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Human health risk assessment in regions
surrounding historical mining activities: the effect

of change of support

A. KORRE*{, J. R. GAY{ and S. DURUCAN{

{Department of Earth Science and Engineering, Royal School of Mines,
Imperial College London, London, UK

{Health Protection Agency, Centre for Radiation, Chemical and Environmental
Hazards, Chilton, Didcot, UK

This paper presents a probabilistic exposure model and its adaptation for use

with spatially explicit information: soil contaminant concentrations and pH

levels, predicted by geostatistical simulation; and population data mapped

according to place of residence. Sequential indicator simulation (SIS) is used to

provide 1000 plausible maps of soil contaminant concentrations, and results are

fed into the exposure model to produce risk maps. Distributions of exposure

values are closely related to uncertainty in the soil contaminant values. Using a

different support for the estimations has a large effect on the results when

comparing exposure values to regulatory cut-offs. Mapping the number of

overexposed people allows effective targeting of clean up to reduce efficiently the

number of overexposed individuals. Two areas of historical mining activity, a

case study from the Southern Urals region of Russia for metal mining and

another study from the Tula coal mining region of Russia, are used to

demonstrate the importance of the support in the human health risk evaluation.

Keywords: Geostatistics; Risk assessment; Contaminated land; Mining

1. Introduction

In the past, risk assessments have been to some extent qualitative, rating sites simply as high,

medium or low risk. More recently, the methodologies developed focus on more quantitative risk

assessments which not only give a numerical estimation of the risk, but also attach some measure

of the uncertainty in the numeric estimation, for instance, by attaching a confidence interval to the

estimate. In such cases, the results may be presented as the risk of one additional cancer death per

million population, or the probability of a person exceeding the tolerable daily soil intake (a dose

which is deemed to present no health risk).
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A further improvement has been a move away from deterministic assessments to probabilistic

ones. A deterministic risk assessment uses a point value for each variable in the risk equation, e.g.

the average soil concentration and the average bodyweight of the receptor, whereas a probabilistic

assessment takes into account the variability of natural phenomena and uncertainty in

measurements. Some variables in the risk equation have a distribution of plausible values and

using probabilistic methods, like Monte Carlo methods, by repeatedly sampling the input

distributions and feeding the values into the risk model, a distribution of plausible answers is

produced. This distribution captures the uncertainty and contains much added information for the

risk manager, who can see the average, maximum and minimum likely exposure results for the

population in question.

One deficiency in many of these models is that the spatial dimension is neglected when

calculating the risks. Land contamination often occurs in hotspots, and it is therefore inadequate

to assume that the whole population is exposed to the same, maybe average, soil contaminant

level. Of the quantitative and spatially-evaluated methodologies in the literature, most are geared

towards ecological assessment (Clifford et al. 1995, Hope 2001, Kooistra et al. 2001, Linkov et al.

2001), while the few that deal with human risk calculate and map hypothetical risks in each cell of

a gridded map, assuming that a ‘critical receptor’ resides there (Tristan et al. 2000, Korre et al.

2002).

This work, on the other hand, uses a probabilistic exposure model developed by the authors

(Gay and Korre 2006) which utilizes spatially explicit information: soil contaminant concentra-

tions and pH values predicted by geostatistical simulation; and population numbers mapped

according to place of residence. The likely exposure of the population to the contaminant in the

top soil, measured in milligrams per kilogram of bodyweight per day [mg (kg71 BW) d71], is

calculated.

This spatial method, however, is subject to the well known phenomenon of support effect,

whereby calculations on a larger support (size of the area that corresponds to each prediction) are

subject to less variance than those on a smaller support. The exposure results may therefore

appear better or worse, simply by consequence of the support size.

This paper demonstrates the importance of agreeing a support size in advance of the risk

assessment, since judicious choice of support could enable a risk assessor to tailor the results to

better suit the cause. For similar reasons, agreeing which percentile of the distribution of results to

use in making decisions is also important. Results are presented in the form of probability

distributions and risk maps.

