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Integrating QRA and SRA
Methods Within a Bayesian
Framework When Calculating
Risk in Marine Operations:
Two Examples
This paper concerns itself with the integration of QRA (quantitative risk analysis)
SRA (structural reliability analysis) methods. For simplicity, we will use the term S
instead of SRA methods in the paper. The Bayesian (subjective) approach seems to
most appropriate framework for such integrated analyses. It may, however, not be
to all what the Bayesian approach really means. There exists alternative Bayesia
proaches, and the integration of SRA and QRA is very much dependent on what the
is. The purpose of this paper is to present two marine operation examples, impleme
two different Bayesian approaches: the ‘‘classical Bayesian approach’’ and the ‘‘f
Bayesian approach.’’ Following the classical Bayesian approach, we estimate a
objective risk, whereas in the fully Bayesian approach, risk is a way of expressing u
tainty about future observable quantities. In both examples, one initial accidental eve
investigated by using a fault tree and by integrating SRA into this fault tree. We conc
that the most suitable framework for integrating SRA and QRA is to adopt the ‘‘
Bayesian approach.’’@S0892-7219~00!00703-2#
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Introduction
In a QRA, risk is quantified in an absolute sense or a rela

sense, often in relation to some kind of risk acceptance crite
The analysis identifies critical activities and systems, and pred
the effect of implementing risk reducing measures. Conductin
QRA also gives us understanding of hazards causation and p
tial escalation pathways. The purpose of the analysis is to pro
a basis for making decisions concerning choice of arrangem
and measures. Such decisions could be specified as, for exa
change to the installation procedure for a marine structure.
normal to distinguish between risks threatening human lives
health, the environment, and assets and financial interests.

As to the probability quantification, it seems that most ri
analyses being conducted in the offshore petroleum industry to
are based on the classical approach, in the sense that the
analysts see the analyses as a tool for producing estimates of
unobservable quantities such as probabilities and expected va
A probability is then interpreted in the classical statistical sens
the relative fraction of times the events occur if the situation a
lyzed were hypothetically ‘‘repeated’’ an infinite number of time
The parameters of the models~such as the probabilities of th
basic events in the fault trees and the branching probabilitie
events trees! are, however, not estimated purely by means
‘‘hard data.’’ In practice, these parameters are estimated by i
grating hard data and expert opinions. This integration is usu
carried out without using a well-structured procedure. But
interpretation of probabilities is classical—there exists a true~un-
observable! risk, and by using risk analyses, we generate e
mates of this true risk.

It is often a requirement that the risk analyses should say so
thing about the uncertainty of the estimates. To measure the
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gap between the true value and the value obtained in the QRA
be difficult. The classical approach gives an uncertainty meas
that only takes a small part~statistical variation! of the uncertainty
in the analysis into account.

Lack of information, especially statistics and other experien
data, is common when performing a QRA for marine operatio
This is mainly due to the uniqueness of the operations. For
ample, when towing a marine structure or lifting offshore, the
will always be some new elements included compared to prev
tows or lifts. During a tow, the towing route and the weight of t
structure may differ, the draft or the type of tugs and the confi
ration of the tugs, the weather, and, furthermore, the organiza
and technical support will normally also vary. Moreover, the
stallation of a marine structure will vary due to, for examp
different locations with different water depths, soil conditions, a
weather conditions.

Therefore, carrying out a QRA for a marine operation witho
including subjective elements is impossible and would not be
the interest of achieving useful results. The analyst should
great efforts in utilizing the information that is available by usin
experts when assigning probabilities and calculating risk. In t
respect, the Bayesian approach@1,2# is considered attractive sinc
it does not break down in the absence of experience data
allows a systematic integration of expert opinions, scientific in
ition, and experience data in the analyst’s efforts to assign pr
abilities. Further, it is relatively simple to consistently modify th
probabilities of failure when new data become available.

Basically, there are two ways of thinking within the Bayesi
context; we refer to these as the ‘‘classical Bayesian approa
and the ‘‘fully Bayesian approach.’’ The classical Bayesian a
proach is also referred to as a ‘‘combined classical Bayesian
proach,’’ as it is a combination of the classical statistical appro
and the Bayesian approach. For simplicity, we will use the te
‘‘classical Bayesian’’ instead of ‘‘combined classical Bayesian

In the following we present two integrated approaches for S
and QRA based on the classical Bayesian approach and the
Bayesian approach, respectively. Approach 1 integrates SRA

m-
rtu-

e-
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QRA within the classical Bayesian framework, whereas Appro
2 integrates SRA and QRA within the fully Bayesian approa
@3,4#. In the examples, the software Proban@5# has been used to
do this integration. It was not straightforward to use Proban w
calculating results within the framework of Approach 1, a
therefore some adjustments to the software had to be made.

