
IMPROVING THE SAFETY OF AUVst

Albert0 Ortiz*, Julian Proenza*, Guillem Bernat** and Gabriel Oliver*

* Math and Cmptr. Sci. Dpt.
University of the Balearic Islands (Spain)

** Dept. of Computer Science
University of York (UK)

e-mail: {dmiaorO,dmijpaO,dmigocO}@ps.uib.es e-mail: bernat@cs.york.ac.uk

Abstract - The cost of Autonomous Underwater Vehicles
is generally high. Therefore, safety, defined as the ability
of being able to physically retrieve the AUV if an emer-
gency situation arises, should be one of the main concerns
in the design of such systems. On a hardware architecture
based on the field bus Controller Area Network, we intro-
duce two different safety layers that are orthogonal to the
rest of the system operation and that can be implemented
using low-cost resources. The first layer is called critical
safety layer (CSL) and reacts autonomously in front of
extremely hazardous situations. All the functionality re-
lated to detecting these critical situations and triggering
the AUV surfacing mechanism is located in a single hard-
ware module, called the Emergency Hardware Module,
that presents internal redundancy for fail-safe behaviour.
As the AUV could be affected by an internal failure not
immediately leading to a critical situation, we introduce
a second layer, called preventive safety layer (PSL), to
avoid waiting until the situation becomes critical. The PSL
monitors the system, and on finding a permanent failure it
triggers the surfacing mechanism as well. Moreover, the
PSL is designed not to interfere with the critical operation
of the CSL. These two safety layers can be taken as a
set of services provided to the designer that can decide
whether to use them or not. On top of these services, the
AUV software designer can add all the application specific
safety mechanisms that he considers necessary for the
particular mission having a minimum guaranteed by the
two aforementioned layers.

I. INTRODUCTION
,.

Traditional submarine missions, generally carried out
with manned submarines or divers, have inherent dangers
for the integrity of the operators and also high set up costs.
Autonomous Underwater Vehicles (AUVs) are of great in-
terest in these environments because they do not need
a crew, they are more flexible and they require smaller
deployment costs. Recent advances in mobile robotics
have allowed the design and construction of AUVs which
do not require any type of human supervision. In this
context, we follow the definition proposed by Kandebo

+This work has been partially supported by the GOVERN BALEAR
(BOCAIB-16,3/2/98).

in [I]: “an AUV is an unmanned and untethered under-
water vehicle that carries its own power source and that
relies on an on-board computer and built-in machine in-
telligence to execute a mission consisting of a series of
preprogrammed instructions, modifiable on-line by data or
information gathered by the vehicle sensors”.

Regardless the particular features of the vehicle and
given the inherent hazards associated with the oceanic
medium, it is obvious that the addition of mechanisms
to ensure that the vehicle can be physically retrieved is
necessary. We consider these features as safety mecha-
nisms.

Safety is generally defined as the probability that a sys-
tem will either perform its functions correctly or will discon-
tinue them in a manner that does not disrupt the operation
of other systems or compromise the safety of any people
associated with the system [2]. A system is fail-safe when,
if it fails, it does in a safe manner. In our context, as there
are no people whose integrity depends on the proper be-
haviour of the AUV, by fail-safe we mean that the system
has the ability to reach the surface whenever a hazardous
situation arises, either because of software or hardware
failure, leaks in the structure, running out of battery or fire,
among others.

We take as a starting point an AUV control architecture
based on the field bus Controller Area Network (CAN) 131.
It includes a Central Processing Node (CPN) that executes
strategic and tactical functions of the system and a set
of Sense&Act nodes (SA) that sample the AUV sensors
and execute commands from the CPN over the system
actuators. On this architecture we will introduce several
safety mechanisms that can also be useful on a centralized
architecture.

It is of special importance to obtain high levels of safety
at a low cost. Moreover, it is very convenient for the AUV
designer to be‘ able to add the safety features as orthog-
onal to the rest of the system operation. Orthogonality
both reduces the cost of the safety addition and permits
the development of the rest of the system independently
of the safety aspects.

We introduce two different safety layers. The first one
is called critical safety layer (CSL) and autonomously re-
acts in front of extremely hazardous situations, which we

979

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on June 9, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

mailto:bernat@cs.york.ac.uk

will call critical situations from now on. All the functionality
related to detecting these critical situations and trigger-
ing the AUV surfacing mechanism is located in a single
hardware module called the Emergency Hardware Module
(EHM). The CSL functionality is obtained by simply adding
this node to the system without having to make any other
change. Special attention has been put on the design of
this node to be able to achieve a fail-safe behaviour.