A case study from the Southern Urals metal mining region of Russia is used to demonstrate the

effect of support size on a calculation of potential human health risks due to exposure to metal

(Ni) contaminated soils. A second case study from the Tula coal mining region of Russia is used to

illustrate the approach for Cd exposure which is pH dependent.

2. Methodology

The terms ‘exposure’ and ‘intake’ are often used in the literature in conflicting ways. In this

paper, the authors follow the precise definitions used in a UK report by the Department of

Environment, Food and Rural Affairs and Environment Agency (DEFRA & EA 2002) as follows:

Exposure: the amount of chemical in a medium that is available for intake by the population;

expressed in mg kg71.

Intake: the amount of chemical entering or contacting the human body at the point of entry;

expressed in mg (kg71 BW) d71.
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The process for quantitatively assessing risks from contaminated land, in a manner which

preserves the spatial distribution of the risks and also gives a measure of uncertainty in the

estimations, starts with collection and analysis of soil samples from the site in question. Using

geostatistical methods, it is possible to predict and map the soil contaminant concentration across

the entire site. Following this, there are two levels at which risk to human health from

contaminated land may be evaluated. First, one may quantify the contaminant concentration in

the soil (mg kg71) and compare it to a regulatory cut-off level deemed ‘safe’ or ‘acceptable’; Level

1 in figure 1. This technique has been demonstrated many times (Flatman et al. 1985, Leonte and

Schofield 1996, Meshalkina 1996, McKenna 1998) and will not be discussed here. Second, one

may calculate the human intakes of soil contaminants (mg (kg71 BW) d71) and compare them to

regulatory ‘safe’ or ‘acceptable’ intake levels; Level 2 in figure 1. In the spatially-evaluated

methodology developed by the authors (Gay and Korre 2006), calculations of the risks at Level 2

are achieved by mapping the local population across the contaminated site, introducing the local

population and contaminant data into an intake model and evaluating the results of the intake

assessment at each location on the site. Maps are produced to illustrate, for example, counts of

people with predicted excess intakes, and may be stratified to show the amount by which the

population is in excess of the regulatory ‘safe’ intake in different places. In this way, the risk

manager is supplied with maps detailing where the greatest number of people are at risk from soil

contamination and by how much they exceed ‘safe’ intake levels, thus enabling the manager to

target resources efficiently.

Figure 2 is a visual summary of the stages undertaken in the newly proposed spatially-evaluated

risk assessment methodology (Gay and Korre 2006), to aid the reader during the sections which

follow.

2.1 Exposure calculation

Exposure was modelled by the UK Contaminated Land Exposure Assessment (CLEA) algorithm

which models intake via three routes: inhalation; dermal absorption; and oral intake (DEFRA &

Figure 1. Two levels of approach to the assessment of risks to human health from contaminated

land.
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Figure 2. Stages of the spatially-evaluated probabilistic intake assessment methodology.
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EA 2002). However, less than 1% of soil Ni (DEFRA & EA 2002) or soil Cd (DEFRA & EA

2002) is taken in via the inhalation and dermal routes, and therefore, only exposure through the

oral pathway is calculated as follows:

ADE ¼ IRoral � EForal � EDoralð Þ
BW�AT

ð1Þ

where

IRoral ¼ IRdsi þ IRisi þ IRveg ð2Þ

and

IRdsi ¼ Csoil � SDR ð3Þ

IRisi ¼ Csoil �
X

veg type

CRveg � BW�HFveg � SLveg

� �
ð4Þ

IRveg ¼ Csoil �
X

veg type

CRveg � BW�HFveg � CFveg

� �
ð5Þ

where

ADE: average daily exposure to a chemical from soil [mg (kg71 BW) day71]

IR: chemical exposure rate (mg day71)

Csoil: contaminant concentration in soil (mg g71)

SDR: average daily soil and dust ingestion rate (g day71)

BW: bodyweight (kg)

CRveg: consumption rate per vegetable (g FW day71)

HFveg: fraction per vegetable that is home grown (7)

