANAGEMENT

2.6.2 External Risks

Table 2.3 contains issues that the group identified as possible external risks to the project.

2.6.3 SWOT analysis

The following section contains an analysis of strengths, weaknesses, opportunities and threats to the project.
The analysis is used as a strategic planning method which analyses the internal and external factors in
a group. The internal factors are strengths and weaknesses while opportunities and threats represent the
external factors.

According to Jackson et. al (2002)[9], the SWOT analysis’ intended use is to get an overview of the
internal and external factors at the beginning of the project. Later, the analysis was used to map which
parts of the project should be relied upon the most, and which opportunities and strengths can help the
progress of the project the most.

Keeping the high-risk parts of the project under close watch helped the team catch problems before
they evolved. In cases where a diversion was required, the SWOT analysis supported the team.

Strengths

Communication and knowledge were the two greatest strengths in the project group. The fact that all
team members spoke Norwegian as their native language, and were fairly competent in English, made all
communication and reporting easier. Deciding to do the reporting and programming in English, while all
other means of communication in Norwegian led to fewer misunderstandings and made it easier to help
each other out when problems occurred. Discussions were also more valuable since everyone were able to
participate without the fear of missing out due to lack of understand foreign languages.

When it comes to the level of knowledge, all group members were fourth year Computer Science
students. This implied that even though the group members were taking di↵erent paths as to which
specialization they were following for their masters degree, they all had a common background. It was
therefore to be expected that everyone could participate in both coding and writing. The consequences of
somebody falling ill were low, since they could be replaced by another member of the team.

The technology was being shared between all team members and every team member took part in
each part of the development. In addition to the basic knowledge, team members have chosen their own
combination of courses. This made the team more capable of solving a broad array of tasks and finding
good solutions to problems. Another strength in the group was that everyone had experience from previous
projects, some more than others, but everyone had been involved in IT related projects. This provided the
team with the experience needed to avoid some common pitfalls and get a decent start on the projects.
The applications is to be used by patients with chronic illnesses, such as asthma. Since there are members
of the group with asthma, the group found it easier to take the end users situation into account.

Weaknesses

The team chose to use the document markup language LATEX, even though none of the members had used
it before. This led to some problems during the start of the reporting. The team was able to find many
di↵erent guidelines, research and tutorials to use LATEX, which made it a lot easier to use, but it took time
to learn and configure everything. For most people, money is a huge motivating factor. Since this is a
university course, the entire group worked for free, making a product someone else may profit from. This
meant that the developers had to find some other form of motivation. The group is also given a single
grade, based on the overall achievements and results made by the team as one unit. This resulted in the
biggest possible gains being experience, knowledge, relations to customers and the final grade. As students,
the grade is usually the most motivating factor we get from a course. With a common grade for the group,
there is a risk that expectations for the final grade might di↵er among the team members, and that some
members will settle for a lower grade than others. It could prove di�cult to get everyone working equally

11

CHAPTER 2. PROJECT MANAGEMENT

#
A
ct
iv
it
y

R
is
k
fa
ct
or

C
on

se
qu

en
ce
s

P
ro
b
.

S
tr
at
eg
y
an

d
ac
ti
on

R
es
p
on

si
b
le

IR
1

A
ll

L
on

gt
er
m

il
ln
es
s
am

on
g

th
e
d
ev
el
op

m
en
t
te
am

.
M

–
D
ec
re
as
e
of

p
ro
d
u
c-

ti
vi
ty
.

L
ac
k

of
ex
p
er
-

ti
se
.

M
S
h
ar
e

in
fo
rm

at
io
n

on
-

li
n
e.

T
h
e
il
l
d
ev
el
op

er
ke
ep

s
h
im

se
lf
u
p
d
at
ed

.

A
ll

IR
2

A
ll

L
on

g-
te
rm

le
av
e.

A
gr
ou

p
m
em

b
er

ta
ke
s
a

lo
n
g-
te
rm

le
av
e.

M
–
R
ed

u
ce
d
ca
p
ac
it
y.

L
P
la
n
w
h
at

th
e
m
em

b
er

sh
al
l

d
o

b
ef
or
e

h
e

is
le
av
in
g.

T
h
e
M
em

b
er

IR
3

A
ll

In
te
rn
al

co
n
fl
ic
ts

am
on

g
th
e
d
ev
el
op

er
te
am

.
M

–
B
ad

m
oo

d
.

L
es
s

w
or
k
e↵

or
t.

H
B
ri
n
g
it

u
p
,
an

d
h
an

d
le

it
ri
gh

t
aw

ay
.

U
se

th
e

ad
vi
so
r.

A
ll

IR
4

A
ll

D
ea
d
li
n
es

n
ot

b
ei
n
g

re
ac
h
ed

.
H

–
U
n
fi
n
is
h
ed

w
or
k.

M
P
re
d
ic
t
w
or
k

lo
ad

an
d

se
t
p
ro
je
ct

b
ou

n
d
ar
ie
s.

P
ro
je
ct

le
ad

er

IR
5

A
ll

G
ro
u
p

m
em

b
er
s

b
u
sy

w
it
h
ot
h
er

co
u
rs
es
.

L
–
R
ed

u
ce
d
ca
p
ac
it
y

H
C
om

m
on

G
oo

gl
e
C
al
en

-
d
ar

to
p
la
n

m
ee
ti
n
gs
.

T
h
e

m
em

b
er

fi
n
d
s
an

-
ot
h
er

ti
m
e

to
d
o

th
e

w
or
k.

A
ll

IR
6

A
ll

G
ro
u
p

m
em

b
er
s
le
av
es

p
ro
je
ct
.

H
–
R
ed

u
ce
d
ca
p
ac
it
y

L
R
ed

u
ce

th
e

p
ro
je
ct

b
ou

n
d
ar
ie
s.

A
ll

IR
7

M
ee
ti
n
gs

G
ro
u
p

m
em

b
er
s

sh
ow

-
in
g
u
p
la
te
.

L
–
R
ed

u
ce
d
ca
p
ac
it
y

H
T
h
e

gr
ou

p
m
em

b
er

w
or
ks

m
or
e
n
ex
t
ti
m
e.

P
en

al
ti
es
.

A
ll

IR
8

Im
p
le
m
en
ta
ti
on

L
ac
k

of
kn

ow
le
d
ge

or
ab

il
it
ie
s.

L
–
M
or
e
ti
m
e
go

es
to

ge
tt
in
g
kn

ow
le
d
ge
.

M
G
et
ti
n
g
th
e
kn

ow
le
d
ge
.

A
ll

Table 2.2: Internal Risks

12

CHAPTER 2. PROJECT MANAGEMENT

#
A
ct
iv
it
y

R
is
k
fa
ct
or

C
on

se
qu

en
ce
s

P
ro
b
.

S
tr
at
eg
y
an

d
ac
ti
on

R
es
p
on

si
b
le

E
R
1

A
ll

E
xt
er
n
al

co
n
fl
ic
ts
.
O
n
e

or
m
or
e

of
th
e

gr
ou

p
m
em

b
er
s

is
in

co
n
fl
ic
t

w
it
h

th
e

cu
st
om

er
or

th
e
gr
ou

p
ad

vi
so
r

M
–

M
ay

le
ad

to
b
ad

co
m
m
u
n
ic
at
io
n
,
la
ck

of
fe
ed

b
ac
k
et
c.

L
B
ri
n
g
it

u
p
an

d
h
an

d
le

it
ri
gh

t
aw

ay
.

If
cu

s-
to
m
er

co
nt
ac
t
is
in

a
re
-

al
ly

b
ad

co
n
fl
ic
t,
ch
an

ge
cu

st
om

er
co
nt
ac
t.

A
ll

E
R
2

D
es
ig
n

an
d

im
p
le
m
en

-
ta
ti
on

C
u
st
om

er
ch
an

ge
s

re
-

qu
ir
em

en
ts
.

T
h
e

cu
s-

to
m
er

is
ve
ry

d
ec
is
iv
e

an
d
d
em

an
d
in
g.

H
–
M
ay

st
re
ss

th
e
d
e-

ve
lo
p
er
s
an

d
an

d
m
ak

e
th
em

co
n
fu
se
d
on

w
h
at

to
p
ri
or
it
iz
e.

H
F
or
ce

th
e

cu
st
om

er
to

p
ri
or
it
iz
e
ta
sk
s.

C
om

-
p
ro
m
is
e

p
os
si
b
le

so
lu
-

ti
on

s.

D
ev
el
op

m
en
t

te
am

an
d

cu
st
om

er

E
R
3

A
ll

T
h
er
e
is

in
su
�
ci
en
t
in
-

p
u
t
fr
om

th
e
cu

st
om

er
re
ga

rd
in
g

th
e

d
ev
el
op

-
m
en
t
p
ro
ce
ss
.

M
–

M
ay

le
ad

to
ex
-

p
ec
ta
n
ci
es

n
ot

b
ei
n
g

m
et
.

L
F
or
ce

in
p
u
t

fr
om

cu
s-

to
m
er
.

D
ev
el
op

m
en
t

te
am

an
d

cu
st
om

er

E
R
4

D
ev
el
op

m
en
t

T
oo

ls
fa
il
.

S
of
tw

ar
e

to
ol
s

st
op

w
or
ki
n
g

or
ar
e
ou

td
at
ed

.

M
–

D
ev
el
op

m
en
t
p
ro
-

ce
ss

h
al
te
d
.

L
D
o

ot
h
er

w
or
k.

F
or

in
st
an

ce
re
p
or
t
w
ri
ti
n
g,

te
st
in
g
an

d
re
fa
ct
or
in
g.

F
in
d

ot
h
er

so
lu
ti
on

s
to

th
e
p
ro
b
le
m
.

A
ll

E
R
5

D
ev
el
op

m
en
t

L
os
s
of

d
at
a.

D
at
a
co
n
-

n
ec
te
d
to

th
e
p
ro
je
ct

is
lo
st
,

or
is

u
n
av
ai
la
b
le

fo
r
a
p
er
io
d
of

ti
m
e.

H
–

D
ev
el
op

m
en
t

p
u
t

b
ac
k
in

ti
m
e.

L
P
ri
or
it
iz
e
ta
sk
s
ac
co
rd
-

in
g
to

re
m
ai
n
in
g
ti
m
e.

A
ll

E
R
6

M
ee
ti
n
gs
,

F
ee
d
b
ac
k

O
n
e

of
th
e

cu
st
om

er
s

ta
ke
s
a
lo
n
g-
te
rm

le
av
e.

L
–
M
ay

d
el
ay

fe
ed

b
ac
k,

in
p
u
t
an

d
ac
ce
ss

to
re
-

so
u
rc
es
.

L
R
eq
u
ir
e

m
or
e

fr
om

th
e

ot
h
er

cu
st
om

er
co
nt
ac
ts
.

T
h
e

cu
s-

to
m
er

E
R
7

D
ev
el
op

m
en
t

C
an

n
ot

ge
t
th
e
K
ar
ot
z

A
P
I
to

w
or
k.

H
–
M
ay

le
ad

to
re
m
ov
al

of
th
is

fe
at
u
re

fo
r
th
e

p
ro
to
ty
p
e.

L
F
oc
u
s
on

ot
h
er

p
ar
ts

of
th
e
ap

p
li
ca
ti
on

s.
D
ev
el
op

m
en
t

te
am

E
R
8

D
ev
el
op

m
en
t

D
at
ab

as
e

n
ot

w
or
ki
n
g

at
al
l.

H
–
M
ay

le
ad

to
h
ar
d
-

co
d
in
g
of

al
l
fe
at
u
re
s
fo
r

th
e
p
ro
to
ty
p
e.

L
H
ar
d
co
d
e

n
ec
es
sa
ry

p
ar
ts
.

D
ev
el
op

m
en
t

te
am

E
R
9

D
ev
el
op

m
en
t

A
n
d
ro
id

d
ev
ic
es

st
op

w
or
ki
n
g

L
–
M
ay

d
el
ay

d
ev
el
op

-
m
en
t
si
n
ce

em
u
la
to
r
h
as

lo
w

p
er
fo
rm

an
ce
.

L
T
h
e

gr
ou

p
m
em

b
er

m
u
st

sw
it
ch

to
em

u
la
-

to
r.

G
ro
u
p

m
em

b
er

Table 2.3: External Risks

13

CHAPTER 2. PROJECT MANAGEMENT

hard and as a result, some group members might become frustrated. The team attempted to fight this risk
factor by introducing this weakness and discussing what each member wanted to gain from the project.

Opportunities

The gamification concept behind BLOPP has a lot of potential users. There is a significant need for a
technological breakthrough in the area of applications regarding medication and motivation.

There exists many di↵erent applications for making medication plans, reminding users, logging intake
of mediation and similar functionality. A search on Google Play, the application store for Android devices,
with the search term “Asthma” gives a result of 214 applications. We downloaded a few of the free ones,
and all where very targeted towards adult users, giving information, o↵ering tracking logs and similar.

NAAF is an organization with impact on political decisions regarding health care in Norway. As exem-
plified by the Norwegian law “Diskriminerings- og tilgjengelighetsloven”[30] (Discrimination and availabil-
ity law), their work is often referred to in legislative bills and they are considered a very professional and
respected organization. The fact that they are backing this project may give the project media attention1.

NAAF and the BLOPP-project wants to make an application targeting children, but in order to avoid
spending money on a poor solution, BLOPP did this as a low-cost project first. Should this project result
in a success, NAAF can apply for a financial support from the Department of Health to develop the project
further. The concept may also be useful for children with other diseases that require scheduled medication.
Rød et al. (2006)[25] writes that 10-12% of the Norwegian school children have asthma, which gives a
potentially huge user group.

The final application may also be easily rewritten and target persons with other diseases. This may
be done without writing all code from the beginning, but rather change out the parts regarding what
medicines are implemented in the solution. This will again give a very huge potential user group, since all
people with need to take a medicine regularly may be a target user.

Threats

When making a new product, it is not always clear what the product is going to solve and how it is going
to do it. Neither are the opportunities and the limitations. Therefore it is very likely that the product and
requirements are going to change during the development process. It is critical that the team makes room
for unexpected changes and that adapting to changes is made easy.

To manage this risk, a good working relationship with the customer is necessary. Product tests and
demonstrations need to be done iteratively with both users and customers. Failing to do this will be a
huge threat to the project and therefore, communication and collaboration will be important.

2.7 Quality Assurance

2.7.1 Language

As a main language for the development project, Norwegian was chosen. The decision was due to all
members, customer contacts and the advisor being Norwegian. The report is written in English. All code,
including comments were all in English. The language in the applications was chosen to be Norwegian,
since the applications is targeted towards norwegian children who do not necessarily understand English.

2.7.2 Customer Meeting

Customer meetings were held once a week. The reason behind this schedule was due to the customers
desire of high involvement in the project, and the belief that having a high frequency of meetings would
result in a higher quality result. High involvement makes the process of feedback and new ideas easier, and

1
See Appendix F

14

CHAPTER 2. PROJECT MANAGEMENT

restricts the possibilities for the development team tracking o↵ course. The meetings were usually held on
Mondays. If any unexpected events resulted in meetings being moved, a notice where given at least 24
hours in advance. The first customer meeting was held at St. Olavs Hospital the 21st of August.

2.7.3 Advisor Meeting

The advisor meeting were held each Monday at Campus Gløshaugen. See Appendix B for a typical meeting
agenda. The main items of the agenda was the meeting approval of the report from the last meeting, a
project status report and discussion on problems and di�culties. A plan for the following week was also
presented. During the meetings, the advisor was able give feedback on the status of the report regarding
the quality expected from the final result.

15

Chapter 3

Preliminary Studies

3.1 Children with asthma

Asthma is a chronic inflamatory disease that a↵ects the airways and lungs.[7] It is often more prominent
in children, who are more active and easily excited than adults. The asthma is typically triggered by
excitement, physical activity, rashes or allergies. The problem is managed by multiple medicines, with
di↵erent schedules as to when to take them, and how much to take, depending on the condition of the
child. There are inhalation medicines that consists of either small dust particles that e↵ect the lungs
locally, or saltwater that are inhaled as vapor, either alone or combined with other medicines to loosen up
slime. Among these inhalation medicines is Ventoline and Flutide, seen in figure 3.1 and 3.2. There are
also pills and liquid medicines that either a↵ects the immune system or a↵ects the body globally, not just
locally in the lungs.

The medicines can also be divided into medicines that have immediate e↵ects, and are used during
an asthma attack, while other medicines are preventative, and is taken on a regular schedule. These
preventative medicines are targeted at bolstering your immune system before going to certain areas, or
days where the child is likely to be in contact with materials it is allergic to.

With some of the inhalation medicines it’s di�cult to time the inhalation with the release of medicine,
and here an inhalation chamber, or inhalation mask, is used. When the child has taken the nebulizer this
way, usually once or twice a day, they must remember to wash their mouth afterwards.

Figure 13.1 shows an image of a nebulizer machine. The nebulizer machines often makes alot of noise,
and can be scary to children. The nebulizer treatment takes between 2-10 minutes, 1-4 times a day.

Figure 3.1: Ventoline[3] is an inhalation
medicine that opens up the airways shortly
after inhaling it.

Figure 3.2: Flutide is a steroid keeping the
illness checked, but it has no immediate
e↵ect.

17

CHAPTER 3. PRELIMINARY STUDIES

Figure 3.3: A nebulizer machine.[28]

3.1.1 Tra�c Light Classification of Asthma Condition

The tra�c light program is a way of classifying condition and resulting medication for asthmatic patients.
It is a very simple system that requires very little knowledge to understand, and is therefore well-suited
for a project aimed at children. The basic outline can be compared to a tra�c light.

Borge et al. (2002)[38] defines the zones as green, orange, and red and describes e↵ects and treatment
for each of them.

Green Zone

Green is the normal zone. A patient in the green zone can be described as in “regular condition”. He or
she is breathing normally, even when doing light physical exercise.

When an asthmatic is the green zone, it is normal to take two to three di↵erent medicines each day,
often with cortisone

Yellow Zone

Yellow is the “ill” zone. When a patient is in the yellow zone, they exhibit moderate signs of illness
such as breathlessness and coughing. There may also be allergy reactions, and waking up at night from
breathlessness and coughing. A patient may be defined as being in the yellow zone if he or she has a cold.

In the yellow zone, patients typically take more medication than in the green zone. A normal amount
is 4 to 6 doses daily. The medication from the green plan is taken as normal, in addition to any new
medicines introduced by the yellow state.

Red Zone

The red zone is labeled the “stop” zone. A patient in the red zone will have almost closed airways, making
it very di�cult to breathe and the person will have to stop any activities.

A patient in the red zone has to fix his or her state immediately. This could be by opening windows,
finding a good resting position, taking specific emergency medication or using specific breathing techniques.
If these courses of action don’t help, the patient should immediately call the doctor.

18

CHAPTER 3. PRELIMINARY STUDIES

3.2 Parents with children a↵ected by asthma

Parents of children with asthma face a series of challenges concerning the medication of their children.
One of these challenges is to give the correct amount of medicine, the right type of medicine, at the correct
time of the day. Many parents have experienced stressful mornings where they are late for work, their
children are unwilling to take their medicine and they either do it in an incorrect manner, reducing the
medicines e↵ect, or not giving it at all. The medication plans can be hard to understand, even though they
are designed to be easy, and it’s typically only one of the parents that have been given the instructions
from the doctor directly, making it even harder for the other one to do it correctly.

The children are not always happy about taking their medicine. The inhalation mask might be scary,
the medication might interfere with their planned activities that day, or any number of other reasons the
child might not want to take his/her medicine that day. Having to force a child to take their medicine
could make the child associate taking the medicine with a negative experience, and it becomes increasingly
di�cult to give the medicine to the child.

3.3 The concept of gamification

Gamification is the concept of applying game-design thinking to non-game applications to make them more
fun and engaging. Nick Pelling (2011)[16] writes that the term gamification was introduced in 2002, but
was not popular before 2010 (Daniels, 2010[17]).

Common techniques applied to introduce gamification to a process include, but are not limited to:

• Achievements/badges

• Levels

• Leaderboards

• Progress bars

• Avatars

• Gifting

• Challenges

• Embedding of minigames

These techniques are all widely used. Here are some examples:

• In games for platforms like Playstation and Xbox, gamification is frequently used to make people
finish campaigns.(Hamari et.al, 2011[6]) Trophies and achievements are used to motivate people to
complete games 100%. You may have to collect every single item in the game, fight every boss and
so on.

• Nike+ introduced gamification to training. (Zichermann et. al, 2011[5]) You can track how fast you
run, your maximum pulse and so on, and try to beat this target the next time you are running.

• You can “check in” to places you have been with Google Maps, Facebook, Foursquare, Google+,
GoWalla, and similar applications.

• Airline companies uses bonus points as motivation for customers to fly more with a company. (Gam-
ification Wiki, 2012[4]) At a certain level of these points, you may get one more flight for free, get a
free upgrade to a better seat and so on.

19

CHAPTER 3. PRELIMINARY STUDIES

We hope gamification will help making children’s treatment as enjoyable as possible. Michael Wu has
proven that gamification has an impact on human motivation. Wu presents: “Game mechanics and game
dynamics are able to positively influence human behavior because they are designed to drive the players
above the activation threshold (i.e. the upper right of the ability-motivation axis), and then trigger them
into specific actions” (Wu, 2011)[14].

The gamification elements most suited for children, is gifting and embedding of minigames. The gifting
needs to be visual, and the two elements can be interwoven to increase the e↵ect, where the minigames
changes according to what gifts you’ve already achieved. Another way that can implement gifting targeted
at children, is to implement a currency system, for example coins, and reward them with physical rewards
when they reach a certain amount of coins. The rewards could be all from small toys and candy, to larger
items, depending on the amount of coins, and the tasks performed to get the coins. A point here is to
make sure the currency is very visual, to make sure even young children understand how many coins they
have. The implementation of minigames would help greatly in distracting children during tedious tasks
like nebulization treatments.

Gamification has a lot of positive sides, but it may have bad sides if gamification is done the wrong way.
The fact that we are using gamification to motivate children, makes this an even more serious concern.
If children feel that they are stuck in a game, motivation may very easily be broken down. So whatever
concept we come up with, it has to be to motivate the children at all time. They cannot feel stuck with
our app. This concept is up to the customer to create, while we will be implementing it.

As written above, gamification may have negative e↵ects on users. Anderson-Rainie (2012)[22] show
results that users are likely to not be motivated or feel that they are manipulated into completing a task.
The research also show that users are likely to feel that gamification is too childish, and that gamification
is a trend that will disappear within a few years.

3.4 Karotz

Karotz.com (2012)[15] describes Karotz as a robot shaped as a bunny that can interact with a user through
light, ear movement and sound. It can also take input through a button, moving its ears, an RFID (Radio-
frequency identification) chip, voice commands and serial (Internet) communication.

The project includes developing an application for the Karotz platform that will serve as an addition
to the mobile applications. It is therefore necessary to study its interfaces, development methods and API
of the machine.

3.4.1 Application Platform

Karotz application (called “Appz”) are installed through an online platform located on the Karotz web
site. They can be launched on the Karotz itself either through a scheduler, voice commands or an RFID
chip. These RFID chips come in various shapes, sizes and colors. Figure 3.5 and Figure 3.6 show examples
of the di↵erent kinds of “nanoz”, that are small figures with an integrated RFID chip.

Some mentionable applications made by other developers are “At Home”, an application that may
register that someone checks in at the Karotz, and send an e-mail to a predetermined mail address, so
children may tell their parents that they are home. “Twitter for Karotz” may read you tweets and post
tweets based on voice-commands. Another mention is “Weather” which may tell you the forecast for the
day or the following day. It seems all applications registered at the Karotz website are fairly simple and
have little functionality.

As for launching the BLOPP application, the times for the scheduler must be manually set through
the Karotz web site, so it cannot be used for notifications directly. The best option for the BLOPP
implementation would therefore be to set a scheduler to start every day at 00:00 and stop every day at
23:59. This way it can be ensured that the application is always running, updating itself with medications,
status and times, and a timer can be used to schedule notifications.

20

CHAPTER 3. PRELIMINARY STUDIES

Figure 3.4: Karotz: A bunny-shaped robot

The Karotz can be programmed in two di↵erent ways: either through a web REST (Representational
State Transfe) framework, or with JavaScript that runs as an embedded program on the robot itself.

The requirement that a REST program would have to be hosted somewhere, combined with the fact
that an embedded program provides more flexibility in terms of local storage to limit the amount of
information sent over a network makes the JavaScript framework a more suitable choice for the BLOPP
project.

The Karotz has a few ways of providing output to the end-user. It can be asked to

• play sound files;

• move its ears;

• speak, using a TTS (text-to-speach) engine;

• illuminate its stomach in di↵erent colors; and

• communicate over the internet with HTTP (Hyper Text Transfer Protocol) GET and POST methods.

For providing user commands, TTS could be an option if the engine supported Norwegian, but since
the language options are limited to English, French, German and Spanish, speech will have to be created
by recording sound files and playing them with the multimedia engine.

3.5 Pollen forecast

NAAF[8] states that asthma- and pollen treatment needs to be seen in correlation. Children may feel worse
during pollen season than the rest of the year. We intend to give parents more analyzing tools by being
able to see connections between asthma symptoms and di↵erent types of pollen by using pollen data. It
may occur that asthma is not the original source of a child’s condition, but an allergy against a certain

21

CHAPTER 3. PRELIMINARY STUDIES

Figure 3.5: A flat nanoz–flatnanoz– a fig-
ure with an RFID chip used to provide in-
put to a Karotz.

Figure 3.6: A round nanoz–nanoztag– a
figure with an RFID chip used to provide
input to a Karotz.

pollen is the source. NAAF hosts a pollen forecast at http://pollenvarslingen.no/ which we intend to
use. We have been given a user key for this cast, even though they do not normally distribute this sort of
information to application developers.

3.6 Design workshop

Before the first sprint, a design workshop was held. Hanne Linander, a master student in Industrial Design
at NTNU was responsible for the workshop. The goal was to come up with di↵erent ideas for functionality
and design, and make an early sketch for the layout of the application.

At this stage in the study, we had not yet decided to develop two separate applications, so we created
layout suggestions for an application aimed to do both tasks for children and for adults.

Many di↵erent exercises were completed throughout the day, in order to make as many creative ideas as
possible. Examples of exercises are short time boxed sketch sessions, cross-collaboration without explain-
ing thoughts behind the sketches, di↵erent idea-competitions, among others. At the end the ideas were
evaluated, resulting in many discards and some being taken into further development. After the workshop
the sketches and the ideas were presented to the customer. The development team was very happy about
the results and decided to develop a paperprototype from the sketches.

3.6.1 Results

We drew several sketches of how we envisioned the di↵erent views in an imagined Android application.
Figure 3.7 shows a suggestion for the main menu in the application, where the action of taking medicine

is in focus. The menu includes:

• a log button where an adult can view medication history for the child,

• a manual button for learning how to use medication,

• a settings button for adjusting mediation schedule, alarm ringtone etc.,

• an “about the app” button for learning how to use the application,

• a display where one can view the current health state for the child, and also click on it to change the
health state, and

22

http://pollenvarslingen.no/

CHAPTER 3. PRELIMINARY STUDIES

• a count of how many stars the child has collected, with the option to click on that count to see more
detailed information about the rewards collected.

Figure 3.8 illustrates how a user would see the health state view separately from the menu. It would
consist of three elements represented as colored smileys; one for each health state. The healthy smiley
would be green and smiling, the sick one would be yellow and in a mellow mood, while the very sick state
would be represented by a red, frowning smiley. The currently active health state could be displayed by
illuminating the respective smiley, and clicking on another would change the active state.

Figure 3.9 shows how the health state view could be integrated into the main menu better by injecting
it into an overlay. This could make navigating the app more intuitive.

Figure 3.10 is an image of the view a user would first see when clicking the big “medicine” button in
the main menu, or the view he or she sees when redirected from a notification. It shows an image of the
medicine to be taken, and gives the option to go directly to the medication process through clicking on the
medicine image itself. If a user is unsure about how to use the medication, there is illustrated an option
where one would directly be brought to the manual page for that medicine.

Figure 3.11 shows a view one would be brought to if more than one child was registered in one appli-
cation. It shows an icon for each child and the child’s name. Clicking one one or the other would bring
the user to the distraction page for that child.

Figure 3.12 is an image of the first part of the distraction animation a child would see. It shows dark
clouds and a thunderstorm that represents the child’s state before taking medication. It was thought of as
a way to motivate children to take medication in order to clear up the clouds, and as something children
could relate to by comparing their progress to the clouds.

Figure 3.13 is also part of the distraction animation. It shows a medicine unit emerging from behind
the clouds which are clearing up while the medication is ongoing. The emerging medication was supposed
to symbolize the goodness of medication, while the clearing of clouds would symbolize the child’s lungs
and airways clearing up.

Figure 3.14 illustrates how a child could view his or her collected stars. There is a big star with a
count next to it, which would show the total amount of stars. In addition, there is a scrolling view on
the top where each day would have an amount of stars on it, corresponding to how many stars the child
had received on that day. Lastly, there is an appealing figure on the page, in this case a “ninja master”,
which would be an avatar for the child. It was imagined as something that the child would purchase or
obtain after reaching a certain amount of stars, and the object itself would vary, serving as an additional
motivational factor to supplement the stars themselves.

Figure 3.15 is a view where adults could check the progress and medication history for a child. It would
display graphs of condition and how good they were at following a medication plan. Days would be colored
after what condition the child was in on that day. The amount of stars the child collected is also shown in
each day, and a percentage of how often a given medicine is taken on the planned time is displayed on the
bottom right.

23

CHAPTER 3. PRELIMINARY STUDIES

Figure 3.7: View for the main menu of the appli-
cation.

Figure 3.8: View for changing health state (active
medication plan).

Figure 3.9: View for changing health state as a
pop up from the main menu.

Figure 3.10: View for starting a medication and
distraction process.

24

CHAPTER 3. PRELIMINARY STUDIES

Figure 3.11: View for choosing child to medicate
at the start of medication mode.

Figure 3.12: Initial view of a distraction. Heavy
clouds and thunderstorms represent the child’s
state before taking medicine.

Figure 3.13: Subsequent view of a distraction
process. The medication is emerging while the
clouds are disappearing, to symbolize the healing
e↵ects of medicine.

Figure 3.14: View where children can view their
collected reward (stars), and an acquired rank (in
this case “ninja master”).

25

CHAPTER 3. PRELIMINARY STUDIES

Figure 3.15: View where adults can view the medication and health state history for a child.