By applying SRA on QRA, the analyst is able to model t
physical system more precisely, handling the uncertainties
parameter correlation separately and systematically. This is
sured by flexible event and system modeling, by logical combi
tion of limit state functions, by uncertainty modeling, and by a
signing marginal probability distributions and correlatio
measures. These properties might enable the analyst to inc
more knowledge in the analysis than is the case with models
ditionally applied in QRA.

Integrating QRA and SRA
SRA @6# is a tool for calculating probabilities of failure of struc

tural systems. Thus, SRA as used here is on the same lev
other reliability models, such as lifetime models for mechani
and electronic equipment, reliability models for software, a
availability models for supply systems. All models of this kin
can be used to calculate single probabilities that are input
different methods used in QRA, such as for the basic event
fault tree analysis~FTA! and the branching points in event tre
analysis~ETA!. A special feature of SRA is, however, that th
influence from several random variables and failure modes m
be taken into account in a single analysis. Thus, using SRA,
splitting of events into detailed subevents is often not necessa
the same extent as in traditional QRA models, like FTA and ET
This makes it possible for a whole section of a fault or event t
to be replaced by a single analysis based on SRA. The us
continuous variables is, however, common in SRA, and the ab
to treat continuous variables is considered to be one of the m
attractions of this technique.

To make use of SRA, the occurrence of at least one event o
system considered must be fully dependent on the outcome
set of random variables, the basic variablesX5(X1,X2, . . . ).
Further, it must be possible to describe the conditions under w
the event will happen, the event space, using one or several
state functions, i.e.gi(X)<0, logically connected by unions an
intersections. So, given a limit state functiong(X) and a joint
distribution functionFx(x) for the random vectorX, the probabil-
ity of failure p can be calculated.

Integrating SRA and QRA requires the establishment of a u
fied stochastic framework, to treat uncertainties consistently
obtain useful results for decision making. Looking at the alter
tive probabilistic approaches, it is not obvious how to formula
such a framework. The classical statistical approach to risk an
sis is not considered suitable, since there are not sufficient ‘‘ha
data available to accurately estimate the unknown paramete
the models.

The Bayesian approach is in our opinion the most suitable b
for integrated QRA and SRA. It is necessary to include whate
relevant information is available, and the Bayesian approach
vides a consistent tool for combining ‘‘hard data’’ and subject
information like expert opinions and engineering judgments.

Classical Bayesian Approach and Integration of SRA
„Approach 1…

In quantitative risk analyses we are interested in probabilitie
accidental events. For this purpose a model is developed, for
ample a fault tree, with the basic event probabilities as parame
In this approach we focus on unobservable quantities, like the
probability p of an accidental eventA. Using a fault tree we can
establish a model,w, linking p and some parametersq
5(q1 ,q2 , . . .qn) on a lower system level; i.e.

p5w~q!
182 Õ Vol. 122, AUGUST 2000
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This model shows the functional relationship betweenunobserv-
able parameters on the basic event level and on the top e
level, and the true modelw produces the true value ofp when the
input q is true. According to the classical Bayesian approach,
values ofp, q, andw are uncertain~unobservable and unknown!
and in Approach 1 we use probability distributions to express
uncertainty, i.e., our uncertainty about the true values are
pressed as probability distributions. To establish the distributi
we start with a priori information~i.e., initial uncertainty! I about
q, including engineering judgment, that exists before any data
observed. The priori information is then used to establish a pr
probability distribution,H0(quI ), which reflects our initial knowl-
edge concerning the parameterq. If we observe experience dat
D, we derive a posteriori distribution,H(quI ,D), ~using Bayes
theorem!, which expresses the updated knowledge of the par
eter q after new data have been observed. From this uncerta
distribution, we obtain an uncertainty distribution,H, for p. Only
the entire distribution is a complete measure of our knowled
and H includes both epistemic and stochastic uncertainty. T
uncertainty analysis is very often done by using Monte Ca
simulation, a technique that is applied in many risk analysis cod
Mathematically, we can write

H0~p8!5P~ ‘‘ p<p8’’ !5E
q:w~q!<p8

dH~q!

where H is either the priori or the posteriori distribution ofq.
Normally, in QRAs we use the best estimate when presenting r
The best estimate is typically the mean value of the uncerta
distribution, and in Approach 1 we therefore add more inform
tion to the risk result by expressing the risk by the entire unc
tainty distribution.