Using only this first layer the system can detect situ-
ations like batteries running-out, water flooding, or tem-
perature soaring. However, the AUV could be affected
by an internal failure not immediately leading to a critical
situation that the CSL would be unable to detect. This
generates an unnecessarily long waiting period until the
CSL finally triggers the surfacing mechanism because,
for instance, the AUV runs out of battery. Focused on
these cases, we introduce a second layer called preven-
tive safety layer (PSL). An additional requirement for the
new layer is not to interfere with the critical operation of
the first one.

These two safety layers can be taken as a set of ser-
vices provided to the designer that can decide either to
use them or not. Moreover, the AUV software designer
can add all the application specific safety mechanisms
that he considers necessary for the specific mission hav-
ing a minimum guaranteed by the two layers we have
in trod uced.

Related work is presented in the next section, including
a more detailed description of the AUV architecture based
on the CAN bus and other authors contributions to safety
in AUVs. Then, the two layer safety strategy is justified
and each of the layers are described separately. Finally,
some conclusions and future work are outlined.

11. RELATED WORK

The operation of an autonomous vehicle depends on
the information provided by the sensors which are dis-
tributed along its structure. As the size of the vehicle
increases, the cabling associated becomes a problem in
terms of cost, assembling, maintenance and reliability. In
these circumstances, using a field bus is particularly ade-
quate due to its simplicity and generally low cost. More-
over, field buses usually have built-in features specially
designed to work under hostile environments. For these
reasons, field buses have already been used in some
AUVs. In [4] the field bus LONWorks is used to build
a distributed control architecture for an AUV. LONWorks
provides a powerful and easy way to build this type of
systems but it is a proprietary protocol that is only im-
plemented in a commercial circuit: the Neuron Chip by
Motorola.

As a field bus we have chosen the Controller Area Net-
work (CAN) [5]. CAN allows more flexibility on the elec-

' tion of support circuits (controllers, transceivers, etc.) than
other competitors. On the other hand, CAN components
have reduced their cost due to mass production for auto-
motive and automation applications. Other authors have

From navigation. obsbde
avoidance 6 mission sensors

I --. A . I , I ,

PROCESSING
NODE SENSEBACT

NODE NODE

Fig. 1 : Referenced AUV hardware architecture.

chosen CAN before as the basic technology for develop-
ing underwater applications. By way of example, in [6]
CAN is used for internal communications in the manned
submarine NAUTILE and in the benthic station MAP2.

In the rest of this paper we will take as a reference
the distributed architecture depicted in fig. 1 and first de-
scribed in (31. Two different types of nodes can be distin-
guished in this architecture:

1. a Central Processing Node (CPN), which executes
strategic and tactical functions of the system, and

2. a set of Sense&Act nodes (SA) that can sample nav-
igation, obstacle avoidance or even mission sensors,
according to the classification in [7], and carry out
purely executive functions over system actuators like
rudder and bow-plane servos, propellers, thrusters or
electrovalves, just to mention some of them.

All the SA nodes correspond to the same type of phys-
ical circuit consisting of a microcontroller, A/D converters
for analog sensors and a set of CAN support circuits. De-
pending on proximity criteria (between sensors and SA
nodes) and on the load imposed by the different sensors,
it would be necessary to incorporate more or less SA
nodes'. This design approach constitutes an additional
source of cost reduction as the system does not include
specific nodes for every type of sensor.

The main concern of this work is to obtain safety in
AUVs at a low cost. Error detection is an essential step
to achieve a safe behaviour in the presence of faults. In
a system based on a field bus, when a long latency in
the error detection could produce a non safe behaviour,
the inclusion of redundancy at different levels is required.
The communication protocols of typical field buses already
have built-in error detection mechanisms. However, if we
want to guarantee the safe behavior of the system, adding
redundancy at the nodes themselves is also needed as
shown in [8]. Furthermore, it is necessary to distinguish
between errors that do compromise the safety of the sys-
tem from those that do not. This implies the addition of
redundancy management and diagnosis software layers,

In fact, mission sensors like a CCD camera will not be managed by
an SA node due to its characteristic heavy load. In this case a specialized
SA node would be included in the architecture.

980

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on June 9, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

that increases both the development cost and the compu-
tational overhead.

