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The development of a method, INTENT, for estimating probabilities as- 
sociated with decisionbased errors is presented. These errors are not ordinarily 
incorporated into probabilistic risk assessments (PRAs) due to both the 
difficulty in postulating such errors and to the lack of a method for estimating 
their probabilities from existing data. By failing to include deeisionbased 
errors in their analyses, most PRA practitioners seriously underestimate the 
true contribution of human actions to systems failure. This paper attempts 
to extend the identification of such errors and to quantify them. Two 
sources, Nuclear Computerized Library for Assessing Reactor Reliability 
(NUCLARR) and licensee event reports (LERs) were reviewed and two 
methods, HSYS and SNEAK, were used to identify a generic list of twenty 
potential errors which may be manifest as erroneous acts. Four categories of 
influence emerged from the data: consequence, attitudes, response set, and 
dependency. Corresponding human error probabilities (HEPs) for each error 
w e r e  generated by expert judgment methods. Lower and upper bounds for the 
HEPs for each error were determined by positing a situation reflecting 
optimized and degraded performance shaping factors, respectively. To allow 
analysts the opportunity to refine these extreme HEP values when evaluating a 
particular scenario of interest, normalization procedures were conducted and 
generic importance weights were computed for each of 11 performance 
shaping factors (PSFs) believed to affect the 20 deeisionbased errors. It is 
believed by the authors that PSFs constitute a performance influence which, in 
some cases, such as in that for training, can serve to either augment or reduce 
the intellectual resources used by people to successfully accomplish tasks. 
These derived importance weights are used in conjunction with situation 
specific PSF ratings to compute a composite PSF score which, in turn, is 
mapped onto an HEP distribution. Distribution assumptions are presented and 
a function defining the relationship between composite PSF scores and HEPs 
is presented for use by the analyst. 

1 I N T R O D U C T I O N  

The Technique for H u m a n  Error  Rate  Prediction 
( T H E R P )  1 is widely used in the nuclear industry for 
modeling human per formance  and for providing 
failure rate estimates for both  errors  of  omission and 
commission. The types of  commission errors ad- 
dressed by T H E R P  are restricted to those commonly 
referred to as errors of  selection and execution, which 
encompass actions per formed incorrectly or  at 
inappropriate times. The inadvertent  selection of the 
wrong control f rom a bank of controls or the 

Reliability Engineering and System Safety 0951-8320/91/$03.50 
~) 1991 Elsevier Science Publishers Ltd, England. 

127 

misreading of a display or indicator are representative 
of these types of errors. T H E R P ,  though, does not 
address an important  subset of errors of  commission 
known as errors of  intention. The distinction between 
errors of commission and errors of  intention seems to 
be acknowledged by a number  of  researchers.  As 
Hollnagel et al. 2 suggest, design errors may be 
reduced by design reviews and failure analyses, 
erroneous actions can not be reduced by the same 
methods. They further contend that to some extent 
these types of errors are unavoidable.  If  this is the 
case, it behoves us to identify (1) the entry 
requirements necessary prior to the occurrence of 
errors of  intention, and (2) the expected failure rate 
once entry requirements have been met.  
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Errors of intention are therefore related to 
cognitive functions. The ability to reason, evaluate 
actions and estimate their consequences, as well as to 
weigh evidence, interpret rules, and regulations is part 
of man's make-up as a rational creature. 3 While errors 
related to these knowledge-intensive activities may 
result in inappropriate actions, they stem from 
erroneous decision-making, poor understanding of 
rules and procedures, and inadequate problem- 
solving. For instance, an incorrect control action 
resulting from the decision to operate outside of 
procedures or from the inappropriate application of a 
heuristic or misunderstanding of system relationships 
is considered to be an intention error. The emphasis 
here is that the error basis lies more in the thinking 
than in the doing. 

Like errors of selection or execution, errors of 
intention may be active or latent, that is, their full 
impact may be manifested immediately or can lie 
dormant until triggered by some insidious combina- 
tion of hardware and human actions. 4 

Previous research on attention suggests that the 
origins of cognitive error can be due to persons being 
either 'data limited' or 'resource-limited'. 5'6 Data 
limited refers to the quality of the data present, i.e. 
the signal to noise ratio, and may be linked to 
performance shaping factors (PSFs) such as proce- 
dures quality and the human-machine interface 
(HMI). The clarity of procedures can influence 
performance as can the degree of precision present in 
local instrumentation. Resource limitation, refers to 
people's capacity for processing information. Training 
may enhance people's ability to process and mentally 
file information for later use. Similarly, training may 
reduce the probability for a crew to misapply either 
procedures or heuristics. For example, highly trained 
crews would be less likely than poorly trained crews to 
solve the more minor of two faults. Rather, their 
attention may assumed to be focused, as it should, 
upon the consequence of each of the faults. An 
additional body of research suggests that the manner 
in which people perceive gains and losses associated 
with various outcomes also influences their behavior 
(decision making and actions). 7 