Now, to integrate SRA methods in the classical Bayesian
ting, consider, for example, a case where one of theqi ’s is ob-
tained by SRA, sayq1 . Then, we have

q15P~g1~X!<0!

for a limit state functiong1 and basic variablesX. Denoting byF
the distribution function ofX, we can write

q15E
$x:g1~x!<0%

dF~x!

Assuming the existence of a theoretical, true~but unknown! dis-
tribution functionF and limit state functiong1 , there will also be
a true ~unknown! value of q1 . Our ~the analyst’s! uncertainty
related to the distributionF and the limit state functiong1 gener-
ates the uncertainty distribution onq1 . Assume that g1 is known
and that our uncertainty related toF is restricted to specifying a
parameteru ~u may be a vector!; thus,F(x)5F(xuu).

There exists a true, but unknown, value ofu. We write q1(u)
andPu to show the dependency on the parameteru. Hence

q1~u!5Pu~g1~X!<0!5E
$x:g1~x!<0%

dF~xuu! (1)

From this, an uncertainty distribution forq1 can be established
based on SRA.

Fully Bayesian Approach and Integration of SRA
„Approach 2…

The alternative to the classical Bayesian approach is the f
Bayesian approach, which is characterized by focusing on obs
able quantities, like the occurrence or not of an accidental ev
the number of accidental events in a given period of time, or l
production in a period of time. Subjective probabilities are used
express the uncertainties of these quantities. The uncertaintie
volved are therefore related to whetherthe events will occur or
not. The risk result, for example,P(A) is a total measure of
uncertainty and the probability is used to express our uncerta
related to the accidental eventA.
Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



p

n

i
h

r

t
a
o

-

l

e

r

if-
hat
ility
be
this

n-
ld

2
ef,

an
f a
ld.
, a
is of

n
e,
ty,
tion

in
nd
o-
or-
ical

be
A
hore
be
the
he
ions,

la-

tem
here
fied.
es

y of

Downloa
The analyses will provide the probabilities of the uncerta
events that are relevant in the specific situation of decision m
ing. SinceP(A) expresses our degree of belief~experts’ belief!, a
discussion of the uncertainty ofP(A) is regarded irrelevant.

Using various risk analysis models, a functional relationshin
between the occurrence of the eventA and the eventsB
5(B1 ,B2 , . . . ) on a moredetailed level is established, i.e.

A5n~B!

The analyst’s uncertainty regarding the occurrence of an evenBi
is expressed by the subjective probabilityP(Bi). Using the rela-
tionshipn and probability calculus, we can compute the probab
ity P(A) expressing the uncertainty related to whether the eveA
will occur or not. In most cases, this givesP(A)5n(P(B))
5n(q), whereP(B)5q, P(B)5(P(B1),P(B2), . . . P(Bn)).

To illustrate the model, we can use two basic eventsB1 andB2
such that the occurrence of the eventA is connected toB1 andB2
by an AND-gate. Then

P~A!5P~B1!P~B2uB1!

where P(B2uB1) denotes the conditional probability when it
known thatB1 has occurred. In the fully Bayesian setting, t
eventsB1 and B2 are independent if the knowledge of the ou
come of B1 does not make the analyst’s change the degree
belief concerning the occurrence ofB2 .

The probabilityP(A) can also be determined by use of a pa
metric model to quantify the uncertainty whether eventA will
occur or not, for example, an exponential life time model. Lel
be the model parameter~e.g., the failure rate in the exponenti
model!. Then, by the Bayesian approach and the law of total pr
ability, we can calculateP(A) by

P~A!5E P~Aul!dH~l!

whereP(Aul) denotes the conditional probability ofA given l,
and H(l) is a distribution function ofl, apriori or posteriori
depending on the availability of experience data. Denoting

qi~l!5P~Bi ul! and q~l!5~q1~l!,q2~l!, . . . !

we would usually have

P~Aul!5n~q~l!!

and hence

P~A!5E n~q~l!!dH~l! (2)

The total probabilityP(A) consists of two elements:P(Bul) and
H(l). Additional information will changeP(A) only through its
impact onH(l), i.e., H(l) is updated in accordance with Baye
formula, @2#.

Now, how should we interpretH(l) andP(Bul)? Does the use
of the distributionH mean that we believe in a true value ofl. No,
H gives weights to the differentl values according to the confi
dence we have in the different values~for predicting observable
quantities!; there exist no true values. Is it consistent with the fu
Bayesian approach to assume a true value ofl? No, because, if
we believe in a true value ofl, we should also believe in a tru
value ofP(B), and consequently in a true value ofP(A). But that
is not possible in a full Bayesian setting whereP(A) is a total
measure of uncertainty.

