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Abstract - The cost of Autonomous Underwater Vehicles 
is generally high. Therefore, safety, defined as the ability 
of being able to physically retrieve the AUV if an emer- 
gency situation arises, should be one of the main concerns 
in the design of such systems. On a hardware architecture 
based on the field bus Controller Area Network, we intro- 
duce two different safety layers that are orthogonal to the 
rest of the system operation and that can be implemented 
using low-cost resources. The first layer is called critical 
safety layer (CSL) and reacts autonomously in front of 
extremely hazardous situations. All the functionality re- 
lated to detecting these critical situations and triggering 
the AUV surfacing mechanism is located in a single hard- 
ware module, called the Emergency Hardware Module, 
that presents internal redundancy for fail-safe behaviour. 
As the AUV could be affected by an internal failure not 
immediately leading to a critical situation, we introduce 
a second layer, called preventive safety layer (PSL), to 
avoid waiting until the situation becomes critical. The PSL 
monitors the system, and on finding a permanent failure it 
triggers the surfacing mechanism as well. Moreover, the 
PSL is designed not to interfere with the critical operation 
of the CSL. These two safety layers can be taken as a 
set of services provided to the designer that can decide 
whether to use them or not. On top of these services, the 
AUV software designer can add all the application specific 
safety mechanisms that he considers necessary for the 
particular mission having a minimum guaranteed by the 
two aforementioned layers. 

I. INTRODUCTION 
,. 

Traditional submarine missions, generally carried out 
with manned submarines or divers, have inherent dangers 
for the integrity of the operators and also high set up costs. 
Autonomous Underwater Vehicles (AUVs) are of great in- 
terest in these environments because they do not need 
a crew, they are more flexible and they require smaller 
deployment costs. Recent advances in mobile robotics 
have allowed the design and construction of AUVs which 
do not require any type of human supervision. In this 
context, we follow the definition proposed by Kandebo 
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in [I]: “an AUV is an unmanned and untethered under- 
water vehicle that carries its own power source and that 
relies on an on-board computer and built-in machine in- 
telligence to execute a mission consisting of a series of 
preprogrammed instructions, modifiable on-line by data or 
information gathered by the vehicle sensors”. 

Regardless the particular features of the vehicle and 
given the inherent hazards associated with the oceanic 
medium, it is obvious that the addition of mechanisms 
to ensure that the vehicle can be physically retrieved is 
necessary. We consider these features as safety mecha- 
nisms. 

Safety is generally defined as the probability that a sys- 
tem will either perform its functions correctly or will discon- 
tinue them in a manner that does not disrupt the operation 
of other systems or compromise the safety of any people 
associated with the system [2]. A system is fail-safe when, 
if it fails, it does in a safe manner. In our context, as there 
are no people whose integrity depends on the proper be- 
haviour of the AUV, by fail-safe we mean that the system 
has the ability to reach the surface whenever a hazardous 
situation arises, either because of software or hardware 
failure, leaks in the structure, running out of battery or fire, 
among others. 

We take as a starting point an AUV control architecture 
based on the field bus Controller Area Network (CAN) 131. 
It includes a Central Processing Node (CPN) that executes 
strategic and tactical functions of the system and a set 
of Sense&Act nodes (SA) that sample the AUV sensors 
and execute commands from the CPN over the system 
actuators. On this architecture we will introduce several 
safety mechanisms that can also be useful on a centralized 
architecture. 

It is of special importance to obtain high levels of safety 
at a low cost. Moreover, it is very convenient for the AUV 
designer to be‘ able to add the safety features as orthog- 
onal to the rest of the system operation. Orthogonality 
both reduces the cost of the safety addition and permits 
the development of the rest of the system independently 
of the safety aspects. 

We introduce two different safety layers. The first one 
is called critical safety layer (CSL) and autonomously re- 
acts in front of extremely hazardous situations, which we 
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will call critical situations from now on. All the functionality 
related to detecting these critical situations and trigger- 
ing the AUV surfacing mechanism is located in a single 
hardware module called the Emergency Hardware Module 
(EHM). The CSL functionality is obtained by simply adding 
this node to the system without having to make any other 
change. Special attention has been put on the design of 
this node to be able to achieve a fail-safe behaviour. 

Using only this first layer the system can detect situ- 
ations like batteries running-out, water flooding, or tem- 
perature soaring. However, the AUV could be affected 
by an internal failure not immediately leading to a critical 
situation that the CSL would be unable to detect. This 
generates an unnecessarily long waiting period until the 
CSL finally triggers the surfacing mechanism because, 
for instance, the AUV runs out of battery. Focused on 
these cases, we introduce a second layer called preven- 
tive safety layer (PSL). An additional requirement for the 
new layer is not to interfere with the critical operation of 
the first one. 