26

CHAPTER 3. PRELIMINARY STUDIES

3.6.2 What was used in the further development

Several ideas from the design workshop was used later in the development. We realized that we did not
have su�cient time to make a very complicated distraction and reward system for CAPP, so we decided
to keep the ideas from the workshop about rewarding the child with stars whenever he or she completed a
treatment. This is easily implementable, and we believed it would be easy for parents to build on it with
physical rewards when the child had accumulated enough stars. For the same reasons we chose to keep
and build on the idea of having an animation sequence where a Karotz avatar mirrored what the child had
to do, it would equip the inhalation mask when the child had to, making it more exciting for the child to
do this as well. This approach have been seen to work with other applications, like for helping children
brush their teeth, and we wanted to use this as our base point.

We did the workshop based on the idea of having one application, but later decided on having two.
This meant that most of the basic GUI elements we came up with here, had to be redone. For GAPP we
implemented a log which kept its general layout, with the coloring showing which plan had been followed
the relevant day. We later switched around on the additional information that would be shown on each
date and how, but the concept stayed the same.

3.7 Frameworks used in the Project

In this section the di↵erent frameworks that have been in use in the project is presented. The frameworks
consists mainly of the development model, the di↵erent programming languages, the database and server
tools, the Karotz API, the Android SDK and the IDE used for development.

3.7.1 Programming Languages, Message Formats and File Formats

The following section will comment on di↵erent programming languages, communication protocols and file
formats used in the project.

Eclipse IDE

Eclipse [43] is a multi-language software development environment comprising an integrated development
environment (IDE) and an extensible plug-in system. The source code is mostly written in Java. Eclipse
may be used to develop applications in Java and, by means of various plug-ins, other programming lan-
guages including Ada, C, C++, Ruby, Python, and many others. Eclipse is owned by the Eclipse Foun-
dation, a non-profit organization focusing on creating and maintaining a community for individuals and
organizations who wish to collaborate on commercially-friendly open source software.

Java

Java is a programming language developed by Sun Microsystems in 1995, and is licensed under the GNU
General Public License. Java can be run on any Java Virtual Machine (JVM), which means that it can
run on any platform. It is an object oriented language and is based upon classes. According to TIOBE
Software (2012)[44], it was ranked as the 2nd most popular programming language in the world.

Android SDK

The Android software development kit (SDK) [41] includes a comprehensive set of development tools used
when developing Android software. The kit includes an Emulator, documentation of the source code,
sample code, tutorials and a debugger. Enhancements to Android’s SDK go hand in hand with the overall
Android platform development. The SDK will also support older versions of the Android platform, through
downloading extra packages of source code, in case developers wish to target their application towards older

27

CHAPTER 3. PRELIMINARY STUDIES

devices. By building the project through the IDE the Android application is packaged in a format which
may be distributed (.apk).

Android Developer Tools

The Android Developer Tools (ADT) [42] is a plug in for Eclipse that provides a professional-grade devel-
opment environment for building Android applications. The ADT makes it easier to use the functions and
tools that the Android SDK provides, by giving access through the user interface of Eclipse.

Javadoc

Javadoc is a tool for documenting code. It is integrated in Eclipse IDE, and we will use it document
our code. When we use code-completion in Eclipse, the Javadoc of the function selected is shown as it’s
description.

JavaScript

Two parts of the project will make use of JavaScript. The settings page for doctors is web based and will
use JavaScript for interactivity. The Karotz can be programmed in two ways; either through a web API
on the server side or through stored JavaScript code. In order to maximize stability and power, the client
hosted JavaScript technique will be used.

JavaScript is a multi-paradigm, weakly typed and dynamic language that is extensively used on the web
today. The main application of JavaScript is to enhance interactivity on a web page through client-side
interpretation of the code in a browser. It can be used for a number of purposes such as making something
happen when a button is pressed, loading new data without refreshing the page and much more. Even
though JavaScript is by far most commonly used on the web there are also applications of it in other areas.
Examples of these kinds of implementations are Node.js[18], a network application creation platform for
writing JavaScript code as a regular server-side program, and the Karotz API which we will be using.

Karotz API

The Karotz API is based on a Javascript engine. The API is downloadable from the Karotz’s homepage
and gives access to the Karotz’s di↵erent functions such as changing the color of the LED light, playing
prerecorded sounds, waving it’s ears and registering contact with an RFID-chip.

A full documentation of the API is given, however most of the example code is commented in French.

3.7.2 Database

Since the project team has decided to use a database to store information relevant to the systems, there
is a requirement to use a programming language for creating and maintaining, as well as accessing, the
database. Because of technical limitations in the Karotz explained further in Section 6.4.2 we chose to
split the database into to parts: the database itself, written and maintained in MySQL, and a set of access
modules written in PHP (PHP: Hypertext Preprocessor) and MySQL.

MySQL and phpMyAdmin

MySQL[27] is the world’s leading open source database. It o↵ers all the tools necessary to implement and
maintain data records for a project such as ours. The advantage of being the biggest contender is that
there is a myriad of resources easily and freely available to MySQL developers on the Internet. MySQL
is suitable for our project because it is reliable, free and open source, and all the group members have
previous experience working with it.

28

CHAPTER 3. PRELIMINARY STUDIES

Figure 3.16: phpMyAdmin screenshot

PhpMyAdmin is a graphical MySQL manager that is installed on NTNU’s MySQL server[37]. It
provides an easy way to manipulate a MySQL database without having to write any SQL code. Figure
3.16 shows a typical screen from phpMyAdmin, where one can edit, add rows, add information etc. directly
within a GUI. Since NTNU’s servers are already integrated with the program, and we use NTNU’s MySQL
server for development, phpMyAdmin will be used to administer the database e�ciently.

PHP

PHP[20] is a scripting language that is extensively used on the web because of its flexibility, ease of use
and popularity. It is mainly used for creating and editing HTML (HyperText Markup Language) pages
server-side before sending to the client. In our project, we used PHP to access the NTNU MySQL database
from a web server located on a NTNU sub network(http://folk.ntnu.no/), and return a JSON file.

JSON

JSON[31] is a format used for storing and sending data in a light, human-readable and easily parsable
format. It’s based on JavaScript notation, but uses only a small subset of the JavaScript syntax; only
strings, numbers, lists, objects, booleans and the null value are included. We have used JSON for storing
configuration data in the Karotz application, and for sending data between the PHP web access modules
and the client applications.

3.7.3 Extra Tools used in the Project

The following section contains a description of the tools used for testing of the system, project and task
management, team and customer collaboration, communication between participants. The tools chosen
were chosen due to familiarity, making the learning curve as flat as possible.

29

http://folk.ntnu.no/

CHAPTER 3. PRELIMINARY STUDIES

Testing Tools

This section describes tools used for performing unit tests, usability tests, and end-to-end tests.

HTTP Requests Postman[34] is a REST client for performing both basic and advanced HTTP requests
to a given URL. It is distributed as an extension for the Google Chrome web browser. Postman keeps a
history of all sent requests, as well as an easy-to-understand interface for performing GET and POST
operations. Since the database was accessed through a web interface that used GET and POST methods,
it was natural to choose a REST client for the development process. Postman is also able to format
returned JSON, which was useful because the web access modules return JSON formatted data. Figure
3.17 shows a typical screen in Postman when performing a POST operation.

Dropbox

For file sharing between customer and the developer team, and the developer team between each other, we
used Dropbox. Dropbox[23] is an online storage which allows sharing of folders and documents between
invited partners. Dropbox is asynchronous, meaning only one person may edit a document at a time.

Git

To ensure that every team member was always up to date and no documentation was lost, version control
systems were enforced. Git[45] was used as a tool for version control. Git is a distributed source code
management system, and was developed by Linus Torvalds in 2005. It comes with a lot of useful features
like rollbacking to previous versions, file history and possibility to work on several branches, among others.
The repository was hosted at Github (http://github.com).

Google Drive

Google Drive (earlier Google Docs), is a file storage and synchronization service made by Google. Google
Docs is now housed at Google Drive, and is a free web-based o�ce suite. Google Docs allows several
individuals to share and write the same document at the same time, and is ideal to write simple documents
concurrently. Google Drive was used for writing agendas and status reports.

Task Management

To ensure task management the team used AgileZen. AgileZen[24] is an online project management tool.
You can add user stories, build a backlog and easily add tasks to each story. Unfortunately it is not perfect
for projects using Scrum. AgileZen gives no simple way of keeping order of which task is to be done within
a certain sprint. Their suggestion is using color coding of tasks, but this was not preferable. There is also
no way to assign a single task to a person, you may only sign epics/user stories to a user. Leaving no
opportunity for showing that two people may work at the same use story at the same time. At a small
project, such as ours this was at times a necessity, which AgileZen did not fulfill. The team used AgileZen
in order to keep the customer updated, while the team used Google Docs internally in order to keep track
of tasks.

Mockup Tool

For mockups the team chose Balsamiq Mockups. Balsamiq Mockups[32] is a tool designed for easing the
collaboration between the GUI developers and the customer. The main advantage to Balsamiq Mockups
is the way it ensures no one is too attached to the design. By making sketchy, low-fidelity frames it moves
the focus of design conversations towards functionality. Balsamiq also has functionality for making click-
through prototypes, which are very nice for demonstration purposes and usability testing. The team was
also advised by the customer and the advisor to use Balsamiq Mockups.

30

http://github.com

CHAPTER 3. PRELIMINARY STUDIES

Figure 3.17: Postman screenshot

3.7.4 Design Principles

Google[29], who is developing the Android operating system has some design principles in order to help
programmers make better applications. As Google states, quotation: ”These design principles were devel-
oped by and for the Android User Experience Team to keep users’ best interests in mind. Consider them
as you apply your own creativity and design thinking. Deviate with purpose.”

Many of these principles are guidelines to help the developers make more attractive and better applica-
tions, and some of them are rules, meant to follow without deviation. Google does not always state which
is which, but refers to their slogan “Don’t be evil”, meaning developers should not try to scam, trick or
hurt users through their applications.

The team as a group has read the design principles and would like to mention the ones that are most
central for the applications we are making:

Real objects are more fun than buttons and menus. The principles states that users should di-
rectly touch and manipulate objects, rather than buttons and menus. This reduces the cognitive
e↵ort needed to perform a task while making it more emotionally satisfying.

Let me make it mine. People love to add personal touches because it helps them feel at home and in
control. Provide sensible, beautiful defaults, but also consider fun, optional customizations that don’t
hinder primary tasks.

Keep it brief. Use short phrases with simple words. People are likely to skip sentences if they’re long.

Only show what I need when I need it. People get overwhelmed when they see too much at once.
Break tasks and information into small, digestible chunks. Hide options that are not essential at the
moment, and teach people as they go.

31

CHAPTER 3. PRELIMINARY STUDIES

Figure 3.18: Graphical view of MVC

3.8 Software Architecture

In this section, we’ll describe some of the software architecture concepts that is applied in the development
of the project. “The software architecture of a system is the set of visible structures needed to reason
about the system, which comprise software elements, relations among them, and properties of both.” [19]

3.8.1 MVC - Model View Controller

MVC is an architectural pattern used frequently in small software systems and applications similar to
CAPP and GAPP. The pattern consists of three components, Model, View, and Controller respectively.

A model consists mainly of “raw” data. A view is responsible to display the data to a user in an
appropriate manner, while the controller receives input and manipulates the data models given the input.

We will use MVC as our main architectural pattern to develop CAPP and GAPP.
The advantage of using MVC in applications is that it separates functionality, and it becomes easier to

modify the functionality of for instance a single underlying models.
Figure 3.18 shows an textual image of MVC. An arrow from A to B indicates an association from A to

B.

32

CHAPTER 3. PRELIMINARY STUDIES

View Purpose
Logical The logical view is an object model of the design, and is con-

cerned with end user functionality. Addresses end users, cus-
tomer and development team to give a brief introduction to how
the system is implemented.

Process The process view gives a description of concurrency and syn-
chronization aspects of the design. Reflects upon properties like
scalability, performance, and internal processes.

Physical Describes how the system interacts with di↵erent types of hard-
ware. Addresses system engineers, and describes communication
protocols and topology.

Development Describes how the software is organized in a development envi-
ronment. Addresses programmers and software management.

Table 3.1: Purpose of the 4+1 View Model

3.8.2 4+1 View Model

Kruchten (1995)[35] defines the 4+1 View Model as a model for describing the software architecture for
several stakeholders through di↵erent views (Please note that “View Model” in this context is something
completely di↵erent than the views and models described in Section 3.8.1). These views are called Physical
View, Process View, Development View and Logical View, respectively, and are built around a series of
scenarios, or use cases. We will use this model to describe the architecture in Chapter 6

Table 3.8.2 shows the purpose of the di↵erent views.

3.9 Privacy and security

Early in the project we did some research into what information we could be legally allowed to keep
track o↵, and more importantly, what was recommended to avoid doing, to be able to avoid issues later.
Specifically we looked into what information we could save regarding how well the medicationplans were
followed, and in if this information could be sent to medical sta↵, with information about who followed the
plans well and who did not. We discovered it was not necessarily legal to send this information without
consent from the person the data was collected from, or in our case, the guardian of that person. We
thought about making this information available to medical sta↵, but dropped it since it is illegal to send
this type of information without consent.

In terms of whether or not we could use the child’s personal number as an identifier, we discovered that
this was legal, but only if we had an actual need to save it, that we had pursuant in the law to save it, and
finally, that satisfactory identification of the relevant person could not be achieved in any other way. For
the system we were making we had none of these criteria in order, but for future expansions this might be
information actually required. Hospitals have to be sure they give medicines to the correct people, so the
personal number is already written on any prescription medicine used. If the system is expanded towards
the hospital nebulization treatment it might be necessary or useful to store the personal number in our
database, to connect the user with the person receiving the treatment.

33

Chapter 4

Development Methodology

This section begins with a comparison between Waterfall development and agile development. Further
is contains descriptions regarding the di↵erent development methodologies that have been brought up
in discussion. Each subsection includes both a short explanation, advantages and drawbacks for each
methodology.

4.1 Waterfall vs Agile development

The first formal description of waterfall was published in a 1970 article by Winston W. Royce[10]. This
method has been around for decades. The waterfall method is based on the idea of visiting each of the
phases, Initiation, Analysis, Design, Construction, Testing, Implementation and Maintenance, only once
and finish one before starting the next. The name is given from the idea of progress flowing through each
phase, like a waterfall. This results in huge challenges regarding controlling dependencies if the project
does reiteration over previous phases at a later stage.

Agile software development is not one certain method, but rather a group of software development
methods based on iterative and incremental development. The concept of agile software development was
introduced in The Manifesto for Agile Software Development, 2001[11]. Even though iterative and incre-
mental development methods had been around for some years, this manifesto gathered all best-practices
in one place. The most used agile methods are, in no particular order, Extreme Programming, Adaptive
Software Development, Feature Driven Development, Scrum, Kanban, Lean Software Development and
Agile Unified Process.

For the sake of this project, we chose to research waterfall, Scrum and Kanban in order to find a suitable
development method.

4.1.1 The Waterfall Method

Figure 4.1 shows a graphical explanation of the sequential design process called the waterfall method.
The main advantage to the waterfall method is that bugs and changes are cheaper to fix if you fix them

right away, as it will save you a lot of time and/or money later on.
The main drawbacks are that once the project has moved on to the next phase, the team should not

backtrack and edit the previously completed phases, since this might make the further implementation
more di�cult. The fact that planning has to be done very thoroughly in the beginning to avoid having to
reiterate previous phases at a later stage as this can be costly and complex, is also a disadvantage. Leading
to a problem with projects where there is no overview to what is to be done and how long time it will take,
this method will lead to uncertainty. A roll back to an earlier stage will most likely prove early estimates
wrong and might cause complications to the development.

35

CHAPTER 4. DEVELOPMENT METHODOLOGY

Figure 4.1: Graphical representation of the waterfall method[2]

4.1.2 Scrum

Figure 4.2 shows a graphical explanation of the Scrum method, one of many agile development method-
ologies. It is an iterative, incremental model which emphasizes on doing several short sprints where the
goal is to complete some smaller set of tasks. After a given period of time, usually one to four weeks, the
development team summarizes what have been done and what is left from the current sprint, which needs
to be completed in the upcoming sprints.

The advantages of scrum is that it makes the software development more versatile, the team can
work on all phases and parts of the project at the same time, and update earlier assumptions based on
newer discoveries. Meaning that requirements and modelling does need to be finished before starting
implementation and because of this, changes are less expensive to do. This is done by having a more
relaxed relationship to documentation of source code and the process.

Nothing is written in stone until the product is done, as opposed to the waterfall method, mentioned
earlier.

The main drawback of Scrum is the complexity of it. All methods has a certain learning curve at the
beginning, leading to stress or less e↵ective work. Scrum has several submethods, all with small di↵erences.
This may lead to a learning curve for experienced users.

A more specific explanation of how this project used Scrum is found in Section 4.2.1.

4.1.3 Kanban

The Kanban is, as formulated by Anderson (2003[39]), a method for software development with an emphasis
on just-in-time delivery, while maintaining focus on not overloading the developers. It emphasizes that
developers pull work from a queue, and the process, from definition of a task to its delivery to the customer,
is displayed for all other participants to see.

Kanban is based on some basic principles:

Start with what you do now. The method does not define a specific set of roles for team members, or
process steps to follow. There is no such thing as ”the Kanban software development process” or
”the Kanban project management method”. The method bases further work by starting with the
roles and processes you have and stimulates continuous, incremental and evolutionary changes to
your system.

Agree to pursue incremental, evolutionary change. The organization (or team) must agree that
continuous, incremental and evolutionary change is the way to develop improvements and make

36

CHAPTER 4. DEVELOPMENT METHODOLOGY

Figure 4.2: Graphical representation of the SCRUM method[1]

the changes stick. The Kanban method encourages continuous small incremental and evolutionary
changes to your current system.

Respect the current process, roles, responsibilities & titles. It is likely that the organization cur-
rently has some elements that work properly and are worth bringing with for the future. By agreeing
to respect current roles responsibilities and job titles we eliminate initial fear of change. This should
enable the team to gain broader support for a Kanban initiative.

Core practices

According to Anderson (2003[39]) there was originally five core practices in the Kanban method.

• Visualize. A common way to visualize the work flow is to use a card wall with cards and columns.
The columns representing the di↵erent states or steps in work flow. This is similar to a scrumboard.

• Limit WIP. Limiting work-in-process implies that a pull system is implemented on parts or all of the
work flow. The critical elements are that work-in-process at each state in the work flow is limited
and that new work is ”pulled” in when there is available capacity within the WIP limit of the team.

• Manage flow. The flow of work through each state in the work flow should be monitored, measured
and reported. By managing the flow continuously, the changes to the system can be evaluated to
have positive or negative e↵ects on the system.

• Make Policies Explicit. Until the mechanism of a process is made explicit it is often hard to hold
a discussion about improving it. With an explicit understanding it is possible to move a more
rational, empirical, objective discussion of issues. This is more likely to facilitate consensus around
improvement suggestions.

• Implement Feedback Loops. Collaboration to review flow of work. Organizations that have not
implemented the second level of feedback - the operations review - have generally not seen process
improvements beyond a localized team level. As a result, they have not realized the full benefits of
Kanban observed elsewhere.

37

CHAPTER 4. DEVELOPMENT METHODOLOGY

4.2 Choice of methodology

The development team chose the Scrum methodology instead of Kanban, due to several reasons. Foremost,
the customer asked the team to work in an agile methodology, and preferably Scrum, since they could relate
to Scrum. ”We want the process to be as agile as possible, to a certain level. Waterfall will not su�ce”.
The customer had many ideas regarding the layout and the functionality of the applications, and were
not sure what to include. This leading to a situation where spending time making a detailed requirement
specification and locking down all the details was pointless.

The customer was likely to make changes to the initial requirements once the first plan was ready.
Secondly, the team was way more eager to try out an agile methodology rather than to use waterfall.
In the choice between Kanban and Scrum, we lacked the proper knowledge to set those two apart, and
had to do some extra investigation in order to fully understand what they meant. After reading about
both Scrum and Kanban, the Kanban method did not make very much sense to us. The simple fact that
Scrum is highly recommended by real-life developers, is a good argument for choosing Scrum over any
other methodology. We were in the opinion that Scrum would suit our project the best, and therefore
chose to use Scrum over the other methodologies.

4.2.1 Sprints

This section gives a short description of how the Scrum development method was used in the project. For
a general explanation of Scrum see Section 4.1.2.

Sprint duration

We decided on having 14 day sprints. After discussions with the customer, we agreed that this would be a
suitable duration, due to the fact that the documentation needed for each sprint would be time consuming
for shorter sprints.

Sprint Planning Meeting

To start each sprint, we held a sprint planning meeting. During this meeting, we discussed which user
stories/epics from the sprint backlog should be worked on during the sprint. The reason behind such a
meeting is to make sure the team is on updated on the goals for the following sprint. To decide what user
stories/epics should be chosen, the priorities given by the customer was used as a pinpoint. If the customer
wanted to make any changes during a sprint, the changes were noted and discussed during the next sprint
planning meeting.

Daily Standup

The daily standups (also commonly known as daily scrum meeting) were held on Mondays, Wednesdays
and Fridays. The team decided on this semi-daily recurrence since not all team members were able to work
on the project every day. During the standup meetings all team members would answer three questions:
what have you done since our last meeting, what will you work on until the next meeting, and what
problems did occur since our last meeting?

Answering these questions gave a certain status update, and made it easier to re-assign team members to
tasks if needed. During the standups all technical discussions were discouraged. If any technical questions
arose, the people involved would discuss this after the meeting, to make sure they were not wasting other
people’s time. Each standup had a max allowed length of 15 minutes.

38

CHAPTER 4. DEVELOPMENT METHODOLOGY

Sprint retrospective

The sprint retrospective is the written conclusion of the sprint. A meeting was held at the end of each
sprint, discussing the results throughout the sprint, both finished and unfinished tasks. The tasks not
completed were moved to the next sprint, and the reason for the task not being completed was stated in
the sprint report.

The sprint report also includes an update of the sprint backlog, along with an overview of how much
time was spent on each task, making it easy to compare to the time estimate.

The sprint retrospective also contains a burndown chart, giving a visual representation of how the team
worked during the sprint.

For each sprint we answered the following questions:

• What went well?

• What shall we start doing?

• What could have gone better?

• What should we stop doing?

Explanation of Sprint Backlog

The sprint backlog is a task management tool to document and ensure the progress of the sprint. Each
task the team chooses to focus on in the sprint is enlisted. The task is given an ID and already has a name.
The Function number is an hour-independent number telling how di�cult the team expects the task to be.
The base number represents how many hours the team expects to work to finish one story point. The base
number multiplied with the function number for a task gives the estimated work hours needed to finish a
task.

The base number may change from sprint to sprint, but not during a sprint. The team did an evaluation
of the base number in advance of each sprint, to make good estimates.

The name column is used to keep track of who is responsible for the task. This may change during the
sprint, but the sprint backlog should always be showing the correct info.

Based on how many team members are available and how many work hours they may put in, the team
gives an expected decrease of the story points left. This is reflected in the sprint burndown chart for each
sprint, as a straight decreasing line.

39

Chapter 5

Requirement Specifications

This chapter describes the requirements for the system. Section 5.1 gives an overview of the relevant use
cases for the system, in tabular format. Section 5.2 gives an overview of the functional requirements for
the system in a textual format.

5.1 Use Cases

A use case is a description of a functionality of the system and shows the interaction that the users have
with the applications. A use case diagram usually consists of an actor representing user or responder to the
system, and a use case which represent the interaction alternatives for each user to the system. From these
use case diagrams it is easy to capture the behavioural requirements of the system. We chose to have one
large use case diagram for each actor (Figure 5.1, 5.2), and then have more detailed textual descriptions
for each use case in the diagrams. This is given in Section 5.1.2 and Section 5.1.3.

5.1.1 Actors

An actor is an external participant to the system, doing some kind of action on the system. The actor
can both request information and give information to the system, and in a general sense it can both be a
regular user and a saboteur or a misuser.

In this case there are the children/patients and the next-of-kin which each interact with their own
system interface. The server is also included as an actor even though it is not a part of the system, this
is to make visual how the server receives and sends information and which information it is interested in.
The di↵erent actors are shown in Table 5.1.1

5.1.2 Textual Use Cases for GAPP

In this section, the use cases will be described in more detail. Each textual use case has one main actor,
which is the one actor to perform the tasks in each case and is often referred to as the user. The usual flow
of events is how the system most commonly will be used. The variations field are di↵erent possibilities for
more rare flows of events. Some use cases does not have any variations which means there is only one way
to perform the specified interaction on that function.

Tables 5.2 through 5.10 are the textual use cases for GAPP.

5.1.3 Textual Use Cases for CAPP

Tables 5.11 through 5.14 are the textual use cases for CAPP.

41

CHAPTER 5. REQUIREMENT SPECIFICATIONS

Figure 5.1: Use Case diagram for GAPP

Figure 5.2: Use Case diagram for CAPP

42

CHAPTER 5. REQUIREMENT SPECIFICATIONS

Actorname Icon Description

Child The child shall interact with
CAPP.

Next of kin The next of kind shall inter-
act with GAPP. We have used
Parent to denote next of kin in
our use case diagrams

Pollenvarslingen “Pollenvarslingen” (“Pollen
forecast”) is an external
system owned by NAAF that
provides GAPP with pollen
data

Webservice Webservice is the connection
between the database and the
applications, and runs on a
server.

Table 5.1: Actors within the system

Use Case GAPP 1. Log in
Primary actor Patient, Medical Personnel and Next-of-kin
Trigger Starting application
Preconditions User not logged
Postconditions User logged in
Normal flow of events

1. The user opens the app on ane Android device.

Variations –

Table 5.2: Use Case 1 for GAPP, log in

43

CHAPTER 5. REQUIREMENT SPECIFICATIONS

Use Case GAPP 2. Change health status
Primary actor Next-of-kin and patient
Trigger Pressing the smiley face indicating daily state
Preconditions Patient’s health status has changed
Postconditions Patient’s health status in the application and in real life match
Normal flow of events

1. The user presses the smiley face on the health state screen.

2. The menu for choosing health status pops up.

3. The user presses the according smiley face.

Variations –

Table 5.3: Use Case 2 for GAPP, change status

Use Case GAPP 3. See log of daily health status
Primary actor Patient, medical personnel or next-of-kin
Trigger Patient, medical personnel or next-of-kin wanting to look at the

log for the patient’s health status
Preconditions The application is open and running
Postconditions The health status log is shown on screen
Normal flow of events

1. The user presses the log icon in the main menu.

2. The log showing the daily health status opens.

3. The log is shown on screen.

Variations –

Table 5.4: Use Case 3 for GAPP, log

Use Case GAPP 4. See pollen forecast for today
Primary actor Patient, medical personnel or next-of-kin
Trigger The user opens the log feature
Preconditions The smartphone has an internet connection.
Postconditions The pollen feed is shown on screen
Normal flow of events

1. The user presses the log icon in the main menu.

2. The log showing daily status, pollen feed and medicine
taken opens.

3. The log, with the pollen feed is shown on screen.

Variations –

Table 5.5: Use Case 4 for GAPP, Pollen feed

44

CHAPTER 5. REQUIREMENT SPECIFICATIONS

Use Case GAPP 5. Look at guidelines for medication
Primary actor Patient or next-of-kin
Trigger The patient or next-of-kin is interested in viewing guidelines and

information for a certain medicine
Preconditions The application is running. NAAF has provided guidelines and

information for the medicine. The information is downloaded
and stored on the phone.

Postconditions The guidelines is shown on screen. The user is able to view
them.

Normal flow of events
1. The user presses the manual button in the main menu.

2. The manual menu with the di↵erent medicines is shown.

3. The user chooses which medicines he/she wants more in-
formation about.

4. The adjecent information is shown on screen.

Variations –

Table 5.6: Use Case 5 for GAPP, guidelines

Use Case GAPP 6. Look at guidelines for how to do a treatment
Primary actor Patient and next-of-kin
Trigger The patient or next-of-kin is interested in viewing guidelines for

how to do a treatment.
Preconditions The application is running
Postconditions The user has opened the guidelines and was able to scroll

through the pictures
Normal flow of events

1. The user presses ”Manual” in the main menu.

2. The application opens the Manual and the first picture is
shown.

3. The user scrolls through the di↵erent pictures.

Variations –

Table 5.7: Use Case 6 for GAPP, reward

45

CHAPTER 5. REQUIREMENT SPECIFICATIONS

Use Case GAPP 7. Edit medication settings
Primary actor Next-of-kin
Trigger Voluntarily
Preconditions
Postconditions Settings has been edited and saved
Normal flow of events

1. The user clicks the ”Instillinger” (settings) button.

2. The user is shown a settings page containing means of
editing di↵erent functionalities.

3. The user clicks ”Lagre” (save) button.

Variations –

Table 5.8: Use Case 7 for GAPP, medication settings

Use Case GAPP 8. Register medication taken
Primary actor Next-of-kin
Trigger The patient has taken medicine without using the application

as help. Next-of-kin wants to register the medicine taken
Preconditions
Postconditions The medication is logged and saved in the database
Normal flow of events

1. The user opens the log.

2. The user presses the day he/she wants to register a treat-
ment to.

3. The user presses ”Etterregistrer” (late-register).

4. The user chooses the medication he/she wants to register.

5. The user presses ”lagre” (save).

Variations –

Table 5.9: Use Case 8 for GAPP, register medication

Use Case GAPP 9. Remind user to take their medication.
Primary actor System
Trigger The predefined time for a reminder is reached.
Preconditions The user has set up a medication plan and entered when he/she

wants to be reminded
Postconditions An alarm is set o↵, reminding the user to take his/her medicine
Normal flow of events

1. A reminder is invoked, in the form of an alarm.

2. The user turns o↵ the alarm.

3. The user enters CAPP and starts treatment.

Variations –

Table 5.10: Use Case 9 for GAPP, reminder

46

CHAPTER 5. REQUIREMENT SPECIFICATIONS

Use Case CAPP 1. Log in
Primary actor Patient, Medical Personnel and Next-of-kin
Trigger Starting application
Preconditions User not logged
Postconditions User logged in
Normal flow of events

1. The user opens the app on the Android-based phone.

Variations –

Table 5.11: Use Case 1 for CAPP, log in

Use Case CAPP 2. Look at guidelines for how to do a treatment
Primary actor Patient and next-of-kin
Trigger The patient or next-of-kin is interested in viewing guidelines for

how to do a treatment.
Preconditions The application is running
Postconditions The user has opened the guidelines and was able to scroll

through the pictures
Normal flow of events

1. The user presses ”Manual” in the main menu.

2. The application opens the Manual and the first picture is
shown.

3. The user scrolls through the di↵erent pictures.

Variations –

Table 5.12: Use Case 2 for CAPP, reward

Use Case CAPP 3. Start treatment
Primary actor Patient and Next-of-kin
Trigger The patient has an accute asthma attack, or the scheduled daily

hour for medication is reached
Preconditions The patient is in need of medicine
Postconditions The treatment process is started
Normal flow of events

1. The patient, or next-of-kin, presses the medication button
in the application.

Variations –

Table 5.13: Use Case 3 for CAPP, start treatment

47

CHAPTER 5. REQUIREMENT SPECIFICATIONS

Use Case CAPP 4. Give reward after treatment
Primary actor Patient and next-of-kin
Trigger Treatment is finished
Preconditions The treatment process is finished.
Postconditions The user is awarded with a reward as an in-app item
Normal flow of events

1. The treatment finishes.

2. The application gives the user a reward as an in-app item.

3. The statistics log and the rewards counter is updated.

Variations –

Table 5.14: Use Case 4 for CAPP, reward

5.2 Functional Requirements

As we are developing three separate applications, we found it best to consider the functional requirements
separately. We will use the abbreviations PFR (Parent Functional Requirement), CFR (Child Functional
Requirement) and KFR (Karotz Functional Requirement).