SLveg: amount of attached soil per vegetable (g g71 FW)

CFveg: calculated soil to plant concentration factor (mg g71FWplant/mg g71DWsoil)

Of the inputs to the model, SDR (pre-school children only), BW, CRveg and HFveg are treated

probabilistically. In the CLEA methodology, Csoil is treated deterministically, i.e. a single value is

taken to be representative of the soil contaminant value. The CLEA methodology was modified so

that Csoil is treated probabilistically and spatially (Gay and Korre 2006). The original methodology

developed by the authors (Gay and Korre 2006) assumes that the intake of contaminant is

independent of soil pH, which is not necessarily correct in all cases. For example, cadmium (Cd)

intake is pH dependent: the lower the pH, the higher the soil to plant concentration factor (CFveg)

and hence the higher the likely human intake. For this reason, for Cd intake CFveg, is also

treated probabilistically by linking it to pH via the following regression equations (DEFRA & EA

2002):

Root veg : ln ðCFÞ ¼ 11:174� ð1:6461� pHÞ ð6Þ

Leafy veg : ln ðCFÞ ¼ 11:206� ð1:634� pHÞ ð7Þ
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Exposures can be calculated by assuming that home grown vegetables are consumed, or not.

Assuming no home grown vegetable consumption for the Cd intake has the advantage of

removing the pH dependent factor, difference in exposure at the two supports will be solely due to

changes in soil Cd and the support effect can be clearly demonstrated. Including home grown

vegetable consumption, on the other hand, will likely give a more realistic assessment of exposure

for a study area, particularly, when it is known that a large proportion of the population assessed

consume their own vegetable produce. This is specifically significant since vegetable intake, rather

than direct soil/dust ingestion, is the major source of Cd intake (Moir and Thornton 1989,

DEFRA & EA 2002).

The population was kept identical for all three scenarios examined (50 m EU, 500 m EU and

nonspatial) in each of the case studies, in as much as all the probabilistic population variables

selected for simulation one would be the same in all three scenarios, and those for simulation two

would be the same in all three scenarios and so on for each of the 1000 simulations. The only

differences in calculations were the Csoil values for the Ni case study and Csoil and CFveg values for

the Cd case study, which depended upon the support size used.

2.2 Risk estimation

First, geostatistical sequential indicator simulation (SIS) is used to provide 1000 plausible maps of

soil concentrations for Ni or Cd on a grid. In the case of Cd exposure, this process was repeated

for soil pH values. One cell is assumed to be the ‘exposure unit’ (EU) such that a person inhabiting

that cell is assumed to be exposed to that concentration of soil metal on a daily basis over the

period of a year. Next, the population in each settlement is allocated to one of these exposure

units. Finally, 1000 chronic intake values are calculated for each person in the population by

means of a probabilistic exposure equation which uses the 1000 EU soil concentrations (for Ni and

Cd) and pH levels (for Cd) as inputs in the EU to produce a distribution of 1000 possible

exposures for each person.

Next the EU size is changed to a 10 times larger square. The average soil concentration for that

square is calculated by averaging the values for the 100 original size cells and the population of the

original 100 EUs is now exposed to the larger EU average soil value. Lastly, the whole region is

taken as the EU, and the whole population is assumed to be exposed to the average soil

concentration for the region. This, in effect, is a nonspatial assessment.

On the basis of the original soil sampling density, the assessment is made on a 50650 m2, a

5006500 m2 as well as the whole region for Ni in the Southern Urals. For Cd in the Tula region,

the EU support effect is investigated by working on a 25625 m2 grid then a 2506250 m2 grid and

by using the whole site average.

The seriousness of the estimated exposures is assessed by comparing the results to an advisory

Tolerable Daily Soil Intake.

3. Case studies

3.1 Nickel exposure and risk assessment: Gai region

The Gai copper-zinc-pyrite deposit is situated in the Orenburg region of the Southern Urals in

Russia and has been mined since 1959. 85 – 90% of mining takes place underground (figure 3).