In the fully Bayesian setting all probabilities are quantifyin
epistemic uncertainties. The probabilitiesP(Bi ul) and P(Aul)
~whenl varies! represent alternative ‘‘models’’~mathematical ex-
pressions! which we consider suitable for expressing our deg
of belief concerning the occurrence ofBi andA, respectively. It is
a way of standardizing the probability considerations. It is n
essential that the parameterl has a physical interpretation; allow
ing different values ofl is simply a way of generating a class o
appropriate uncertainty distributions forBi andA.
Journal of Offshore Mechanics and Arctic Engineering

ded 18 May 2009 to 129.241.143.252. Redistribution subject to ASME 
in
ak-

t

il-
t

s
e
t-
of

a-

l
b-

s

ly

g

ee

ot
-
f

In this approach the meaning of uncertainty is completely d
ferent from uncertainty in the classical Bayesian approach. W
is uncertain is the occurrence of the event A, and the probab
P(A) expresses this uncertainty. The fact that there could
faults and weaknesses in the model used does not change
interpretation ofP(A). There is no sense in speaking about u
certainty of the probabilityP(A), because such a reasoning wou
presuppose the existence of a true value ofP(A).

When incorporating SRA within the framework of Approach
q15P(g1(X)<0) is a measure of uncertainty, a degree of beli
concerning the occurrence of the event ‘‘g1(X)<0.’’ The values
of the quantitiesX are uncertain~unknown! and the uncertainty is
expressed by the subjective probability distributionF, giving

q15E
$x:g1~x!<0%

dF~x! (3)

If we consider alternative modelsF(xuu), we obtainP(A) using
Eq. ~2! with

q1~u!5E
$x:g1~x!<0%

dF~xuu!

If SRA replaces more than one of theqi ’s, we can proceed along
the same lines.

The Two Examples

General Introduction. The objective of this section is to
implement the two approaches on one relevant operation in
offshore project@4#. The sub-phase studied here is the towing o
production facility, from a construction site to the offshore fie
The production facility could be a production ship, a barge
concrete or steel structure. The study involves a cause analys
a navigation failure during towing utilizing both approaches.

A navigation failure is a deviation of the tow of the productio
facility from its intended towing route. This could, for exampl
be due to loss of the ability of tugs to hold the production facili
tugs being out of course caused by a failure of the naviga
equipment, an error in interpreting navigation data, an error
communication between the tow master controlling the tow a
the tug captains, a failure of the tow master to correctly c
ordinate the actions of the tugs, or a towline failure causing inc
rect commands. The navigation failure includes both mechan
failure and human errors.

If the structure drifts out of control, the consequences may
minor or major structural damages to the production facility.
navigation error usually has more severe consequences ins
than offshore. Following a navigation failure, recovery could
obtained by getting signals about the wrong position from
monitors plotting the direction or from any of the operators. If t
tow coordinator observes the signals and takes corrective act
recovery may be obtained.

In the following two examples, we concentrate on the calcu
tion of the probability of navigation failure,P~NF!, utilizing Ap-
proaches 1 and 2. The fault tree in Fig. 1 illustrates the sys
considered, and the tree has been broken down to a level w
the probabilities of the basic events can more easily be quanti
The reliability block diagram corresponding to the fault tree giv
a serial system with four components~minimal cut sets!. Compo-
nent i has the reliability

12qi

whereqi is the probability of failure of componenti.
Assuming independence between the events, the probabilit

the top event, NF, is then given by

p5P~NF!512)
i 51

n

~12qi !, where n54 (4)
AUGUST 2000, Vol. 122 Õ 183
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If all qi ’s are small, then an approximation to this formula is giv
by P~NF!'(qi .

A description of the base events in the fault tree and the
sumptions related to each base event are briefly summarize
Table 1.

Fig. 1 Fault tree, navigation failure

Table 1 Assumptions and values of the base events of the
fault tree in Fig. 1 „the data are mainly given by experts …
184 Õ Vol. 122, AUGUST 2000
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To utilize the two approaches when calculatingP~NF!, the oc-
currence of at least one event must be described using on
several limit state functions. From the fault tree we identify tw
continuous random variables,X1 andX2 for the event TLF, each
expressed by their density functions,f Xi(xi). Given a limit state
function g(X) and using the joint density functionf X(x) for the
random vectorX5(X1 ,X2), we get

P@TLF#5P~g~X!<0!5E
x:g~x!<0

f X~x!dx

The variableX2 represents the load on the towline, whereasX1
represents the capacity of the towline. VariableX2 is expressed in
terms of significant wave height,Hs .