Although the use of computer simulation of human 
intention formation as a tool to assist the analyst in 
determining errors of intention is only emerging, at 
least one recent effort, the Cognitive Environment 
Simulation (CES), holds some promise for simulating 
the types of cognitively-based errors which may arise 
during accident scenarios, s 

The cognitive nature of errors of intention and the 
fact that they can result from a wide range of factors, 
such as poor training or a poor safety culture at a 
facility, make it difficult to model and quantify them. 
So while there exists a large amount of anecdotal 
information on errors of intention, there is little 

corresponding probabilistic information that would 
support a human reliability analysis (HRA). Without 
such a quantitative data source, however, errors of 
intention will be underrepresented in HRA and PRA 
studies. 

The present study was aimed at developing a 
method for the estimating probabilities associated 
with committing errors of intention. A list of errors of 
intention was generated and expert judgment was 
then used to assess the likelihood of these errors 
occurring under various conditions. These conditions 
were defined by different levels of PSFs. The 
generated list of errors may not be exhaustive, 
however, it provides a foundation on which to build a 
more complete database as field data becomes 
available. In the interim, it may be used by human 
reliability analysts to account for errors of intention. 

The sections which follow present a brief review of 
several previous efforts to quantify errors of intention, 
followed by the development of INTENT, and then, 
by example, demonstrates how the analyst may apply 
INTENT. 

1.1 Previous attempts at quantification 

Swain and Guttman I noted the 'absence of models 
that estimate the reliability of cognitive processes in 
applied situations'. In an effort to address the 
problem, they provided some estimates of the 
probability of cognitive errors occurring during fault 
diagnosis of both a single and double abnormal event 
as a function of the amount of time elapsed since 
annunciation of the fault(s) occurred. As the authors 
themselves acknowledged, however, the THERP 
model is very limited in its usefulness for modeling 
intention errors because it does not provide 
probabilities for cognitive errors which may occur 
during normal plant evolutions, inservice testing, or 
maintenance activities. 

1.2 Time based constraints 

More recently, Yeh and Teng 9 have attempted to 
account for errors of intention. They utilized a 
time-based correlational approach for determining the 
human error probabilities associated with an anticip- 
ated transient without scram (ATWS). Specifically, 
they focused their analysis on a sequence where a 
crew fails to initiate boron to control reactor 
reactivity. The HEP was modeled as a function of two 
competing variables, critical time and action time. 
Critical time represents the system time available to 
the crew while action time is the average time 
required by the crew to make its response to the plant 
transient. The model relies on probability density 
function for Weibull distributions for the critical time 
and action time and utilizes the maximum entropy 
estimator referenced in Swain and Guttman. 
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Yeh and Teng's model is limited in its application to 
modeling errors of intention because it only considers 
a single performance shaping factor--time constraints. 
Errors of intention are not necessarily time depend- 
ent. In fact, at the risk of committing heresy, we 
suggest other PSFs may be much more appropriate. 
For a thorough review of existing limitations of time 
reliability correlation approaches to HRA, the reader 
is referred to Ref. 10. At a minimum, an adequate 
model of errors of intention must account for a wider 
range of situational factors than time alone. 

1.3 A heuristic for quantification 

Research performed by Ujita H also made use of a 
time dependent approach to model operator perfor- 
mance. Multibranch trees similar to the event trees 
used in PRA were used to describe response to a large 
break loss of coolant accident (LOCA) in a boiling 
water reactor (BWR). Based upon a review of the 
data contained in Swain and Guttmann, ~ Ujita H 
developed a heuristic to derive probability estimates 
for errors of commission that could be applied to the 
limbs of the multibranch event trees. The heuristic 
employed estimated errors of commission to be 
roughly one-tenth of the probability of a general error 
of omission. According to Ujita, errors of intention 
are considered to be extraneous acts representing a 
special case of errors of commission. Ujita proposed a 
fl factor which allows for an extrapolation of failure 
estimates to errors of intention. The value for fl 
results from Ujita's judgment that failure rates for all 
intention errors are one-tenth of the probability of a 
general error of commission. Although this method 
can assure the user of common distribution 
assumptions between errors of commission and 
intention, it is highly unlikely that the myriad variety 
of erroneous acts which people can commit have but 
one general failure rate. 

The need for a method for identifying and 
quantifying errors of intention and their correspond- 
ing failure rates has been highlighted by recent 
research. 1'9-'' The sections which follow present a 
description of the development of a method--- 
INTENT used in the present study to identify and 
then quantify a dataset for 20 errors of intention. 