5.2.1 GAPP - Guardian Application

PFR 1 - Medication plan

The application should make it easier for parents and responsible adults to keep track of the medication
plan of their children.
Priority: High

PFR 2 - Notifications

When a child needs to take a preventive medication, the application should send a notification to remind the
parents or other responsible adults, either through the smartphone/tablet, through Email, or via Karotz.
Priority: High

PFR 2.1 - Settings for notifications

The user should be able to choose settings for notifications. Example for settings to be made are: Time
for notification, Notification appearance, and so on.
Priority: Medium

PFR 2.2 - Notification to change condition

The user should get a weekly reminder to update the condition of the child, if you’re outside the default
medicationplan.
Priority: Medium

PFR 3 - Families

The application should support several children.
Priority: Low

48

CHAPTER 5. REQUIREMENT SPECIFICATIONS

PFR 4 - Guidelines

The application should provide guidelines for how to use a medicine correctly, and how to do a treatment
correctly.
Priority: High

PFR 4.1 - Guidelines from NAAF

The application should provide support for changeable guidelines from NAAF in form of series of pictures,
text or animations/movies.
Priority: Medium

PFR 5 - Keep records of condition

The application should be able to keep track of the child’s previous medical condition (in terms of days).
The condition is to be set by a user, and varies from Green, Orange and Red zone as described in Appendix
3.1.1.
Priority: High

PFR 6 - Pollen forecast

The application should be able to use pollen forecasts to warn parents about possible bad days. The
forecast should be included in the log.
Priority: Medium

PFR 7 - Screen sizes

The application should have support for di↵erent screen-sizes.
Priority: Low

5.2.2 CAPP - Children’s Application

CFR 1 - Distraction

The user should be able to choose a distraction during medication. This could be via an external applica-
tion, a video or one of the Karotz in the household.
Priority: High

CFR 2 - Rewards

When a child is done with a treatment, he/she should get a reward.
Priority: High

CFR 2.1 - Rewards

The child should feel that the reward gives something back, for instance be able to buy something from
an avatar-shop, etc.
Priority: Low

CFR 3 - Screen sizes

The application should have support for di↵erent screen-sizes.
Priority: Low

49

CHAPTER 5. REQUIREMENT SPECIFICATIONS

CFR 4 - Avatar

The application should have an avatar for each child, that can be chosen by the child, and be customized
through a shop, providing di↵erent clothes and items a child could collect. The shop should use the rewards
as currency.
Priority: Low

CFR 5 - Child friendly instructions

The application should give instructions to a child, that a child can easily comprehend. Both as part of
the distraction, and as a separate part of the application.
Priority: High

5.2.3 Karotz Application

KFR1 - Notification

The application should make children aware of medication-time by playing sound, movement of ears and
through the color of the Karotz.
Priority: High

KFR2 - Distraction

The application should be able to distract children when taking medication. This should be through
movement of ears and ability to play some sound (music, book reading, etc.)
Priority: High

KFR3 - Reward

The application should reward children by telling how many stars the child earned. The stars should be
stored in the database and sync with the application.
Priority: High

KFR4 - Register use of medicine

The application should allow the child to register when it is done taking the medicine, by holding a RFID-
chip close to the karotz.
Priority: Medium

KFR5 - Logging

The application should be able to save the health status to the database according to the child’s health
status.
Priority: Medium

50

Chapter 6

System Design

In this chapter, we will describe the software architecture of the applications. We will focus on high level
abstractions of the system. More detailed class diagrams of the system is found in Appendix E.

6.1 Architectural Description

This project is a prototype to test a concept based on gamification on asthma-treatments. Thus, the main
architectural qualities identified for the applications is modifiability and usability. The reasoning behind
this decision is that the software should be easy to modify with extended functionality if the concept is
proven successful. It should also be intuitive to use, since many of our potential users are children at ages
below eight years old. Usability is our top priority.

We chose Model-View-Controller (MVC) as the architectural pattern for GAPP and CAPP, as MVC
seperates the underlying data models from views, and is proven to enhance modifibility. It is also an
integrated part in Android, through a class called Activity. We will explain more about activities in
Section 6.2.2.

6.2 Software architecture

“The Software Architecture of a program or computing system is the structure or structures of the system,
which comprise software elements, the externally visible properties of those elements, and the relationships
among them.” [19].

In the following section, we will describe the architecture of the system according to the 4+1 View
Model introduced in Section 3.8.2.

The relevant stakeholders for the architecture is NAAF, Sykehusapotekene i Midt-Norge, NTNU, in
addition to future and present developers. In this section, we will describe the architecture of the system
through a Logical View, Development View and a Process View. We have not created a Physical View, a
this is not usual for a software that does not run on some sort of special hardware. The di↵erent views
build upon the use cases defined in Section 5.1

51

CHAPTER 6. SYSTEM DESIGN

Figure 6.1: Logical View for the system

6.2.1 Logical View

The purpose of the Logical View is to give interested stakeholders an overview of the di↵erent modules of
the system, and how they communicate between each other.

Figure 6.1 shows the package diagram for the system.
The locial view shows the di↵erent modules of the system, and the communication protocols between

them.
As mentioned in Section 3.5, NAAF provides a pollen forecast at http://pollenvarslingen.no which

we intended to integrate with our system. It is currently not connected, because the pollen forecast only
operates during pollen season. It is however an important component for GAPP, and should be put in use
during further development. We have worked around this fact in order to give the prototype a bit more
content. This is described in more details in Appendix E.

The webservice is an important part that ties the di↵erent applications together. It required a lot of
hours spent on developing it during the early stages, but it definetly paid o↵ later. There were several
reasons to provide a webservice for the application:

• Karotz only provides HTTP GET and POST methods for communicating over network,

• Our database server allocated at mysql.stud.ntnu.no is only available from NTNU’s LAN (Local area
network), which in practice means that a phone that is not connected to eduroam would get access
to the database.

• All MySQL queries are allocated at the same place.

6.2.2 Development View

Our development view is represented through a package diagram, and gives a brief overview of the di↵erent
packages implemented in GAPP and CAPP. We have implemented somewhere around 120 di↵erent Java
classes, which does not include the Karotz code.

52

http://pollenvarslingen.no

CHAPTER 6. SYSTEM DESIGN

Figure 6.2: Package diagram for GAPP. A line from package X to package Y describes an association from
X to Y.

Development View – GAPP

Figure 6.2 show the top level package structure for GAPP. In the logical view, we introduced our webservice.
From this webservice, we retrieve data over HTTP GET, using JSON (JavaScript Object Notation). The
classes found in jsonposters uses HTTP POST to send data to the webservice, which in turn forwards the
information sent to our database.

The diagram also shows a package called xmlfeed. This package serves the purpose of parsing XML
(Extensible Markup Language) into Java-code. Originally, the idea was to use NAAF’s XML-feed. How-
ever, this feed is not running during autumn and winter, so we replicated that XML-feed in our own
“dummy”-feed 1. This xml-document has similar structure as the original feed, only with test data for the
sake of the prototype and proof-of-concept.

The package activities contains classes that extends Activity, which is an android class that functions
as both the View and Controller in MVC. An example of an implemented activity is MainMenu.

In order to render listviews and gridviews programatically, we needed to make a package called adapters.
An Adapter in Android serves the purpose of filling these list- and gridviews with data.

Views in Android can be created in two ways. Either through an XML layout file, or by customising
in Java. Most of our views are using XML-files. We have one custom made view (CalendarView, used to
implement our logging functionality), which is available in the package “views”. The XML-files are not
shown in this diagram, but is included in the application’s resource folder, which is standard when working
in the Android framework.

We’ll explain the content in each package more detailed in the Development View.

1
This XML-file is hosted at: http://folk.ntnu.no/yngvesva/blopp/dummy/PollenForecast.xml

53

http://folk.ntnu.no/yngvesva/blopp/dummy/PollenForecast.xml

CHAPTER 6. SYSTEM DESIGN

Figure 6.3: Package diagram for CAPP. A line from package X to package Y describes an association from
X to Y.

Figure 6.4: Package diagram for the Karotz application

Development View – CAPP

Figure 6.3 shows the package diagram for CAPP. CAPP has very similar architecture as GAPP. The main
di↵erence is the “services” package. A service in Android is a task that is executed without any interactions
from the user. In our case, we use the services-package to update alarms. CAPP uses the same database
and webservice as GAPP, and a lot of the parsers in this application are equal to those found in GAPP.

Development View – Karotz

Figure 6.4 shows the development view of the Kartoz application. The only internal package in the Karotz
application is named “src”. It contains all the main logic for the application, including a repository for
connecting to the webservice for connecting to the database, a notification module for setting alarms, a
medication module for doing distraction, and a “Blopp” module for keeping track of everything. There is
an additional package in the diagram named “[static]”. It contains the Karots class which is inherited from
the OS and contains various utilities for controlling output and recieveing input for the robot. It has been
extended with some helper methods in the implementation. There is also a “util” class which contains
additional utility methods that do not belong in “Karotz”. At last, there is indicated an “External”
package, which symbolizes all the external services the application connects to. In the case of the Karotz

54

CHAPTER 6. SYSTEM DESIGN

application, this includes only the web service that connects to the database.

6.2.3 Process View

The purpose of the Process View is to give the customer an overview of how some of the main functionality
has been implemented. We have chosen to do this through Sequence Diagrams. These diagrams shows the
main data flow of the system.

We have chosen to include the following functionality:

• Medication completed

• Change of childrens health status

Medication Completed

Figure 6.5: Sequence diagram for medication completed

Figure 6.5 shows a sequence diagram for the event of a medication completed. When a medication is
completed, DistractionActivity creates a new instance of RegisterMedicinePostModel, before it uses
this instance’s toString() method to create an instance of PostRegisterTreatment. This poster does
an HTTP POST to “register medicine taken.php”, which in turn updates the databse. The webservice
then returns JSON-formatted data, with the reward included. RegisterMedicinePostModel interprets
the returned data, and stores the reward in a private variable, which the DistractionActivity in turn
accesses to show the child the reward collected from the treatment.

Change Of Childrens Health Status

Figure 6.6 shows a sequence diagram for the event of changing a child’s health status. The user gives input
on one of three checkboxes that MedicationPlanActivity receives. The activity then calls creates a new

55

CHAPTER 6. SYSTEM DESIGN

Figure 6.6: Sequence diagram for changing medication plan

instance of HealthStatePostModel, and uses this model’s toString() to execute HealthStatePoster.
HealthStatePoster makes an HTTP POST to “set child state.php” with appropriate POST parameters.
The webservice updates the database, before it returns JSON-formatted data to the HealthStatePoster.

Notification and medication on Karotz

Figure 6.7 shows a sequence diagram for notification and medication on the Karotz. The Karotz routinely
updates itself by calling a get function on the database access layer. The Repository object requests that
a new notification event is made for the closest medicine dose that should be taken. When the timeout is
done, Notification calls startMedication() in Medication in order to start a sequence of events that
makes up the distraction sequence. This sequence is represented as a list of actions—called a manuscript.
The manuscript is interpreted by the util module which creates and runs a function based on a premade
specification. Each action contains an url to a sound file, and an activator which represents how the next
action in the manuscript is triggered. The manuscript is detailed further in Appendix C. When each action
in the manuscript is completed, the Medication module calls logMedicineTaken() in Repository once
for each dose, and the database is thus updated with the registered medicines.

56

CHAPTER 6. SYSTEM DESIGN

Figure 6.7: Sequence diagram for notification and medication on Karotz

57

CHAPTER 6. SYSTEM DESIGN

6.3 Architecture Rationale

Choosing MVC has become a somewhat “standard” solution for these types of applications, and it was a
successful pattern for our use as well. The choice of making the database accessible through a webservice
slowed down performance a bit, but we had to do this, since Karotz only supports access to the database
through the webservice. We were also not able to implement proper caching functionality, which could
have improved performance severly. More information on this part is found in Chapter 14.

We found it somewhat harder to implement good models for the objects that is retrieved from the
webservice, which has created a bit of overhead in the architecture. However, it has been easier to connect
CAPP and GAPP together by retrieving data through the same webservice, and it was a working solution
once we knew how to access it properly.

It is hard to predict how many users the system can handle once proper functionality for several children
is implemented. The webservice is developed with the intention of running at one server only, and so, the
scalability of the system is very dependent on the capabilties of this server (how many requests it can
handle per time unit). If the software is to be depolyed on several servers, the webservice needs to be
rewritten.

6.4 Database

The database implementation is based on an ER (entity relationship) diagram, which is illustrated in the
diagram in section 6.4.1. It is created based on the final implementation. There is also a separate access
layer for modifying and viewing the data through the web.

6.4.1 Databse Implementation

The final implemented databse architecture is displayed in figure 6.8. The tables related to the avatar:
AVATAR, AVATAR INVENTORIES, SHOP ITEMS and AVATAR ITEM SLOTS are not used in the system because
the avatar idea was put on hold. The rows location latitude and location longtitude in the table
CHILDREN are also not used because we did not implement updating the pollen feed based on current
location.

The arrows symbolize relations, where the big end is the refereced key and the small end is the foreign
key.

6.4.2 Database Access Layer

The database access layer consists of 14 PHP files hosted at http://folk.ntnu.no/yngvesva/blopp/:

add child.php Takes a name, personal number (SSN) and a list of states (integer IDs) that the child
can have. Creates an entry in the CHILDREN table for the child, and a medical plan entry. Also
creates an entry in CHILD HEALTH STATES for all the states the child can have. Returns the generated
medical plan id.

add plan dose.php Inserts a new entry in the MEDICAL PLAN DOSES table for the given child, with the
parameters ’health state’, ’dose of the given medicine’ and a timestamp. This is the primary module
used to alter medical plans. Returns the ID of the added dose.

dose is taken.php Check if a dose of a planned medicine has been taken that day. Takes an id of an
entry in the table MEDICAL PLAN DOSES as input.

get available child states.php Takes a child id and returns a list of the labels (colors, names) and
IDs of the states the child can have.

get child.php Takes an ID of a child and returns all the columns for the given ID in the CHILDREN table.

58

http://folk.ntnu.no/yngvesva/blopp/

C
H
A
P
T
E
R

6.
S
Y
S
T
E
M

D
E
S
IG

N

F
igu

re
6.8:

Im
p
lem

ented
D
atab

ase
A
rch

itectu
re

59

CHAPTER 6. SYSTEM DESIGN

get child state.php Accepts a child ID and returns the ID and label of the current state of the child.

get doses for current state.php Takes a child ID and returns a list of planned doses of medicines that
are not taken that day. The fields of each entry are: id, medical plan id, health state id, time,
medicine id, medicine karotz color and medicine name.

get instructions.php Get instructions (image, e↵ect description and usage description) for a given
medicine by ID.

get log days for child.php For the calendar in GAPP, it was advantageous to have a database access
method that could return a list of days in a month with the child health state for each day, and a
list of doses taken on that day. get log days for child.php accomplishes this by using the table
CHILDREN LOG DAYS to find the latest recorded health state before the given month started. Then it
iterates through all the days, checking if there are any days in the month where the status changes,
and adding all doses, taken from DAY MEDICINE DOSES, on that day. The method takes a child id,
and two optional parameters month and year. If the month and year are not set, the values for the
current days are used.

get log for child.php Returns all registered entries in the table DAY MEDICINE DOSES for the day for a
given child (id) during the given month during the given year.

register medicine taken.php Register a dose of medicine taken. Accepts a post object with the fields
child id, medicine id, time, day date, health state id and medical plan dose id. If there is
an entry for that dose id that day, the method does nothing and simply returns unique = false.
Otherwise, it calculates a reward, and updates DAY MEDICINE DOSES with the entry. Returns the
reward for that dose. Then it adds the calculated reward to the child’s total credits in the CHILDREN
table. If no time is given, a default time of 00:00:01 is set.

remove plan dose.php Deletes the entry in the table MEDICAL PLAN DOSES which corresponds to a given
id. Returns the number of deleted rows.

remove plan medicine at time.php During development of GAPP, it was discovered that using a com-
bination of child id, medicine id and time as the key for removing elements in the MEDICAL PLAN DOSES

table would be easier than using an ID. Therefore the need for this module arised, and it simply re-
moves all entries in the table that fit the criteria.

set child state.php Takes a child ID and a state ID and sets the current state of the given child to the
specific state given as input. Also updates the table CHILDREN LOG DAYS with the given health state.

60

Chapter 7

Overall Test Plan

The following chapter concerns the overall testplan for the project, and it contains general information
about testing and what tests we aimed to perform. The template for our tests can be found in table 7.1,
while the tests that were performed can be found in table 7.2.
We test the system to make sure that our applications are easy to use, and works the way they’re intended,
ensuring that the delivered product fulfills the requirement specifications. We will document the most
important tests with a description of the test we performed, what we discovered during the test, and what
we did to fix eventual problems that surfaced during the test.

7.1 Test methods

There are di↵erent test methods that can be used. The outer points are black-box and white-box testing,
but we can also do gray-box testing, a combination of the two.

7.1.1 Black-box testing

This method tests the functionality of the system. Black-box testing means we feed something in and then
see if the result we get out is the same as the one we were expecting. This means that knowledge about
the code and structure of the system we are testing is unknown and irrelevant to the test. The tests will
then be based on external software descriptions like the functional requirements for the system.

7.1.2 White-box testing

This method of testing concerns itself with testing the internal structures of a system. This means knowl-
edge about structure and code is required to run the test, and we require knowledge about the programming
to design the test cases. Normally this type of testing is performed at unit level, but can also be used on
the system as a whole. The problems detected by white box testing is technical, and it can not detect
whether or not a program is fulfilling it’s functional requirements.

7.2 Test levels

There are di↵erent types and levels of testing. Usability testing focuses on the general, graphical and
functional part of the system, how easy the applications is to use for the typical end users. There are low
level tests testing the smaller parts of the system, typically classes or methods, and there are high level
tests, that tests the system, or parts of the system.

61

CHAPTER 7. OVERALL TEST PLAN

Item Description
ID Identifier for the test
Description Description of the test
Date Date of the test
Responsible The person responsible for the test
Subject The subject being tested (typically a unit or part

of the system)
Precondition The conditions we assume to be in place when

the test is started
Steps The steps to perform
Results Results after the test was performed

Table 7.1: Test template

7.2.1 Unit testing

The lowest form of testing is unit testing. This is intended to test the smallest units of the system, namely
the methods, classes and variables, making sure that each of these parts works as expected.

7.2.2 Module testing

Once the smaller parts of the system has been tested, we also test the coordination between these parts,
by testing that the entire module works as we intended.

7.2.3 Integration and System testing

When all of the individually tested modules works as intended, we test that the di↵erent parts of the
system works together, taking small to medium parts of the system into the test, while the system tests
will test the system as a whole. That means that these tests test communication between the di↵erent
modules and interfaces.

7.3 Testing approach

We decided to use both black box and white box testing for our system. We did two bigger usability tests,
where we applied black box testing on both. We would have preferred to do some more usability testing,
however, since we had to implement the system from scratch, we decided to start with one paper prototype
usability test to get initial thoughts from the potential users. Then we moved on with implementing the
system before we again did a bigger usability test, this time with children. We used the implemented
applications and the distraction sequence with the Karotz. This meant we had to do alot of unit and
integration testing on the system during the implementation.

All of our tests will follow the template presented in table 7.1.
The tests done during this project is listed in table 7.2, with the testID, brief description of the test

and during what part of the project it was done.

62

CHAPTER 7. OVERALL TEST PLAN

ID Description Time of test
USABILITY0.1 Paper prototype test 04.09.12 (section 13.3.1)
USABILITY02 Usability testing of the system on children 30.10.12 (table 12.17)
UNIT1.1 Test of GUI for GAPP 17.09.12 (table 8.2)
UNIT1.2 Test of GUI for CAPP 17.09.12 (table 8.3)
UNIT2.1 Test of the CAPP distraction sequence 30.09.12 (table 9.2)
UNIT2.2 Test of the database connection 26.09.12 (table 9.3)
UNIT2.3 Testing of SQL-queries 30.09.12 (table 9.4)
UNIT3.1 Test that alarm is given independently of phone state 14.10.12 (table 10.2)
UNIT3.2 Test that the correct days is colored in the log 09.10.12 (table 10.3)
UNIT3.3 Test that the karotz notification is given at the correct time 09.10.12 (table 10.4)
UNIT3.4 Test that the karotz distraction runs after recieving the no-

tification and starting the sequence
09.10.12 (table 10.5)

UNIT3.5 Test that the notifications with multiple doses makes the
correct amount of medications

11.10.12 (table 10.6)

UNIT4.1 Test that the right instructions are downloaded and shown
on the instructions menu screen

18.10.12 (table 11.2)

UNIT5.1 Test of the web access module add child.php 30.10.12 (table 12.2)
UNIT5.2 Test of the web access module add plan dose.php 01.11.12 (table 12.4.1)
UNIT5.3 Test of the web access module dose is taken.php. 01.11.12 (table 12.4)
UNIT5.4 Test of the web access module

get available child states.php.
01.11.12 (table 12.5)

UNIT5.5 Test of the web access module get child.php. 01.11.12 (table 12.6)
UNIT5.6 Test of the web access module get child state.php. 01.11.12 (table 12.7)
UNIT5.7 Test of the web access module

get doses for current state.php.
01.11.12 (table 12.8)

UNIT5.8 Test of the web access module get instructions.php. 01.11.12 (table 12.9)
UNIT5.9 Test of the web access module

get log days for child.php.
03.11.12 (table 12.10)

UNIT5.10 Test of the web access module get log for child.php. 03.11.12 (table 12.11)
UNIT5.11 Test of the web access module get plan.php. 04.11.12 (table 12.12)
UNIT5.12 Test of the web access module

register medicine taken.php.
04.11.12 (table 12.13)

UNIT5.13 Test of the web access module remove plan dose.php. 04.11.12 (table 12.14)
UNIT5.14 Test of the web access module

remove plan medicine at time.php.
04.11.12 (table 12.15)

UNIT5.15 Test of the web access module set child state.php. 05.11.12 (table 12.16)
INTEGRATION5.1 Test of CAPPs alarm and distraction sequences. 06.11.12 (table 12.18)
INTEGRATION5.2 Testing that the log updates correctly based on registered

medication and pollen feed.
06.11.12 (table 12.19)

INTEGRATION5.3 Testing that the medicationplans is correctly registered to
their respective healthstates.

05.11.12 (table 12.20)

Table 7.2: List of tests

63

Chapter 8

Sprint 1

The development sprints are the most important parts of the scrum development process. Therefore the
sprint reports are a vital part of our final report of the project. The following chapter presents an overview
of how we planned, worked and completed Sprint 1.

Sprint 1 started on 5th of September and ended on 16th of September. We had not yet decided on how
long each sprint should be, and chose a duration of 11 days for Sprint 1. The reason behind this was high
chance of changes in the applications.

The chapter is divided into five parts, starting with the overall plan for the sprint in Section 8.1.
Followed by the sprint backlog in Section 8.2, which lists up the tasks that have been chosen for the sprint.
Section 8.3 will focus on the work made to the GUI, the logic implemented in the applications and the
work done to the database. The chapter ends with what have been tested and the corresponding results
in Section 8.4 and a sprint review in Section 8.5.

8.1 Sprint Plan

The plan for Sprint 1 was to set up the project, get the main screen up and running and make screens for
the distraction, without any animations. Finishes to the preliminary studies were also to be made. We
chose such a huge widespread of tasks from the backlog, since we wanted a skeleton of the application up
and running. Some connections between the di↵erent elements of the application were to be implemented,
but mainly we focused on the user interface. During the sprint we mainly did manual testing, since there
were not many changes to logical elements.

8.2 Sprint backlog

The table 8.1 shows the sprint backlog for sprint 1, which is a smaller part of the Product Backlog. The
goal is to implement all tasks assigned to that sprint, and in this manner implement all task in the product
backlog.

We also decided to continously write on the report, attend lectures and hold advisor and customer
meetings during the sprints. These are not included in the backlog.

8.3 Design and Implementation

This section contains a description of the changes done in the respective areas of the development.
In Sprint 1 the main focus was to get the project up and running in Eclipse and learning more about

how Android works and getting used to Git. After a customer meeting in the middle of the sprint, we
had to change focus for a short period of time, since the customer wanted to see more documentation and

65

CHAPTER 8. SPRINT 1

ID Task Story points Estimated hours Responsible
1.1 Add navigation between activi-

ties in main menu, for GAPP
0.5 5 Esben

1.2 Add element for showing cur-
rent medication plan

0.5 5

1.3 Add navigation between activi-
ties in main menu, for CAPP

0.5 5 Aleksander

1.4 Make GUI for menu screen in
GAPP

2 20 Jørgen

1.5 Make GUI for menu screen in
CAPP

1.5 15 Aleksander

1.6 Add the adult app as a project
to the repository

0.5 5 Yngve

2.1 Make a screen for starting the
treatment

0.5 5 Eirik

2.2 Make a screen for finished treat-
ment

0.5 5 Eirik

2.3 Make a screen for distraction 1 10 Eirik
2.4 Make some kind of distraction

through the Karotz
3 30

2.5 Make a method for saving a
treatment to the database

3 30

2.6 Make a method for starting
treatment through Karotz

1 10

2.7 Make the database for saving
treatments, medicine and avatar

10 100 Yngve

SUM 24.5 245

Table 8.1: Backlog for sprint 1

planning. After delivering a more concrete plan for the development, risk assesments and other important
documents, we went back to programming.

We focused on working on smaller parts of the system at the time, rather than starting too broad.
This way we may deliver a working system, with some functionality, rather than a system with much
not-completely working functionality. During this sprint the only feedback on the user interface was from
the customers.

8.3.1 User Interface Layer

Before the sprint we had done one user testing on a paper prototype. The results were used as an inspiration
for the GUI for the time being. The project had earlier been divided into two applications, one meant for
children, CAPP (Child APPlication) and one meant for adults, GAPP (Guardian APPlication). GAPP
should consist of a log, a settings menu, an information menu and an instruction option for treatment.
CAPP should have a menu for the avatar, a shop for buying stu↵ for the avatar and an instruction option
for treatment.

We focused on the GUI of the main menu and navigating between di↵erent options, in both seperate
applications.

66

CHAPTER 8. SPRINT 1

Item Description
ID UNIT1.1
Description Test of GUI for GAPP
Date 17.09.2012
Responsible Esben
Subject The MainMenu class in the no.blopp.app.activity project.
Precondition Early version of the application, runable on the android virtual device.
Steps For each button on the MainMenu:

1. Press the button.

2. Confirm that you are moved to the appropriate screen.

3. return to the main menu.

Results As expected all buttons on the MainMenu directed us to the correct screen

Table 8.2: Unit test 1.1, GAPP GUI

8.3.2 Application Logic Layer

There wasn’t done any changes to the applications logic layers. The focus of the sprint was mainly on GUI
and the database.

8.3.3 Data Persistence Layer

During the sprint, the database was created according to the existing specifications. Based on an ER
diagram that detailed the structure of tables in the database, it was implemented in MySQL on NTNU’s
MySQL server.

During the sprint it was discussed wether the database should include internal procedures for adding,
updating and removing data. The alternative would be to rely in direct MySQL queries. The advantage of
using internal database procedures is that the access procedures and the database itself are strongly related
so keeping them separated would cause the system to be more distributed unnecessary, and therefore more
di�cult to maintain. The advantage of keeping the access in a separate layer, or programming each SQL
query directly in the applications is that it would possibly save developer resources since it is easier to
write direct MySQL queries than processes. This question was still left undecided at the end of sprint 1.

8.4 Testing and Results

This sections presents the testing done during the sprint and the results of the tests done.

8.4.1 Testing

During this early sprint our amount of testing was limited to two simple tests, where we tested that the
graphical user interface acted the way we desired it to, for both CAPP and GAPP, respectively.

8.4.2 Results

The work done in Sprint 1 resulted in a skeleton for both seperate applications. It was possible to navigate

67

CHAPTER 8. SPRINT 1

Item Description
ID UNIT1.2
Description Test of GUI for CAPP
Date 17.09.2012
Responsible Aleksander
Subject The MainMenu class in the no.blopp.app.med.activity project
Precondition Early version of the application, runable on the android virtual device
Steps For each button on the MainMenu:

1. Press the button.

2. Confirm that you are moved to the appropriate screen.

3. return to the main menu.

Results As expected all buttons on the MainMenu directed us to the correct screen

Table 8.3: Unit test 1.2, CAPP GUI

8.5 Sprint Retrospective

This section contains an evaluation of the sprint. The evaluation is done mainly by the us, but feedback
from the customers are added to the retrospect.

What went well?

The project is up an running. The developers have learned a lot more about Android and Android
programming. The database is running, even though the database is not tested. The documentation for
the database and the plan for the project is complete.

What shall we start doing?

We should do more testing. Testing the database and the logic of the applications should be done as
the code is written. We have discussed having programming sessions with all developers present, and is
something we should start doing. The customers has asked for more involvement with the documentation
and the progress of the development, these requests should be fulfilled during the following sprints.

What could have gone better?

We team should involve the customer more on di↵erent parts of the development. We should have had early
sessions to learn Android together, rather than apart. We team should start sending meeting invitations
earlier. The invitations should be sent at least 24 hours in advance of internal meetings, and expectedly
48 hours in advance. For external meetings, we team should send meeting invitations 72 hours in advance.

What should we stop doing?

Nothing went completely wrong during this sprint.