The other basic events shown in the fault tree are assig
directly by experts, and their probabilities are listed in Table 1

In examples 1 and 2, only one limit state function with just tw
variables has been analyzed. The SRA analysis could have
more detailed using more variables and limit state functions.
example, we could extend the event ‘‘towline failure’’ with on
more failure function: ‘‘mooring failure’’ including two variables
X5 and X6 . Then, event TLF occurs if one of the failure mod
occurs, and could be modeled as a parallel system, i.e.

TLF5~~X12X2!<0!ø~~X62X5!<0!

whereX6 represents the capacity of the mooring andX5 represents
the load on the mooring.

Example 1, Using Approach 1. In this example,P~NF! is
expressed within a classical Bayesian framework~utilizing ap-
proach 1!. Let us start by assigning an uncertainty distribution
the probability of a ‘‘towline failure,’’~TLF!.

We assume the existence of a theoretical, true~but unknown!
distribution functionFX1

(xi uu) for the variablesX1 andX2 and a
limit state functiong1 . There will also be a true~unknown! value
of q15P~TLF!. We ignore any uncertainty related tog1 . Our
uncertainty related toF is related to the parametersu of the dis-
tribution functions. There exist true, but unknown, values foru,
and our uncertainty related to these values is expressed by u
tainty distributions for the parametersu. Let us now assume the
following:

• The random variableX1 is expressed in terms of significan
wave heights,Hs , and is normally distributed with param
eters,m ands. The density function is given by

f~x1;m,s2!5
1

sA2p
e2~x12m/s!2

for
0,x,`, 2`,m,`, s2.0

• The random variableX2 has a Weibull distribution with pa-
rametersl and b. The cumulative distribution function is
given byFX2

(x2)512exp(2(x2 /l)b)

Within the classical Bayesian framework we focus on the u
observable and unknown parameters of the mathematical mo
~distribution functions! and express our uncertainty about whe
the true values of these parameters are by introducing uncerta
distributions. Our uncertainty related toF is restricted to specify-
ing the parametersm, s, b, andl. There exist true, but unknown
values of these parameters, and our uncertainty about the
values is expressed by uncertainty distributions defined
experts.

Our uncertainty related to the value ofs is expressed by a
triangle distribution,Hs(s), in the interval~1.5, 2.0!. Further, our
uncertainty about the value ofm is expressed by a uniform distri
bution,Hm(m); i.e., our uncertainty related to the mean value,m,
is uniformly distributed on the interval~5.0, 6.0!. Hence,m has a
density distribution
Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



n

ri-
the
f

ing
by

by

of

ay

tion
-

Downloa
h~m!51/~6.025.0! if 5.0,m,6.0, and 0 otherwise

We assume statistical independence between the uncertainty
tributions hm(m) and hs(s), giving a joint uncertainty distribu-
tion: hms(m,s)5hm(m)hs(s).

Our uncertainty regarding the parameters of the Weibull dis
bution is ‘‘minimum’’ due to a large amount of data from th
North Sea, and therefore they are presented as fixed values. U
the data from the classical statistical analysis in Table 2, the
rametersl andb of the Weibull distribution can be determined

pH5P~X2.x2!512FX2
~x2!5expS 2S x2

l D bD ; 2 ln pH5S x2

l D b

ln~2 ln pH!5b ln x22b ln l,

where x255m and 3m with corresponding valuespH53.3
31022 and 1.931025, respectively. This gives:

b ln 32b ln l5 ln~2 ln 3.331022!51.227,

b ln 52b ln l5 ln~2 ln 1.931025!52.386

Thus

b5
1.159

ln 52 ln 3
52.269

ln l5
0.492

2.269

l5e0.21651.241

The uncertainty distributionover q1 , whereq15P((X12X2)
<0), is established by drawing numbers from the uncertai
distributionsHm andHs and using the limit state functiong(X).
The software Proban was used for this purpose. The results
beta distribution

f X~x!5
1

~b2a! t21B~r ,t2r !
~x2a!r 21~b2x! t2r 21

The following parameter values for the Beta distribution we
calculated by Proban@5#:

• Mean value:m5a1(b2a)
r
t 54.331731023

• Standard deviation:s5(b2a)
r
t

A(t2r )

Ar (t11)
54.409131023

• Lower bound:a50.0
• Upper bound:b51.0

The parametersr andt of the distribution of the variableq1 are

r 5mt

s5
r

t

At2r

Ar ~ t11!
⇒s25

r 2

t2

~ t2r !

r ~ t11!