2 METHOD 

The first stage of the study involved compilation of 
potential errors of intention pertinent to tasks at 
nuclear power plants. The second stage required the 
determination of corresponding failure rates. Figure 1 
presents the task flow sequence used to establish a 
methodology for estimating errors of intention. An 
explanation of the methods and sources follows. 

1.0 Compile 
Errors of 
Intention 

2.0 Quant~y 
Errors of 
Intention 

3.0 Determine 
HEP Upper 
and Lower 
Bounds 

4.0 Determine 
PSFs and 
Associated 
Weights 

5.0 Determine 
Composite 
PSF 

6.0 Determine 
Site Specific 
HEPs for 
Intention Fig. 1. Methodological 

INTENT. 
flow for 

2.1 Compilation of errors 

The identification of the errors of intention relied on 
applying SNEAK '2 and HSYS 13 to two potential 
sources of information, the Nuclear Computer- 
ized Library for Assessing Reactor Reliability 
(NUCLARR) '4''5 and licensee event reports (LERs). 
The search was conducted to determine the extent to 
which existing data for errors of intention might 
already be available in the open literature. 

2.1.1 SNEAK analysis 
SNEAK analysis is a methodology that was originally 
developed to identify pathways in electrical circuits 
that could lead to undesirable events. A modified 
approach was found to be useful for identifying errors 
of commission in nuclear power plant operator 
activities. '2 Essentially, the procedure involves de- 
veloping flow diagrams or network trees to describe 
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an activity of interest. A series of questions is then 
used to guide the analyst in the detection of 
potentially undesirable pathways, or 'sneak condi- 
tions', at each node of the tree. Different kinds of 
sneak conditions can occur at a node. There can be 
(1) a sneak path, where flow can take an unexpected 
path; (2) sneak indication, where misleading display 
output causes an inappropriate action; (3) sneak label, 
where a misleading control results in the inappropriate 
action; or (4) sneak timing, in which actions are 
inappropriately timed. 

2.1.2 HSYS (Human-SYStem) 
This is a method for investigating human performance 
in complex operational settings currently under 
development at the Idaho National Engineering 
Laboratory (INEL).12 The structure is based upon the 
Input-Action model which describes human perfor- 
mance as preceeding through a series of five 
sequential stages, (1) input detection, (2) understand- 
ing of input meaning, (3) action selection, (4) action 
planning, and (5) action execution. A series of 
questions pertaining to the different factors that can 
affect performance at each of the five stages are 
organized hierarchically in tree and flowchart format. 
These formats guide users systematically in their 
examination and analysis of human performance in 
scenarios of interest. HSYS is currently being 
employed to assist in the examination and analysis of 
incidents at nuclear power plants. 

2.1.3 NUCLARR 
The first source examined for data related to errors 
decisionbased was NUCLARR. NUCLARR is a 
computerized data bank containing human error and 
hardware failure rate data relevant to the nuclear 
power industry. The NUCLARR system contains 
information about failure modes of human actions and 
equipment at three different levels of detail, (1) a 
systems level, (2) a components level, and (3) a 
displays and controls level. Instances of decisionbased 
were searched for at all three of these levels. 
Although errors of commission are represented at 
each level of the data bank in the NUCLARR data 
management system, no errors of commission 
specifically of the 'intention' type could be found. This 
largely reflects the fact that current HRA and PRA 
efforts do not report failure rates for decisionbased. 
SNEAK and HSYS were applied to the errors of 
commission resident in NUCLARR to see if these 
errors might also occur due to erroneous intention on 
the part of maintenance or operations personnel. 

2.1.4 LERs 
A second source of information, LERs, were also 
reviewed for instances where human error was the 

root cause of the event occurrence. Over 250 LERs 
involving 'human factors errors' were collected from 
the survey period 1985-1990 and reviewed. Of the 
identified root causes only those errors involving the 
execution of 'intentional' acts by personnel were 
extracted. That is, simple omissions or mistakes in 
executing a procedural step were omitted. The LER 
search was straightforward, in that the LERs contain 
descriptive, qualitative information. Item 3 in Table 1 
whereby personnel violate procedure and rewire a 
breaker is an example of an item from the LER data 
source which would also be suggested by SNEAK 
analysis. 