8.5.1 Sprint Burndown Chart

In this section, an overview over the sprint backlog and the time spent on each backlog task in addition
to the estimate from earlier. The tasks we haven’t worked on are shown without a responsible developer
and without time spent. The amount of work estimated to fill this sprint was highly over estimated, due

68

CHAPTER 8. SPRINT 1

Figure 8.1: Sprint 1 burndown chart

to using a very high hour value per story point. The progression was as expected despite a slow start due
to extra needs of documentation from the customer. The use of new technology and a new development
methology did also a↵ect the pace of the development. Advisor and customer meetings were held as usual
during this sprint.

Table 8.1 and table 8.4 show the burndown chart from this sprint. A burndown chart is a helpful tool
for reflecting upon what have been done and also give a better overview to how the work was done. The
burndown chart from this sprint looks bad at first, but then turns out better. The reason to the slow
progress was that we were told to work on documentation and other tasks not in the sprint backlog.

Our base goal is to finish 175 estimated work hours during each sprint, which with a base multiplier of
10 corresponds to 175/10 = 17.5 story points. Even though only 51 work hours were documented in the
sprint, there are also 105 work hours not done. This means that out of the total 24.5 story points planned
for the sprint, there are 105/10 = 10.5 story points left. In other words, we completed 24.5 � 10.5 = 14
of the planned story points, which is only 17.5� 14 = 3.5 less than our goal. This is a fairly good result.
The result for the dramatic decline in storypoints left midways is due to one task being overestimated. We
have learned from this, and believe we will make better estimations in the future.

69

CHAPTER 8. SPRINT 1

#
ID

T
as
k

S
to
ry

p
oi
nt
s

E
st
im

at
ed

h
ou

rs
A
ct
u
al

H
ou

rs
T
im

e
le
ft

R
es
p
on

si
b
le

1.
1

A
d
d
n
av
ig
at
io
n
b
et
w
ee
n
ac
-

ti
vi
ti
es

in
m
ai
n

m
en
u
,

fo
r

G
A
P
P

0.
5

5
5

0
E
sb
en

1.
2

A
d
d

el
em

en
t

fo
r

sh
ow

in
g

cu
rr
en
t
m
ed

ic
at
io
n
p
la
n

0.
5

5
0

5

1.
3

A
d
d
n
av
ig
at
io
n
b
et
w
ee
n
ac
-

ti
vi
ti
es

in
m
ai
n

m
en
u
,

fo
r

C
A
P
P

0.
5

5
5.
5

0
A
le
ks
an

d
er

1.
4

M
ak
e
G
U
I
fo
r
m
en
u
sc
re
en

in
G
A
P
P

2
20

3
10

Jø
rg
en

1.
5

M
ak
e
G
U
I
fo
r
m
en
u
sc
re
en

in
C
A
P
P

1.
5

15
3.
5

0
A
le
ks
an

d
er

1.
6

A
d
d

G
A
P
P

as
a
p
ro
je
ct

to
th
e
re
p
os
it
or
y

0.
5

5
1

0
Y
n
gv
e

2.
1

M
ak
e

a
sc
re
en

fo
r
st
ar
ti
n
g

th
e
tr
ea
tm

en
t

0.
5

5
6

0
E
ir
ik

2.
2

M
ak
e

a
sc
re
en

fo
r
fi
n
is
h
ed

tr
ea
tm

en
t

0.
5

5
6

0
E
ir
ik

2.
3

M
ak
e
a
sc
re
en

fo
r
d
is
tr
ac
ti
on

1
10

6
0

E
ir
ik

2.
4

M
ak
e
so
m
e
ki
n
d

of
d
is
tr
ac
-

ti
on

th
ro
u
gh

th
e
K
ar
ot
z

3
30

0
30

2.
5

M
ak
e
a
m
et
h
od

fo
r
sa
vi
n
g
a

tr
ea
tm

en
t
to

th
e
d
at
ab

as
e

3
30

0
30

2.
6

M
ak
e
a
m
et
h
od

fo
r
st
ar
ti
n
g

tr
ea
tm

en
t
th
ro
u
gh

K
ar
ot
z

1
10

0
30

2.
7

M
ak
e
th
e
d
at
ab

as
e
fo
r
sa
v-

in
g
tr
ea
tm

en
ts
,m

ed
ic
in
e
an

d
av
at
ar

10
10

0
15

0
Y
n
gv
e

S
U
M

2
4
.5

2
4
5

5
1

1
0
5

Table 8.4: Sprint 1 burndown chart

70

Chapter 9

Sprint 2

The following section presents an overview of how we planned, worked and completed sprint two.
Sprint two started on 17th of September and ended on 30th of September.
The chapter is divided into five parts, starting with the overall plan for the sprint in Section 9.1.

Followed by the sprint backlog, which enlists the tasks that have been chosen for the sprint. Section 9.3.
will focus on the work made to the GUI, the logic implemented in the applications and the work done to
the database and database access in the applications. The chapter ends with what have been tested and
the corresponding results in Section 9.4 and a sprint review in Section 9.5.

9.1 Sprint Plan

The plan for the sprint was to add more of the graphical user interface to the applications. The GUI
implemented during this sprint, would later on be connected to logic to complete the functionality wanted.

We also wanted to add some functionality through adding logic to the di↵erent elements of the appli-
cations. The main focus was the log, the medication plan, the notifications and the distraction during a
treatment.

We made a change to the sprint plan during the sprint. The problem was that we had focused too
much on hardcoded “dummy” data, and needed the connection towards the database working. This lead
to a delay on the log, as this part was most dependent of a working database connection.

9.2 Sprint backlog

This section contains a table with the sprint backlog, which is a smaller part of the product backlog. The
goal is to implement the entire sprint backlog during the sprint.

We also decided to continously write on the report, attend lectures and hold advisor and customer
meetings during the sprint. These tasks are not included in the backlog, but the hours spent are included
in the status reports.

9.3 Design and Implementation

We continued to add graphical user interface elements to represent the di↵erent functionality in the appli-
cations. During this sprint the focus was fairly broad. The reason for this was the customer’s priorities of
what functionality should be implemented, and also that many of the tasks were dependent of each other,
and therefore could not be worked on at the same time.

Both we and the customer were also very curious to how the Karotz would be implemented with the
applications. We chose to have one developer focus on this task during this sprint.

71

CHAPTER 9. SPRINT 2

ID Task Story
points

Estimated
hours

Responsible

1.1 Make some kind of distraction through the
Karotz

8 40 Yngve

1.2 Make method for saving a treatment throught
Karotz

4 20 Yngve

1.3 Make method for starting treatment through
Karotz

2 10 Yngve

1.4 Make the distraction logic class 10 50 Eirik
2.1 Calendar view for log 10 50 Esben
2.2 Backend solution for saving the log 10 50
3.1 Make the reminder for Android platform 6 30 Aleksander
3.2 Make the reminder for Karotz 6 30 Yngve
3.3 User interface for changing reminder preferences 6 30 Eirik
3.4 Secure that the reminder is giving independently

of internet connection and sound level on the
phone

2 10

SUM 64 320

Table 9.1: Backlog for sprint 2

9.3.1 User Interface Layer

We implemented the log as a calendar view. This was based on open source code, which we modified, to
ensure it would have the properties we wante. At that time, there was still some work that needed to be
done to the log. However, it was very hard to do these changes until a backend solution was working, so
the rest of this task was being halted until we had the backend system up and running.

During the sprint we added a basic animation to the distraction, simply counting from zero to ten, to
assure that the animation-logic was in place, and the counting because the child should take ten breaths
from the inhaler during the treatment. After the treatment is finished the user will be rewarded with stars.

To the settings menu we added very simple functionality for making a treatment plan. By using simple
menus a user would be able to choose which medicines should be included and what dosage of each medicine.
The user should also be able to set the time for reminders. The GUI for this was implemented during the
sprint, but the logic and database connections were yet to be implemented.

We added functionality for dressing up the avatar with di↵erent costumes. At that time the costumes
were not changable in the GUI, since the shop was yet to be implemented.

To the treatment and distraction part of the applications, we implemented logic to make the treatment
understandable for children. We chose to solve this task by using logic to change the GUI.

During the sprint we implemented notifications to remind the user to take his/her medicine. The logic
behind this is done by a ”Notification Manager” which fires a method for putting a notification on the
status bar of the phone.

We found out halfway during this sprint that it was necessary to change the notifications into alarms.
Alarms are able to run independently of any other methods, in di↵erence to notifications which are fired
by a method internally. To ensure that the user would get the correct reminders it was necessary to change
this.

9.3.2 Data Persistence Layer

The development team found a severe problem with the current database server. The problem is that
we cannot access the database unless a client (android device) is connected to NTNU’s network. The

72

CHAPTER 9. SPRINT 2

customer unsuccessfully worked on trying to find another server we could use, therefore we had to change
the architecture, and make a seperate application on one of our “folk.ntnu.no”-domains, and access the
database from this webservice.

We were in a stage where we needed some test-data to see any progress, so we continued to load the
database with somewhat relevant testing data.

9.3.3 Database Access Layer

During the sprint, it was discovered that the Karotz cannot directly access the database, and that the
NTNU MySQL server cannot be accessed from outside the school network. These two problems lead to
the creation of an additional layer to access the database.

The Database Access Layer is a set of PHP web pages currently hosted at http://folk.ntnu.no/

yngvesva/blopp designed to take input in the form of GET and POST parameters, access the database
and either get information from or modify it, and return data in JSON format. This layer is further
described in section 6.4.2.

The additional work created by the tasks related to the database access layer meant that there was
substantially more work to be done in the sprint than was planned before it started.

The modules created this sprint were:

• add child.php: Takes a name, personal number (SSN) and a list of states (integer IDs) that the child
can have. Creates an entry in the CHILDREN table for the child, an avatar entry and a medical plan
entry. Also creates an entry in CHILD HEALTH STATES for all the states the child can have. Returns
the generated avatar id and medical plan id.

• get available child states.php: Takes a child ID and returns a list of the labels (colors, names) and
IDs of the states the child can have.

• get child.php: Takes an ID of a child and returns all the columns for the given ID in the CHILDREN

table.

• get child state.php: Accepts a child ID and returns the ID and label of the current state of the child.

• get doses for current state.php: Takes a child ID and returns a list of planned doses of medicines for
that day. The fields of each entry are: id, medical plan id, health state id, time, medicine id,
medicine karotz color and medicine name.

• register medicine taken.php: Register a dose of medicine taken. Accepts a post object with the fields
child id, medicine id, time, day date, health state id and medical plan dose id. If there is
an entry for that dose id that day, the method does nothing and simply returns unique = false.
Otherwise, it calculates a reward, and updates DAY MEDICINE DOSES with the entry. Returns the
reward for that dose.

• set child state.php: Takes a child ID and a state ID and sets the current state of the given child to
that one.

9.4 Testing and Results

9.4.1 Testing

The testing done during this sprint was mainly concerned with the backend logic of the system, since
the basic graphical layout functionallity was tested during the previous sprint. We did testing on the
database-connection and the sql-queries, aswell as the repositories we created for the client side of the
system.

73

http://folk.ntnu.no/yngvesva/blopp
http://folk.ntnu.no/yngvesva/blopp

CHAPTER 9. SPRINT 2

Item Description
ID UNIT2.1
Description Test of the distraction sequence
Date 30.09.2012
Responsible Eirik
Subject Distraction and DistractionActivity classes in no.blopp.app.med.activities

package
Precondition Working version of CAPP, runable on the android virtual device
Steps

1. Press ”Start Treatment” on the MainMenu.

2. Press the next-button on the screen, after seeing that the avatar is updated,
and it shows the right medicine.

3. Watch the animation, press the next-button.

4. Press the shop button or the main menu button to navigate away from the
finish-screen.

Results Application updated the avatar correctly. Pressing the next-button while the ani-
mation was still running caused the application to crash.

Table 9.2: Unit test 2.1, CAPP distraction sequence

Item Description
ID UNIT2.2
Description Test of database connection
Date 26.09.2012
Responsible Esben
Subject DBConnection

Precondition —
Steps Unit test of DBConnection.java. Run the application as Java Application
Results

1. If connected to NTNU’s network via VPN (virtual private network): Connec-
tion succeeded.

2. If not connected to NTNU’s network: Connection failed

Table 9.3: Unit test 2.2, database connection

Item Description
ID UNIT2.3
Description Testing of SQL-queries
Date 30.09.2012
Responsible Esben
Subject LogModelRepository

Precondition Connected to NTNU’s network
Steps Unit test of LogModelRepository.java. Run the application as Java Application
Results Success. The fields asked for were the same as stored in the database.

Table 9.4: Unit test 2.3, SQL queries

74

CHAPTER 9. SPRINT 2

9.4.2 Results

We see that there is a big problem with using NTNU’s MySQL server since it cannot be accessed from
points external to the NTNU subnet. This problem is currently being discussed by the customer, and we
might, get access to a server that is not dependent on the network the unit is at. Other than that, no
major errors were found.

9.5 Sprint Retrospective

This section contains an evaluation of the Sprint. The evaluation is done mainly by the developer team,
but feedback from the customers were added to the retrospect.

What went well?

Our programming event held thursday 20th of September was a great success. The group works much
better when we’re working physically together. We feel that we have a good code base, and can start
building the applications more e�ciently during the upcoming sprints.

What shall we start doing?

We identified four elements that should be added to our sprints:

1. Be more accurate towards deadlines with the customer.

2. Make better conventions for naming of fields in the source code.

3. Make better sprint plans to reflect the need of the backend system.

4. We need a predetermined day to write the reports for each sprint.

What could have gone better?

We must learn to send the meeting reports to the customer within 24 hours. We should have communicated
better on who was going to send the report after Jørgen drowned his computer after a customer meeting.

What should we stop doing?

Naming fields (buttons, textviews etc. from the Android framework) inconsistently with the conventions
stated in section D

9.5.1 Sprint Burndown Chart

Figure 9.1 and Table 9.5 show the burndown chart for the second sprint. At first glimpse the sprint
burndown chart doesn’t look too good. We started of at a farily good pace. At Thursday 20th of September
we held a fellow programming session, which was very successful. This resulted in a small dent in the chart,
in the positive direction. During the second week of the sprint, we had some di�culties. First o↵, one
of us had to step down on working hours, due to illness in his family. Second, the other team members
had assignments to finish in other courses. This stole much of the time which was supposed to be used on
programming.

Also, during the sprint the developers discovered problems technical problems the could not foresee
in advance. The database is hosted on a NTNU-server, resulting in the need of VPN-connection to work
outside of the university’s internet network. We, in agreement with the customer, decided to make a web
service to handle the tra�c to the database. This resulted in an increase in story points for the task.

75

CHAPTER 9. SPRINT 2

Figure 9.1: Sprint 2 burndown chart

Our goal for each two-week sprint is to finish 175 estimated work hours, which with a base multiplier
of 5 correlates to 175/5 = 35 story points. The backlog contained 64 story points in total, so we had no
ambition of completing all the tasks. However, at the end of the sprint there were 243 estimated work hours
left, which corresponds to 243/5 = 48.6 story points. In other words, we only completed 64� 48.6 = 15.4
story points in the second sprint. This is less than half of the amount we wanted to complete. We were not
satisfied with the progress, and understands we need to step up the amount of work done in the upcoming
sprints, in order to finish the prototype.

76

CHAPTER 9. SPRINT 2

#
ID

T
as
k

S
to
ry

p
oi
nt
s

E
st
im

at
ed

A
ct
u
al

E
st
im

at
ed

L
ef
t

R
es
p
on

si
b
le

1.
1

M
ak
e
so
m
e
ki
n
d
of

d
is
tr
ac
ti
on

th
ro
u
gh

K
ar
ot
z

8
40

18
10

Y
n
gv
e

1.
2

M
ak
e
m
et
h
od

fo
r
sa
vi
n
g
a
tr
ea
tm

en
t

th
ro
u
gh

K
ar
ot
z

4
20

–
20

–

1.
3

M
ak
e

m
et
h
od

fo
r
st
ar
ti
n
g

tr
ea
tm

en
t

th
ro
u
gh

K
ar
ot
z

2
10

9
4

Y
n
gv
e

1.
4

M
ak
e
th
e
d
is
tr
ac
ti
on

lo
gi
c
cl
as
s

10
50

41
0

E
ir
ik

2.
1

C
al
en

d
ar

vi
ew

fo
r
lo
g

10
50

20
15

E
sb
en

2.
2

B
ac
ke
n
d
so
lu
ti
on

fo
r
sa
vi
n
g
th
e
lo
g

10
50

4
45

E
sb
en

3.
1

C
re
at
e
G
U
I
fo
r
se
tt
in
gs

1
5

1
0

Jø
rg
en

3.
2

C
re
at
e
n
av

ig
at
io
n
fo
r
se
tt
in
gs

1
5

3
0

Jø
rg
en

4.
1

M
ak
e
th
e
re
m
in
d
er

fo
r
A
n
d
ro
id

P
la
t-

fo
rm

6
30

14
20

A
le
ks
an

d
er

4.
2

M
ak
e
th
e
re
m
in
d
er

fo
r
K
ar
ot
z

6
30

7
24

Y
n
gv
e

4.
3

U
se
r
in
te
rf
ac
e

fo
r
ch
an

gi
n
g

re
m
in
d
er

p
re
fe
re
n
ce
s

6
30

0
30

–

4.
4

S
ec
u
re

th
at

th
e
re
m
in
d
er

is
gi
vi
n
g
in
-

d
ep

en
d
en
tl
y
of

in
te
rn
et

co
n
n
ec
ti
on

an
d

so
u
n
d
le
ve
l
on

th
e
p
h
on

e

2
10

1.
5

10
A
le
ks
an

d
er

5.
1

M
ak
e
d
at
ab

as
e
ac
ce
ss

la
ye
r

3
15

14
20

Y
n
gv
e

5.
2

M
ak
e
re
p
os
it
or
ie
s

10
50

4
45

E
sb
en

S
U
M

6
4

3
2
0

1
3
6
.5

2
4
3

Table 9.5: Sprint burndown chart, Sprint 2

77

Chapter 10

Sprint 3

The following section presents an overview of how we planned, worked and completed sprint.
Sprint 3 started on 1st of October and ended on 14th of October, giving it a duration of 14 days.
The chapter is divided into five parts, starting with the overall plan for the sprint in Section 10.1.

Followed by the sprint backlog, which enlists the tasks that have been chosen for the sprint. Section 10.3.
will focus on the work made to the GUI, the logic implemented in the application and the work done to
the database and database access in the applications. The chapter ends with what have been tested and
the corresponding results in Section 10.4 and a sprint review in Section 10.5.

10.1 Sprint Plan

The plan for the sprint was to work on the distraction, the log, the reminders and the database connection.
We also planned to do some work on the report, due to an expected preliminary delivery.

Regarding the distraction, the plan was to make some kind of distraction through the Karotz.
Regarding the log, the plan was to work on a better solution of the calendar view and make the backend

connections for saving the log in the database.
Regarding the reminders the plan was to finish the work on inplementing the reminders and making

the reminder work through the Karotz.
Regarding the database the plan was to make di↵erent SQL-query methods for medications, reminders,

instructions and similiar.

10.2 Sprint backlog

This section contains a table with the sprint backlog, which is a smaller part of the product backlog. The
goal is to implement the entire sprint backlog during the sprint.

10.3 Design and Implementation

We continued to add graphical user interface elements to represent the di↵erent functionality in the ap-
plications. During the sprint the focus has been on the log, the reminders, the Karotz and the database.
The reason for this was the priorities given by the customer.

10.3.1 User Interface Layer

During the sprint we made GUI-changes to the log and the instructions. The instructions will now show a
list of the di↵erent medicines. When a medicine is selected, a new screen with a picture and instructions
for correct use is shown. This is downloaded from an external server, which makes it easier to change the
pictures without updating the applications.

79

CHAPTER 10. SPRINT 3

ID Task Story
points

Estimated
hours

Responsible

1.1 Make some kind of distraction through the
Karotz

2 10 Yngve

1.2 Make method for saving a treatment through
Karotz

4 20 Yngve

1.3 Make method for starting treatment through
Karotz

2 10 Yngve

2.1 Calendar view for log 3 15 Esben
2.2 Backend solution for saving elements to the log 9 45 Esben
3.1 Make the reminder for Android devices 4 20 Eirik
3.2 Make the reminder for Karotz 5 25 Yngve
3.3 User interface for changing reminder preferences 6 30 Eirik and

Aleksander
3.4 Secure that the reminder is giving independently

of internet connection and sound level on the
phone

2 10 Eirik

4.1 Make SQL-queries for LogModel 1 5 Esben
4.2 Make SQL-queries for essential database fields

for CAPP, including avatar, shop, rewards and
so on

3 15

4.3 Make SQL-queries for Medications 2 10 Esben and
Jørgen

4.4 Make SQL-queries for Notifications 2 10 Jørgen
4.5 Make SQL-queries for Instructions 1 5 Jørgen
4.6 Make the SQL-queries updater for Karotz 3 15 Yngve
4.7 Make a generic JSON-deserializer 1 5 Yngve and

Esben
4.8 Make JSON-deserializer for logmodel 1 5 Esben
4.9 Make JSON-deserializer for instructions 1 5 Esben
SUM 52 260

Table 10.1: Backlog for sprint 3

80

CHAPTER 10. SPRINT 3

During the sprint the reminders were implemented. When the reminder is set o↵ by the logic layer,
the screen will show a message with the text “It’s time to take your medicine”.

During the sprint we, in cooperation with the customer started to work on making better screen
elements like buttons, images and similar in order to replace all text. Since CAPP will be used by young
children, it will be more understandable for children if we use pictures, rather than text. This process was
started so late in the sprint that the results are to be expected during the next sprint.

10.3.2 Application Logic Layer

The reminders have been added, as mentioned previously. At this point, the alarm will be set o↵ by
pressing a button inside the application. An alarm manager calculates an o↵set of ten seconds and then
fires an alarm. When the user clicks on the alarm sign, he/she is taken to the treatment screen. The
functionality for choosing custom alarm times is yet to be implemented.

10.3.3 Data Persistence Layer

More web access modules have been added, and some of the previous modules have been altered. The new
pages include:

• dose is taken.php: Check if a dose of a planned medicine has been taken that day.

• get instructions.php: Get instructions (image, e↵ect description and usage description) for a given
medicine by ID.

• get log for child.php: Returns all registered entries for the day for a given child (id) during the given
month during the given year.

I addition to the new modules, get doses for current state.php has been altered to only return doses for
the day that has not been taken already.

10.3.4 Karotz

This subsection has not been present in the other sprint reports. Because the Karotz is a separate part
of the system from the Android applications and the database, we felt it was important to add a it as a
separate section.

The Karotz will now play reminders at a specific time set by the user in the database. The reminder
starts a distraction process, which makes the Karotz able to act as a distraction during treatment. It will
play sound in order to tell the user which medicine to take, how to take them and then count down from
10 to 0 to work as a distraction. There are some problems with the calibration of sound messages and the
countdown, so the Karotz may skip messages, making it sound like it skips numbers when counting.

The applications communicate with the Karotz through the database by saving and retrieving data
asynchronously and without direct messages between them.

10.4 Testing and Results

10.4.1 Testing

During this sprint we tested the reminder and the log part of the system. We wanted to make sure that
the reminder was given regardless of phone state, such as when the phone is asleep, or if the the phone is
used in a call.

We had had some problems coloring the correct days, and making the log the way we wanted, so we felt
we had to make sure it was done correctly, and working in the way we wanted. We therefore did testing
focusing on the log.

81

CHAPTER 10. SPRINT 3

Item Description
ID UNIT3.1
Description Test that the alarm is given independently of phone state
Date 14.10.2012
Responsible Eirik
Subject AlarmReciever and MainMenu (which sets the alarm)
Precondition Working version of CAPP, runable on the android virtual device
Steps

1. Press the “notify us” button to set the alarm.

2. Wait until the alarm activates.

3. Observe if the alarm activates if you are on a call.

4. Observe if the alarm activates if you’re in another application.

5. Observe if the alarm activates if the phone have been switched o↵.

Results The alarm worked fine, unless if the phone is switched o↵, which releases all alarms.
We found a solution to this by adding an onBootAction.

Table 10.2: Unit test 3.1: Alarm when turned o↵

Testing the Karotz is essential to the project, so in this sprint the two most important modules of the
Karotz app were tested: notification and medication. There was also an additional test to check whether
several medications happening at the same time would be handled correctly.

There was a problem with the treatment functionality of the Karotz. The countdown did not work
correctly. Often jumping from ten to seven, from seven to three and from three to finished. This is because
the Karotz’ built-in media player is slow and takes a little time to start and stop. The solution to this
problem is to include the entire countdown in one audio file, compared to previously where each number
was stored in a seperate file.

In addition to these tests, we are testing the application continuously.

Item Description
ID UNIT3.2
Description Test that the correct days is colored in the log
Date 09.10.2012
Responsible Esben
Subject LogModelParser, CalendarView
Precondition Correct resultset from get log for child.php

Steps
1. Press “log”.

2. Compare the colored days with the resultset from get log for child.php.

Results Correct days was ultimatly colored after a huge e↵ort was made in finding a couple
of bugs.

Table 10.3: Unit test 3.2: Calendar colors

82

CHAPTER 10. SPRINT 3

Item Description
ID UNIT3.3
Description Test that a notification is given at the correct time through the Karotz
Date 09.10.2012
Responsible Yngve
Subject Karotz app’s Repository and Notification modules
Precondition Karotz app starts, planned dose URLs and parameters are correct
Steps

1. Adjust a time for the notification in the table MEDICAL PLAN DOSES in the
database.

2. Wait until the alarm activates.

3. Observe if the notification is activated at the correct time.

Results The notification went o↵ at the given time.

Table 10.4: Unit test 3.3: Karotz Notification

Item Description
ID UNIT3.4
Description Test that a distraction is started and works correctly when the button on the Karotz

is pressed after a notification is given.
Date 09.10.2012
Responsible Yngve
Subject Karotz app’s Repository, Notification and Medication modules
Precondition Notification is given correctly throug the karotz
Steps

1. Wait until the notification activates.

2. Press the button to terminate the notification and start medication.

3. Follow the vocal instructions given by the Karotz.

4. Observe that the medication procedure is starting.

5. Observe that the countdown works correctly.

6. Observe that a reward (credits) is given at the end of the medication process.

7. Observe that the reward is saved in the database.

Results The medication process started, but the countdown started but skipped some num-
bers. This can however be solved by making the whole countdown in a single sound
file. The Karotz expressed audiably that a reward was given, and that was saved to
the database.

Table 10.5: Unit test 3.4: Karotz distraction

83

CHAPTER 10. SPRINT 3

Item Description
ID UNIT3.5
Description Test that several doses in the same notification will make a medication for each dose,

after each other.
Date 11.10.2012
Responsible Yngve
Subject Karotz app’s Repository, Notification and Medication modules
Precondition A notification that consists of three doses is given.
Steps

1. Wait for a notification with three doses at the same time.

2. Observe that the first medication process is completed correctly.

3. Observe that when the first medication process is done, another is started
automatically.

4. Observe that the second medication process is completed correctly.

5. Observe that when the second medication process is done, another is started
automatically.

6. Observe that the third medication process is completed correctly.

7. Observe that when the third medication process is done, no other process is
started and the Karotz returns to idle state.

Results The medication series worked as expected.

Table 10.6: Unit test 3.5: Several doses in a medication

84

CHAPTER 10. SPRINT 3

10.4.2 Results

We found out that the alarm was given regardless of the phone state, unless the phone was turned o↵,
since we have no way to turn the phone back on. The alarms will be put back on whenever the phone is
turned on, so the only scenario the alarm will not be given is if the phone is turned o↵ at the time for a
reminder. Regarding the coloring of the days in the log, the color depends on the medication plan followed
that day. We had some trouble discovering what bugs made the wrong days be colored, but after extensive
debugging, we found out that one of the SQL-querys was not correct. Upon fixing the query to gather the
right ID from the database the log worked as intended.

10.5 Sprint Retrospective

This section contains an evaluation of the Sprint. The evaluation is done mainly by us, but feedback from
the customers is added to the retrospect.

What went well?

Karotz is ready for user testing. Eirik was responsible for Aleksanders’ tasks when he was gone, and
secured progress. Communication with the customer has improved.

What shall we start doing?

We identified one element that we should add to our sprints:

1. Increase amount of programming sessions.

What could have gone better?

We forgot to have daily standups, this shouldn’t happen. Better testing of the Karotz in advance to the
customer meeting. Be better prepared in advance of customer meeting.

What should we stop doing?

We felt that nothing was done completely wrong during this sprint.

10.5.1 Sprint Burndown Chart

Figure 10.1 and table 10.7 show the sprint burndown chart for sprint 3. The burndown chart looks good
at first glance, compared to sprint 1 and 2. During the last two sprints we have learned more about
estimation and development, this has resulted in a steadier pace. The burndown charts started out very
good, this was due to some functionality being dropped very early in the sprint. This decision was made
by the customer.

Also we discovered fairly early that some tasks were easier than expected. Closer to the end of week
one the burndown chart flattened out a bit. The reason behind this is that we needed to work intensly
on assignments in other courses. At the start of week two, a programming session was held, resulting in a
steep decline in the burndown chart. After this the pace was fairly consistent.

We had a goal of finishing 49 story points. There are 60 hours left, which with the multiplier we used,
5, means there are 60/5 = 12 story poinst left. Ergo, we finished 49� 12 = 37 story points, which is closer
to the ideal projected e↵ort than the previous sprints, but not satisfactory.