Table 2 Probability of exceeding wave heights, during the
towing operation
Journal of Offshore Mechanics and Arctic Engineering
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s25
~m2t2!

t2

~ t2mt !

m~ t11!
5

m2m2

t11
⇒t5

m2m2

s2 215220

r 5mt50.96

The beta function will now, together with the uncertainty dist
butions over the probabilities of the remaining basic events in
fault tree, be used in Eq.~4! to calculate the overall probability o
navigation failure; see overall results in the forthcoming.

For the remaining base events in the fault tree, the follow
uncertainty distributions over the probabilities are expressed
experts:

• Navigation equipment failure~NEF!: The probabilityq2 is
expressed by an uncertainty distributionH2(q2). H2(q2) is taken
to be triangle distributed on the interval (1024,531023) with
peak value at 1023. Hence,q2 has a densityh(q2)5aq21b, for
1024,q2,1023 andh(q2)5cq21d for 1023,q2,531023.

• Incorrect model of production facility tug behavior,~IM !:
Our uncertainty about the value ofq3 is ‘‘minimal’’ and is ex-
pressed by a fixed value,q35531023.

• The tug captain misunderstands command~TMC!: The prob-
ability q5 is by an uncertainty distribution,H4(q4). H4(q4) is
uniformly distributed on the interval (1025,1023). Hence,q4 has
a density h(q4)51/(102521023) if 1025,q4,1022, and 0
otherwise.

Overall Results. Using the uncertainty distributions forq1 ,
q2 , q3 , and q4 and probability calculus,~4!, the probabilityp
5P~NF! and associated uncertainty distribution was calculated
Monte Carlo simulations using the software program Matlab~ver-
sion 4!;

p512F ~12P~g1~X!,0!!S 12)
i 52

4

qi D G
Matlab calculates the uncertainty distributions ofp by simulation
runs, i.e., drawing numbers from the probability distributions
q1 , q2 , q3 , and q4 . Mathematically, the posteriori distribution
H* of p is given by

H* ~p8!5P~ ‘‘ p<p8’’ !5E
$q:w~q!<p8%

dH~q!

whereH* is the uncertainty distribution overp, andq is the input
parameter,H is the uncertainty distribution overq, andw is the
function linking q to p.

With a large number of simulation runs we obtained in this w
the uncertainty distribution ofp, as shown in Fig. 2.

Example 2, Using Approach 2. In this example the fully
Bayesian approach is used to assign the probability of naviga
failure, P~NF!, as illustrated in the fault tree, in Fig. 1. In Ap

Fig. 2 Density distribution of the probability of navigation fail-
ure, P„NF…
AUGUST 2000, Vol. 122 Õ 185
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proach 2 the probability is calculated within a full Bayesi
framework, and in this contextP~NF! expresses our degree o
belief about the occurrence of a navigation failure. Hence,
uncertainty involved here is related to whether a navigation fail
will occur or not.

The probability of navigation failure, assuming the events
judged independent, is given as

P~NF!512S 12)
i 51

4

qi D
512@~12P~NEF!!~12P~PF!!~12P~IM !!~12P~TC!!#

The probabilities ofq25P@NEF#, q35P@IM # andq45P@TC# are
assigned directly by experts and listed in Table 1, whereasq1
5P@TLF# is established utilizing SRA.

When assigningP~TLF! within a fully Bayesian framework, the
limit state function,g(X), is utilized within the fully Bayesian
framework, where attention is put on the event TLF and our
certainty about the occurrence of TLF is expressed by a proba
ity. Within this framework we focus on the observable and u
known quantity Xi with the uncertainty distributionf Xi

(xi).
Hence,q15P@TLF#5P(g1(X)<0) is a measure of uncertainty,
degree of belief, concerning the occurrence of the eventg1(X)
<0.

We have chosen to express the subjective distributionsFXi
(xi)

by standard mathematical models. It seems reasonable to us
same standard distributions used in the previous example~e.g.,
Normal and Weibull!. In the fully Bayesian framework, we do no
focus on the parameters of the distributions and we do not thin
them as having true values as in Approach 1. They are sim
needed to describe the shape of the distributions and are expr
as fixed values.

The unknown and observable quantitiesX are expressed by th
following two uncorrelated variables:

• X1 is normally distributed with the parameters (m,s2), where
m is equal to 5.5 m ands is equal to 1.5 m.

• X2 is Weibull distributed, with parameter values as calcula
previously, i.e.b52.27 andl51.24.

It should be noted that the parameter values are not the ‘‘
estimates’’ of the uncertainty distributions for the parameters
the distribution ofX1 . The parameter values are chosen to obt
good predictions ofX and reflect our uncertainty of their value
The software Proban@5# has also here been used to calculate
probability of towline failure. By using FORM analysis, the resu
is given as

P@TLF#52.831023

Overall Results (Probability of Navigation Failure).The
overall probability of the top event, navigation failure is now
calculated using probability calculus, giving

P@NF#512)
i 51

n

~12qi !