2.2 Categories of data 

A number of the categories of sources for errors of 
intention given consideration in the present study 
were identified by applying SNEAK analysis to HSYS 
branchpoints to determine whether there was 
opportunity for an error of intention to occur. 
Individual errors were determined this way as well. 
For example, Figs. 2 and 3 presents a typical HSYS 
node reproduced from Ref. 13, the SNEAK questions 
which were applied to it, and the resulting error of 
intention and category which was identified. Specific 
error of intention categories identified include: 

(1) Action consequence. The inclusion of conse- 
quence as part of the classification of errors reflects 
the consensus (the authors) that there is a 
relationship between consequence and the propen- 
sity for committing errors of intention. In some 
cases this relationship has been labeled a 'reluctance 
factor'. 16 Support for the influence of consequence 
on decision making is well researched. For a 
thorough review of the theoretical determinants of 
decision making and risk taking in groups in 
particular, the reader is refered to Whyte. 17 For 
example, the decisions made by crews which require 
selecting alternative courses of actions each of 
which may serve to mitigate an off-normal event 
may include the crew's ability to reach consensus 
regarding the risk of damaging one system in an 
effort to save another, more important (from a 
safety perspective) system. Such decisions go well 
beyond the simple stimulus-response model as- 
sumptions in use when describing errors of 
omission. 
(2) Crew response set, bias and interference. 
Categorization of errors of intention by these 
sources reflects the influence that inhibition, 
response set and bias form as a function of 
experience, training, and previous learning. The 
effects of these influences on performance is well 
documented. The reader is refered to early studies 
by the Wurzburg school of Psychology where the 
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Table 1. Source categories aml estimates of HEP upper aml lower bounds for errors of imtentlon 

Source categories for errors of intention HEP UB ° HEP LB a EF 

1. 0 Action consequence 
1. Circumvent procedure with potentially catastrophic consequences, e.g. 7-5E-2 6.0E-5 35 

major ISLOCA with release. 
2. Circumvent procedure with a minor consequence, e.g. a minor ISLOCA. 8.6E-2 3.3E-4 16 
3. Tolerate an out of range situation with minor consequence. 3.6E-1 1-0E-2 6 
4. Tolerate an out of range situation with moderate consequence. 1.5E-1 2.30E-3 8 

7_OAttitude leading to circumvention 
5. Violate procedure and reconfignre equipment. 8.3E-2 5.5E-4 12 
6. Violate procedure and devise own formuli. 4.7E-2 1-6E-3 5 
7. Checkers performing QA tolerate a discrepancy. 1-2E-1 1.2E-3 10 
8. Common mode: failures due to poor safety culture. 2-0E-1 4.6E-3 7 

3. 0 Crew response set 
9. Misdiagnose given like symptoms. Capture sequence based on stimuli. 1.8E-1 1.3E-2 4 

10. Right diagnosis-wrong response. Capture sequence based on response set. 2.2E-1 3.9E-3 8 
11. Competing goal states leads to a wrong conclusion. 1.7E-1 8.9E-3 4 
12. Symptoms noticed, but incorrect interpretation. 1-0E-1 4.2E-3 5 
13. Correct actions taken during the wrong plant evolution. 3.2E-2 1.0E-3 6 
14. Multiple fault situation, crew solves the more minor fault. 1.2E-1 1.2E-3 10 

4. 0 Resource dependencies 
15. Insufficient resources/instrumentation provided. 2.4E-1 7.4E-2 2 
16. Crews consult inappropriate resources in emergency. 1.3E-1 1-9E-3 8 
17. Inadequate communication results in improper actions. 2.0E-1 3.3E-3 8 
18. Excessive task demands result in poor judgement. 2.9E-1 2.9E-2 10 
19. Excessive task duration results in poor judgement. 9.0E-2 1-6E-2 2 
20. Common mode: Poor judgements because procedures P&IDs, and 2.9E-1 2.9E-2 3 

operating conventions do not match. 

"HEP UB refers to the case where the PSFs represent a worst case scenario; HEP LB refers to that situation where PSFs have 
been estimated to be optimal. Categories are not to be interpreted as errors themselves, but rather as sources for error. EF 
refers to error factors calculated for each of the 20 decisionbased errors. 

task attitude of subjects (called the Einstellung) 
determined their perception for verbal recognition 
and abstraction tasks. 
(3) Attitudes leading to circumvention. The inclu- 
sion of this category as a source brings to bear the 
fact that the manner  in which individuals perceive 
the world (attitude) does have an influence on how 
they act in the world. Additionally, associations, 
perceptions and judgement  may be changed by 
interests of the individual, as well as by the 
understanding the individual has of his immediate 
world. It suggests that perception, cognition, and 
actions associated with the two go well beyond 
simple st imulus-response paradigms. 
(4) Resource dependencies. The category of re- 
source dependencies is comprised of internal and 
external resources. Examples of the former  include 
processing capacity, ability to withstand different 
types and degrees of  stress and workload, and the 
limits of audition and vision. Examples of the latter 
include availability of emergency plans, operating 
procedures, instrumentation, and for highly com- 
plex systems perhaps computerized operator  sup- 
port systems as well. 