Dressing and metallurgical processing is also carried out in the region and spoil heaps are evident

in the vicinity of the villages and towns. There are four settlements in the study area, three villages

(Kalinovka, Kameinino and Popovka) and a town (Gai), with a total population of about 35 000.
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By way of illustrating the methodology, Ni exposure was investigated. Ni can be a cause of

dermatitis and, more seriously, reproductive problems including spontaneous abortion and

malformations. Russian ‘Tentative Allowable Concentrations’ (TAC) are advisory concentrations

meant to be protective of agricultural soils (Hygienic Standards 1995). Of 160 topsoil samples

taken in the region, 24% exceeded the TAC of 80 mg kg71. Table 1 shows the statistics for the Ni

soil samples, and figure 4 shows a map of the Gai region. No regulatory concentrations that are

Figure 3. Map showing the location of the two case studies, Gai and Vasilevskaya regions in

Russia.

Table 1. Statistics of Ni sample distribution.

Statistic Ni (mg kg71)

Mean 74

SD 79

Min 18

5% 31

Median 64

95% 108

99% 280

Max 981

TAC 80

TAC shown for reference.
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Figure 4. Gai mining region showing settlements, position of the waste tips, the locations and

measured concentrations (mg kg71) for Ni samples.
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specifically health-protective were found in Russian regulations; therefore, the UK regulatory

‘Tolerable Daily Intake’ (TDI) was used as a basis for the health risk assessments.

SIS was undertaken to provide 1000 plausible soil maps. The set of maps represents the

uncertainty in the soil concentrations, and the uncertainty in each EU is represented by

the distribution of 1000 values for that cell. Omnidirectional indicator variograms were fitted at

the nine decile values of the sample data: 39, 46.5, 56.5, 61.5, 63.5, 67, 74, 85 and 99 mg kg71. The

variogram models, fitted using Isatis (Geovariances 2007), were composed of nugget, exponential

and/or spherical components. Simulations were carried out with GSLIB’s SISIM routine (Deutsch

and Journel 1998) on a 50650 m2 square grid with 290 cells in each direction. Minimum and

maximum allowable Ni concentrations were set to 10% less and 10% more than the minimum and

maximum sample values, respectively (i.e. to 16 mg kg71 and 1080 mg kg71), assuming that it was

unlikely that the minimum and maximum values would have been found in sampling. The figure

of 10% is arbitrary, but may well lead to more realistic simulations.

The results obtained on the 50650 m2 grid were converted into the 5006500 m2 grid by

averaging the 100 smaller values inside each larger cell. They were also averaged to produce a

global average for the whole site. This was to assess if the support effect from the geostatistical

calculations had an impact on the results of the exposure calculation.

Population numbers, split by age group (0 – 5 years, 6 – 17 years and 18þ years), are known for

each settlement and are given in table 2. Exact coordinate locations of the population were

unavailable; therefore, individuals were allocated to 50650 m2 EUs in as logical a manner as

possible. This was done by marking the grid cells in each settlement which contained buildings,

then dividing the population for each settlement between the occupied cells in as near uniform

manner as possible (ensuring no fractions of people existed). The numbers were aggregated up for

the 5006500 m2 EUs.

The Tolerable Daily Soil Intake (TDSI) is a regulatory value used in the UK, and ADEs

calculated for the population in the Gai region are compared to this value as an indication of the

seriousness of the exposures experienced. A Tolerable Daily Intake (TDI) of 5 mg (kg71 BW) d71

is specified for Ni intake (DEFRA & EA 2002). The mean daily intake from background sources,

which is age dependent, is subtracted from the TDI to give the TDSI, e.g. 2.7 mg (kg71 BW) d71

for an adult weighing 70 kg. ADE for each individual is compared to its estimated TDSI and the

number of the population exceeding the TDSI is calculated.