512@~12P~g1~X!<0!!~12q2!~12q3!~12q4!

512@~122.831023!~12531024!~12531023!

3~12531023!#

51.331022

Discussion
The classical statistical approach to risk analysis is not con

ered suitable for integrating QRA and SRA. There are not su
cient ‘‘hard’’ ~historical! data to accurately estimate unknown p
rameters of the models, and therefore a Bayesian approac
preferable. During a QRA for construction projects it is necess
186 Õ Vol. 122, AUGUST 2000
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to include whatever relevant information is available, and
Bayesian approach provides a consistent tool for combining ‘‘h
data’’ and subjective information. The common practice tod
when interpreting risk results, is conceptually quite similar to t
classical Bayesian approach. They both want to say somet
about true, unobservable quantities~probabilities and statistically
expected values!. The main difference between them is related
the treatment of uncertainty. Common practice allows for subj
tive point estimates~‘‘best estimates’’! of parameters, but the un
certainty associated with these estimates are seldom quantifie
the classical Bayesian approach, however, uncertainty relate
the true parameter values and model are expressed by subje
uncertainty distributions, which then generate uncertainty dis
butions for the output risk results.

Within the fully Bayesian framework, however, the uncertain
element is totally different from the classical Bayesian. The fu
Bayesian approach which forms the framework for Approach
will provide the probabilities of the uncertain events that are r
evant in the specific situation of decision making. The probab
ties express our degree of belief concerning the occurrence o
events. Thus, the result itself is a total measure of uncertainty,
does not require any further discussion of ‘‘uncertainty of t
probabilities.’’

The advantages by integrating SRA into QRA are mainly
ability to easily handle continuous variables appearing in the
cidental events and the possibility to include several random v
ables and failure modes into one single analysis. The use of p
ability distributions in SRA enables the analyst to give a detai
description of one’s knowledge about an uncertain quantity. T
is not possible to the same extent if the description’s restricte
central measures like mean~as normally done in traditiona
QRAs! or median values. In both approaches, the system con
ered is modeled by one or several failure functions,g of the sto-
chastic variables representing ‘‘load’’ and ‘‘capacity’’ quantitie
By using continuously distributed quantities, a full probabilis
description of the experts uncertainty regarding each of the qu
tities influencing the occurrence of an event, i.e., the random v
ables appearing in the limit state functions, are given. Thus,
experts’ knowledge about the event is put into the design as
as the interconnection of limit state functions, distribution fun
tions, and correlation measures~if present!, reflecting the uncer-
tainty or knowledge related to the basic variables and the eve

Depending on the Bayesian framework of the analysis, the
terpretation of the distribution functions,F, differs. In the classical
Bayesian approach we focus on the parameters of the distribu
function, F, and express our uncertainty about the true values
these parameters by subjective uncertainty distributions when
lizing SRA. In the fully Bayesian setting, on the other hand, w
focus on the observable quantity,Xi . The value ofXi is uncertain
and the uncertainty is expressed by a subjective probability di
butionF ~where the parameters only serve as a mathematical in
to describe the functions!. Normally, X is expressed by standar
distribution functions, e.g., normal, lognormal, Weibull, or beta

How should the results in example 1 be presented and in
preted? Is it sufficient to use the standard deviation and the
pected values from the uncertainty distributions? Or, should
use the full uncertainty distribution when presenting and interp
ing the output results? By using expected values and stan
deviations, some information will be lost. This information ma
be interesting if the total uncertainty was included in the unc
tainty distributions. Prior to an analysis, such questions should
addressed and it is the responsibility of the decision maker
answer them.

Comparing the resulting uncertainty distributions following A
proach 1 is not straightforward. It is, of course, convenient from
practical point of view to focus on the mean value in the unc
tainty distributions since then we can more easily compare
results. However, such an approach means that we lose valu
Transactions of the ASME
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Downloa
information about the risk. The mean could be a poor estimat
the true risk. Within this framework the interesting quantity is t
true risk which objectively characterizes the performance of
system. Perhaps, in some cases the uncertainty distributions w
imply high probabilities for some rather extreme situations, ev
though the mean values are relatively low. So in addition to
mean, attention should also be given to the probabilities of
treme risk values.

To be more specific, consider in the classical Bayesian
proach an exponential lifetime model

P~T<t !512e2lt

Then, we can write

P~T<t !5E ~12e2lt!dH~l! (5)

where H(l) is the marginal uncertainty distribution ofl. The
distribution P(T<t) is referred to as the predictive distributio
for the lifetimeT.