In the AUV literature there are many contributions that
achieve a safety or even reliability improvement using di-
agnosis software layers [9, 10, ll, 12, 13, 141. Most of
them avoid introducing hardware redundancy. Some use
already available sensors to do data fusion and then detect
errors as inconsistencies. Some follow a model-based ap-
proach and use control theory to detect and even tolerate
faults in the system. It has to be clear that our approach is
complementary to those techniques. As explained at the
introduction, our work focuses on the hardware structure
and provides a low-cost infrastructure fulfilling minimum
safety requirements. Those safety higher layers can be
added on top of our architecture for improved dependabil-
ity.

Ill. SAFETY-ORIENTED HARDWARE SERVICES

As we have limited the safety to the AUV retrieval, we
do not need to detect all the internal errors in a short
time. Moreover, the really hazardous situations can be
characterized by the values of some sensors. These sen-
sors are usually known as vehicle self-diagnostic sensors
(VSD) and include, but are not limited to, leak detectors,
temperature, voltage and current monitors [7]. With these
sensors it is only possible to detect critical situations such
as a significant increase in the temperature (even a fire),
flooding or loss of power. It is clear that these are the situ-
ations that directly compromise the retrieval of the vehicle.

In this way, a critical safety layer (CSL) can be de-
fined by concentrating all critical safety-related functions
in a single hardware node, the aforementioned EHM, and
attaching the VSD sensors directly to it. This direct con-
nection prevents the detection of critical situations from
being affected by other sources of errors. When the CSL
detects a critical situation, it operates directly on the sur-
facing mechanism. The direct connection of the EHM to
the VSD sensors and the independence of the CSL with
respect to the CPN as to taking critical decisions gives the
required property of orthogonality to the CSL.

Fig. 2 shows how the EHM can be added to the general
distributed architecture introduced in fig. 1. Although the
EHM could operate isolated from the rest of the AUV, it
is also connected to the CAN bus to be able to receive
surfacing commands from the CPN. The figure also shows
how the VSD sensors are directly attached to the EHM (A,
H, T and V stand for current, humidity, temperature and
voltage sensors, respectively).

This strategy has the following advantages:

it guarantees the integrity of the vehicle,

the subsystem devoted to critical safety is simple and
therefore reliable; at the same time, this simplicity
reduces the probability of false alarms; and

it reduces the cost of adding safety to the system
because it is only necessary to include internal re-

Fig. 2: Integration of the EHM in the AUV hardware archi-
tecture.

dundancy in the EHM, since it is the only node whose
faults could compromise the system safety.

As it has been explained, our main goal consisting in
assuring the vehicle retrieval is achieved by the critical
layer. However, there can be many situations which will
not be initially considered as critical by the CSL but that
could compromise the development of the mission. For
instance, if the AUV presented a permanent failure in the
propellers, although it would be difficult to accomplish the
mission, this would not be considered as an emergency
by the CSL until the batteries are finished. To avoid these
unnecessary delays we can anticipate the corresponding
critical situations by introducing an additional safety layer
that we call preventive safety layer (PSL). The PSL is
implemented by adding a sensor to each actuator that
provides a feedback to the orders sent by the CPN and
slightly modifying the CSL software to act as a watchdog
for the CPN. In this way, the CPN monitors the correct op-
eration of the actuators and the CSL -the most reliable
and safest part of the systern- monitors the CPN. This
simple scheme achieves a reasonable error detection cov-
erage at a low cost and almost does not interfere with the
critical layer performance.

These two safety layers are conceived as a set of ser-
vices that the designer can decide whether to use them or
not. As the orthogonality requirement demands, the inclu-
sion of these systematic safety services does not require
major changes in the rest of the system, and even less in
the application software, that is the most expensive part
to change.

With regard to the surfacing mechanism, not only is it
fundamental to effectively surface the vehicle, but it is also
necessary to be able to locate it. On the one hand, the
surfacing could start switching the propellers off. Next,
either a ballast releasing or an air-filling floodable tanks
strategy could be applied. Both procedures are simple and
can be implemented with electromagnetic devices which
can also be triggered if the electrical power fails. On the
other hand, special measures could be taken to facilitate
the remote location of the AUV: while it is submerged, an
acoustic modem could operate; once it is on the surface,
the communication could be established by RF.

The next two sections describe in more detail the two
introduced layers of safety.

981

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on June 9, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

Fig. 3: Hardware organization of the EHM node. Si stands
for the different sensors and SM for the Surfacing Mecha-
nism.