3.1.1 Ni risk assessment results and discussion. There are 1000 ADE outcomes for each person. Box

and whisker plots in figures 5 to 7 represent the distribution of upper 95th percentile (P95) values

for each person, split by age category: figure 5 shows results for 0 – 5-year olds; figure 6 for ages

6 – 17 years; and figure 7 for ages 18þ. The lines represent (from top to bottom) maximum, P75,

P50, P25 and minimum, triangles represent the mean ADE [mg (kg71 BW) d71]. Figures 8(a) to

8(c) show the distribution of estimates, from the 1000 simulations, for the fraction of the total

population that exceeds the TDSI.

Table 2. Population distribution in the four settlements in the Gai region.

Gai Kalinovka Kameinino Popovka

Infant 2540 8 22 12

School age 5760 12 35 26

Adult 26 076 55 263 188

Human health risk assessment in mining regions 227
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Figure 5. Distributions of P95 of Ni ADE estimates for infants using different support sizes in the

Gai region (n¼ 2582).

Figure 6. Distributions of P95 of Ni ADE estimates for school-age children using different support

sizes in the Gai region (n¼ 5833).
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The maps in figure 9 show the spatial distribution of the number of people exceeding the TDSI

calculated at two different supports (500 m and 50 m EUs). The P95 estimate is shown for each

cell. The 50 m results have been aggregated into 500 m cells purely for display purposes and for

ease of comparison.

Figures 5 to 7 clearly show a difference between the results calculated with a different support

size, taken here to be representative of the EU (exposure unit). The figures show the upper 95th

percentile estimates for ADE (average daily exposure) for each person in the population after 1000

simulations. Using the average simulated soil value for the entire area leads to less uncertain

results, and the uncertainty increases through the 500 m to the 50 m EU size. The interquartile

ranges in figures 5 to 7 increase with decreasing support size, as do the upper extremes.

Figure 6 (school-age children) and figure 7 (adults) are of a more similar magnitude than

figure 5 (infants). This is due to large differences in behaviour for babies and small children. They

experience many more hand to mouth contacts than older age groups and are more likely to

mouth any object put before them increasing their direct (inadvertent) soil and dust intake (SDR).

Similar plots of median ADE (not shown) are less markedly different than those of the P95

values. Again, the school-age children and adults are of a similar magnitude, and infants about

twice as high. In this case, however, the median 500 m EU values are very slightly higher than the

50 m EU values. This may be due to the support effect increasing the lower soil values, thus

pushing up the median estimates.

Other factors playing a part are the spatial position of the population and the person-specific

variables such as bodyweight (BW). It may be the case that a person residing in a 50 m EU is

exposed to a very small Ni concentration and another in the adjacent EU is exposed to a very

high concentration. Despite this, they may receive the same dose of Ni, because of other

factors like BW: for equivalent concentrations of Ni, a small bodyweight leads to a higher dose

[mg (kg71 BW d)71] than a large bodyweight. Therefore, a small person exposed to a low

Figure 7. Distributions of P95 of Ni ADE estimates for adults using different support sizes in the

Gai region (n¼ 26 582).
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concentration could experience the same dose as a large person exposed to a high concentration. It

is possible when changing support to ‘move’ persons from either low or high Ni concentrations to

a more average concentration, but the effect of this change on exposure will be affected also by

other parameters particular to that individual.

The stark difference in the P95 estimates is important. Regulators often use the P95 value as a

‘reasonable maximum’ value when assessing risks (USEPA 1989). Figures 8(a) to 8(c) show the

distribution (after 1000 simulations) of the estimated percentage of the population which exceeds

the TDSI. Nonspatial assessment, using an average soil value, leads to a very tight, maybe over-

confident, estimate that around 20% of the population is overexposed. Assuming a 500 m square

EU suggests that around 20 – 40% of the population is overexposed, while assuming a 50 m

square EU suggests a figure of around 20 – 35%. In this case, the 500 m support leads to a more

Figure 8. Proportion of the population which exceeds the Ni TDSI in the Gai mining region: (a)

calculated nonspatially, (b) calculated for 500 m EUs and (c) calculated for 50 m EUs.