2.3 Quantification considerations 

In order  to quantify the errors of intention identified 
by applying SNEAK analysis, and HSYS to the 
N U C L A R R  and the L E R  data sources, a Success 
Likelihood Index Methodology (SLIM) TM session was 
first considered. SLIM produces an estimate of the 
H EP  based upon group consensus of both relative 
PSF importance and PSF adequacy for a given 
scenario. The SLIM procedure,  though, requires the 
inclusion of two calibration tasks with known failure 
rates and which share the same performance shaping 
factors as the other  tasks in the group of errors of 
intention being considered. Additionally, SLIM 
requires the use of specific scenarios so that specific 
levels of salient PSFs can be defined and used to 
assess failure rates. In the present exercise, we 
considered a general class of errors identified through 
SNEAK analysis that were not plant or scenario 
specific, but which had specified, i.e. either optimal or 
severely degraded, PSF levels. Fur thermore,  it was 
impossible to identify tasks with known probabilities 
which were reasonable to use as calibration tasks for a 
SLIM session. Given the above constraints, the SLIM 
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approach was discarded in favor of a direct estimation 
method which is presented below. 

2. 3.1 Determining HEP upper and lower bound 
estimates 
First, seven human factors specialists trained in 
human reliability analysis rated the 20 errors of 
intention identified in the first stage of the study for 
their probability of occurrence under two extreme sets 
of conditions. The first condition required that 
participants considered a situation in which all 
conceivable performance shaping factors were op- 
timized. The second condition dealt with the situation 
where all conceivable performance shaping factors 
were severely degraded. These two conditions were 
selected to assist in defining lower bound (LB) and 
upper bound (UB) HEP estimates, respectively. The 
PSF were not specified by the authors. Instead each 
analyst was asked to conceptualize performance in 
terms of the PSF that he or she felt would be most 
relevant to the errors of intention under considera- 
tion. A logarithmic probability scale was used to 
directly solicit these estimates. Analysts placed an 'x' 
on a probability scale for each error type correspond- 
ing to the HEP upper bound estimate and an '*' on 
the scale corresponding to the HEP LB. LBs and UBs 
were combined across analysts to get single pairs of 
estimates for each error type. The resulting bounds 
are presented as columns 2 and 3 of Table 1. 

2. 3. 2 Determining PSFs and associated weights for 
each error type 
The experts through group consensus techniques, 
identified and rated the influence of 11 PSFs on the 
failure rate for each of the 20 errors of intention. The 
11 PSFs are: HMI: stress; skill; knowledge and rule 
based behavior (SRK); experience; safety culture; 
training; motivation; workload; supervision; com- 
munication; and procedures. Rating of PSF impor- 
tance were generated independently by each analyst. 
For each error, the importance ratings were tabulated 
and then were normalized for each subject across the 
PSFs. Normalization was achieved in the following 
manner. For each error type, each expert's impor- 
tance ratings were divided by the sum of those ratings 
for the error type. Next, for each error type and PSF, 
the resulting weights were then averaged across 
experts. This was done in order to account for 
individual differences in scale usage. 

influence of the PSFs on system performance. The 
most straightforward method for this was to allow for 
analysts to qualitatively evaluate, i.e. rate on a site 
and scenario specific basis on a favorableness 
continuum, the favorableness or unfavorableness of 
each PSF. For example, poorly administered or 
technically inadequate training would receive a highly 
unfavorable rating, i.e. a '1'. Well disciplined, 
comprehensive training, which made good use of on 
the job and classroom skill development would 
receive a highly favorable rating of '5'. 

3.1 Determining site specific composite PSF ratings 

The PSF importance weights are used in conjunction 
with the HR A analyst's ratings for the 11 PSFs. 
Ratings are generated with a site specific scenario in 
mind and used to determine a 'composite PSF' for an 
error type. The weights are error specific and ratings 
are site specific, e.g. ratings are specific to the nuclear 
setting under evaluation. The composite PSF for an 
error type is formed by multiplying each of the 11 PSF 
ratings by its corresponding weight, and then summing 
the results. Since the ratings are on a 1-5 scale, each 
composite PSF lies between 100 and 500. The use of 
the resulting composite PSF to determine the HEP 
estimate for errors of intention is described below. 

3.2 Determining site specific HEPs for errors of 
intention 

In general, the desired site-specific HEP (HEPis) lies 
between the bounds for the error type presented in 
Table 1. For each error type, the composite PSF 
rating (Fis) lies between the values 100 and 500. (The 
subscript i refers to the error type and s to the specific 
site). By defining a mapping between the PSF rating 
scale and the HEP UB and LB, one can obtain a 
site-specific HEP. The mapping is defined such that a 
high PSF rating corresponds to a low HEP and vice 
versa. One way to define such a mapping is to 
consider the probability distributions of the composite 
PSF and the HEPs, and require that 

P(Fis -< x) = P(HEPis -> y) (1) 

for any composite PSF, x, and corresponding 
site-specific HEP for intention, y. To completely 
define this mapping, the following additional assump- 
tions are made: 

3 APPLICATION OF THE METHOD 

Once the 20 errors were identified and PSF 
importance weights for each error determined, a 
method was needed whereby an HEP could be 
derived which would reflect the positive or negative 

1. The composite PSF, over various sites, has a 
uniform distribution. Thus, its 5th and 95th 
percentiles are 120 and 480, respectively. 