By this formula, the uncertainty is divided into two: the st
chastic ~aleatory! uncertainty expressed by (12e2lt) and the
state-of-knowledge~epistemic! uncertainty expressed byH(l).
Now, using the fully Bayesian approach we would normally us
specific value ofl, and this gives a specific distribution
2e2lt. If we choose to use the predictive formula~2!, the math-
ematics seem to be similar. Yes the computation of the predic
distribution is the same as the uncertainty distribution given
formula ~5! with A5T<t. The important points here are no
mathematics, but ideas and interpretation. Following the fu
Bayesian approach, the uncertainty measureP(T<t) is the inter-
esting quantity, and there is no true value ofl andF(l). In the
classical Bayesian approach, the interesting quantity is the
value of the lifetime distribution, since this distribution is su
posed to be a property of the system being analyzed. The p
ability P(T<t) given by~5! is a measure of uncertainty, but it i
not total as it does not reflect uncertainty related to the choic
lifetime distribution class; and it is equal to the mean of the u
certainty distribution related to the true underlying lifetime dist
bution, and the mean can in many cases give a poor picture of
distribution, as mentioned in the foregoing.

Example 1 discussed herein has shown that the determina
of uncertainty distributions and the establishment of the inpu
the simulation runs are time consuming, and may be comp
compared to the assignment of probabilities within a fully Bay
sian framework. Assigning hundreds of uncertainty distributio
for the parameters in a typical QRA will most certainly be dif
cult to handle.

In order for the decision makers to choose between the mod
they need to understand the two approaches and go back t
philosophies behind the models and choose the one which is
sidered to best suit the purpose of the analysis. Most analysts
decision makers have a background in classical statistics, i.e.,
believe in a true value ofp, and therefore they may have mo
confidence in Approach 1. Further, the uncertainty distributio
indicate uncertainty in the results, and are therefore encoura
the decision makers and analysts to a discussion about un
tainty, as normally done in classical risk analysis. Finally, t
Monte Carlo simulations may indicate that there is advan
mathematical modeling behind the results, which may indica
good knowledge of the risk concept and input data. If the decis
makers do not fully understand the philosophy behind Appro
2, they will, because of the aforementioned circumstances, m
probably be in favor of Approach 1!

The total uncertainty related to the analysis~model and param-
eter space! should theoretically be covered within the classic
Journal of Offshore Mechanics and Arctic Engineering
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Bayesian framework of the uncertainty distributions, but it
impossible to do this in practice, especially for large systems.
in practice, only some distributions for some few paramet
are assigned, and consequently, the uncertainty distribution
the output probabilities~results! just reflect some aspects o
uncertainty.

Since the main task when performing QRA is decision maki
the most relevant question when comparing the two approac
must be: ‘‘which model is most efficient for making decisions?
We believe that presenting results, as in example 2, will give
decision makers a more clear message about the risk involved
project than by using Approach 1. The fully Bayesian approa
means that we consider risk analysis as a tool for debate
safety, rather than an attempt to say something about objec
risk values@6#.

Using Approach 2, the message of the analysis is not ‘‘d
turbed’’ by a discussion of uncertainty of the output probabilitie
as in the classical Bayesian approach. In our opinion it is of
difficult to use Approach 1 in decision making, as the resulti
uncertainty intervals are large. What are the conclusions if t
options are compared and the uncertainty bands are~0.001, 0.01!,
and ~0.002, 0.1!, respectively? The risk analysis group is co
sulted as an expert team to help the decision maker, but the m
sage when adopting the foregoing approach is not very infor
tive and gives the impression that risk analysis results
extremely uncertain. The integration of SRA into the QRA mod
reduces this problem, but does not remove it. If Approach 2
adopted instead, the output results are expressing the ana
group’s total uncertainty related to observable quantities, and
possible to present a clear message, without a discussion o
certainties of the risk figures.

To eliminate unwanted variability in results from one analy
to another, guidelines/standards related to methods and dat
required. Of course, standardized input data cannot be used w
facing new types of problems and situations. Such guidelin
standards should, however, not reduce the flexibility and freed
of choosing the analysis group too much. Remember that,
Bayesian setting, the results of the analysis expresses thebest
judgmentsof the analysis group. Of course, all elements of t
analysis must be properly documented.

The decision maker will take into account a number of fact
when deciding to implement or not to implement risk-reduci
measures. The information that the results are based on, the
suppositions and assumptions made in the analysis, the confid
in the analysis, and theacceptance criteriawill also be taken into
account before making the final decision.
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