(Distribution of results from 1000 simulations.)
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uncertain estimate of exposure than the 50 m support, despite the simulated soil values being more

uncertain at the 50 m support level. This may be due to the spatial position of the population. It is

possible that no population resides in the cells with the most extreme soil values, or the individuals

that do reside in these cells, do not suffer extreme exposure because of other variables that affect

their exposure levels being more ‘average’. Another reason that there appears to be more people

exceeding the TDSI at the 500 m EU size than at the 50 m EU size could be the position of the

TDSI within the distribution of the ADE estimates for each individual. Even though the

calculated ADEs may be more variable at the smaller EU size, at the larger EU size the support

effect may have the result in raising all the lower estimated soil values, increasing the ADE

estimates and therefore pushing more of the ‘low’ estimates over the TDSI limit. In this case, we

are not concerned with how much in excess the exposure is, rather just that it is, so we may have

lots of ‘small’ overexposures at the 500 m EU size rather than fewer ‘large’ overexposures at the

50 m EU level.

Figure 9 maps out the places where excess exposures occur. The numbers plotted are the P95

estimates. Again, using these extremely high values highlights differences due to support, whereby

there are more people in excess of the TDSI when calculated at the smaller support than at the

larger support.

Some regulators produce regulatory guidelines theoretically based on the protection of the 95th

percentile of the population (a ‘reasonable maximum) (DEFRA & EA 2002), and so it may be of

Figure 9. P95 estimate of the number of the population in each 500 m cell that are exposed in

excess of the Ni TDSI in the Gai region; (a) calculated on a 500-m grid; (b) calculated on a 50-m

grid and aggregated for a clearer comparison.
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interest to clean a site to a level that, in theory, protects 95% of the population. It is necessary to

know where the population is positioned in order to target clean up in the right places.

The highest number of excesses occurs in the city. This could be due to high soil concentrations

or the fact that there is a high population density there, or a combination of the two. In a village,

for example, even if the soil concentration is high, there are few people that the excesses may not

seem unreasonable. If one wishes to protect 95% of the whole population in the region as a

reasonable target, it may be more efficient to clean slightly contaminated soils in the city, where

more people are exposed, than extremely contaminated soils in the villages where few people are

exposed in order to reduce the exposures of a higher number of people below the TDSI more

quickly. This approach seems a somewhat clinical method to meet targets, rather than assessing

the size of the excess exposures.

3.2 Cadmium exposure and risk assessment: Vasilevskaya region

The Vasilevskaya coal mines lie in the Tula region of Russia, approximately 200 km south of

Moscow (figure 3). Both underground and opencast mining methods are used to extract lignite

which is processed on site and, consequently, large waste dumps are found in the area. In the study

area there are four settlements, relatively small in size, with a total population of 6554 people

(figure 10). Cd is toxic to humans, causing renal damage and some types of cancer. Exposure to

Cd was investigated since the soil concentration levels in the region are at or around the safe

threshold levels: 1 mg kg71 at pH less than 5.5 and 2 mg kg71 at pH over 5.5 (Hygienic Standards

1995).

One hundred and thirty-five topsoil samples were taken across the region and the distributions

of the levels of Cd and pH are given in table 3. pH was also measured, since the CFveg variable in

the exposure model is pH dependent. The sample positions are shown in figure 10 and the symbols

represent the level of Cd in the topsoil.

Three ‘non detect’ Cd samples were recorded and were changed to be equal to the detection limit

of the analytical test (0.1 mg kg71), so that the range of Cd values becomes 0.1 – 1.9 mg kg71.