2. The probabilities for errors of intention are 
log-normally distributed. The upper and lower 
bounds specified above are taken to be 5th and 
95th percentiles for these distributions. 
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Table 2. Mean normalized PSF weights for twenty decisionbased errors 
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Error of HMI Stress SRK Experience Safety Training Motivation Work- Supervision Communication Procedures 
intention no. culture load 

1 6 8 9 9 11 12 7 8 11 7 11 
2 7 8 9 9 10 10 7 9 11 8 11 
3 9 8 9 9 10 11 8 8 10 7 11 
4 8 9 10 9 9 11 9 8 10 5 12 
5 9 8 9 10 10 11 7 9 11 7 9 
6 9 8 10 10 11 10 8 9 11 7 9 
7 8 9 10 9 10 10 9 10 11 6 8 
8 11 10 11 11 5 11 8 11 7 8 9 
9 11 11 9 10 6 10 7 11 9 8 10 

10 6 12 11 10 9 11 9 10 9 6 8 
11 11 10 11 10 6 11 8 10 8 7 8 
12 9 9 9 9 7 10 8 10 9 9 9 
13 8 10 10 10 7 11 7 9 9 11 8 
14 14 7 9 9 9 9 7 10 11 9 6 
15 10 11 9 9 8 10 7 10 9 9 8 
16 9 9 8 10 9 11 8 9 8 13 8 
17 8 12 8 10 8 10 7 13 8 9 7 
18 9 11 8 10 8 10 9 11 9 7 7 
19 11 8 10 10 9 11 6 7 8 8 13 
20 7 6 7 8 23 10 6 7 9 8 8 

If analysts rate each of the 11 PSFs on a five point 
Likert scale, as the authors suggest, then the exact 5th 
and 95th percentile values can be used in determining 
the site specific HEPs for errors of intention. Based 
on the uniform distribution assumed for composite 
PSFs, the left side of the equality presented above in 
eqn (1), simplifies to 

P(Fis -< x) = x - 100/400 (2) 

Users should note that changes in the rating scale 
range would require a slight modification to this 
equation. Additionally, it is assumed that users will 
employ the sets of PSF importance weights presented 
in Table 2. 

The evaluation of the right hand side of eqn (1) is 
based on assumption (2). Since the HEPs are 
lognormally distributed, their logarithms (lny) follow 
a normal distribution. The 5th and 95th percentiles of 
a normal distribution are its mean plus or minus 1-654 
times its standard deviation, respectively. A similar 
statement applies to the 5th percentile. Thus, the 
mean (m) and standard deviation (sd) of the 
underlying normal distribution can be found by 
equating these percentiles with the In UB and In LB, 
respectively (from Table 2). As a function of m and 
sd, the right hand side of eqn (1) is 

1 - ~[(ln(y) - m)/sd] (3) 

where ~ is the standard normal cumulative distribu- 
tion function. 

Solving for m and sd, equating the left and right 
sides of eqn (1), and then solving for y as a function of 

x produces the following equation: 

y = exp{(ln UB - In LB) x ~-1[(500 - x)/400]/3.29 

+ (In UB + In LB)/2} (4) 

Here ,~p-1, is the inverse of the standard normal 
cumulative distribution function. That is, it is the 
value a standard normal variable is less than or equal 
to, with probability (500-x/400). To use this 
equation, we substitute the error type and site-specific 
composite PSF rating for x and solve for y. The 
resultant y is the desired site-specific HEP. 

4 FINDINGS 

The 20 errors of intention identified by applying 
HSYS and SNEAK analyses to NUCLARR and 
LERs are presented in Table 1. The errors are 
grouped according to the following categories: action 
consequence; attitudes leading to circumvention; crew 
response set, bias, and interference; and resource 
dependencies. Definitions of these categories are 
provided in the Methods section. All four categories 
are thought to either distort or influence perception 
with the result that erroneous intention leading to 
erroneous action is a potential consequence. 

Table 2 contains the errors of intention and their 
associated upper and lower bound HEP estimates as 
determined by expert judgment methods. Values 
range from 1.0E - 1 to 6.0E - 5 and represent failure 
rates for best and worst case PSF situations across a 
broad spectrum of plants. As depicted in Fig. 2, 
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E r r o n e o u s  I n t e n t i o n  

Co~mcjpten~ 
Inf luenced 

I 
D e p a d e n t  

lnterna/and 
External Resources 

l~mpomm Set ") Evaluat ion  and 

Willful circumvention 

Fig. 2. Influences upon errors of intention as determined by 
HSYS and SNEAK analysis. 

erroneous thought or intention leads to poor  
evaluation and choice which, in turn, is manifest in 
erroneous action. Figure 3 presents SNEAK analysis 
application to an HSYS structure for purposes of error  
identification. Placing error  likely scenarios in an 
HSYS structure was found to facilitate the SNEAK 
analysis. 