These two safety layers can be taken as a set of ser- 
vices provided to the designer that can decide either to 
use them or not. Moreover, the AUV software designer 
can add all the application specific safety mechanisms 
that he considers necessary for the specific mission hav- 
ing a minimum guaranteed by the two layers we have 
in trod uced. 

Related work is presented in the next section, including 
a more detailed description of the AUV architecture based 
on the CAN bus and other authors contributions to safety 
in AUVs. Then, the two layer safety strategy is justified 
and each of the layers are described separately. Finally, 
some conclusions and future work are outlined. 

11. RELATED WORK 

The operation of an autonomous vehicle depends on 
the information provided by the sensors which are dis- 
tributed along its structure. As the size of the vehicle 
increases, the cabling associated becomes a problem in 
terms of cost, assembling, maintenance and reliability. In 
these circumstances, using a field bus is particularly ade- 
quate due to its simplicity and generally low cost. More- 
over, field buses usually have built-in features specially 
designed to work under hostile environments. For these 
reasons, field buses have already been used in some 
AUVs. In [4] the field bus LONWorks is used to build 
a distributed control architecture for an AUV. LONWorks 
provides a powerful and easy way to build this type of 
systems but it is a proprietary protocol that is only im- 
plemented in a commercial circuit: the Neuron Chip by 
Motorola. 

As a field bus we have chosen the Controller Area Net- 
work (CAN) [5]. CAN allows more flexibility on the elec- 

' tion of support circuits (controllers, transceivers, etc.) than 
other competitors. On the other hand, CAN components 
have reduced their cost due to mass production for auto- 
motive and automation applications. Other authors have 
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Fig. 1 : Referenced AUV hardware architecture. 

chosen CAN before as the basic technology for develop- 
ing underwater applications. By way of example, in [6] 
CAN is used for internal communications in the manned 
submarine NAUTILE and in the benthic station MAP2. 

In the rest of this paper we will take as a reference 
the distributed architecture depicted in fig. 1 and first de- 
scribed in (31. Two different types of nodes can be distin- 
guished in this architecture: 

1. a Central Processing Node (CPN), which executes 
strategic and tactical functions of the system, and 

2. a set of Sense&Act nodes (SA) that can sample nav- 
igation, obstacle avoidance or even mission sensors, 
according to the classification in [7], and carry out 
purely executive functions over system actuators like 
rudder and bow-plane servos, propellers, thrusters or 
electrovalves, just to mention some of them. 

All the SA nodes correspond to the same type of phys- 
ical circuit consisting of a microcontroller, A/D converters 
for analog sensors and a set of CAN support circuits. De- 
pending on proximity criteria (between sensors and SA 
nodes) and on the load imposed by the different sensors, 
it would be necessary to incorporate more or less SA 
nodes'. This design approach constitutes an additional 
source of cost reduction as the system does not include 
specific nodes for every type of sensor. 

The main concern of this work is to obtain safety in 
AUVs at a low cost. Error detection is an essential step 
to achieve a safe behaviour in the presence of faults. In 
a system based on a field bus, when a long latency in 
the error detection could produce a non safe behaviour, 
the inclusion of redundancy at different levels is required. 
The communication protocols of typical field buses already 
have built-in error detection mechanisms. However, if we 
want to guarantee the safe behavior of the system, adding 
redundancy at the nodes themselves is also needed as 
shown in [8]. Furthermore, it is necessary to distinguish 
between errors that do compromise the safety of the sys- 
tem from those that do not. This implies the addition of 
redundancy management and diagnosis software layers, 

In fact, mission sensors like a CCD camera will not be managed by 
an SA node due to its characteristic heavy load. In this case a specialized 
SA node would be included in the architecture. 
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that increases both the development cost and the compu- 
tational overhead. 

In the AUV literature there are many contributions that 
achieve a safety or even reliability improvement using di- 
agnosis software layers [9, 10, ll, 12, 13, 141. Most of 
them avoid introducing hardware redundancy. Some use 
already available sensors to do data fusion and then detect 
errors as inconsistencies. Some follow a model-based ap- 
proach and use control theory to detect and even tolerate 
faults in the system. It has to be clear that our approach is 
complementary to those techniques. As explained at the 
introduction, our work focuses on the hardware structure 
and provides a low-cost infrastructure fulfilling minimum 
safety requirements. Those safety higher layers can be 
added on top of our architecture for improved dependabil- 
ity. 