85

CHAPTER 10. SPRINT 3

#
ID

T
as
k

S
to
ry

p
oi
nt
s

E
st
im

at
ed

A
ct
u
al

E
st
im

at
ed

L
ef
t

R
es
p
on

si
b
le

1.
1

M
ak
e
so
m
e
ki
n
d
of

d
is
tr
ac
ti
on

th
ro
u
gh

K
ar
ot
z

2
10

3
0

Y
n
gv
e

1.
2

M
ak
e
m
et
h
od

fo
r
sa
vi
n
g
a
tr
ea
tm

en
t

th
ro
u
gh

K
ar
ot
z

4
20

8
0

Y
n
gv
e

1.
3

M
ak
e

m
et
h
od

fo
r
st
ar
ti
n
g

tr
ea
tm

en
t

th
ro
u
gh

K
ar
ot
z

2
10

5
0

Y
n
gv
e

2.
1

C
al
en

d
ar

vi
ew

fo
r
lo
g

3
15

15
3

E
sb
en

2.
2

B
ac
ke
n
d
so
lu
ti
on

fo
r
sa
vi
n
g
th
e
lo
g

9
45

5
25

E
sb
en

3.
1

M
ak
e
th
e
re
m
in
d
er

fo
r
A
n
d
ro
id

P
la
t-

fo
rm

4
20

20
2

E
ir
ik

3.
2

M
ak
e
th
e
re
m
in
d
er

fo
r
K
ar
ot
z

5
25

25
0

Y
n
gv
e

3.
3

U
se
r
in
te
rf
ac
e

fo
r
ch
an

gi
n
g

re
m
in
d
er

p
re
fe
re
n
ce
s

6
30

4
28

A
le
ks
an

d
er

an
d
E
ir
ik

3.
4

S
ec
u
re

th
at

th
e
re
m
in
d
er

is
gi
vi
n
g
in
-

d
ep

en
d
en
tl
y
of

in
te
rn
et

co
n
n
ec
ti
on

an
d

so
u
n
d
le
ve
l
on

th
e
p
h
on

e

2
10

10
2

E
ir
ik

4.
1

M
ak
e
S
Q
L
-q
u
er
ie
s
fo
r
L
og

M
od

el
1

5
4

0
E
sb
en

4.
2

M
ak
e

S
Q
L
-q
u
er
ie
s

fo
r

es
se
nt
ia
l

d
at
ab

as
e

fi
el
d
s

fo
r

ch
il
d
re
n

ap
p
li
ca
-

ti
on

,
in
cl
u
d
in
g

av
at
ar
,
sh
op

,
re
w
ar
d
s

an
d
so

on

3
15

T
as
k
d
ro
p
p
ed

T
as
k
d
ro
p
p
ed

–

4.
3

M
ak
e
S
Q
L
-q
u
er
ie
s
fo
r
M
ed

ic
at
io
n
s

2
10

7
0

E
sb
en

an
d
Jø

rg
en

4.
4

M
ak
e
S
Q
L
-q
u
er
ie
s
fo
r
N
ot
ifi
ca
ti
on

s
2

10
0

0
Jø

rg
en

4.
5

M
ak
e
S
Q
L
-q
u
er
ie
s
fo
r
In
st
ru
ct
io
n
s

1
5

3
0

Jø
rg
en

4.
6

M
ak
e

th
e

S
Q
L
-q
u
er
ie
s

u
p
d
at
er

fo
r

K
ar
ot
z

3
15

3
0

Y
n
gv
e

4.
7

M
ak
e
a
ge
n
er
ic

JS
O
N
-d
es
er
ia
li
ze
r

1
5

10
0

Y
n
gv
e
an

d
E
sb
en

4.
8

M
ak
e
JS

O
N
-d
es
er
ia
li
ze
r
fo
r
lo
gm

od
el

1
5

5
0

E
sb
en

4.
9

M
ak
e

JS
O
N
-d
es
er
ia
li
ze
r

fo
r

in
st
ru
c-

ti
on

s
1

5
5

0
E
sb
en

S
U
M

4
9

2
4
5

1
1
4

6
0

Table 10.7: Sprint Retrospective, Sprint 3

86

CHAPTER 10. SPRINT 3

Figure 10.1: Sprint 3 burndown chart

87

Chapter 11

Sprint 4

The following section presents an overview of how we planned, worked and completed sprint 4.
Sprint 4 started on 15th of October and ended on 28th of October.
The chapter is divided into five parts, starting with the overall plan for the sprint in Section 11.1.

Followed by the sprint backlog, which enlists the tasks that have been chosen for the sprint. Section 11.3.
will focus on the work made to the GUI, the logic implemented in the application and the work done to
the database and database access in the application. The chapter ends with what have been tested and
the corresponding results in Section 11.4 and a sprint review in Section 11.5.

11.1 Sprint Plan

The plan for the sprint is to work on a broad spectrum of functionality for the application. With four
weeks left to work on implementation, and the last week needed for bug fixing and wrapping up the code,
the time is starting to run out. For much of the user stories it was either make it this sprint or break it,
since we didn’t want to deliever half-finished code.

The general look and feel of both applications was fairly generic and not good-looking. At the start of
the sprint, the GUI consisted of mostly standard elements and some pictures we painted ourselves, leaving
poor software. Therefore the GUI in both applications were in for a huge upgrade.

11.1.1 CAPP

During the first customer meeting, we made a decision to remove functional requirement CF4: “The
application should have an avatar for each child, that can be chosen by the child, and customized through
the shop.”. We felt that the shop idea was simply too big of a task to implement during the last four weeks
in addition to all the other work that remained. The gamification part of the project was now reduced to a
showing of amount of rewards a child had collected, and we decided that this reward would be an amount
of stars. However, we kept the database-tables such that it would we easier to extend the application with
this functionality.

Regarding the reward system of CAPP we decided to make a more visual overview of how many stars
are collected, since children does not necessarily know how to read. We also had to implement a connection
between the database and this view.

The distraction was up for refactoring. The solution we had at the start of the sprint was a very simple,
not very disctracting, countdown. The customer wanted to change this, and told us they would create
pictures in order to make a better distraction.

Instructions for correct use should also be implemented during this sprint. Since the instructions are
for children, they are implemented as a picture gallery downloaded froam an external server.

89

CHAPTER 11. SPRINT 4

11.1.2 GAPP

To the log of GAPP we plan to implement functionality for registering a treatment which was taken earlier,
without the app present. We also planned to add a pollen forecast to the calendar, as it may warn users
about possible pollen spread, since this may e↵ect the child’s health state.

To the settings functionality, we planned to improve the general layout of the menu for adding a
medication plan. Also this part of the application needs to be connected to the database, which will be
done during this sprint.

To the reminder functionality the plan was to make finishing touches in order to make it work.

11.2 Sprint backlog

This section contains table 11.1 with the sprint backlog, which is a smaller part of the product backlog.
The goal is to implement the entire sprint backlog during the sprint.

11.3 Design and Implementation

This section will present the changes done during the sprint.

11.3.1 User Interface Layer

CAPP

Huge changes were made to the main menu of CAPP. The buttons from earlier were removed, and instead
all buttons throughout the application is image buttons, meaning it is a picture which works as a button
when pressed.

During this sprint we added functionality for viewing instructions in the child application. The instruc-
tions are accessible from the main menu. Upon opening the instructions the user is met with a picture
series where the user may view pictures that give information regarding how to use the medicines correctly.

The distraction for treatment was given a facelift in form of a huge change-out of the pictures. During
the sprint we added new pictures and interactive design for the user to interact with the Karotz. We also
added more sound files, to make it sound like the Karotz is talking to the user.

GAPP

During this sprint we added functionality for viewing the pollen forecast for today’s date and the following
day. Using “Pollenvarslingen”, an external API, the application can make calls to an external server and
recieve an XML-feed in return. This XML-feed gives certain info about the pollen forecast. Regarding
this there were some problems. Since there is no pollen in the air in October, all calls to the API returned
empty XML-feeds. After discussing this problem with the customer, we found out that we solved this by
setting up a dummy XML-feed on our own external server. The XML-feed would always return the exact
same document, but it still made it look like a real pollen forecast.

The main menu of the app was given some changes. The buttons from earlier are gone, and instead
all buttons throughout the application is image buttons, meaning it is a picture which works as a button
when pressed.

During this sprint we added functionality for viewing instructions in the application. The instructions
are accessible from the main menu. Upon opening the instructions the user is met with a picture series
where the user may view pictures giving information regarding how to use the medicines correctly.

The menu for choosing treatment plan was polished with new images and text, to make it more
understandable and intuitive.

90

CHAPTER 11. SPRINT 4

ID Task Story
points

Estimated
hours

Responsible

1.1 View for amount of stars collected 1 4 Yngve
1.2 Connect reward view to the database 1 4 Yngve
2.1 Refine the distraction for the children 3 12 Yngve
3.1 Finalize instructions for children 3 12 Aleks
4.1 Make solution for registering a treatment 3 12 Esben
4.2 Implement pollenfeed to log 10 40 Esben
4.3 Finalize view for showing pollen and med-

ications taken at a given day
2 8 Esben

5.1 Finalize instruction for medications 3 12 Aleks
6.1 Make view for viewing existing medication

plans
4 16 Eirik

6.2 Import medication list from database to
medication plan settings

1 4 Esben

6.3 Improve layout for making medication
plan

2 8 Jørgen

6.4 Save the medication plan to the database 3 12 Jørgen
7.1 User interface for changing reminder pref-

erences
1 4

7.2 Secure that the reminder is giving alarms
independently of internet connection and
sound level on phone

1 4 Eirik

8.1 Create web interface page for adding med-
ical plan doses

1 4 Yngve

8.2 Create web interface page for removing
medical plan doses

1 4 Yngve

8.3 Create web interface for getting log
grouped on days

1 4 Yngve

9.1 Refine Karotz app manus, after feedback
from customer

3 12 Yngve

9.2 Record new voice messages for the Karotz 1 4 Yngve
10.1 Refine design for registering treatment 1 4 Esben and

Jørgen
10.2 Refine design for instructions 2 8 Esben
10.3 Refine GUI for the main menu 1 4 Aleks and

Esben
11.1 Refine alarm and distraction regarding

database calls
2 8 Yngve

SUM 51 204

Table 11.1: Backlog for sprint 4

91

CHAPTER 11. SPRINT 4

The calendar will now show what health state the child was in, by coloring a bar on top of the given
day. The bottom bar of each day will be colored according to the worst amount of pollen on the given
day. Since there is no pollen in the winter season, we have hardcoded the values for the amount of pollen,
which makes the log show no di↵erences between days.

11.3.2 Application Logic Layer

In the menu for the treatment plan, the application will now create reminders based on what treatment
plan is chosen. Di↵erent treatment plans will also a↵ect the amount of stars the children will recieve upon
finishing a treatment.

The menu for registering a treatment taken earlier, will now save to the database, based on what date
and what medicine the user chooses from the menu.

The information about medicines will now show a listed menu of the di↵erent medicines. When a
medicine is chosen by click, it will load a screen with info from the database.

11.3.3 Data Persistence Layer

The following web access pages were added during the 4th sprint:

• add plan dose.php: Inserts a new entry in the MEDICAL PLAN DOSES table for the given child, health
state a dose of the given medicine at the given time. This is the primary module used to alter medical
plans. Returns the ID of the added dose.

• remove plan dose.php: Deletes the entry in the table MEDICAL PLAN DOSES which correspons to a
given id. Returns the number of deleted rows.

• get log days for child.php: For the calendar in GAPP, it was advantageous to have a database access
method that could return a list of days in a month with the child health state for each day, and
a list of doses taken on that day. Get log days for child.php accomplishes this by using the table
CHILDREN LOG DAYS to find the latest recorded health state before the given month started. Then it
iterates through all the days, checking if there are any days in the month where the status changes,
and adding all doses, taken from DAY MEDICINE DOSES, on that day. The method takes a child id,
and two optional parameters month and year. If the month and year are not set, the values for the
current days are used.

• remove plan medicine at time.php During development of the adult app GAPP, it was discovered
that using a combination of child id, medicine id and time as the key for removing elements in
the MEDICAL PLAN DOSES table would be easier than using an ID. Therefore the need for this module
arised, and it simply removes all entries in the table that fit the criteria.

Changes were made to the following files for web access:

• add child.php: Since we moved away from the avatar idea, this method no longer creates an entry in
the AVATARS table, and does not return an ID for that entry.

• set child state.php: Now updates the table CHILDREN LOG DAYS with the given health state.

• register medicine taken.php: Adds the calculated reward to the child’s total credits in the CHILDREN
table. If no time is given, a default time of 00:00:01 is set.

The following changes were made to the database itself:

• Since the Avatar idea was at least put on hold, there is no need to store credits in the avatar for a
child. An extra column named credits was therefore added to the CHILDREN table.

92

CHAPTER 11. SPRINT 4

Item Description
ID UNIT4.1
Description Test that the right instructions are downloaded and shown on screen in the instruc-

tions menu
Date 18. 10. 2012
Responsible Aleks
Subject Medication instructions and external database
Precondition The application is running, the database is running
Steps

1. Press Instructions button in the main menu.

2. Choose a medication from the list shown.

3. Observe if the correct picture is shown on screen

4. Observe if the correct text (instructions) is shown on screen.

Results The first few times, a blank screen was shown. After debugging, all worked as
expected. More about this in results

Table 11.2: Unit test 4.1: instructions

• To support several medical plans for a child and to be able to save such plans and change back
and forth between them, a column child id was added to the table MEDICAL PLANS. It is therefore
possible to indicate the “active” medical plan with the id in the CHILDREN table, but many can be
stored to a child. Subsequently the useless label column was dropped.

11.3.4 Karotz

The sound clips for the Karotz were changed in order to be more understandable for children. We had
simply not thought of aspects such as the Karotz should count from 0 to 10, since children does not
necessarily know how to count backwards. The Karotz will now communicate with the database in order
to save rewards earned by the user. At the end of this sprint, the Karotz had all desired funtionality for
reminders, distraction, instruction and rewards. Testing on users still remained, and was planned for the
beginning of sprint 5.

11.4 Testing and Results

11.4.1 Testing

Table 11.2 shows the unit test performed this sprint.

11.4.2 Results

Regarding the test UNIT4.1, we had some problems with showing the instructions. The page returned
a blank screen, regardless of what medicine was chosen. We controlled the servers responds by using a
browser, to make it easier to read the return values. The return values where correct each time.

After extensive debugging, we discovered that the query done in the application was written in an
illegal way. This way, the query was not parameterized as a query and the server did not respond to the
request. After fixing the query, everything worked as expected.

93

CHAPTER 11. SPRINT 4

11.5 Sprint Retrospective

This section contains an evaluation of the sprint. The evaluation is done mainly by the us, but feedback
from the customers are added to the retrospect.

11.5.1 What went well?

We have now finished a lot of the backend functionality for the system, and the system is working well
with the exception of a few minor bugs. The system is nearing a finished state and usability testing may
begin.

11.5.2 What shall we start doing?

1. Document internal unit tests better.

2. Document time spent on report writing and meetings better

3. Implement user feedback when the application crashes.

4. Code refactoring

5. Add time spent on refactoring to the estimate for a task

11.5.3 What could have gone better?

We could have foreseen many of the bugs that makes crashes, and implemented a try/catch block in the
sourcecode, in order to prevent hard crashes. Examples: crashes due to lack of internet connection, lack
of input from the user.

11.5.4 What should we stop doing?

We should stop using GUI-based git software, and learn terminal-based git software, as none of the GUI
applications are working flawlessly.

11.5.5 Sprint Burndown Chart

Figure 11.1 and table 11.3 show the burndown chart for the fourth sprint. From the burndown chart,
the fourth sprint looks like a success. Ahead of the sprint, the function number for the story points
was lowered, since we expected to work faster. This was done independently of our estimation, to not
make biased results. The team worked faster than expected on a general base. Some tasks were still
overestimated. The reason for this was little knowledge towards the task and how it should be solved. For
example the implementation of the pollen feed proved to be much faster than expected, since we hardcoded
the values.

The sprint contained 204 estimated work hours, and our goal was to complete 175 of those, which
correspons to 175/4 = 43.75 story points with our base multiplier of 4. While only 131 work hours were
recorded, there were only 16 estimated work hours left when the sprint was over. This corresponds to
16/4 = 4 story points. Therefore, we completed 51� 4 = 47 story points, which is 47� 43.75 = 3.25 more
than our goal. The sprint was therefore considered a success with a satisfactory result.

94

CHAPTER 11. SPRINT 4

#
ID

T
as
k

S
to
ry

p
oi
nt
s

E
st
im

at
ed

A
ct
u
al

E
st
im

at
ed

L
ef
t

R
es
p
on

si
b
le

1.
1

V
ie
w

fo
r
am

ou
nt

of
st
ar
s
co
ll
ec
te
d

1
4

4
0

Y
n
gv
e

1.
2

C
on

n
ec
t
re
w
ar
d
vi
ew

to
th
e
d
at
ab

as
e

1
4

3
0

Y
n
gv
e

2.
1

R
efi

n
e
th
e
d
is
tr
ac
ti
on

fo
r
th
e
ch
il
d
re
n

3
12

10
0

Y
n
gv
e

3.
1

F
in
al
iz
e
in
st
ru
ct
io
n
s
fo
r
ch
il
d
re
n

3
12

10
2

A
le
ks

4.
1

M
ak
e
so
lu
ti
on

fo
r
re
gi
st
er
in
g
a
tr
ea
tm

en
t

3
12

7
0

E
sb
en

4.
2

Im
p
le
m
en
t
p
ol
le
n
fe
ed

to
lo
g

10
40

6
0

E
sb
en

4.
3

F
in
al
iz
e
vi
ew

fo
r
sh
ow

in
g
p
ol
le
n
an

d
m
ed

ic
a-

ti
on

s
ta
ke
n
at

a
gi
ve
n
d
ay

2
8

5
0

E
sb
en

5.
1

F
in
al
iz
e
in
st
ru
ct
io
n
fo
r
m
ed

ic
at
io
n
s

3
12

7
2

A
le
ks

6.
1

M
ak
e
vi
ew

fo
r
vi
ew

in
g

ex
is
ti
n
g

m
ed

ic
at
io
n

p
la
n
s

4
16

16
0

E
ir
ik

6.
2

Im
p
or
t
m
ed

ic
at
io
n
li
st

fr
om

d
at
ab

as
e
to

m
ed

-
ic
at
io
n
p
la
n
se
tt
in
gs

1
4

1
0

E
sb
en

6.
3

Im
p
ro
ve

la
yo
u
t
fo
r
m
ak

in
g
m
ed

ic
at
io
n
p
la
n

2
8

10
2

Jø
rg
en

6.
4

S
av
e
th
e
m
ed

ic
at
io
n
p
la
n
to

th
e
d
at
ab

as
e

3
12

6
0

Jø
rg
en

7.
1

U
se
r
in
te
rf
ac
e
fo
r
ch
an

gi
n
g
re
m
in
d
er

p
re
fe
r-

en
ce
s

1
4

0
4

-

7.
2

S
ec
u
re

th
at

th
e
re
m
in
d
er

is
gi
vi
n
g
al
ar
m
s
in
-

d
ep

en
d
en
tl
y
of

in
te
rn
et

co
n
n
ec
ti
on

an
d
so
u
n
d

le
ve
l
on

p
h
on

e

1
4

8
0

E
ir
ik

8.
1

C
re
at
e
w
eb

in
te
rf
ac
e
fo
r
ad

d
in
g
m
ed

ic
al

p
la
n

d
os
es

1
4

1
0

Y
n
gv
e

8.
2

C
re
at
e
w
eb

in
te
rf
ac
e
fo
r
re
m
ov

in
g

m
ed

ic
al

p
la
n
d
os
es

1
4

1
0

Y
n
gv
e

8.
3

C
re
at
e
w
eb

in
te
rf
ac
e
fo
r
ge
tt
in
g
lo
g
gr
ou

p
ed

on
d
ay
s

1
4

1
0

Y
n
gv
e

9.
1

R
efi

n
e

K
ar
ot
z

ap
p

m
an

u
s,

af
te
r

fe
ed

b
ac
k

fr
om

cu
st
om

er
3

12
13

2
Y
n
gv
e

9.
2

R
ec
or
d
n
ew

vo
ic
e
m
es
sa
ge
s
fo
r
th
e
K
ar
ot
z

1
4

2
0

Y
n
gv
e

10
.1

R
efi

n
e
d
es
ig
n
fo
r
re
gi
st
er
in
g
tr
ea
tm

en
t

1
4

8
0

E
sb
en

an
d
Jø

rg
en

10
.2

R
efi

n
e
d
es
ig
n
fo
r
in
st
ru
ct
io
n
s

2
8

6
0

E
sb
en

10
.3

R
efi

n
e
G
U
I
fo
r
th
e
m
ai
n
m
en
u

1
4

3
0

A
le
ks

an
d
E
sb
en

11
.1

R
efi

n
e

al
ar
m

an
d

d
is
tr
ac
ti
on

re
ga

rd
in
g

d
at
ab

as
e
ca
ll
s

2
8

3
4

Y
n
gv
e

S
U
M

5
1

2
0
4

1
3
1

1
6

Table 11.3: Sprint Retrospective, Sprint 4

95

CHAPTER 11. SPRINT 4

Figure 11.1: Sprint 4 burndown chart

96

Chapter 12

Sprint 5

The following section presents an overview of how we planned, worked and completed sprint 5.
Sprint 5 started on 29th of October and ended on 11th of November, giving it a duration of 14 days.
The chapter is divided into five parts, starting with the overall plan for the sprint in Section 12.1.

Followed by the sprint backlog, which enlists the tasks that have been chosen for the sprint. Section 12.3.
will focus on the work made to the GUI, the logic implemented in the application and the work done to
the database and database access in the application. The chapter ends with what have been tested and
the corresponding results in Section 12.4 and a sprint review in Section 12.5.

12.1 Sprint Plan

The plan for sprint 5 was to finishing the user interface, look for and fix errors and refactor, document
and comment code. At the end of this sprint we planned for a code freeze for the sourcecode, meaning no
changes were to be made after this sprint. The sprint started with the usability test, and we made the rest
of the sprintplan based on the feedback we got from this test.

12.2 Sprint backlog

This section contains a table with the sprint backlog, which is a smaller part of the product backlog. The
goal is to implement the entire sprint backlog implemented during the sprint.

12.3 Design and Implementation

Since this was the last sprint, the code had to be refactored and commented. During this sprint we
made sure to delete all classes that were not in use, merge classes were possible and logical and mark all
deprecated classes. This resulted in a much more understandable and readable code.

After deleting all unused code, we wrote javadoc[21] for all code. Since javadoc is a common use among
java developers, this will make the source code easier to read and understand, for people picking up the
code in the future.

12.3.1 User Interface Layer

CAPP

CAPP underwent minor changes to the user interface. The main menu had it’s icons changed out, to give
it a nicer, more colorful and thus more attractive look.

The overview of how many stars the child has earned was given a bigger star at the top, to easily show
how many stars the child has earned in total.

97

CHAPTER 12. SPRINT 5

ID Task Story
points

Estimated
hours

Responsible

1.1 Refine distraction for CAPP 2 8 Yngve
1.2 Fix medicine choice before unscheduled medica-

tion
2 8 Yngve

1.3 Fix jumping images during child distraction 1 4 Yngve
1.4 Fix correct heading in all pages 1 4 Eirik and

Esben
2.1 Bugfix new manuscript on Karotz 1 4 Yngve
2.2 Bugfix Karotz after usability test: double RFID

check
1 4 Yngve

3.1 Delete old alarms 2 8 Eirik
4.1 Make better layout for info about medication 1 4 Aleksander
5.1 Write javadoc for all code 3 12 Esben,

Eirik
5.2 Remove unused code (imports, classes, etc) 1 4 Aleksander,

Eirik and
Esben

6.1 Fix Wifi-related crashes in CAPP 0.5 2 Esben
6.2 Fix Wifi-related crashes in GAPP 0.5 2 Esben
7.1 Perform and document unit tests of all we access

pages
1 4 Yngve

SUM 19 76

Table 12.1: Backlog for sprint 5

98

CHAPTER 12. SPRINT 5

GAPP

GAPP underwent very small changes in this sprint. To the section where users may view information
about medication, we added pages for viewing information about specific medicines, and a link to the
instructions images implemented earlier.

Karotz

Based on the usability test, the manuscript for both Karotz and CAPP were updated. The counting action
was reworked to include instructions for the child to press the medicine in order to start the medication
process. Also, whenever the user was told to hold a nanoz to the rabbit, they were previously told to hold
it against the rabbit’s stomach. The detector is placed directly beneath the Karotz’ nose, so the dialogue
was changed to accomodate this. The final manuscript is laid out in detail in appendix C.

12.3.2 Application Logic Layer

The applications still had some bugs at the beginning of the sprint. During this sprint we smashed a lot of
them. Mentioning some, we fixed a problem with which medicineID was sent to the database, a problem
with deleting alarms was fixed and a problem with the alarm not letting the user turn o↵ the sound was
fixed.

12.3.3 Data Persistence Layer

Changes were made to the following files for web access:

• get log days for child.php: This module would return days in the future, with the last recorded health
state id. This behavior was changed so that the module doesn’t return entries for future days.

12.4 Testing and Results

12.4.1 Testing

During this sprint our main focus was on refactoring, commenting and bugfixing. This meant we did alot
of di↵erent tests during this sprint. The sprint started with a usabilitytest, using CAPP and Karotz app to
test if children could actually follow the instructions, and to see if our system behaved the way we intended
it to. We then did unit tests for all web access modules, to make sure the correct fields were returned
from the database. Lastly we did several integration tests to ensure that the changes implemented after
the usability test, and the rest of the system, worked as intended

Tables 12.2 through 12.16 describe the unit tests done in sprint 5.

99

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.1
Description Test of the web access module add child.php

Date 30.10.12
Responsible Yngve
Subject add child.php and database
Precondition The database is up with the tables MEDICAL PLANS, CHILDRENand HEALTH STATES.
Steps

1. Initiate a REST client (POSTMAN) with the URL http://folk.ntnu.no/

yngvesva/blopp/add_child.php.

2. Add the POST data
• name: testname

• persnum: 10101012345

• states[]: 1

• states[]: 2
3. Observe the returned JSON data

Results The JSON data returned was:

1 {
2 post: {
3 name: "testnavn",
4 persnum: "10101012345",
5 states: [
6 "1",
7 "2"
8]
9 },

10 q: "INSERT INTO ‘CHILDREN ‘ (‘id ‘, ‘name ‘, ‘pers_num ‘, ‘
medical_plan_id ‘, ‘credits ‘) VALUES (’’, ’testnavn ’,
’10101012345 ’ , ’0’, ’0’)",

11 medical_plan_q: "INSERT INTO ‘MEDICAL_PLANS ‘ (‘id‘, ‘label ‘) VALUES
(’’, ’testnavn ’)",

12 medical_plan_id: 0,
13 child_id: 12,
14 state_queries: [
15 "INSERT INTO ‘CHILD_HEALTH_STATES ‘ (‘child_id ‘, ‘health_state_id ‘,

‘applies_now ‘, ‘default ‘) VALUES (’12’, ’1’, ’1’’1’)",
16 "INSERT INTO ‘CHILD_HEALTH_STATES ‘ (‘child_id ‘, ‘health_state_id ‘,

‘applies_now ‘, ‘default ‘) VALUES (’12’, ’2’, ’0’’0’)"
17],
18 all_state_ids: [
19 "1",
20 "2",
21 "3"
22]
23 }

Listing 12.1: JSON result from add child.php

We can see from the JSON result that a child was added successfully, and it got the
ID 10.

Table 12.2: Unit test 5.1, add child.php

100

http://folk.ntnu.no/yngvesva/blopp/add_child.php
http://folk.ntnu.no/yngvesva/blopp/add_child.php

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.2
Description Test of the web access module add plan dose.php

Date 01.11.12
Responsible Yngve
Subject add plan dose.php and the database
Precondition The database is up with the tables MEDICAL PLAN DOSES and CHILDREN.
Steps

1. Initiate a REST client (POSTMAN) with the url http://folk.ntnu.no/

yngvesva/blopp/add_plan_dose.php.

2. Add the post data:
• child id: 6

• health state id: 1

• medicine id: 1

• time: 12:34:56
3. Observe the returned JSON data.

Results The returned JSON data was:

1 {
2 "sqlsuccess": true ,
3 "q": "INSERT INTO ‘MEDICAL_PLAN_DOSES ‘ (‘id ‘, ‘medical_plan_id ‘, ‘

health_state_id ‘, ‘time ‘, ‘medicine_id ‘) SELECT ’’, C.
medical_plan_id , ’1’, ’12:34:56’, ’1’ FROM ‘CHILDREN ‘ AS C
WHERE C.id=’6’",

4 "child_id": "6",
5 "health_state_id": "1",
6 "medicine_id": "1",
7 "time": "12:34:56",
8 "id": 40
9 }

Listing 12.2: JSON result from add plan dose.php

We see that a planned dose was added successfully by validating the queries and the
parameter sqlsuccess, and checking the id 40.

Table 12.3: Unit test 5.2, add plan dose.php

101

http://folk.ntnu.no/yngvesva/blopp/add_plan_dose.php
http://folk.ntnu.no/yngvesva/blopp/add_plan_dose.php

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.3,
Description Test of the web access module dose is taken.php.
Date 01.11.12
Responsible Yngve
Subject The database and dose is taken.php.
Precondition The database is up with the table DAY MEDICINE DOSES.
Steps

1. Initiate a web browser with the GET url http://folk.ntnu.no/yngvesva/
blopp/dose_is_taken.php?dose_id=40

2. Observe the returned JSON data.

Results The returned JSON data was:

1 {
2 sqlsuccess: true ,
3 dose_id: "40",
4 day_date: "2012 -11 -01",
5 query: "SELECT ‘id ‘ FROM ‘DAY_MEDICINE_DOSES ‘ WHERE ‘

medical_plan_dose_id ‘=’40’ AND ‘day_date ‘=’2012-11-01’ LIMIT 0,1
",

6 result: false
7 }

Listing 12.3: JSON result from dose is taken.php

We see from the result that the dose with id 40 (added in UNIT5.2, table 12.4.1) has
not been taken on the actual date, and by the query and the sqlsuccess parameter,
we see that the GET module works.

Table 12.4: Unit test 5.3, dose is taken.php

102

http://folk.ntnu.no/yngvesva/blopp/dose_is_taken.php?dose_id=40
http://folk.ntnu.no/yngvesva/blopp/dose_is_taken.php?dose_id=40

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.4
Description Test of the web access module get available child states.php.
Date 01.11.12
Responsible Yngve
Subject The database and get available child states.php.
Precondition A working database with the tables HEALTH STATES and CHILD HEALTH STATES.
Steps

1. Initiate a web browser with the GET url http://folk.ntnu.no/yngvesva/
blopp/get_available_child_states.php?child_id=6.

2. Observe the returned JSON data.

Results The returned JSON data was:

1 {
2 sqlsuccess: true ,
3 child_id: "6",
4 query: "SELECT id , label FROM ‘HEALTH_STATES ‘ HS WHERE HS.id IN (

SELECT health_state_id FROM ‘CHILD_HEALTH_STATES ‘ CHS WHERE CHS.
child_id =6) LIMIT 0,10",

5 rows: [
6 {
7 id: "1",
8 label: "GREEN"
9 },

10 {
11 id: "2",
12 label: "YELLOW"
13 },
14 {
15 id: "3",
16 label: "RED"
17 }
18]
19 }

Listing 12.4: JSON result from get available child states.php

We see from the returned data that the child with ID = 6 can have all states (GREEN,
YELLOW and RED), and that the module works by checking sqlsuccess and query.