The average error  rate for the UB for error  rates 
determined by the I NTENT method is on the order  of 
1 . 0 E -  1, and the corresponding rate for the LB is 
1 . 0 E - 2 .  Examining T H E R P  data tables for com- 
parative rates, i.e. those in the knowledge-based 
realm, shows errors on the order  of 1 . 0 E -  2. The 
rates in both instances are high. However ,  the 
requirements for entry into a situation disposed to an 
error of intention is restricted to instances discovered 
through SNEAK analysis, and therefore the observed 
instances for such occurrences is infrequent. Once 
personnel find themselves in a tenuous situation the 
rates proposed are, we feel, realistic. For example, 
most of the time crews who have been trained to 
operate to procedures which have been validated can 
be expected to perform in an admirable fashion. 
However,  given an off-normal situation whereby 
crews are forced to design a metaprocedure or 
perform back of the envelope calculations on the fly, 
the rates suggested in Table 2 are what one would 
expect to find. 

Each of the errors should be quantified individually 
by the analyst and resulting HEPs  are meant  to serve 
as input to either fault trees or H R A  event trees. In 

IJ m Pe~qn"msmemil 
Lem Tlum Adequ~e 

(LTA) 

Input 
Detection 

(LTA) 

S~d~[oll  
of Action 

(LTA) 

Performance 
of Aetion 
(LT&) 

Understand 
Information 

(LTA) 
Phmaiag  of 

A~q~on 
(LTA) 

What caroms l e ~  than adequate 
unde~taad ingf  

Did not see indication? 
Misread, Mishear? 
Misinterpret the information? 

Fig. 3. SNEAK analysis application to HSYS for error 
identification. Note: Misinterpreting of information, re- 
vealed by SNEAK might be caused by a variety of factors. 
For example, response set could cause information to be 
misconstrued. The propensity for certain situations to arise 
more than others could condition personnel to misinterpret 
incoming information. This type of error appears in Table 2, 

Category 3, Item 9 as capture sequence based on stimuli. 

multiple fault instances, it is suggested that the analyst 
identify a dominant cognitive error  appropriate to the 
crew's response to each individual fault. In situations 
where 'or'  rather than 'and'  gate logic is used, it 
should be noted that rates on the order  of 4 . 0 E -  1 
may be observed. We believe this to be a realistic 
failure rate for use in risk calculations for certain 
infrequent situations. For  example,  those situations 
for which SNEAK analysis has determined that the 
crew is unprepared,  and the combination of events 
unprecedented and untrained for, the proposed failure 
rates may be less than conservative. 

Table 2 presents the 20 sets of 11 normalized PSF 
weights for each of the errors of intention developed 
as part of this study. The weights range from 5 to 13 
and are selected as a group dependent  upon the error  
of intention identified for review by the analyst. An 
example is presented below to describe how the data 
tables may be used to secure an H E P  value for an 
error of intention. 

5 USING T H E  IN TEN T D A T A  TABLES:  AN 
EXAMPLE 

Table 3 presents the ratings from a hypothetical 
example where an H R A  analyst has made use of the 
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Table 3. Ratings and calculations for procedural violations 
(error no. 4) at plant 'X' 

PSF PSF PSF Rate x weight 
rating weights 

HMI 2 8 16 
Stress 3 9 27 
S/R/K 2 10 20 
Experience 3 9 27 
Safety Culture 2 9 18 
Training 2 11 22 

Motivation 4 9 36 
Workload 4 8 32 
Supervision 2 10 20 
Communication 3 5 15 
Procedures 2 12 24 

(Total R x W = 257) 

procedures contained within this study to estimate an 
error of intention. The assumption is made that the 
identification and selection of the appropriate error of 
intention is achieved and that plant specific informa- 
tion is available and accurate. The site specific 
scenario and accompanying calculations are described 
below. 

Personnel at plant X have a history of operating 
outside of procedures. In addition, general 
housekeeping, i.e. the match between piping and 
instrumentation diagrams, procedures and operator 
schematics and control room activities, is less than 
optimal. The safety culture, is also less than optimal. 
Many piping elbows are 'bagged' and tags are missing 
from important safety equipment. After performing a 
task analysis and systems walkdown, an HRA analyst 
recognizes the need for the HRA analysis to model 
the possibility of an error of intention occurring in 
which personnel make 'back of the envelope' 
calculations instead of using the formuli provided 
inside procedures. 