Indicators were modelled at the 10th, 19th, 39th, 61st, 78th, and 89th deciles being 0.35, 0.45, 0.55,

0.65, 0.75, and 0.95 mg kg71, respectively. Isotropic variogram models were fitted using Isatis

(Geovariances 2007) and were composed of nugget and spherical components. SIS was

undertaken, with the GSLIB SISIM routine (Deutsch and Journel 1998) on a 25625 m2 square

grid with 330 cells in the east-west direction and 160 north-south. Simulated Cd values were

allowed to fluctuate between the detection limit value and 10% higher than the maximum

measured sample value: 0.1 and 2.1 mg kg71, respectively. The results obtained on the 25625 m2

grid were converted into the 2506250 m2 grid by averaging the 100 smaller values inside each

larger cell. They were also averaged to produce a global average for the whole site. This was to

assess if the support effect from the geostatistical calculations had an influence on the results of the

exposure estimation.

The process was repeated for pH. Isotropic variograms were modelled at the 10th, 20th, 31st,

43rd, 53rd, 61st, 72nd, 83rd and 90th percentiles being pH 5.65, 6.05, 6.65, 6.95, 7.15, 7.35, 7.45,

7.55 and 7.65, respectively. Nugget and spherical components were used at the lower deciles and

nugget and exponential at the higher deciles. Simulations were allowed to fluctuate between pH

7.9 and pH 4.1.

Population numbers, split by age group (0 – 5 years, 6 – 17 years and 18þ years), are known for

each settlement. Exact coordinate locations of the population were unavailable, and therefore,

people were allocated to 25625 m2 EUs by marking the grid cells in each settlement which

contained buildings, then dividing the population for each settlement between the occupied cells in
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Table 3. Sample distribution for Cd and pH (n¼ 135).

Statistic Cd (mg kg71) pH

Mean 0.6 6.9

SD 0.3 0.8

Min 0.0 4.2

5% 0.2 5.2

Median 0.6 7.1

95% 1.2 7.7

99% 1.9 7.8

Max 1.9 7.8

Figure 10. Vasilevskaya mining region showing the settlements, position of the mines and waste

tips, the locations and measured concentrations (mg kg71) for Cd samples.
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as near uniform manner as possible (ensuring no fractions of people existed). The numbers were

aggregated for the 2506250 m2 EUs.

3.2.1 Cd risk assessment results and discussion. There are 1000 ADE outcomes for each individual

in the population and figure 11 shows the distributions of the 95th percentile (P95) exposure values

calculated for each person by age category on the 25625 m2 and 2506250 m2 support. Figure 12

shows the 5th percentile (P5), median (P50) and P95 estimates for the adult age category at each

support. Figure 13 shows the distribution of 1000 estimates for percentage of the whole

population which exceeds a regulatory ‘safe’ cut-off, while figure 14 maps the median estimate of

overexposed individuals per 250 m EU.

Figure 11 demonstrates the differences in exposure between the age classes, with the 0 – 5-year

olds having the biggest P95 ADE estimates. This is due to behavioural patterns seen in youngsters,

such as mouthing objects and playing on the floor, which can lead to higher exposures. Though

not clear in the youngest age class, it can be seen in the two older age groups that the spread of the

ADE estimates is less at the 250 m EU size than the 25 m EU size and this will be a direct result of

the smoothing of the soil concentrations by averaging the 25 m EU results for the 250 m results.

Figure 12 shows the support effect in another way, for the adult age class. P5 estimates for the

nonspatial, 250 m EU size and 25 m EU size are graphed on cumulative plots. This is repeated for

P50 and P95 estimates. Plot (a) shows that the P5 estimates are highest for the nonspatial

calculation, followed by the 250 m EU then the 25 m EU. Plot (b) shows the P50 again highest for

the nonspatial results, but this time, there is little difference between the 250 m and 25 m EU

results until the top end of the distribution, where the 250 m results are slightly higher. P95 values

Figure 11. Distribution of P95 ADE estimates in Vasilevskaya region without vegetable

consumption after 1000 simulations. Lines represent (from top to bottom) maximum, 75th

percentile, median, 25th percentile, and minimum. Triangles represent the mean.
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Figure 12. ADE estimates for adults without home grown vegetable consumption on different

support sizes in Vasilevskaya region.
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in plot (c) are quite similar up to the median and then diverge, with the nonspatial results being

consistently lower than the other two. At first, the 250 m results are higher than the 25 m results,

but at the very upper limits the 25 m EU results are highest.