Table 12.5: Unit test 5.4, get available child states.php

103

http://folk.ntnu.no/yngvesva/blopp/get_available_child_states.php?child_id=6
http://folk.ntnu.no/yngvesva/blopp/get_available_child_states.php?child_id=6

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.5
Description Test of the web access module get child.php.
Date 01.11.12
Responsible Yngve
Subject The database and get child.php.
Precondition A working database with the table CHILDREN.
Steps

1. Initiate a web browser with the GET url http://folk.ntnu.no/yngvesva/
blopp/get_child.php?child_id=6.

2. Observe the returned JSON data.

Results The returned JSON data was:

1 {
2 sqlsuccess: true ,
3 child_id: "6",
4 query: "SELECT * FROM ‘CHILDREN ‘ WHERE id=6 LIMIT 0,1",
5 information: {
6 id: "6",
7 name: "Hermann",
8 pers_num: "1010354322",
9 medical_plan_id: "5",

10 avatar_id: "7",
11 credits: "45",
12 location_latitude: "0",
13 location_longitude: "0"
14 }
15 }

Listing 12.5: JSON result from get child.php

We see from the returned data that the child with ID = 6 is named Hermann, some
other information, and that the query works.

Table 12.6: Unit test 5.5, get child.php

104

http://folk.ntnu.no/yngvesva/blopp/get_child.php?child_id=6
http://folk.ntnu.no/yngvesva/blopp/get_child.php?child_id=6

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.6
Description Test of the web access module get child state.php

Date 01.11.12
Responsible Yngve
Subject The database and get child state.php.
Precondition A working database with the tables HEALTH STATES and CHILD HEALTH STATES

Steps
1. Initiate a web browser with the GET url http://folk.ntnu.no/yngvesva/

blopp/get_child_state.php?child_id=6.

2. Observe the returned JSON data.

Results The returned JSON data was:

1 {
2 sqlsuccess: true ,
3 child_id: "6",
4 query: "SELECT id , label FROM ‘HEALTH_STATES ‘ HS WHERE HS.id IN (

SELECT health_state_id FROM ‘CHILD_HEALTH_STATES ‘ CHS WHERE CHS.
child_id =6 AND CHS.applies_now =1) LIMIT 0,1",

5 state: {
6 id: "1",
7 label: "GREEN"
8 }
9 }

Listing 12.6: Returned JSON data from get child state.php

We see from the returned data that the child with ID = 6 is in the green state, and
that the module works.

Table 12.7: Unit test 5.6, get child state.php

105

http://folk.ntnu.no/yngvesva/blopp/get_child_state.php?child_id=6
http://folk.ntnu.no/yngvesva/blopp/get_child_state.php?child_id=6

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.7
Description Test of the web access module get doses for current state.php.
Date 01.11.12
Responsible Yngve
Subject The database and get doses for current state.php

Precondition A working database with the tables MEDICAL PLAN DOSES, DAY MEDICINE DOSES and
CHILD HEALTH STATES.

Steps
1. Initiate a web browser with the GET url http://folk.ntnu.no/yngvesva/

blopp/get_doses_for_current_state.php?child_id=6.

2. Observe the returned JSON data.

Results The returned JSON data was:

1 {
2 sqlsuccess: true ,
3 child_id: "6",
4 query: "SELECT Mpd.id , Mpd.medical_plan_id , Mpd.health_state_id , Mpd

.time , Mpd.medicine_id , M.color AS ’medicine_color ’, M.name AS ’
medicine_name ’ FROM ‘MEDICAL_PLAN_DOSES ‘ AS Mpd , ‘MEDICINES ‘ AS
M WHERE Mpd.medical_plan_id IN (SELECT C.medical_plan_id FROM ‘
CHILDREN ‘ AS C WHERE C.id=6) AND Mpd.id NOT IN (SELECT DMD.
medical_plan_dose_id FROM ‘DAY_MEDICINE_DOSES ‘ AS DMD WHERE DMD.
medical_plan_dose_id=Mpd.id AND DMD.day_date =’2012-11-04’) AND
Mpd.medicine_id = M.id AND Mpd.health_state_id IN (SELECT HS.
health_state_id FROM ‘CHILD_HEALTH_STATES ‘ AS HS WHERE HS.
child_id =6 AND HS.applies_now =’1’) LIMIT 0,100",

5 rows: [
6 {
7 id: "41",
8 medical_plan_id: "5",
9 health_state_id: "1",

10 time: "01:09:00",
11 medicine_id: "1",
12 medicine_color: "BLUE",
13 medicine_name: "Flutide"
14 }
15]
16 }

Listing 12.7: Returned JSON data for get doses for current state.php

From the returned data we see that the child with ID = 6 has yet to take Flutide
today, which should be taken at 01:09:00. We can also validate the SQL query, and
see that sqlsuccess = true, which means that the module works.

Table 12.8: Unit test 5.7, get doses for current state.php

106

http://folk.ntnu.no/yngvesva/blopp/get_doses_for_current_state.php?child_id=6
http://folk.ntnu.no/yngvesva/blopp/get_doses_for_current_state.php?child_id=6

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.8
Description Test of the web access module get instructions.php.
Date 01.11.12
Responsible Yngve
Subject The database and get instructions.php.
Precondition A working database with the table MEDICINE INSTRUCTIONS.
Steps

1. Initialize a web browser with the GET url http://folk.ntnu.no/yngvesva/
blopp/get_instructions.php?medicine_id=1.

2. Observe the returned JSON data.

Results The returned JSON data was:

1 {
2 sqlsuccess: true ,
3 child_id: "1",
4 query: "SELECT * FROM ‘MEDICINE_INSTRUCTIONS ‘ WHERE id IN (SELECT

instructions_id FROM ‘MEDICINES ‘ WHERE ‘id ‘=’1’) LIMIT 0,1",
5 instructions: {
6 id: "1",
7 url: "medicine_flutide_50microg.jpg",
8 information: "Et inhalasjonssteroid som brukes fast slik legen har

bestemt. Effekten ses forst etter noen dagers bruk , og gjor
at betennelsesreaksjonen i lungene til barnet demper seg.
Dette hindrer barnets astma/betennelsesreaksjon i a utvikle
seg og hindrer utvikling av sykdommen.",

9 effect: "Alle sprayinhalasjoner ma gis pa inhalasjonskammer (
Aerochamber , Optichamber , Babyhaler eller lignende) for a
sikre at barnet far pustet inn medisinen pa riktig mate. Etter
inhalasjon med steroider ma barnet alltid skylle munn , drikke
eller pusse tenner for a fjerne rester av pulver fra munnen.

Blir restene igjen i munnen kan det oppsta en smertefull
soppinfeksjon i munnen."

10 }
11 }

Listing 12.8: Returned JSON from get instructions.php

We see from the JSON data that the module works by checking the query and the
variable sqlsuccess. We get the information that the medicine with ID = 1 has
three types of instructions: an image given by an URI, a general information field
and a field to explain the e↵ects.

Table 12.9: Unit test 5.8, get instructions.php

107

http://folk.ntnu.no/yngvesva/blopp/get_instructions.php?medicine_id=1
http://folk.ntnu.no/yngvesva/blopp/get_instructions.php?medicine_id=1

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.9
Description Test of the web access module get log days for child.php.
Date 03.11.12
Responsible Yngve
Subject The database and get log days for child.php

Precondition A working database with the tables DAY MEDICINE DOSES and CHILDREN LOG DAYS.
Steps

1. Initialize a web browser with the GET url http://folk.ntnu.no/yngvesva/
blopp/get_log_days_for_child.php?child_id=6

2. Observe the resulting JSON data.

Results The returned JSON data was:

1 {
2 sqlsuccess: true ,
3 child_id: "6",
4 year: "2012",
5 month: "11",
6 query: "SELECT * FROM ‘DAY_MEDICINE_DOSES ‘ WHERE ‘child_id ‘=’6’

AND YEAR(‘day_date ‘)=’2012’ AND MONTH(‘day_date ‘)=’11’ LIMIT
0,100",

7 statuses_query: "SELECT ‘date ‘, ‘child_id ‘, ‘health_state_id ‘ FROM
‘CHILDREN_LOG_DAYS ‘ WHERE ‘child_id ‘=’6’ ORDER BY ‘date ‘ ASC",

8 days: [{
9 date: "2012 -11 -01",

10 health_state_id: "1",
11 doses: []
12 }, {
13 date: "2012 -11 -02",
14 health_state_id: "1",
15 doses: [{
16 id: "126",
17 reward: "1",
18 time: "00:00:01",
19 day_date: "2012 -11 -02",
20 child_id: "6",
21 medicine_id: "1",
22 health_state_id: "1",
23 medical_plan_dose_id: "0",
24 pollen_state_id: "0"
25 }]
26 }, {
27 date: "2012 -11 -03",
28 health_state_id: "3",
29 doses: []
30 }]
31 }

Listing 12.9: Returned JSON data for get log days for child.php

As we see from the returned data, the child with ID = 6 has one registered dose in
november, and the date was the third. We also see that the health state was changed
to health state id = 3 on the third. It is clear that the module is working because
of the returned data, validating the queries and the variable sqlsuccess.

Table 12.10: Unit test 5.9, get log days for child.php

108

http://folk.ntnu.no/yngvesva/blopp/get_log_days_for_child.php?child_id=6
http://folk.ntnu.no/yngvesva/blopp/get_log_days_for_child.php?child_id=6

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.10
Description Test of the web access module get log for child.php.
Date 03.11.12
Responsible Yngve
Subject The database and get log for child.php.
Precondition A working database with the table DAY MEDICINE DOSES.
Steps

1. Initialize a web browser with the GET url http://folk.ntnu.no/yngvesva/
blopp/get_log_for_child.php?child_id=6.

2. Observe the returned JSON data.

Results The resulting JSON data was:

1 {
2 sqlsuccess: true ,
3 child_id: "6",
4 year: "2012",
5 month: "11",
6 query: "SELECT * FROM ‘DAY_MEDICINE_DOSES ‘ WHERE ‘child_id ‘=6 AND

YEAR(‘day_date ‘)=2012 AND MONTH(‘day_date ‘)=11 LIMIT 0,100",
7 days: [
8 {
9 id: "126",

10 reward: "1",
11 time: "00:00:01",
12 day_date: "2012 -11 -02",
13 child_id: "6",
14 medicine_id: "1",
15 health_state_id: "1",
16 medical_plan_dose_id: "0",
17 pollen_state_id: "0"
18 }
19]
20 }

Listing 12.10: Returned JSON data from get log for child.php

We see from the returned data that there was one logged medication and that the
module works from checking the query and the variable sqlsuccess.

Table 12.11: Unit test 5.10, get log for child.php

109

http://folk.ntnu.no/yngvesva/blopp/get_log_for_child.php?child_id=6
http://folk.ntnu.no/yngvesva/blopp/get_log_for_child.php?child_id=6

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.11
Description Test of the web access module get plan.php.
Date 04.11.12
Responsible Yngve
Subject The database and get plan.php.
Precondition A working database with the tables MEDICAL PLAN DOSES and CHILDREN.
Steps

1. Initialize a web browser with the GET url http://folk.ntnu.no/yngvesva/
blopp/get_plan.php?child_id=6.

2. Observe the returned JSON data.

Results The returned JSON data was:

1 {
2 sqlsuccess: true ,
3 child_id: "6",
4 query: "SELECT Mpd.id , Mpd.medical_plan_id , Mpd.health_state_id , Mpd

.time , Mpd.medicine_id , M.color AS ’medicine_color ’, M.name AS ’
medicine_name ’ FROM ‘MEDICAL_PLAN_DOSES ‘ AS Mpd , ‘MEDICINES ‘ AS
M WHERE Mpd.medical_plan_id IN (SELECT medical_plan_id FROM ‘
CHILDREN ‘ C WHERE C.id=6) AND Mpd.medicine_id = M.id LIMIT 0,100
",

5 rows: [
6 {
7 id: "41",
8 medical_plan_id: "5",
9 health_state_id: "1",

10 time: "01:09:00",
11 medicine_id: "1",
12 medicine_color: "BLUE",
13 medicine_name: "Flutide"
14 }
15]
16 }

Listing 12.11: Returned JSON data for get plan.php

We see from the returned data that there is one medication of Flutide planned at
01:09:00. We conclude that the module is working from looking at the query and
checking the variable sqlsuccess.

Table 12.12: Unit test 5.11, get plan.php

110

http://folk.ntnu.no/yngvesva/blopp/get_plan.php?child_id=6
http://folk.ntnu.no/yngvesva/blopp/get_plan.php?child_id=6

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.12
Description Test of the web access module register medicine taken.php.
Date 04.11.12
Responsible Yngve
Subject The database and register medicine taken.php.
Precondition A working database with the tables DAY MEDICINE DOSES, HEALTH STATES and

CHILDREN.
Steps

1. Initialize a REST client with the URL http://folk.ntnu.no/yngvesva/

blopp/register_medicine_taken.php.

2. Add the POST parameters:
• child id: 6

• medicine id: 1

• day date: 2012-09-03

• health state id: 2
3. Observe the returned JSON data.

Results The returned JSON data was:

1 {
2 "sqlsuccess": true ,
3 "post": {
4 "child_id": "6",
5 "medicine_id": "1",
6 "day_date": "2012 -09 -30",
7 "health_state_id": "2"
8 },
9 "q": "INSERT INTO ‘DAY_MEDICINE_DOSES ‘ (‘id ‘, ‘reward ‘, ‘time ‘, ‘

day_date ‘, ‘child_id ‘, ‘medicine_id ‘, ‘health_state_id ‘, ‘
medical_plan_dose_id ‘, ‘pollen_state_id ‘) VALUES (’’, ’2’,
’00:00:01’, ’2012-09-30’, ’6’, ’1’, ’2’, ’’, ’’)",

10 "reward": "2",
11 "unique": true
12 }

Listing 12.12: Returned JSON data from register medicine taken.php

We see from the returned data, by looking at query and sqlsuccess, that an entry
was added to the log. It was given a default time of 00:00:01 since we did not specify
it, and the returned calculated reward was 2. We can conclude that the dose was
registered successfully and the module works.

Table 12.13: Unit test 5.12, register medicine taken.php

111

http://folk.ntnu.no/yngvesva/blopp/register_medicine_taken.php
http://folk.ntnu.no/yngvesva/blopp/register_medicine_taken.php

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.13
Description Test of the web access module remove plan dose.php.
Date 04.11.12
Responsible Yngve
Subject The database and remove plan dose.php.
Precondition A working database with the table MEDICAL PLAN DOSES.
Steps

1. Initialize a REST client (POSTMAN) with the URL http://folk.ntnu.no/

yngvesva/blopp/remove_plan_dose.php.

2. Add the POST parameter:
• id: 41

3. Observe the returned JSON data.

Results The returned JSON data was:

1 {
2 "sqlsuccess": true ,
3 "q": "DELETE FROM ‘MEDICAL_PLAN_DOSES ‘ WHERE id=’41’",
4 "id": "41",
5 "num_deleted": 1
6 }

Listing 12.13: Returned JSON data from remove plan dose.php

We conclude from the query, sqlsuccess and num deleted that the row with ID =
41 was deleted and that the module works.

Table 12.14: Unit test 5.13, remove plan dose.php

112

http://folk.ntnu.no/yngvesva/blopp/remove_plan_dose.php
http://folk.ntnu.no/yngvesva/blopp/remove_plan_dose.php

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.14
Description Test of the web access module remove plan medicine at time.php.
Date 04.11.12
Responsible Yngve
Subject The database and remove plan medicine at time.php

Precondition A working database
Steps

1. Initiate a REST client (POSTMAN) with the URL http://folk.ntnu.no/

yngvesva/blopp/remove_plan_medicine_at_time.php.

2. Add the POST parameters:
• time: 12:34:56

• medicine id: 1

• child id: 6

• health state id: 3
3. Observe the returned JSON data.

Results The returned data is:

1 {
2 "sqlsuccess": true ,
3 "q": "INSERT INTO ‘MEDICAL_PLAN_DOSES ‘ (‘id ‘, ‘medical_plan_id ‘, ‘

health_state_id ‘, ‘time ‘, ‘medicine_id ‘) SELECT ’’, C.
medical_plan_id , ’3’, ’12:34:56’, ’1’ FROM ‘CHILDREN ‘ AS C
WHERE C.id=’6’",

4 "child_id": "6",
5 "health_state_id": "3",
6 "medicine_id": "1",
7 "time": "12:34:56",
8 "id": 44
9 }

Listing 12.14: Returned JSON data from remove plan medicine at time.php

We see from the data that a medication dose was removed, and by the query and
sqlsuccess we see that the module works.

Table 12.15: Unit test 5.14, remove plan medicine at time.php

113

http://folk.ntnu.no/yngvesva/blopp/remove_plan_medicine_at_time.php
http://folk.ntnu.no/yngvesva/blopp/remove_plan_medicine_at_time.php

CHAPTER 12. SPRINT 5

Item Description
ID UNIT5.15
Description Test of the web access module set child state.php.
Date 05.11.12
Responsible Yngve
Subject The database and set child state.php.
Precondition A working database with the tables CHILD HEALTH STATES and CHILDREN LOG DAYS.
Steps

1. Initialize a REST client (POSTMAN) with the URL http://folk.ntnu.no/

yngvesva/bopp/set_child_state.php.

2. Add the POST parameters:
• child id: 6

• state id: 2
3. Observe the returned JSON data.

Results The returned JSON data was:

1 {
2 "sqlsuccess": true ,
3 "child_id": "6",
4 "state_id": "2",
5 "update_query": "UPDATE ‘CHILD_HEALTH_STATES ‘ SET applies_now = IF

(health_state_id = ’2’, 1, 0) WHERE child_id=’6’",
6 "insert_query": "REPLACE INTO ‘CHILDREN_LOG_DAYS ‘ (‘date ‘, ‘

child_id ‘, ‘pollen_state_id ‘, ‘health_state_id ‘) VALUES
(’2012-11-05’, ’6’, ’1’, ’2’)"

7 }

Listing 12.15: Returned JSON from set child state.php

We see from the returned JSON data that two tables were updated: the child’s
current state, and the log of state changes. We conclude that the module works
because of the queries and the variable sqlsuccess.

Table 12.16: Unit test 5.15, set child state.php

114

http://folk.ntnu.no/yngvesva/bopp/set_child_state.php
http://folk.ntnu.no/yngvesva/bopp/set_child_state.php

CHAPTER 12. SPRINT 5

Item Description
ID USABILITY5.1
Description Test to see if the children can follow the isntructions given and take their medicine

correctly when an alarm is given.
Date 30.10.2012
Responsible Eirik
Subject The Karotz application and CAPP
Precondition

• Working version of CAPP and the karotz application.

• The child registered in the database is in the correct health state.

• Child and one parent present. The parent should be familiar with giving
asthma medications.

• Wireless wpa2 secured connection.

Steps
1. Explain the test for the children, in an easy to understand way.

2. Set up an alarm to go o↵.

3. Let the parent get the alarm, and see how well the child and parent is able to
follow the instructions given by the system.

Results Generally the system worked as intended. The children successfully took their
medicine, and had little trouble following the instructions. We discovered some
errors relating to the alarm, aswell as some of the distraction sequence bugging,
some parts skipped stages if the child pressed more than once, others had inaccu-
rate instructions (like holding the Nanoz infront of karotz belly, when it’s the nose
it needs to be in front of).

Table 12.17: USABILITY5.1

115

CHAPTER 12. SPRINT 5

Item Description
ID INTEGRATION5.1
Description Test of CAPPs alarm and distraction sequences.
Date 06.11.12
Responsible Eirik
Subject CAPP
Precondition

• Working version of CAPP installed on phone or AVD (Android Virtual De-
vice).

• Internetconnection for databaseaccess.

• Medicationplans for the correct healthstate registered in the database.

Steps
1. Turn on the phone or AVD, and wait until the time of the alarm.

2. Receive the alarm.

3. Press the medicine to start the distraction sequence

4. Follow the instructions and take note if any instructions are skipped or missing.

Results We found that the alarm set alarms for all healthstates, not just the one the child
was currently in. Aside from this, the alarm fired correctly. Some of the changes
we had done after the usability test made one of the sound files and animations in
the distraction sequence unsynchronized. Since the distractionsequence have check-
points where the user have to interact with the application, only that specific part
of the distraction was out of synch, the rest ran as intended.

Table 12.18: INTEGRATION5.1

116

CHAPTER 12. SPRINT 5

Item Description
ID INTEGRATION5.2
Description Testing that the log updates correctly based on registered medication and pollen

feed.
Date 06.11.12
Responsible Esben
Subject GAPP
Precondition

• Working version of GAPP installed on phone or AVD.

• Internetconnection for databaseaccess.

• Completed medications and pollen feeds registered in the database.

Steps
1. Open GAPP on the phone or AVD.

2. Navigate to the log.

3. Check if the visual representation in the log corresponds to the data in the
database.

Results The log updated correctly.

Table 12.19: INTEGRATION5.2

117

CHAPTER 12. SPRINT 5

Item Description
ID INTEGRATION5.3
Description Testing that the medicationplans is correctly registered to their respective health-

states
Date 05.11.12
Responsible Eirik
Subject GAPP
Precondition

• Working version of GAPP installed on phone or AVD.

• Internetconnection for databaseaccess.

• Medicationplans registered to various healthstates.

Steps
1. Open GAPP on the phone or AVD.

2. Navigate to medisinplan page.

3. Choose each of the healthstates in turn, and see if the medicines listed under
each corresponds to the medicationplans in the database.

Results The medicationplans is correctly registered to their respective healthstates.

Table 12.20: INTEGRATION5.3

12.4.2 Results

The usability test gave us much feedback on the system, and several errors that had to be fixed. The
complete testresults can be found in section 13.3.2, but the main issues were centered around the alarms
in CAPP, and the distraction sequence being vulnerable to skipping instructions if the children pressed
too fast, which was often the case.

The unit tests performed during this sprint all returned the expected results, which then allowed us to
move on to the integration tests we had planned. These uncovered some more issues that either wasn’t
caught by the usability test, or were a result of the changes we made in response to the usability test.
The new dialogue added to the CAPP distraction sequence meant that some of the animations now were
not synchronized with the sound of the Karotz counting. To fix this we made separate manuscripts for
the android version and the Karotz, making it easier to synchronize. We also discovered a problem where
the alarms were registered from all health states, not just the one the child is currently in, and sending
many more alarms than necessary. This problem was fixed by a method checking the health state before
invoking alarms.

12.5 Sprint Retrospective

This section contains an evaluation of the sprint. The evaluation is done mainly by the us, but feedback
from the customers are added to the retrospect.

12.5.1 What went well?

We finished the implementation of desired functionality in time. Even though not all functional require-
ments were fulfilled, the requirements fulfilled are done properly and without major errors.

118

CHAPTER 12. SPRINT 5

Figure 12.1: Sprint 5 burndown chart

12.5.2 What shall we start doing?

1. Focus only on the report and the presentation

12.5.3 What could have gone better?

All went very well during this sprint.

12.5.4 What should we stop doing?

The sourcecode is now under code-freeze. If errors are found, we should report them in the section for
further work.

12.5.5 Sprint Burndown Chart

Table 12.21 and figure 12.1 show the burndown chart for the fifth and final sprint. Since we had a reduced
amount of story points for this sprints, everything was completed three days before schedule.

We had planned 19 story points for the fifth sprint, which meant 72 estimated work hours. We worked for
a total of 64 hours, and had 0 hours left at the end of the sprint, so all 19 story points were completed. The
reduced work speed when compared to other sprints can be explained by a shifted focus from programming
tasks which are documented in the sprint, to planning and documentation exercises related to the usability
test, the report and the final presentation. These hours are not formalized as sprint tasks and are therefore
not included in the estimates. We were satisfied with the sprint result.

12.5.6 Screenshots

Since this was our last sprint, we have included some screenshots of the work that is done.

119

CHAPTER 12. SPRINT 5

#
ID

T
as
k

S
to
ry

p
oi
nt
s

E
st
im

at
ed

h
ou

rs
A
ct
u
al

E
st
im

at
ed

le
ft

R
es
p
on

si
b
le

1.
1

R
efi

n
e
d
is
tr
ac
ti
on

fo
r
C
A
P
P

2
8

6
0

Y
n
gv
e

1.
2

F
ix

m
ed

ic
in
e
ch
oi
ce

b
ef
or
e
u
n
sc
h
ed

u
le
d

m
ed

ic
at
io
n

2
8

7
0

Y
n
gv
e

1.
3

F
ix

ju
m
p
in
g
im

ag
es

d
u
ri
n
g
ch
il
d

d
is
-

tr
ac
ti
on

1
4

4
0

Y
n
gv
e

1.
4

F
ix

co
rr
ec
t
h
ea
d
in
g
in

al
l
p
ag

es
1

4
4

0
E
ir
ik

an
d
E
sb
en

2.
1

B
u
gfi

x
n
ew

m
an

u
sc
ri
p
t
on

K
ar
ot
z

1
4

2
0

Y
n
gv
e

2.
2

B
u
gfi

x
K
ar
ot
z
af
te
r
u
sa
b
il
it
y
te
st
:
d
ou

-
b
le

R
F
ID

ch
ec
k

1
4

1
0

Y
n
gv
e

3.
1

Im
p
le
m
en
t
T
h
ob

ia
s’
ch
an

ge
s
to

th
e
re
-

p
or
t

1
4

4
0

Y
n
gv
e

3.
2

D
oc
u
m
en
t
u
sa
b
il
it
y
te
st
in
g,

ad
d
u
sa
b
il
-

it
y
te
st

to
sp
ri
nt

4
1

4
4

0
E
ir
ik

4.
1

D
el
et
e
ol
d
al
ar
m
s

2
8

8
0

E
ir
ik

5.
1

M
ak
e
b
et
te
r
la
yo
u
t
fo
r
in
fo

ab
ou

t
m
ed

-
ic
at
io
n

1
4

4
0

A
le
ks
an

d
er

6.
1

W
ri
te

ja
va
d
oc

fo
r
al
l
co
d
e

3
12

7
0

E
sb
en

,
E
ir
ik

6.
2

R
em

ov
e
u
nu

se
d
co
d
e
(i
m
p
or
ts
,
cl
as
se
s,

et
c)

1
4

3
0

A
le
ks
an

d
er
,
E
ir
ik

an
d
E
sb
en

7.
1

F
ix

W
ifi
-r
el
at
ed

cr
as
h
es

in
C
A
P
P

0.
5

2
1

0
E
sb
en

7.
2

F
ix

W
ifi
-r
el
at
ed

cr
as
h
es

in
G
A
P
P

0.
5

2
1

0
E
sb
en

8.
1

P
er
fo
rm

an
d
d
oc
u
m
en
t
u
n
it
te
st
s
of

al
l

w
e
ac
ce
ss

p
ag

es
1

4
8

0
Y
n
gv
e

S
U
M

1
9

7
2

6
4

0

Table 12.21: Sprint Retrospective, Sprint 5
120

CHAPTER 12. SPRINT 5

Figure 12.2: GAPP main menu Figure 12.3: Available plans in GAPP

12.5.7 GAPP - Screenshots

Figure 12.2 shows the main menu. The item “manual” is a bit misguiding, as this shows an image gallery
of how a child should take the medicine (shake, put on mask, and so on). We did not have time to make
a proper manual on how to use the application, but hopefully, the application is intuitive enough.

Figure 12.3 shows the available plans for an adult. By pressing one of the checkboxes, the child’s
medical plan is updated appropriatly. By touching the name of a plan, you get presented with the screen
below.

Figure 12.4 view contains a list of the medicines that are stored in a medicine plan. You can add a
medicine through the button, and by touching a medicine, you can delete it.

Figure 12.8 shows the log of a child. The log consists mainly of 3 components. The calendar shows the
days of a month, the chosen medicine plan for a child on a given day, indicated by a green/yellow/red line,
and the distribution of pollen at that day, indicated by the bottom line of each cell.

This pollen distribution is given by our dummy xml-feed (since pollenvarslingen.no is not currently
casting). We have used the same distribution for each day, which explains why every day is brown. Down
to the left, one can see how many times the child has taken the given medicine at a day. Down to the right,
you can see the pollen spread at the day for every type of pollen that is casted by pollenvarslingen.no.
The cells of the calendar is touchable, and the listviews on the bottom of the page is updated according
to which day is selected.

It is possible to register a treatment after the medication is taken. This is done by choosing the date
(which is autofilled with todays date), and choosing a medicine. The child then gets stars in his/her
treasure chest.

CAPP - Screenshots

Figure 12.9 shows the main menu of CAPP. This main menu has three items. To start a treatment, the
user chooses the karotz-icon. To see amount of stars, the child picks the treasurechest, which leads the
user to Figure 12.11 The book leads to a series of children-friendly images, where the child can have a look
at instructions for taking a medicine.

121

CHAPTER 12. SPRINT 5

Figure 12.4: A medication plan in GAPP Figure 12.5: Register treatment in GAPP

Figure 12.6: Choose among medicines to
view more information Figure 12.7: Medicine specific information

122

CHAPTER 12. SPRINT 5

Figure 12.8: Medicine log in GAPP

Figure 12.9: Main menu in CAPP Figure 12.10: Start a treamtment in CAPP

123

CHAPTER 12. SPRINT 5

Figure 12.11: Amount of stars collected in CAPP

124

Chapter 13

Usability Testing

This section will explain what usability testing is, and what we did during our project relating to usability
testing.

13.1 What is usability testing

Usability testing is a way to test your system on users, using the interaction design of the system. Usually
this entails setting up a few tasks for a user, giving the user access to the system and seeing how well the
user is able to solve the tasks given in the test with the system provided. The usability testing focuses on
the main functionality rather than on the details.

13.2 How to do usability testing

The test usually starts with the tester explaining for the user the di↵erent parts of the systems being used,
and that it’s the system being tested, not the user. The tester also explains that this means the user can’t
do anything wrong, if there is something the user doesn’t understand, that is fine. The tester observe what
the user finds hard, or can’t do at all, and notes this down as things that might have to be changed on the
system.

At last, the user is given an evaluation form of the system, typically a SUS-form (System Usability
Scale), and time to talk about how well they felt the system helped them solve the tasks given.

13.3 Usability testing in our project

Our project largely implements user interraction, and usability testing plays a key role in getting a good
result, since so much of the project is centered around the user interface. We started the project with an
early paper prototype test, to get some feedback on the ideas we got after the workshop we did with the
interaction design group. After this we worked for some time on implementing the system, before we late
in the project did a full usability test using the hallway method, testing our system on children to see if it
helped them take their medicine, and seeing if there was some bugs or things we could implement better.