In order to estimate the HEP for this error, the 
analyst first consults Table 2 and finds the specific 
HEP which best corresponds to the action sequence of 
interest. In the current example, error of intention no. 
4 'Violate procedures---personnel devise their own 
formuli' closely corresponds to the scenario under 
consideration. This table presents extreme HEP 
estimates corresponding to best and worst case PSF 
scenarios. If only very general information was 
available about the PSFs at plant X, i.e. all that is 
known is that, in general, the PSFs are very favorable, 
then the HEP for use in the HRA would be 
determined by selecting the LB; or conversely, if the 
PSFs are very unfavorable, the UB. 

Since we have relatively complete information 
available to us regarding plant X, the analyst can 
assess the PSFs there. The analyst rates the 11 PSFs at 
plant X on a Likert scale from 1 to 5, where 1 is least 
favorable and 5 is most favorable. Table 3 contains 

Table 4. Esthnating the EIEP for procedural violation (er- 
ror" no. 4) at plant 'X' 

From Table 2: UB = 4.7E - 2, LB = 1.6E - 3, InUB = 
-3.057, lnLB = -6-4378 
Eqn 4: 

HEPis = exp{(lnUB - lnLB/3.29) 4-'(500 - x/400)) 
+ (lnUB + lnLB/2)) 

exp{((-3.0576) - (-6.4378)/3.29) x q~-~(500 - 257/400) 
+ (-3.0576 + 6.4378)/2} 

= exp{(1.0274)~-~(0-6075) + (-4-7477)} 
= exp{(1.0274)(0.273) - (4.7477)} = 1.1E - 2 

PSF ratings and can be used to better define the HEP 
estimate within the range provided by the UB and LB 
presented in Table 1. 

The analyst then multiplies each of his or her own 
Likert ratings by each of the corresponding weights 
for these PSFs given in Table 1. Next these 11 sets of 
weights and ratings are summed. This gives the 
observed composite or weighted PSF score which 
represents the 'x' in the left hand side of eqn (1). The 
product of the ratings and the weights are presented in 
Table 4. For the present example, solving for this 
equation using UB = 4.7E - 2, LB = 1.6E - 3, and 
PSF composite = 257, the HEP for personnel at this 
site violating procedures and using their own formuli 
is equal to 1 . 1 E -  2, as shown in Table 4. 

6 DISCUSSION A N D  S U M M A R Y  

A method, INTENT, is reported whereby risk 
analysts may account for the influence of errors of 
intention in PRAs. Using a hypothetical example, it 
was possible to make use of a preliminary data set for 
20 errors of intention that was tailored to represent 
the influence of 11 commonly referenced performance 
shaping factors. Lower and upper bound HEP data 
for each of the errors were generated by HRA and 
human factors analysts for best case and worst case 
performance shaping factors. A formuli was derived 
for mapping composite PSF scores onto the HEP 
scale. Preliminary review suggests that the method- 
provides an interim mechanism to provide data which 
can serve to remedy a major deficiency present in all 
PRAs conducted to date; failure to account for rare, 
high consequence failures due to errors of intention 
committed during various plant evolutions. Since the 
upper and lower bound HEP data for errors of 
intention are derived from expert estimation they 
should be used judiciously until such time as they can 
be replaced with operations, i.e. field data. The 
reader is advised that the errors resulting from an 
initial data search using SNEAK method techniques 
have been categorized to reflect the data themselves 
and are not to be construed as replacing cognitive 
activities themselves such as goal setting, planning, 
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analyzing, solving by analogy, etc. The categories (i.e. 
consequence, attitudes, response set, and resource 
dependency) do have a basis in the literature wherein 
they may be construed as influences upon perform- 
ance. 

Future research should attempt to (1) extend the 
variety of errors of intention identified in this paper, 
(2) determine whether the suggested PSF weights will 
hold true for these 'new' errors of intention, (3) apply 
the INTENT method in an HRA program, and (4) 
attempt to tie the data and categories to some high 
level cognitive theory. For example, the categories of 
response set and resource dependency may be 
reviewed for their compatibility with error shaping 
factors proposed for level II and III of the Generic 
Error Modeling System (GEMs) hierarchy developed 
by Reason. 19 Hopefully, a contribution of this present 
work will lie in enabling the HRA and PRA 
community to quantitatively account for an important 
aspect of the variability in systems performance. As a 
corollary to this research, effort needs to be taken to 
identify appropriate precursors to the various errors 
presented in this paper. The latter objective may be 
difficult to achieve as erroneous actions not leading to 
LERs are currently unnoticed, or if noticed, tend to 
go unreported. Secondly, if as the authors believe, the 
situations required to produc¢ such errors are 
themselves infrequent, then longitudinal studies may 
be required in order to collect these data. In the 
interim, we are attempting to refine and validate the 
INTENT approach for quantifying decisionbased 
errors. 
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