Ill. SAFETY-ORIENTED HARDWARE SERVICES 

As we have limited the safety to the AUV retrieval, we 
do not need to detect all the internal errors in a short 
time. Moreover, the really hazardous situations can be 
characterized by the values of some sensors. These sen- 
sors are usually known as vehicle self-diagnostic sensors 
(VSD) and include, but are not limited to, leak detectors, 
temperature, voltage and current monitors [7]. With these 
sensors it is only possible to detect critical situations such 
as a significant increase in the temperature (even a fire), 
flooding or loss of power. It is clear that these are the situ- 
ations that directly compromise the retrieval of the vehicle. 

In this way, a critical safety layer (CSL) can be de- 
fined by concentrating all critical safety-related functions 
in a single hardware node, the aforementioned EHM, and 
attaching the VSD sensors directly to it. This direct con- 
nection prevents the detection of critical situations from 
being affected by other sources of errors. When the CSL 
detects a critical situation, it operates directly on the sur- 
facing mechanism. The direct connection of the EHM to 
the VSD sensors and the independence of the CSL with 
respect to the CPN as to taking critical decisions gives the 
required property of orthogonality to the CSL. 

Fig. 2 shows how the EHM can be added to the general 
distributed architecture introduced in fig. 1. Although the 
EHM could operate isolated from the rest of the AUV, it 
is also connected to the CAN bus to be able to receive 
surfacing commands from the CPN. The figure also shows 
how the VSD sensors are directly attached to the EHM (A, 
H, T and V stand for current, humidity, temperature and 
voltage sensors, respectively). 

This strategy has the following advantages: 

it guarantees the integrity of the vehicle, 

the subsystem devoted to critical safety is simple and 
therefore reliable; at the same time, this simplicity 
reduces the probability of false alarms; and 

it reduces the cost of adding safety to the system 
because it is only necessary to include internal re- 

Fig. 2: Integration of the EHM in the AUV hardware archi- 
tecture. 

dundancy in the EHM, since it is the only node whose 
faults could compromise the system safety. 

As it has been explained, our main goal consisting in 
assuring the vehicle retrieval is achieved by the critical 
layer. However, there can be many situations which will 
not be initially considered as critical by the CSL but that 
could compromise the development of the mission. For 
instance, if the AUV presented a permanent failure in the 
propellers, although it would be difficult to accomplish the 
mission, this would not be considered as an emergency 
by the CSL until the batteries are finished. To avoid these 
unnecessary delays we can anticipate the corresponding 
critical situations by introducing an additional safety layer 
that we call preventive safety layer (PSL). The PSL is 
implemented by adding a sensor to each actuator that 
provides a feedback to the orders sent by the CPN and 
slightly modifying the CSL software to act as a watchdog 
for the CPN. In this way, the CPN monitors the correct op- 
eration of the actuators and the CSL -the most reliable 
and safest part of the systern- monitors the CPN. This 
simple scheme achieves a reasonable error detection cov- 
erage at a low cost and almost does not interfere with the 
critical layer performance. 

These two safety layers are conceived as a set of ser- 
vices that the designer can decide whether to use them or 
not. As the orthogonality requirement demands, the inclu- 
sion of these systematic safety services does not require 
major changes in the rest of the system, and even less in 
the application software, that is the most expensive part 
to change. 

With regard to the surfacing mechanism, not only is it 
fundamental to effectively surface the vehicle, but it is also 
necessary to be able to locate it. On the one hand, the 
surfacing could start switching the propellers off. Next, 
either a ballast releasing or an air-filling floodable tanks 
strategy could be applied. Both procedures are simple and 
can be implemented with electromagnetic devices which 
can also be triggered if the electrical power fails. On the 
other hand, special measures could be taken to facilitate 
the remote location of the AUV: while it is submerged, an 
acoustic modem could operate; once it is on the surface, 
the communication could be established by RF. 

The next two sections describe in more detail the two 
introduced layers of safety. 
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Fig. 3: Hardware organization of the EHM node. Si stands 
for the different sensors and SM for the Surfacing Mecha- 
nism. 

IV. THE CRITICAL SAFETY LAYER 

After having presented the general functionality of the 
CSL and the PSL in the last section, we will move into the 
specific design of the CSL. Both hardware and software 
have to be carefully designed to attain the fixed require- 
ments and functionality. The architecture of the hardware 
executing the CSL, the EHM, will be described in the fol- 
lowing. The reader is referred to [3] for a more detailed 
description including the corresponding schematic. 