13.3.1 Paper prototype test

In the early stages of development, it might be useful to do a paper prototype test. This test is done
by making a prototype of the user interface on paper, and having one person (the ”computer”) change
between the di↵erent paper screens based on what the user being tested clicks on.

We did some early paper prototype testing in our project, on the 4th of September. After our workshop
we had made some screen layout mockups, see figure 13.1, and we wanted to test how user friendly these
were.

125

CHAPTER 13. USABILITY TESTING

Figure 13.1: The screens of the paper prototype: a) The GAPP mainscreen.
b) GAPP new medication screen. c) GAPP settings screen d) GAPP log screen. e) Notification on phone
f) One of the CAPP distraction screens. g) The CAPP reward screen h) CAPP shop screen i) CAPP
avatar screen, after buying skateboard in the shop j) the GAPP manual screen

126

CHAPTER 13. USABILITY TESTING

The test was done with the expert review method. We had a person from NAAF come for the test, to
solve the tasks with the system we provided. We chose to do the expert review mainly because our funder
was interested in seeing how the project was proceeding. NAAF is also the main provider of information
such as instructions and how the medical plans looks, so having one of them see the system was helpful,
as we at this point was uncertain about alot of these things.

From the development group, Eirik and Aleks attended the test. Eirik played the part of the computer,
while Aleks introduced the test, explained the system and handled any other talking that needed to be
done.
The preconditions we assumed to be present for the CAPP was:

• A paper prototype with the correct screens.

• Basic knowledge of Android devices in the user being tested.

• An active notification for taking medicine on the android device.

for GAPP these precondition were:

• A paper prototype with the correct screens.

• Basic knowledge of android devices in the user being tested.

• The correct medication plans and medicines registered in the system.

We had prepared a set of tasks for each of our two android applications, CAPP and GAPP. We did
not have a functional application for the karotz at this point, and it was di�cult to test this with a paper
prototype, so we chose to leave that part out of this test. The cases can be seen in table 13.1 and table
13.2.

Task Description
1 There is an active notification for medication on the phone,

follow the instructions given by the android device.
2 Go to the shop in CAPP and buy a skateboard for the avatar.

Table 13.1: The tasks for CAPP

Task Description
1 Open GAPP.
2 Register use of ”Medisin 1” on 4th of september.
3 Check for more iformation on correct usage of ”Medisin 2”.

Table 13.2: The tasks for GAPP

This test gave us some strong feedback on what parts of the system worked well, and what didn’t make
sense at all. We also sat down and had an interview with the test person after the test regarding the best
way to present the information we would get from NAAF. Some of the problems the test person had might
be credited to her being inexperienced with android devices, but we noted down these problems aswell. In
short the paper prototype test gave us the following results:

• Having the reminder as a notification is insu�cient. The test person had trouble noticing it even
though she was told it would be there.

• CAPP have to inform how many times you should press the medicine during medication.

127

CHAPTER 13. USABILITY TESTING

• The rewardscreen in CAPP is not intuitive enough.

• The main menu in GAPP needs a complete rework, the menu system was not easy to understand.

• The Log have to be clearer on how to register medicines, and which medicines is already registered.

• There is no back button in the application. This is a problem with android experience, and we didn’t
implement a back button in the end.

• The Information about correct use of medicines was not easily accessible.

The paper prototype led to a major overhaul of the user interface.

13.3.2 Usability testing of the distraction

Since our system is targeted towards children it was important to test the system properly on children, to
see if the e↵ects where as we hoped for. This was di�cult to do early in the project since the children could
not be expected to deal with paper prototypes, as they were as young as three years old. Because we had
to create our system from scratch, it took a long time to get something robust enough to test, there was
a long process of unit and integration testing going into making the communication between two Android
applications and one Karotz application.

This led to a late usability test, held on 30th of October 2012. At this point we had a working version
of the system.

The preconditions for the test were:

• Working version of CAPP and the karotz application.

• The child in the database is registered to the correct health state.

• Child and parent present. The parent should be familiar with giving asthma medications1.

• Wireless wpa2 secured connection for the karotz.

The test started with some basic introduction, done informally. Trying to run a standard usability test
on already shy children was not optimal, so we explained to the parents, and let them tell the children what
was going to happen. After giving an introduction, we registered a new medication plan in the database,
with alarm set for one or two minute in the future. We had to register it this way to make sure the reward
system and log updated properly in response to the treatment.
The test scenario we wanted for CAPP was as follows:

• The Android device receives an alarm. The parent hands the phone to the child.

• After finding the correct medicine, based on the picture on the alarmscreen, the child starts the
distraction sequence.

• The child follows the instructions given during the distraction sequence, and does as the karotz on
the screen.

• The child, helped where necessary by their parent, successfully takes their medicine.

• After the distraction finishes, the child is done with their treatment, and receives the reward in the
application.

For the karotz application, this scenario plays out a little bit di↵erently:

1
The application gives information about this, but it is not what is being tested

128

CHAPTER 13. USABILITY TESTING

Figure 13.2: Child taking their medicine while following the CAPP distraction sequence. Photo: Elin
Høien

• The robot gives a notification.

• The child follows the instructions to turn o↵ the notification and ready the distraction.

• After fetching the parent, the child is given the yellow nanoz by their parent, and holds the yellow
nanoz close to the karotz’ nose to start the distraction sequence.

• The child and parent follows the instructions given during the distraction sequence, which helps the
child successfully take their medicine.

• After the distraction sequence finishes the child uses the green nanoz to collect their reward from the
karotz.

Before the test we had already discovered that the Karotz was quite selective in it’s internet connections
security protocols, and it could not connect to for example the ”eduroam” network found at the university.
The previous day we tried using a wireless router of our own and connecting this to one of the internet
cables at a computer lab at NTNU. This apporach had worked fine, but we wanted to make sure it was
up and running by the time the test were to start. We found out this would not work with the internet at
NSEPs usability lab, and we only barely got it up and running by using a smartphone to set up a wireless
hotspot for the Karotz. A description of the problems are reported, for future development in 14.1.

The test was done using the hallway method, meaning we let users who had little or no prior knowledge
of the system test it. Some pictures from the tests can be seen below:

After the internet connection for the karotz was secured, the test ran without other big problems. We
observed the following during the tests: the children managed to follow the instructions given by both
CAPP and the Karotz application. Some of the children were reluctant to actually take medicine, but they
were eager to see what happened next on the application, and we hope this will motivate them to take
their medicine, even for the children who does not really want to take their medicine. We feared that our
reward system would be too simple and therefore not rewarding enough, but the children who tested the

129

CHAPTER 13. USABILITY TESTING

Figure 13.3: Child taking their medicine while following the Karotz distraction sequence. Photo: Elin
Høien

Figure 13.4: Child distributing medicine to the karotz while looking at the instruction manual in CAPP.
Photo: Elin Høien

130

CHAPTER 13. USABILITY TESTING

system seemed very interested in it, even though it was just points you gather in the form of stars. One
of the children started comparing the amount after each treatment and ran the treatment many times in
order to get the most points possible. (We later implemented a time check, blocking the user from doing
several treatments in a row). We noted that the children were quick to become friendly with the Karotz,
especially when it started talking.

We also uncovered quite a few bugs and parts that needed to be redone. For CAPP, the most important
of these was:

• The alarms were not deleted properly. Since we update them regularly to ensure they’re fired properly,
this resulted in alarms firing at the same time, resulting in a lot of noise, aswell as untimely fired
alarms (which should have been moved).

• The alarm sound did not turn o↵ when the distraction sequence ended, or when the ”stop alarm”
button was pushed.

• After the distraction sequence the children did not understand that the chest was interactable, since
the rest of the sequence were spoken, and this was not. However, after seeing the chest in the main
menu, they understood that they could click it.

• If the user pressed the screen multiple times, this registered as multiple clicks, and parts of the
distraction sequence was skipped. This happened frequently, as the children pressed again because
of the delay between the first click register, until the screen updated.

• Part of the instructions had been left out in the distraction sequence, namely the one about rinsing
your mouth after taking the medication.

• The instruction about pressing the medicine once, before breathing 10 times, were not clear. One of
the children pressed the medicine 10 times.

There were also bugs and problems related to the Karotz, aside from the big issue with network connection:

• The Karotz instructed the user to hold the Nanoz close to its belly, which is incorrect. For the Nanoz
to register, they must be held close to the nose.

• The distraction sequence never says to attach the medicine to the chamber.

• Holding the Nanoz close for too long makes the Karotz skip instructions.

• As with CAPP, it was not clear that they had to press the medication once before inhaling 10 times.

131

Chapter 14

Further Work

This chapter gives an overview of some of the ideas both the customer and the developers had for further
development of the application. This includes a description of further development, analysis of the user
groups and work towards NAAF and the health department. The main part of the work to be done after
the end of this project is connected to requirements that has been taken out of this project due to limitation
of time and resources. Other issues remaining is connected to the security and privacy of the patient’s
treatment log and storing sensitive information. Section 15.3 lists the overall requirements that have not
been implemented during the project. These requirements has either been requested early in the process
of have been brought up during discussions and meetings with the stakeholders.

14.1 Improvements

The following sections describes the ideas we had for future improvements to the applications. It is parted
into subsections for improvements in the fields of database records, the reward system, the distraction and
the web application.

14.1.1 Wifi access and caching of database records

The application is currently very dependent on having network access in order to run at all. We are making
a lot of HTTP requests, and we never cache the results. This introduces performance issues. This could
be avoided by introducing a caching service. The application should store information about when the last
database update occured, and update the cached information appropriately. This is a part of the system
that would take a lot of time to implement, and we just did not have enough time.

Once the device loses its internet connection, the application should use these cached results to update
the di↵erent screens, for example the log. This caching service should also cache information about treat-
ments that is done when the device is not connected. For instance, if a child takes a medication, the device
stores this information. Once the device connects to internet, the applications should push these changes
to the webservice, which, in turn, updates the database records, and thus we have applications that is not
so “tied up” to a device’s internet access. This could also introduce the possibility to never connect to
internet at all, by just using the stored data.

14.1.2 Security and privacy

The application is, as mentioned, using a webservice to access database records. This webservice is currently
not using any form of encryption or protection. Ideally the webservice should be using the HTTPS protocol
instead of HTTP, and have proper password protection, to avoid that records of childrens medication
history is publicly available. This will have some issues on performance, but if a proper caching system is
implemented as mentioned in Section 14.1.1, it would be hardly noticable.

133

CHAPTER 14. FURTHER WORK

The only “identifier” we are currently using is the database “id” of a child, which is an automatically
incremented number, and can be seen as a random identifier for a child, meaning that it does not have
anything to do with a child at a personal level (not a username, name, emailaddress, ssn, etc.). This raises
a question whether or not privacy is a real issue here. For one to actually know which child has been
taking which medicines, one must either know the stored database id for a child, or hack the system and
get access to the name. From our perspective, privacy is not a real issue that needs to be taken care of at
the time being.

If however, the application in the future becomes more personalized as mentioned in Section (Minor
improvements), these are issues that needs to be taken seriously, as medical history is considered sensitive
information.

14.1.3 Rewardsystem

The children’s application (CAPP) is all about changing the children’s view of medication to something
positive. It shall be a motivation for the children to take their medication. It is therefore an important
task to entertain them and give them some form of reward when they take their medication. As for now,
we have given stars to the child after completed medication. The stars are in a treasure chest where the
child can see how many stars he or she has. This is a simple reward, but worked fairly well during the user
tests. However, it may be boring over time.

The initial idea was to have a shop where the children could buy clothes and other items to their avatar.
The stars earned from finishing treatments would serve as credits in the shop. This was not implemented
due to time restrictions. It is also possible to take this to the real world, e.g. that the child gets a lollipop
for every 10th star, but this would have to be supervised by the parents.

There is an endless line of opportunities for this reward system, and we chose the simplest implemen-
tation, so we would have something to test.

14.1.4 Distraction sequence for children

During our workshop, we came up with a lot of ideas for distractions for the children. These would range
from simple animation sequences, like what we decided to implement, to more complex things like games
that would not require a lot of movement and could therefore help during longer treatments.

The distraction sequence is one of the fields were we feel it has more or less never ending possibilities
for improvement, and as more research into what children finds distracting, but not to the point where
they can’t take their medicine, this distraction sequence can be evolved.

14.1.5 User testing of the guardian application

GAPP has not yet been user tested on actual parents of asthmatic children. This has to be done to get
an understanding of how they interact with the system, and to get knowledge about what they think of
an application of this type. This is a system to make it easier for the guardians to give their children
medications. While it is important that the children likes the system, it is also important that the parents
feel it helps them give their children their medicines, without it being a big time waster.

14.1.6 Web application

There is a possibility of making this application as a web application, as a whole. By extracting the
functionality and running it on a web service it would make it easier for people to use it across platforms.
Done right, it may run on all devices with an internet connection. This may also give an easier integration
with external information such as air pollution forecast, pollen forecast, temperatures, etc. Since our
application is written in Java, using Android SDK, it will not run on an internet server as is. Making a
web application will require an almost complete refactoring of the source code.

134

CHAPTER 14. FURTHER WORK

14.1.7 Support for more children

Currently, the application only use one child, but there are implemented support for using more children.
Each child has its own id (childId), and support for more children can be implemented without much
change of the existing code. There should also be concidered using accounts for the guardians connected
to the children, in case of the guardians having more than one asthmatic child.

14.2 Ideas and minor improvements

Webinterface The doctors may prefer to set up the users medication plans through a web interface on
their computers. This part may be integrated into existing systems.

Other devices The application are fitted for a phone running the Android operating system. For the
future it should also be scalable to tablets. There may be more interesting for a child to work on a
tablet than a phone. There will also be much more space for content. This extra space gives greater
potential of the reward system. It should also be available on other operating systems than Android,
e.g. iOS or Windows Phone. This will improve the availability for the users, not limiting them to
Android phones.

Overall graphical design The priorities have been to make the major functionality work. We have used
lots of time making the applications understandable and easy to use, but there is still a great potential
in making the applications interaction design better.

Personalize the system The application may be more personalized. E.g. ”It’s time to take medication”
could be ”It’s time to take medication, Eric”. By involving the users name more in the system, they
may feel more appreciated.

Integration of external elements The distraction part of the application may be integrated with a
story or other external elements. I. eg. a story where the children will need to take medicine in order
to get the next part of the story.

135

Chapter 15

Evaluation

This chapter contains an evaluation of several aspects of the project. The evaluation discusses the work
process the group went through in this project. This includes all work connected to development of the
system, how the development methodology and routines worked and how the group experienced the work
load of this project. Next follows a description of the state of the project at delivery and a discussion
of why it was in this state. The chapter ends with a conclusion of how the group has experienced the
project, and how satisfied the group has been with the learning process for this task, and with the way the
project was organized by the coordinators. Section 15.1 evaluated the work process of the project. This
includes the development process, work routines and an evaluation of the work load. In Section 15.2 the
final product is reviewed. This includes a discussion of whether or not the product is finished, and why it
is delivered as it is. At last, Section 15.4 gives a conclusion on the evaluation.

15.1 Work Process

During the project there have been several aspects in the work process that is worth a mention. Even
though all of us have prior experience in team work and development, we had to learn to work together as
a team. As a result, the project could have been done di↵erently.

15.1.1 Development Methodology

During the beginning of the project, we were very eager to use Scrum as a method of development. The
reason behind this may be the fact that most IT-companies tend to speak very highly of Scrum and how
well it works. Many of the team members had never tried out Scrum before, and were therefore interested
in learning how this was done.

During the project we understood early on that Scrum was not as optimal as we first assumed. There
were many factors resulting in Scrum not being optimal. One of the major artifacts of Scrum is the daily
stand up. This was very di�cult to carry out, since each team member had their own lecture plan, and it
was therefore di�cult to find suitable times for a scrum meeting, even though it only lasts for 10 minutes.
We tried to follow the plan of doing semi-daily stand ups as strictly as possible, but many times we used
AgileZen or IM clients to update each other.

The use of a scrumboard is yet another important artifact of Scrum. Since it was not possible to find a
permanent workroom, we used an online scrumboard via AgileZen, in addition to a spreadsheet in Google
Drive. This worked fairly well, but it would have been better to have a physical scrumboard, since it would
remind and motivate the team in a higher degree.

The customer was very involved in the process, regarding functionality, prioritizing tasks and giving
feedback on results. This helped us focus on what was important to finish. We decided early on a 14
days length. The main reason for this was the fear of wasting to much time on planning, reporting and
retrospective if the sprints were only a week long. Sprints of this length lead to us having to take feedback

137

CHAPTER 15. EVALUATION

and design for change in the middle of a sprint, since we met with the customer each week. This was done
in an orderly fashion, by us not planning to much in detail for what functionality was to be implemented
in each section, but rather what section was up for improvement during each sprint. We were in a way
more agile than a usual Scrum project would be. Being more agile turned out for the better, since we
quickly eliminated unnecessary tasks, though it was stressful at times, since the customers came with new
demands during the sprints.

One aspect we failed at was having a working application at the end of each sprint. At the end of each
sprint there was always some parts of the applications that did not work properly, and instead of removing
them for the demo, we didn’t show these parts at the demo. This worked out OK, but is not the proper
way to do things, since the customer may be confused during demos, and ask about nonfunctional parts
of the system. Usually in Scrum either functionality is complete, or it’s not in the demo application at all.
Meaning it’s not possible to find it when searching through a demo application.

15.1.2 Development Process

The development process was a dominating part of this project. We used about 50% of our time on
programming, which is normal. The reason for this amount spent on programming have many factors.
The main reason was that we wanted to spend as much time as possible developing a working prototype,
and not delivering a half-finished product. At no point did we rationate the hours available, we rather kept
track of what tasks were to be finished, and spent our time thereafter.

The customer was very present during the entire process, and gave much feedback on the functionality
implemented, changes in requirements and priorities. The requirements were changed after every customer
meeting. This resulted in some functionality being removed, even though it was already implemented.
Throwing out some functionality is normal, since opinions may change when seeing the final product, or
problems may occur during development.

15.1.3 Work Load

The work load of this project has been intense, but it has resulted in a huge amount of learning and
experiences in software development. The focus of this project had two main goals, do the work and
document the work done. Since the stakeholder for each of the goals are two separate groups, the workload
is not necessarily perfectly balanced. The customer wanted us to implement more functionality, while the
our advisor told us to write a better report. As stated in the course description, each team member should
use 25 hours a week, to a total of 325 hours on the project. This was a constant struggle, as all team
members had at least two other courses to attend, along with exercises to finish in these courses. This was
a constant stress factor throughout the project.

The exercises of other courses where at times very time-consuming, e↵ecting our e↵ort on the project.
When another course had an exercise up for delivery, we had problems filling the hours demanded for that
certain week. This resulted in a very uneven work e↵ort from each of us. A more even work flow would
have been more preferable and much crunch-time would have been avoided.

Since all team members had di↵erent lecture plans it was hard to coordinate when to work together.
Working together is an absolute necessity when programming, and this could have been planned better by
the lecturers.

The development lasted until there were ten days until delivery of the report. For the last ten days the
focus was directed towards writing the report and documenting the code.

The final source code consisted of almost 11 000 lines of code, which is a lot considering the time and
resources we had available.

138

CHAPTER 15. EVALUATION

15.2 The Final Product

The goal of this project was to deliver a fully functional prototype, which later could be used in order to
launch a full-scale product. Unfortunately the final product did not include all the functionality wanted
from the customer. Yet, we are of the opinion that this is a very functional and well working prototype,
and we are very curious as to what this prototype will lead to in the future.

Karotz implementation

The implementation of the Karotz in the project was a good idea, on paper, and that’s about it. The
children we tested on found the Karotz funny and nice, and by moving the focus away from the medicine
and towards the Karotz, it made the mask the children use for taking their medicine seem less frightening.

To work with the Karotz was easier said than done. The documentation of the Karotz API is written
in French. A huge problem with the Karotz was connecting it to the internet. In order to make it run the
program we wrote for it, we had two possibilities, either deploy to the Karotz website or run the program
locally. Deploying the application to the Karotz website was not an option since it would have to wait
for approval, and there was no time estimate for how long it would take. When running it locally the
Karotz has to be connected to the same network as the computer running the program. Also there is not
many possibilities for storing any information on the Karotz and the documentation given by the Karotz
documentation was faulty and did not explain how to store programs on the Karotz. This resulted in a
solution where the program had to be downloaded for each repeated run. Another huge problem is that
the Karotz will update itself every 3̃0 minutes, meaning that the program running on the Karotz will be
deleted and will not start itself again, making the use of the Karotz a high-maintenance task.

We also had some problem with the developer website with the documentation of the API. The website
was unavailable for a week, during our project. When we reached out to their support desk, they had no
time estimates for when it would be back up, leaving us out in the cold.

All in all the implementation of a robot toy is a good idea, since it may appeal to children and make it
more enjoyable for them to take their medicine. Using Karotz for this task is not a good idea, and should
be avoided. Unfortunately there are very few alternatives as to this. There is reason to believe that the
cost-benefit ratio for an end user will be so low that they would have little benefit from using a Karotz.

15.3 Functional Requirements completed

Table 15.3 shows an overview of the functional requirements stated in Section 5.2, and whether they are
completed or not. As one may notice, all functionality with high priority is completed. The parts that are
not completed can be classified as “nice to have”-features, but are not vital for the prototype.

139

CHAPTER 15. EVALUATION

F
u
n
ct
io
n
al

R
eq
u
ir
em

en
t

P
ri
or
it
y

C
om

p
le
te
d

C
om

m
en
ts

P
F
R

1
-
M
ed

ic
at
io
n
p
la
n

H
ig
h

C
om

p
le
te
d

S
u
p
p
or
ts

si
m
p
le
m
ed

ic
at
io
n
p
la
n
s.

D
oe
s
n
ot

su
p
p
or
t
se
v-

er
al

m
ed

ic
in
es

th
at

is
to

b
e
ta
ke
n
at

th
e
sa
m
e
ti
m
e.

O
n
e

m
in
u
te

d
el
ay

is
a
p
ot
en
ti
al

w
or
ka
ro
u
n
d
.

P
F
R

2
-
N
ot
ifi
ca
ti
on

s
H
ig
h

C
om

p
le
te
d

A
n
al
ar
m

is
go

es
o↵

on
ce

it
is
ti
m
e
to

ta
ke

m
ed

ic
in
e.

T
h
e

em
ai
l-
n
ot
ifi
ca
ti
on

w
as

n
ot

im
p
le
m
en
te
d
.

P
F
R

2.
1
-
S
et
ti
n
gs

fo
r
n
ot
ifi
-

ca
ti
on

s
M
ed

iu
m

N
ot

co
m
p
le
te
d

D
u
e
to

sh
or
t
ti
m
e,

an
d
b
ec
au

se
w
e
n
ee
d
ed

ac
ce
ss

to
fi
le

sy
st
em

to
fi
n
d
ri
n
gt
on

es
.

P
F
R

2.
2

-
N
ot
ifi
ca
ti
on

to
ch
an

ge
co
n
d
it
io
n
s

M
ed

iu
m

N
ot

co
m
p
le
te
d

D
id

n
ot

h
av
e
ti
m
e,

al
th
ou

gh
th
er
e
is

n
ot

a
w
h
ol
e
lo
t
of

w
or
k
to

ex
te
n
d
th
e
ap

p
li
ca
ti
on

w
it
h
th
is

fu
n
ct
io
n
al
it
y.

P
F
R

3
-
F
am

il
ie
s

L
ow

N
ot

co
m
p
le
te
d

-
P
F
R

4
-
G
u
id
el
in
es

H
ig
h

C
om

p
le
te
d

-
P
F
R

4.
1

-
G
u
id
el
in
es

fr
om

N
A
A
F

M
ed

iu
m

N
ot

co
m
p
le
te
d

-

P
F
R

5
-
K
ee
p
re
co
rd
s
of

co
n
-

d
it
io
n

H
ig
h

C
om

p
le
te
d

-

P
F
R

6
-
P
ol
le
n
fo
re
ca
st

M
ed

iu
m

S
om

ew
h
at

co
m
p
le
te
d

N
A
A
F
’s

p
ol
le
n
ca
st

is
n
ot

ru
n
n
in
g
at

th
e
m
om

en
t.

W
e

re
p
li
ca
te
d
th
e
X
M
L
-s
tr
u
ct
u
re

fo
r
th
e
p
u
rp
os
e
of

th
e
p
ro
-

to
ty
p
e.

P
F
R

7
-
S
cr
ee
n
si
ze
s

L
ow

N
ot

co
m
p
le
te
d

O
n
ly

su
p
p
or
ts

sc
re
en

si
ze
s
at

48
0x

80
0
at

th
e
ti
m
e
b
ei
n
g.

E
as
il
y
ex
te
n
d
ed

,
b
u
t
n
ee
d
s
sc
al
in
g
of

p
ic
tu
re
s
to

fi
t
th
e

sc
re
en
.

C
F
R

1
-
D
is
tr
ac
ti
on

H
ig
h

C
om

p
le
te
d

-
C
F
R

2
-
R
ew

ar
d
s

H
ig
h

C
om

p
le
te
d

-
C
F
R

2.
1
-
R
ew

ar
d
s

L
ow

S
om

ew
h
at

co
m
p
le
te
d

-
C
F
R

3
-
S
cr
ee
n
si
ze
s

L
ow

N
ot

co
m
p
le
te
d

R
ef
er

P
F
R

7.
C
F
R

4
-
A
va
ta
r

L
ow

N
ot

co
m
p
le
te
d

T
h
e
cu

st
om

er
h
ad

a
h
ar
d
ti
m
e
se
tt
li
n
g
on

ou
r
ga

m
ifi
ca
-

ti
on

co
n
ce
p
t.

In
th
e
en

d
th
er
e
w
as

n
ot

en
ou

gh
ti
m
e.

In
co
op

er
at
io
n
w
it
h
th
e
cu

st
om

er
,
w
e
d
ec
id
ed

to
sc
ra
p
th
e

id
ea
.

C
F
R

5
-
C
h
il
d

fr
ie
n
d
ly

in
-

st
ru
ct
io
n
s

H
ig
h

C
om

p
le
te
d

Im
ag

e
ga

ll
er
y
th
at

sh
ow

s
ve
ry

si
m
p
le

d
ra
w
in
gs

of
h
ow

to
ta
ke

a
m
ed

ic
in
e.

K
F
R

1
-
N
ot
ifi
ca
ti
on

H
ig
h

C
om

p
le
te
d

-
K
F
R

2
-
D
is
tr
ac
ti
on

H
ig
h

C
om

p
le
te
d

C
h
il
d
re
n
n
ee
d
s
to

in
te
ra
ct

w
it
h
th
e
ka
ro
tz

w
h
en

ta
ki
n
g
a

m
ed

ic
in
e.

T
h
is

h
el
p
s
th
e
u
se
r
ge
t
d
is
tr
ac
te
d
.

K
F
R

3
-
R
ew

ar
d

H
ig
h

C
om

p
le
te
d

-
K
F
R

4
-

R
eg
is
te
r

u
se

of
m
ed
ic
in
e

M
ed

iu
m

C
om

p
le
te
d

-

K
F
R

5
-
L
og

gi
n
g

M
ed

iu
m

C
om

p
le
te
d

-

Table 15.1: The original functional requirements, whether they are successfully implemented or not, and
comments

140

CHAPTER 15. EVALUATION

15.4 Concluding Remarks

The project has been engaging, educational, stressful and challenging. In retrospect, we all agreed that
the experiences has been worth the e↵ort and time we have spent. The weight of what we learned in
terms of project management, programming, team-work and customer relations and system development
has been huge. Even though the project lead to team members having less time for other courses, we
are in the opinion that the time spent has been worth it. Regarding the final product we are proud of
what we have delivered, and are very curious about the future of the BLOPP project. The domain of the
project has made us feel that we have had the possibility to make changes and actually help children with
asthma and their parents. If we would have done the project one more time, we would have done some
things di↵erently. First, we would have designed CAPP for multiple users from the beginning. We started
implementing CAPP without having a plan for how to implement support for multiple children. At a later
stage, when support for multiple users was up for discussion, we had to decline the idea, since it would
take too much time to refactor all code already written. We should have arranged programming sessions
from the beginning. When working as a team, it is essential to be in close proximity, in order to make
communication more e↵ective. The shop functionality was left in the cold for too long. The customer was
not certain if they wanted the shop, and at one point the abandoned the shop. We are in the opinion
that the shop would have been a very cool idea, if done right. If we had decided to make a shop from the
beginning we believe it would result in a great element for motivating children.

141

Bibliography

[1] Scrum process.svg. October 07 2012. Available at: <www.wikipedia.org>

[2] Waterfall Model. October 07 2012. Available at: <compsci.ca>

[3] Riktig bruk av inhalatorar. November 17 2012. Used with permission. Sjukehusapoteka Vest. Available
at: <www.sjukehusapoteka-vest.no>

[4] Frequent Flyer Programs. November 10 2012. Gamification Wiki. Available at:
<www.gamification.org>

[5] Zichermann G, Cunningham C (2011). Gamification By Design. O’Reilly Media, Inc. ISBN: 978-1-
4493-9767-8

[6] Hamari J, Eranti V (2011). Framework for Designing and Evaluating Game Achievements. Proceedings
of DiGRA 2011 Conference: Think Design Play.

[7] Fakta om astma. Published 10.01.2006. Available at: <www.naaf.no>

[8] Useful facts on pollen allergy (pollenallergi). Published 22.04.2007. Available at: <www.naaf.no>

[9] Jackson S, Joshi A, Erhardt N (2003). Recent Research on Team and ORganizational Diversity: SWOT
Analysis and Implications. Journal of Management 2003

[10] Royce W (1970). Managing the Development of Large Software Systems. Proceedings IEEE WECSON
26

[11] Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J, Highsmith
J, Hunt A, Je↵ries R, Kern J, Marick B, Martin C, Mellor S, Schwaber K, Sutherland J, Thomas D
(2001). Agile Manifesto. Available at: <agilemanifesto.org>

[12] Android API Reference: Service class. November 13 2012. Available at: <developer.android.com>

[13] MySQL Marketshare. September 20 2012. Available at: <www.mysql.com>

[14] Wu M (2011). Gamification 101: The Psychology of Motivation. Lithioshphere’s Building Community
blog. Available at: <lithosphere.lithium.com>

[15] Karotz. October 09 2012. Available at: <www.karotz.com>

[16] Pelling N (2011). The (short) prehistory of “gamification”. . . . Nick Pelling’s personal blog at Word-
press. Available at: <nanodome.wordpress.com>

[17] Daniels M (2011). Businesses need to get in the game. Marketing Week. Available at:
<www.marketingweek.co.uk>

[18] About NodeJS. October 10 2012. Available at: <nodejs.org>

143

http://www.wikipedia.org/
http://compsci.ca/
http://sjukehusapoteka-vest.no
http://www.gamification.org/
http://www.naaf.no/
http://www.naaf.no/
http://agilemanifesto.org/
http://developer.android.com/
http://www.mysql.com
http://lithosphere.lithium.com/
http://www.karotz.com/
http://nanodome.wordpress.com
http://www.marketingweek.co.uk
http://nodejs.org/about/

BIBLIOGRAPHY

[19] Bass L, Clements P, Kazman R (2003). Software Architecture in Practice, 2nd Edition

[20] About PHP. October 13 2012. Available at: <www.php.net>

[21] javadoc - The Java API Documentation Generator. November 13 2012. Oracle. Available at
<docs.oracle.com>

[22] Anderson J, Rainie L (2012). Gamification: Experts expect ‘game layers’ to expand in the future, with
positive and negative results. Pew Research Facility.