This demonstrates that the distributions of results are, indeed, squashed as the support size

increases. Nonspatial results have much higher P5s and medians and lower P95s. The 25 m EU

results have the lowest P5s and highest P95s. The 250 m EU results actually have higher medians

than the 25 m EUs but less than the nonspatial results. This suggests that changing support from

25 m to 250 m pushes up the lower values, which raises the medians of the soil values and in turn

this raises the median exposure values.

Figure 13. Proportion of the population exceeding a regulatory ‘safe’ cut-off for (a) nonspatial

(b) 250 m and (c) 25 m support in Vasilevskaya region.
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Vegetable consumption is now included in the exposure estimates. There is a chance that due to

variable pH, which will also change according to support, and hence variable CFveg, the support

effect may be disguised: higher pH leads to less intake from vegetables and lower pH increases

intake from vegetables. However, it seems, from figure 13 that support does affect the results still.

This figure shows the proportion of population which exceed the regulatory safe daily intake of

Cd. The 1000 estimates on the nonspatial scale are tightly bunched, and the variation is low. The

actual fraction estimated is generally higher than at the smaller supports. There appears little

difference at the 250 m and 25 m supports, but the estimates are very slightly higher at the 25 m

support.

These results demonstrate the differences in risk estimates that can be achieved by using

different support sizes for calculating the results. An important implication of this is that the

support size on which the work is undertaken should be agreed between the risk assessor and client

before the assessment begins, otherwise it would be possible to manipulate the results to paint a

better or worse picture as the interested party desires.

Finally, the map in figure 14 shows the spatial distribution of the population estimated to be

over a regulatory ‘safe’ cut-off in each EU. Knowing this spatial distribution will greatly help in

the efficient targeting of the clean up operation, should one be required. For most efficient

reduction of numbers of the population exceeding the cut-off, one can target EUs with the highest

number of overexposed individuals.

Figure 14. Spatial distribution of the median estimate for number of people per EU who exceed

the regulatory ‘safe’ cut-off at the 250-m support size in the Vasilevskaya region.
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4. Conclusions

Overall, the two case studies have demonstrated the effect of support when calculating exposure

from contaminated soil in a spatially explicit manner. It has been shown that choice of support can

have large effects on the number of people in the population which are classed as being over a

regulatory ‘safe’ exposure level. It is important to choose the support in advance of the assessment

to avoid tailoring results to suit an interested party. Mapping the results shows the places with the

highest density of at-risk people, hence allows for targeting of any clean up measures in an efficient

way.

Both Gai and Vasilevskaya case studies have demonstrated how support size and spatial

distribution of people in the contaminated region can, in combination, affect the results of a risk

assessment. Working at a smaller support, when estimating soil contaminant values leads to more

uncertain soil concentrations. The smaller the support, the more variable the soil concentrations

predicted. This is well known in geostatistics as the support effect.

For the Cd risk assessment in the Vasilevskaya region, extreme exposure estimates, estimated by

the upper 95th percentile estimate for each person in the population, are more variable when

calculated for a 50 m EU than when a 500 m EU is assumed, or when the average soil

concentration for the region is taken. This is a direct consequence of the change in soil

concentration estimates to which the population is exposed.

Median exposure estimates are less noticeably different from one support to the next. Median

estimates are more stable than the extremes. When using a critical cut-off (TDSI) with the median

ADE estimates it is possible, due to the support effect and the position of the critical TDSI value

within the calculated ADE distribution, for results to appear worse at the median level with a

larger support size than with the small support size. This is because we are not looking at the size

of the excesses, just counting the number in excess of the TDSI.

Because of these subtle differences, it is important for the risk assessor and risk manager to set

the criteria for judging the risks before the assessment begins to ensure that the results cannot be

tailored to serve a cause.

Knowing the spatial distribution of the excess exposures allows clean up to be targeted at the

highest numbers, so as to make for an efficient reduction in the number of people in the population

exceeding the TDSI.
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