The EHM is characterized by the need of guaranteeing 
that even in case of failure in the EHM itself the surfacing 
mechanism is triggered. This requires the EHM to be fail- 
safe. In this respect, our approach is conservative in the 
sense that the detection of an error in the EHM fires the 
surfacing mechanism. 

Error detection is done by the duplication and compar- 
ison technique. All the components that take part in the 
decision process inside the EHM -a set of VSD sensors, 
a microcontroller and an external RAM memory- are du- 
plicated, as it is shown in fig. 3. Each microcontroller 
executes a replica of the CSL software, which resides in 
its internal memory and mainly consists of code that con- 
tinuously samples its own set of sensors and checks and 
writes the obtained data in its own external RAM. Any 
discrepancy in the values of addresses, data or control 
signals generated by the access to these RAMS is de- 
tected by an additional circuit called the Main Comparator 
(MC). The access of the microcontrollers to their internal 
RAMS, however, is not verified as it does not produce 
any change in the output of the circuit. Nevertheless, this 
strategy allows detecting errors when executing the critical 
functionality of the CSL, as it makes faults in the microcon- 
trollers or in the memories be manifest during the sampling 
loop. Finally, the circuits related to the implementation of 
the access to the CAN do not include special redundancy 
because no critical decision is taken from information sent 
through the bus. 

When the MC detects a discrepancy in the signal val- 
ues generated during a cycle memory, it outputs an error 
signal that interrupts both processors which enter what 
we call a Last Opportunity Procedure (LOP). This is a rou- 
tine that reexecutes the last sampling iteration in order to 
decide whether the fault that gave rise to the error is tran- 
sient or permanent. On the one hand, this reexecution 

allows.detecting faults either in the sensors, in the exter- 
nal memories or in the microcontrollers when running the 
last issued instruction. On the other hand, the comple- 
tion of the reexecution determines the type of fault: if it 
is transient both nodes will completely reexecute the last 
sampling operation and will resume their functions nor- 
mally; if the fault is permanent a second interruption will 
be produced during the reexecution. Only in this last case 
will the surfacing mechanism be activated. 

The MC itself is a critical point in the design. Its faults 
could produce a whole system non-safe failure. So the 
MC itself must be duplicated. This is better done using 
design diversity to avoid common mode faults. A final 
more simple and reliable comparator receives the error 
signals from both versions of the MC and permits detecting 
the errors in the MC as well. 

Fig. 4 shows a high-level specification of the CSL soft- 
ware. It mainly consists of two procedures (CSL and 
SampleSensors) and three interrupt service routines (ISR- 
WatchdogEHM, ISR-LOP and ISR-CANMessage). In the 
figure and in the explanation below, the following fonts will 
be used: internal, for variables stored in internal RAM; 
and external, for variables stored in external RAM. 

As it can be observed, the CSL procedure executes 
a short loop that continuously calls the SampleSensors 
procedure, which simply polls the VSD sensors and writes 
their values in a buffer in external memory M. M is man- 
aged as a circular buffer where Mptr is the related access 
pointer; this pointer is also stored in the first entry of M. In 
this way, if the external memories are non-volatile RAMS 
and an external access to them are provided, the last read 
sensor values can be retrieved and analysed off-line; that 
is, the external memories can be considered as a sort of 
black box. 

In the SampleSensors procedure, the function Check- 
Sensorvalues is supposed to combine the VSD sensors 
values so as to determine, from the specific sensors used, 
if a critical situation exists (as this decision is dependent 
on the selected sensors the exact operation over these 
values is not detailed). 

With regard to the interrupt service routines, ISR-LOP 
implements the above-mentioned Last Opportunity Pro- 
cedure, while ISR-CANMessage responds to the arrival 
of CAN messages requiring a surfacing operation. Finally, 
ISR-WatchdogEHM is needed to overcome some conflicts 
that can appear because of the connection of the EHM to 
the bus. This connection permits that an anomalously 
large number of messages are sent to the EHM due to a 
failure in any node attached to the bus. In that case, the 
CSL would be continuously interrupted so as not to be able 
to poll in time the VSD sensors. As this situation could lead 
to a non-detected critical situation, a protection has been 
included in the form of a watchdog timer ( WatchdogeEiYM) 
that the CSL procedure should reset before reaching 0. If 
this was not the case, the ISR-WatchdogEHM interrupt 
service routine would be invoked, triggering the surfacing 
mechanism. It is worth noting that this watchdog timer 
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