[23] About Dropbox. September 12 2012. Available at: <www.dropbox.com>

[24] What is AgileZen? August 30 2012. Available at: <www.agilezen.com>

[25] Rød G, Øynar K, Skadberg B (2006, rev. 2009). Astma Bronkiale. Helsebiblioteket.no. Available at:
<bit.ly/T1f2Dl>

[26] Conundra Ltd. October 20 2012. Available at: <www.nanodome.com/conundra.co.uk>

[27] MySQL. November 03 2012. Available at: <www.mysql.com/why-mysql>

[28] IH25. November 12 2012. Used with permission. Available at: <www.beuler.com>

[29] Design Principles. October 02 2012. Available at: <developer.android.com>

[30] Om lov om forbud mot diskriminering p̊a grunn av nedsatt funksjonsevne (diskriminerings- og tilgjen-
gelighetsloven). November 09 2012. Available at: <bit.ly/UzZloH>

[31] About JSON. November 05 2012. Available at: <www.json.org>

[32] Balsamiq Mockups. September 07 2012. Available at: <www.balsamiq.com>

[33] Personal information and data protection. November 13 2012. Available at: <www.datatilsynet.no>

[34] POSTMan. November 06 2012. Available at: <github.com/a85/POSTMan-Chrome-Extension>

[35] Krutchen P, 1995. Architectural Blueprints—The “4+1” View Model of Software Architecture. IEEE
Software

[36] Gao C, 2011. CalendarView. Available at: <code.google.com/p/android-calendar-view>

[37] MySQL on IDI. November 06 2012. Available at: <drift.idi.ntnu.no>

[38] Borge C, Engh N, Austegard E, Sandsund C, Hamre H, Slettedal I, Alam H, Erikstad T (2002). How
to live with asthma. Norges astma- og allergiforbund.

[39] Anderson D, 2003. Agile Management for Software Engineering: Applying the Theory of Constraints
for Business Results. Prentice Hall.

[40] About Joda Time . November 10 2012. Available at: <joda-time.sourceforge.net>

[41] About Android SDK. November 14 2012. Available at: < developer.android.com>

[42] About Android Developer Tools. November 14 2012. Available at: < developer.android.com>

[43] About Eclipse IDE. November 14 2012. Available at: < www.eclipse.org>

[44] TIOBE Programming Community Index for November 2012. November 15 2012. Available at: <

www.tiobe.com>

[45] Git source code management Available at: < git-scm.com>

144

http://www.php.net/
http://docs.oracle.com/
http://www.dropbox.com/
http://www.agilezen.com/
http://bit.ly/T1f2Dl
http://www.nanodome.com/conundra.co.uk
http://www.mysql.com/why-mysql
http://www.beuler.com/
http://developer.android.com
http://bit.ly/UzZloH
http://www.json.org
http://www.balsamiq.com
http://www.datatilsynet.no
http://github.com/a85/POSTMan-Chrome-Extension
http://code.google.com/p/android-calendar-view
http://drift.idi.ntnu.no
http://joda-time.sourceforge.net/
http://developer.android.com/
http://developer.android.com/
http://www.eclipse.org/
http://www.tiobe.com/
http://git-scm.com/

Appendices

145

Appendix A

Paper Prototype

A.1 About paper prototyping

This section describes the process of paper prototyping. A paper prototype is a low-fidelity prototype
made out of paper, post-it notes or similar material. The idea is making a layout in paper, to test the
flow of the program, the layout and design to root out early design flaws. By making this out of paper,
a low-cost prototype is ensured. The prototype is then tested by an external test person, using di↵erent
predetermined scenarios.

Usability testing using paper prototypes does have it’s limitations. The paper prototype makes it
di�cult to simulate animations, sounds, scrolling and silimar functionalities. The test person must also be
able to imagine that the paper prototype is a real program, even though it’s made out of paper.

The usability testing done using the paper prototype is explained in Section 13.3.1.

A.2 Usability Testing with a paper prototype

A.2.1 Testprocedures

The usability test is done by making the testperson completing a series of tasks with the help of the paper
prototype. The tasks must be very specific, meaning they must be specified in a way which makes the
testperson search for specific information, press specific elements on screen or similar. The task shall be
realistic and representative for the normal use of the system.

An example of such a task may be: “You wish to change the health state of Ole Olesen from Good to
Bad. Please do this via the application”.

A.2.2 The testpersons tasks

The testperson shall solve the tasks given, while he/she speaks out loud what he/she is doing and why. The
reason for this is allowing the designers to understand the thoughts and the mindset of the testperson’s
user experience with the prototype.

A.2.3 The testgroups tasks

The team leading the test shall have clearly defined tasks under the test. Testleader gives instructions to
the person doing the test and tells what is happening.

“The Wizard of Oz” is responsible for changing out the “frames” (papers representing frames) when
the user interacts with the paper prototype.

Observators don’t take part in the testing, but observe and take notes throughout the testing.
Neither the testleader, the Wizard of Oz or the observators may answer questions during the testing.

147

Appendix B

Document templates

B.1 Agenda

Advisor meeting
DD/MM/YYYY

1. Approval of agenda

2. Approval of minutes of meeting from last advisor meeting

3. Comments to the minutes from last customer meeting or other meetings

4. Approval of the status report

5. Review/approval of attached phase documents

6. Sprint X

7. Other issues

B.2 Status reports

Status reports are internal reports that will be sent to the advisor each week. The content and a
short description of this report is found in Table B.1

149

APPENDIX B. DOCUMENT TEMPLATES

Content item Description
Status Report - Week WEEKNUMBER Headline
Work done Description of where the focus have

been the last week. What is the sta-
tus of the applications

Problems Description of di↵erent problems
that has arised during the week.
Either internal group problems or
problems that occurs due to tech-
nical issues.

Next week Description of activities like meet-
ings and usability testing that will
occur next week. Place and time
will also appear here.

Table B.1: Content and short description of Status reports

150

Appendix C

Karotz Manuscript

Table C.1 gives an overview of action sequences the Karotz takes based on a given medicine com-
bination that is supposed to be taken at the same time.

b means blue medicine,

o means orange medicine,

p means purple medicine,

the number represents how many doses should be taken.

Medicine combinaton 1b 1o 1p 2b 2o 2p 1b + 1o
Sequence code 1s 1s 1s 1s 1s 1s 1s

2s 2s 2s 2s 2s 2s 2s
1b 1o 1p 1b 1o 1p 3s
2b 2o 2p 2b 2o 2p 1b
3b1 3o1 3p1 3b2 3o2 3p2 2b
4s 4s 4s 4s 4s 4s 3b1
6s 6s 6s 5s 5s 5s 4s
9s 9s 9s 4s 4s 4s 8s
7s1 7s1 7s1 6s 6s 6s 1o

9s 9s 9s 2o
7s2 7s2 7s2 3o1

4s
6s
9s
7s2

Table C.1: Manuscript actions for Karotz

Table C.2 gives detailed information on what each code means, with a dialogue statement that
the rabbit says and an activator that makes the application go to the next item.

Code Dialogue Activator

1s

Hei! Jeg heter BLIPP! N̊a er det tid for å ta pustemedisin! Trykk p̊a hodet
mitt s̊a forteller jeg deg mer.
Hi! My name is BLIPP! Now it’s time to take breathing medication! Press
my head and I will tell you more.

Button

151

APPENDIX C. KAROTZ MANUSCRIPT

2s

Hent en voksen som kan se p̊a, og hold den lille gule kaninen rett under
nesen min.
Fetch an adult that can watch, and hold the small yellow rabbit directly
beneath my nose.

Yellow
nanoz

3s
N̊a skal du ta to forskjellige medisiner.
Now you will take two di↵erent medicines.

Timeout:
2 seconds

4s

N̊ar jeg sier ifra skal du trykke p̊a sprayen, og du skal puste rolig mens jeg
teller til 10. Klar, ferdig, trykk! 1-2-3-4-5-6-7-8-9-10
When I tell you to, you should press the spray and breathe calmly while I
count to 10. Ready, set, push! 1-2-3-4-5-6-7-8-9-10

Timeout:
2 seconds

5s

Flott! Bra jobba! Du har tatt den første dosen. Gjør klar for dose nummer
to. Sett p̊a deg masken og gjør deg klar til å gjøre det samme en gang til.
Trykk p̊a hodet mitt n̊ar du er klar.
Excellent! Great job! You have taken the first dose. Get ready for dose
number two. Put on the mask and get ready to do the same one more time.
Push my head when you are ready.

Button

6s
N̊a var du flink!
You were good now!

Timeout:
2 seconds

7s1
Som belønning f̊ar du 1 stjerne til skattekista di.
As reward you will get 1 star for your treasure chest.

DONE

7s2
Som belønning f̊ar du 2 stjerner til skattekista di.
As reward you will get 2 stars for your treasure chest.

DONE

8s
Da kan du hente den andre medisinen du skal ta.
Now you can fetch the second medicine you should take.

Timeout:
2 seconds

1b

Hent den bl̊a medisinen og masken du puster i, og trykk p̊a hodet mitt n̊ar
du har hentet dem.
Fetch the blue medication and the mask you breathe into, and push my head
when you have fetched them.

Button

2b
Rist den bl̊a medisinen! (ristelyd) Trykk p̊a hodet n̊ar du er klar.
Shake the blue medicine! (shaking sound) Push my head when you are ready.

Button

3b1

Av den bl̊a medisinen skal du ta 1 pu↵. Sett p̊a deg masken og gjør deg
klar. Trykk p̊a hodet mitt s̊a teller jeg mens du puster inn og ut.
You should take one pu↵ of the blue medicine. Put on the mask and get
ready. Push my head and I will count while you breathe in and out.

Button

3b2

Den bl̊a medisinen skal du ta to ganger etter hverandre. Vi begynner med
1 pu↵. Sett p̊a deg masken og gjør deg klar. Trykk p̊a hodet mitt s̊a teller
jeg mens du puster inn og ut.
The blue medicine you should take twice after each other. We start with 1
pu↵. Put on the mask and get ready. Push my head and I will count while
you breathe in and out.

Button

1o

Hent den oransje medisinen og masken du puster i, og trykk p̊a hodet mitt
n̊ar du har hentet dem.
Fetch the orange medication and the mask you breathe into, and push my
head when you have fetched them.

Button

152

APPENDIX C. KAROTZ MANUSCRIPT

2o
Rist den oransje medisinen! (ristelyd) Trykk p̊a hodet n̊ar du er klar.
Shake the orange medicine! (shaking sound) Push my head when you are
ready.

Button

3o1

Av den oransje medisinen skal du ta 1 pu↵. Sett p̊a deg masken og gjør deg
klar. Trykk p̊a hodet mitt s̊a teller jeg mens du puster inn og ut.
You should take one pu↵ of the orange medicine. Put on the mask and get
ready. Push my head and I will count while you breathe in and out.

Button

3o2

Den oransje medisinen skal du ta to ganger etter hverandre. Vi begynner
med 1 pu↵. Sett p̊a deg masken og gjør deg klar. Trykk p̊a hodet mitt s̊a
teller jeg mens du puster inn og ut.
The orange medicine you should take twice after each other. We start with
1 pu↵. Put on the mask and get ready. Push my head and I will count while
you breathe in and out.

Button

1p

Hent den lilla medisinen og masken du puster i, og trykk p̊a hodet mitt n̊ar
du har hentet dem.
Fetch the purple medication and the mask you breathe into, and push my
head when you have fetched them.

Button

2p
Rist den lilla medisinen! (ristelyd) Trykk p̊a hodet n̊ar du er klar.
Shake the purple medicine! (shaking sound) Push my head when you are
ready.

Button

3p1

Av den lilla medisinen skal du ta 1 pu↵. Sett p̊a deg masken og gjør deg
klar. Trykk p̊a hodet mitt s̊a teller jeg mens du puster inn og ut.
You should take one pu↵ of the purple medicine. Put on the mask and get
ready. Push my head and I will count while you breathe in and out.

Button

3p2

Den lilla medisinen skal du ta to ganger etter hverandre. Vi begynner med
1 pu↵. Sett p̊a deg masken og gjør deg klar. Trykk p̊a hodet mitt s̊a teller
jeg mens du puster inn og ut.
The purple medicine you should take twice after each other. We start with
1 pu↵. Put on the mask and get ready. Push my head and I will count while
you breathe in and out.

Button

9s

N̊a kan du holde den lille grønne kaninen rett under nesen min for å f̊a
premien din!
Now you can hold up the small green rabbit right beneath my nose to get
your prize!.

Green
nanoz

Table C.2: Manuscript for the Karotz

153

Appendix D

Coding Templates

D.1 Coding Style

The applications uses Android as platform. As a consequence, most code will be written in Java.
The coding style mentioned here only applies to code written in Java.

D.1.1 Package conventions

The package names for GAPP will be on the format “no.blopp.app.X”, where X (lower case) de-
scribes the content of the package. The package names for CAPP will be on the format “no.blopp.app.med.Y”,
where Y(lower case) describes the content of the package. For instance no.blopp.app.activities, or
no.blopp.app.med.activities.

D.1.2 Indentation

All statements, conditional expressions, function declarations and class declarations shall be written
on a separate line.

D.1.3 Curly Brackets

The opening curly bracket following a function or class declaration shall appear on the line below
the declaration, with equal indentation as the function declaration. The closing bracket shall also
appear with this indentation, on the line below the code block.

D.1.4 Naming Conventions

The following naming conventions will be used when writing code in Java. We will use an “I” in
front of an interfacename, to better recognize these. That is the only place we have that kind of
convention. Table D.1 shows an overview of the naming conventions for Java code.

Type Convention
Local variable lowerCamelCase
Class UpperCamelCase
Interface IUpperCamelCase
Constants UPPERCASE

Table D.1: Naming convention

155

APPENDIX D. CODING TEMPLATES

D.1.5 Android views

The android framework has a lot of predefined elements like buttons, textviews and layouts. When
creating these elements, they have an id referenced by “android:id= my id”. These id’s will be
a combination of type a b. “a” will be a constructive word describing the element. “b” will be
the component. “a” will be written in lowercase only, seperated with underscore. “b” will be in
lowerCamelCase. Examples of this can be “back to menu button”, “date textView” and so on. The
reason for this is that android automatically generates R.java, containing these id’s. It should be
easy to know excactly which id you are looking for when calling the method findViewById(id).

D.1.6 Code Examples

Figure D.1 shows the coding style we used for classes in Java. As explained the curly braces are
beneath the class declarations and method, variables are in lower camel case, while constants are
all upper case and constructors are upper camel case.

Figure D.2 shows the coding style for a Java interface. As explained the names of interfaces are
prepended with a capital I.

Figure D.1: Java Classes

Figure D.2: Java Interfaces

156

APPENDIX D. CODING TEMPLATES

D.1.7 LaTeX folder structure

The report will appear as a seperate project. In order to keep track of what is what, and in order
to not having too many Git-conflicts, we will have a seperate folder for each chapter. This folder
should be the name of the chapter, without spaces. If we are writing long sections, these should
appear in a seperate document, with section name as the filename.

157

Appendix E

Class diagram

The purpose of these class diagrams is to give developers an overview of which classes that is
implemented, and the dependencies between the di↵erent classes.

Since the class diagram for the three applications are way to big to display on one A4-page,
we felt it necessary to split them into several images. While the logical view shows dependencies
across packages, the class diagrams shows the internal dependencies between classes. Please refer
the logical view (Figure 6.1) for package dependencies.

In the next diagrams the following notation is being used:

• A solid arrow from class A to class B represents that A uses B.

• A dashed arrow from class A to class B represents that A depends on B.

• A solid arrow with an arrowhead from class B to class A represents inheritance, that is, B
inherits from A.

• A dashed arrow with an arrowhead from class B to interface I represents that B implements I.

E.1 Class Diagram GAPP

GAPP - Activities Figure E.1 shows the class diagram for the package “activities”. This diagram
shows the di↵erent activities. An activity is, simplified explained, a screen on the application. In
section 6.2.3, the interaction between di↵erent the activities is shown. Since all Activities imple-
ments one or more of the interfaces displayed, it would be completely unreadable to show which
activities implement which interfaces. The interfaces displayed are standard components in the
Android framework, and contains functionality for handling input. The activities get the data that
is to be displayed from the packages models, jsonmodels and adapters.

Figure E.2 shows the di↵erent paths to an activity from a user’s perspective.

GAPP - JSON parsers Figure E.3 shows the class diagram for the package “jsonparsers”. This
diagram shows the di↵erent jsonparser available in the system. In order to make a call to a server in
Android, the parsers needs to extend AsyncTask, which makes a seperate thread in order to handle
the HTTP-calls. The operating system of a device will simply refuse to do network operations on
the main thread. What we have made, is an abstract generic parser, GenericJSONParser, which
extends AsyncTask and implements the interface IInitializeFromJSON.

When the apllication needs data from the webservice, doInBackground() is called, which exe-
cutes the request. Once we get a response, initializeDateFromJSON() is called with the result
from our http call, in the appropriate class. Each of the subclasses to GenericJSONParser contains
it’s own implementation of this method.

159

APPENDIX E. CLASS DIAGRAM

Figure E.1: Activities in GAPP

Figure E.2: Activity interaction GAPP

160

APPENDIX E. CLASS DIAGRAM

Figure E.3: JSON parsers in GAPP

161

APPENDIX E. CLASS DIAGRAM

Figure E.4: JSON posters in GAPP

GAPP - JSON posters Figure E.4 shows the class diagram for the package “jsonposters”. This
diagram shows the di↵erent posters we have made. These classes are responsible for posting infor-
mation to the database. As with the parsers, the posters also need to extend AsyncTask. The class
DatabasePoster also implements IInitializeFromJSON. The reason behind this is that once we
have made an HTTP-POST, we get a result on JSON-format. The only useful information here is
whether the post was a success or not. There are four subclasses of DatabasePoster. These classes
represent CREATE or DELETE methods towards the database.

GAPP - jsonmodels The data models we are using can be seperated in two categories; “json-
models” and “models”. Jsonmodels contains classes used to hold information retrieved from our
webservice. Models contains classes used to hold information that is independent of which child the
application displays information about.

Figure E.5 shows the class diagram for the package “jsonmodels”. The di↵erent models contains
information from database needed in order to display it correctly to the user. This package is
used by di↵erent activities in order to display data from the database to users. Jsonmodels can be
split into two categories; Post models and result models. The postmodels contains an important
toString()-method in order to encode the POST parameters correctly. These models are used by
the jsonposter-package.

GAPP - models Figure E.6 shows the class diagram for the package “models” The model pack-
age holds three important classes; LogModel, MedicinePlanModel and PollenStateAtDayModel.
LogModel executes the LogModelParser, and is used by CalendarActivity. It contains the amount
of each medicine that is taken on a day, and the health state of the child. MedicinePlanModel con-
tains the di↵erent medicine plans, and PollenStateAtDayModel contains information about the
pollen distribution at a given day. Note that the latter need some configurations in order to keep
up with “pollenvarslingen.no”, since the application at the time being uses dummy data. The pollen
cast from NAAF only contains data about today and tomorrow, so the values collected from this
service needs to be stored in some manner.

GAPP - adapters Figure E.7 shows the class diagram for the package “adapters”. This package
contains some adapters used in order to render ListViews and GridViews correctly.

162

APPENDIX E. CLASS DIAGRAM

Figure E.5: JSON models in GAPP

Figure E.6: Models in GAPP

163

APPENDIX E. CLASS DIAGRAM

Figure E.7: Adapters in GAPP

GAPP - utils, xmlfeed and views Figure E.8 shows the class diagram for the packages “utils”,
“xmlfeed” and “views”. Utils is our “misc”-package, containing classes we did not know where to
put. The DateAdapter has only one purpose. Convert three integers, day, month and year, to an
acceptable MySQL-format. The view package contains our only custom view, CalendarView. This
view is opensource and is written by Chris Gao (2011)[36], and is configured by the team to serve
our purpose. CalendarView and Cell class is the only views that are programmed. All other views
visible to the user is build upon standard Android components like Buttons, ListViews, and so on.
These files is on XML-format, and are used by the activities to set the content view (the screen
image visible to the user). These layout-files are not included in the architecture, because it won’t
actually provide any sorts of useful information to the reader.

E.2 CAPP - Children Application

The children application also contians to many classes to display in one image, so we have split this
diagram into several images as well.

CAPP - Activities Figure E.9 shows the activities in CAPP. There are four visible activities
in CAPP. AlarmReceiverActivity is an activity that updates the stored alarms in the system.
MainMenuActivity displays the main menu. InstructionsActivity contains a slideshow of infor-
mative images on how to take medicines correctly. DisplayRewardsActivity shows the collected
stars to the children. DistractionActivity controls the views when a child is taking a medicine.

CAPP - Adapters Figure E.10 shows the adapters in CAPP. CAPP has two adapters. Medicine-
ListAdapter renders a list of which medications a child can take. TabsAdapter is an adapter fitted
for InstructionsActivity, and contains the logic behind the slideshow that is displayed.

CAPP - Models Figure E.11 shows the models in CAPP. It contains three models. Due to time
restrictions, we were not able to extend the application to cover several children. A model for
children must thus be made in future development.

164

APPENDIX E. CLASS DIAGRAM

Figure E.8: Other classes in GAPP

165

APPENDIX E. CLASS DIAGRAM

Figure E.9: Activities in CAPP

CAPP - JsonModels Figure E.12 shows the JsonModels in CAPP. RegisterMedicinePostModel
is used as model for PostRegisterTreatment that is shown in figure E.14 The rest of the models
reflects the information stored in the database.

CAPP - JsonParsers Figure E.13 shows the JsonParsers in CAPP. It is worth mentioning that
DownloadImageTask and InstructionsParser is not currently used. At the start of the project,
the customer wanted easily modifiable instructions for the children. We thought it might be useful
to implement classes that could download instructions from the web. However, the customer never
created these online instructions. We thought it might be useful for future developers to extend
these classes if such functionality is needed one day.

CAPP - JsonPosters Figure E.14 shows the JsonPosters in CAPP. The application does a HTTP
POST is when a mediciation is completed. For consitency among CAPP and GAPP, this package
contains similar classes as those found in GAPP.

CAPP - Services Figure E.16 shows the services in CAPP. As defined by Android[12], a Service

is an application component representing either an application’s desire to perform a longer-running
operation while not interacting with the user or to supply functionality for other applications to use.
We have implemented two services, OnBootReceiver and AlarmUpdateReceiver. OnBootReceiver
is used to gather alarm information from the database once a device is turned on. AlarmUpdateRe-
ceiver has similar functionality. It deletes old alarms, and sets the new alarms.

166

APPENDIX E. CLASS DIAGRAM

Figure E.10: Adapters in CAPP Figure E.11: Available plans in GAPP

Figure E.12: JsonModels in CAPP

167

APPENDIX E. CLASS DIAGRAM

Figure E.13: JsonParsers in CAPP

Figure E.14: JsonPosters in CAPP Figure E.15: Misc classes in CAPP

168

APPENDIX E. CLASS DIAGRAM

Figure E.16: Services in CAPP

Figure E.17: Class diagram for the Karotz application

E.3 Karotz Application

Figure E.17 shows the class diagram for the Karotz app. There are strong relations between all the
modules in the “src” package. The Blopp class is instantiated when the application is started and
has the responsibility of invoking all the necessary modules. It maintains a Repository for connect-
ing to the database. The repository depends on the Notification module for calling the method
makeNotification() which creates a timeout of a given length. The repository ensures that the
method is only called for the nearest scheduled medication, and overwrites all the previously set no-
tification timeouts. When a notification event is initiated, the application calls startMedication()
in the Medication module. The distraction process uses the functions doseListToManuscript()
and interpretAction() in the module util for creating a list of actions required by the manuscript,
and performing them. Action descriptions are stored in an external configuraton file, which is loaded
in the Blopp module in the field config. When a medication is finished, endMedication() calls
logMedicineTaken() in Repository once for each medicine that was taken.

169

Appendix F

Article from Adressa

The following article was published in Adresseavisen on Tuesday the 9th of October 2012. The
article is about the BLOPP-project, which is the parent project of our prototype. The article is
written by Opland, Egil M. for Adresseavisen. Photos taken by Olsen, Kjell A.

171

Appendix G

Abbreviations

BLOPP Barnas legemiddelopplevelse

GAPP Guardian Application

CAPP Children Application

NAAF Norges astma- og allergiforbund

OS Operative system

NSEP Norsk senter for elektronisk pasientjour-
nal

NTNU Norwegian University of Science and
Technology

IDI Department of Computer and Information
Science (at NTNU)

SHAP Sykehusapotekene

IPD Department of Product Design (at NTNU)

GUI Graphical user interface

SWOT Strengths, weaknesses, opportunities
and threats

API Application program interface

IT Information technology

RFID Radio-frequency identification

REST Representational state transfer

TTS Text-to-speech

HTTP Hypertext Transfer Protocol

IDE Integrated development environment

SDK Software development kit

JVM Java Virtual Machine

ADT Android Development Tools

SQL Structured Query Language

PHP PHP: Hypertext Preprocessor

HTML HyperText Markup Language

MVC Model, view, controller

PFR Parent functional requirement

CFR Child functional requirement

KFR Karotz functional requirement

LAN Local area network

JSON JavaScript Object Notation

XML Extensible Markup Language

ER Entity relationship

VPN Virtual private network

SUS System usability scale

175

	Introduction
	Project Information
	Project Name
	Background
	The task
	Measurement of project effort
	General terms
	Planned effort
	Schedule of results
	Report Outline

	Customer Information
	Sponsor
	Partners
	Customer contacts

	Project Management
	Members
	Roles
	Responsibilities among roles
	Weekly schedule
	Work Plan
	Phases
	Activities
	Person-hours per activity and phase
	Gantt Diagram

	Risk Analysis
	Internal Risks
	External Risks
	SWOT analysis

	Quality Assurance
	Language
	Customer Meeting
	Advisor Meeting

	Preliminary Studies
	Children with asthma
	Traffic Light Classification of Asthma Condition

	Parents with children affected by asthma
	The concept of gamification
	Karotz
	Application Platform

	Pollen forecast
	Design workshop
	Results
	What was used in the further development

	Frameworks used in the Project
	Programming Languages, Message Formats and File Formats
	Database
	Extra Tools used in the Project
	Design Principles

	Software Architecture
	MVC - Model View Controller
	4+1 View Model

	Privacy and security

	Development Methodology
	Waterfall vs Agile development
	The Waterfall Method
	Scrum
	Kanban

	Choice of methodology
	Sprints

	Requirement Specifications
	Use Cases
	Actors
	Textual Use Cases for GAPP
	Textual Use Cases for CAPP

	Functional Requirements
	GAPP - Guardian Application
	CAPP - Children's Application
	Karotz Application

	System Design
	Architectural Description
	Software architecture
	Logical View
	Development View
	Process View

	Architecture Rationale
	Database
	Databse Implementation
	Database Access Layer

	Overall Test Plan
	Test methods
	Black-box testing
	White-box testing

	Test levels
	Unit testing
	Module testing
	Integration and System testing

	Testing approach

	Sprint 1
	Sprint Plan
	Sprint backlog
	Design and Implementation
	User Interface Layer
	Application Logic Layer
	Data Persistence Layer

	Testing and Results
	Testing
	Results

	Sprint Retrospective
	Sprint Burndown Chart

	Sprint 2
	Sprint Plan
	Sprint backlog
	Design and Implementation
	User Interface Layer
	Data Persistence Layer
	Database Access Layer

	Testing and Results
	Testing
	Results

	Sprint Retrospective
	Sprint Burndown Chart

	Sprint 3
	Sprint Plan
	Sprint backlog
	Design and Implementation
	User Interface Layer
	Application Logic Layer
	Data Persistence Layer
	Karotz

	Testing and Results
	Testing
	Results

	Sprint Retrospective
	Sprint Burndown Chart

	Sprint 4
	Sprint Plan
	CAPP
	GAPP

	Sprint backlog
	Design and Implementation
	User Interface Layer
	Application Logic Layer
	Data Persistence Layer
	Karotz

	Testing and Results
	Testing
	Results

	Sprint Retrospective
	What went well?
	What shall we start doing?
	What could have gone better?
	What should we stop doing?
	Sprint Burndown Chart

	Sprint 5
	Sprint Plan
	Sprint backlog
	Design and Implementation
	User Interface Layer
	Application Logic Layer
	Data Persistence Layer

	Testing and Results
	Testing
	Results

	Sprint Retrospective
	What went well?
	What shall we start doing?
	What could have gone better?
	What should we stop doing?
	Sprint Burndown Chart
	Screenshots
	GAPP - Screenshots

	Usability Testing
	What is usability testing
	How to do usability testing
	Usability testing in our project
	Paper prototype test
	Usability testing of the distraction

	Further Work
	Improvements
	Wifi access and caching of database records
	Security and privacy
	Rewardsystem
	Distraction sequence for children
	User testing of the guardian application
	Web application
	Support for more children

	Ideas and minor improvements

	Evaluation
	Work Process
	Development Methodology
	Development Process
	Work Load

	The Final Product
	Functional Requirements completed
	Concluding Remarks

	Appendices
	Paper Prototype
	About paper prototyping
	Usability Testing with a paper prototype
	Testprocedures
	The testpersons tasks
	The testgroups tasks

	Document templates
	Agenda
	Status reports

	Karotz Manuscript
	Coding Templates
	Coding Style
	Package conventions
	Indentation
	Curly Brackets
	Naming Conventions
	Android views
	Code Examples
	LaTeX folder structure

	Class diagram
	Class Diagram GAPP
	CAPP - Children Application
	Karotz Application

	Article from Adressa
	Abbreviations