IV. THE CRITICAL SAFETY LAYER

After having presented the general functionality of the
CSL and the PSL in the last section, we will move into the
specific design of the CSL. Both hardware and software
have to be carefully designed to attain the fixed require-
ments and functionality. The architecture of the hardware
executing the CSL, the EHM, will be described in the fol-
lowing. The reader is referred to [3] for a more detailed
description including the corresponding schematic.

The EHM is characterized by the need of guaranteeing
that even in case of failure in the EHM itself the surfacing
mechanism is triggered. This requires the EHM to be fail-
safe. In this respect, our approach is conservative in the
sense that the detection of an error in the EHM fires the
surfacing mechanism.

Error detection is done by the duplication and compar-
ison technique. All the components that take part in the
decision process inside the EHM -a set of VSD sensors,
a microcontroller and an external RAM memory- are du-
plicated, as it is shown in fig. 3. Each microcontroller
executes a replica of the CSL software, which resides in
its internal memory and mainly consists of code that con-
tinuously samples its own set of sensors and checks and
writes the obtained data in its own external RAM. Any
discrepancy in the values of addresses, data or control
signals generated by the access to these RAMS is de-
tected by an additional circuit called the Main Comparator
(MC). The access of the microcontrollers to their internal
RAMS, however, is not verified as it does not produce
any change in the output of the circuit. Nevertheless, this
strategy allows detecting errors when executing the critical
functionality of the CSL, as it makes faults in the microcon-
trollers or in the memories be manifest during the sampling
loop. Finally, the circuits related to the implementation of
the access to the CAN do not include special redundancy
because no critical decision is taken from information sent
through the bus.

When the MC detects a discrepancy in the signal val-
ues generated during a cycle memory, it outputs an error
signal that interrupts both processors which enter what
we call a Last Opportunity Procedure (LOP). This is a rou-
tine that reexecutes the last sampling iteration in order to
decide whether the fault that gave rise to the error is tran-
sient or permanent. On the one hand, this reexecution

allows.detecting faults either in the sensors, in the exter-
nal memories or in the microcontrollers when running the
last issued instruction. On the other hand, the comple-
tion of the reexecution determines the type of fault: if it
is transient both nodes will completely reexecute the last
sampling operation and will resume their functions nor-
mally; if the fault is permanent a second interruption will
be produced during the reexecution. Only in this last case
will the surfacing mechanism be activated.

The MC itself is a critical point in the design. Its faults
could produce a whole system non-safe failure. So the
MC itself must be duplicated. This is better done using
design diversity to avoid common mode faults. A final
more simple and reliable comparator receives the error
signals from both versions of the MC and permits detecting
the errors in the MC as well.

Fig. 4 shows a high-level specification of the CSL soft-
ware. It mainly consists of two procedures (CSL and
SampleSensors) and three interrupt service routines (ISR-
WatchdogEHM, ISR-LOP and ISR-CANMessage). In the
figure and in the explanation below, the following fonts will
be used: internal, for variables stored in internal RAM;
and external, for variables stored in external RAM.

As it can be observed, the CSL procedure executes
a short loop that continuously calls the SampleSensors
procedure, which simply polls the VSD sensors and writes
their values in a buffer in external memory M. M is man-
aged as a circular buffer where Mptr is the related access
pointer; this pointer is also stored in the first entry of M. In
this way, if the external memories are non-volatile RAMS
and an external access to them are provided, the last read
sensor values can be retrieved and analysed off-line; that
is, the external memories can be considered as a sort of
black box.

In the SampleSensors procedure, the function Check-
Sensorvalues is supposed to combine the VSD sensors
values so as to determine, from the specific sensors used,
if a critical situation exists (as this decision is dependent
on the selected sensors the exact operation over these
values is not detailed).

With regard to the interrupt service routines, ISR-LOP
implements the above-mentioned Last Opportunity Pro-
cedure, while ISR-CANMessage responds to the arrival
of CAN messages requiring a surfacing operation. Finally,
ISR-WatchdogEHM is needed to overcome some conflicts
that can appear because of the connection of the EHM to
the bus. This connection permits that an anomalously
large number of messages are sent to the EHM due to a
failure in any node attached to the bus. In that case, the
CSL would be continuously interrupted so as not to be able
to poll in time the VSD sensors. As this situation could lead
to a non-detected critical situation, a protection has been
included in the form of a watchdog timer (WatchdogeEiYM)
that the CSL procedure should reset before reaching 0. If
this was not the case, the ISR-WatchdogEHM interrupt
service routine would be invoked, triggering the surfacing
mechanism. It is worth noting that this watchdog timer

982

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on June 9, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

