
 

 

 

 

TTM - 4100

Communication

Services and Networks

KTN - PROJECT
March (2009)

 

 

 

 

 

 

 

Gruppe 9

alcoleaa Alberto Fermín Alcolea Ayala
jornanl Jørn André Larsen
vestergr Knut André Karlsen Vestergren
trondsu Trond Suleng
haiduyth Hai Duy Thai Nguyen
castrosa Miguel Castro Sánchez
 

 

TTM4100 :: KTN1 :: GROUP 9
March 2009

 2 

KTN – FINAL CHANGES:

Changes in the test plan:

• Removed the point where we severed the connection, because we had to run the test
on a single computer.

Changes in the connect & disconnect state diagram:

• Renamed all the states such that they match the premade states in the given code.

• Removed all corrupt test on SYNs, ACKs, and FINs, because we where made aware that
it was not necessary.

• In the state SYN_RCVD and SYN_SENT, we changed the timeout event from resending
the SYN_ACK and go back to waiting again, to change state to CLOSED and throw an
exception. We also removed the timeout events from FIN_WAIT_1 & 2 and LAST_ACK.
This was because in connect and disconnect there is no packet loss, and therefore no
need to resend anything.

• In CONNECTED we removed the self-loop, since there no longer was any chance we
would get a duplicate SYN_ACK (We removed the resending of it).

• We also added two timeout events, one out and one in, at FIN_WAIT_2 to make sure
that we move on to the next state.

• Exiting the TIME_WAIT state, we changed timeout to .. because we did not deem it
necessary to wait before closing the connection.

• In and out of CLOSE_WAIT we made some changes in the order things where done
such that it fits better with our implementation.

• Change the trigger to leave LAST_ACK from receiving an ACK to nothing (Leave it at
once).

• We also removed some unnecessary receive calls, since they did not have any function.

  3 

KTN - INDEX OF CONTENTS

1.‐ Message Sequence Chart  pg. 4 
 
1.1.‐ CONNECTION Sequence Chart……………………………………………………… pg. 4 
1.2.‐ SEND & RECEIVE Sequence Chart………………………………………………… pg. 5  
             1.2.1. Send………………………………………………………………………………………………………...... pg. 5 

             1.2.2. Receive……………………………………………………………………………………………………… pg. 5
   
1.3 .‐ DISCONNECTION Sequence Chart……………………………………………….. pg.6
   
2.‐ State Diagrams for A1  pg. 7 
   
2.1.‐ CONNECTION & DISCONNECTION State Diagrams.…………..…………… pg. 7 
 
3.‐ Error Handling  pg. 8 
 

3.1.‐ Description and Detection……….…………………………………………………… pg. 9 
3.2.‐ Error Handling (Schemas)………….….………………..…………………………… pg. 9 
 
   
4.‐ Test Plan  pg. 12 
 

4.1.‐ Actions and Expected Behavior.…………………………………………………… pg. 12 
4.2.‐ Enviroments…………………………….….……………………………………………… pg. 13 
 

 

 

 

 

 

 

 

 

 

 

TTM4100 :: KTN1 :: GROUP 9
March 2009

 4 

1. – Message Sequence Charts
 
Message sequence charts for the interactions between the application, A1 and A2  
 
1.1.- CONNECTION Sequence Chart

 
Figure 1.1. CONNECTION Sequence Chart 

CONNECT :: Brief Description

When A1 receives a connect() request from the chat application it will create a packet called
SYN, containing destination IP-address, port number and so on, and send it out on to A2. When
the SYN arrive at the server side A1, it will send a SYN_ACK packet back out on to A2. If the
client side A1 does not receive the SYN_ACK within a certain time frame it will trigger a resend
of the SYN. When the client side A1 receive the SYN_ACK, it will send its own ACK out on to A2
and tells the client side chat application that a connection has been made. When the server side
A1 receive the last ACK it will tell the server side chat application that a connection has been
made. If A1 does not receive the ACK within a certain time frame, a time-out will trigger a
resend of the SYN_ACK.

 
 
 
 
 
 
 

  5 

 
 
 
 
 
 
 
 
1.2.- SEND & RECEIVE Sequence Chart

Figure 1.2. SEND & RECEIVE Sequence Chart

Brief Description

1.2.1.- SEND

A1 will, upon receiving a send(string) call, construct a data packet (pkt) with the given text
string, an increasing sequence number and the ip-address and port number of the receiver
defined in the connection instance. This packet will be passed on towards the receiver, calling
send(pkt) on A2. After sending the packet, A1 will start a timer and call receive() on A2, waiting
for an acknowledgment from the other host confirming receiving the packet. Having not
received the acknowledgment before the timer has elapsed, or receiving an old
acknowledgment, A1 will resend the packet, reset the timer and repeat. If A1 does not receive
an valid acknowledgment within a given time, or if it should at any time encounter a connection
error, being unable to send the packet to A2, it will throw an exception.

TTM4100 :: KTN1 :: GROUP 9
March 2009

 6 

1.2.2.- RECEIVE

A1 will, upon receiving a receive() call, call receive(port) on A2, where A2 is the connection port
number stored in the connection instance. It will then wait until A2 returns a packet. Upon
receiving the packet, A1 will check if the checksum matches the packet contents and that it's
sequence number is the expected, and if so, it will construct an acknowledgment packet and
send it to A2, extract the message from the packet and deliver it to the application. Should the
packet be invalid, A1 will send an acknowledgment for the last valid packet received, and call
receive(port) again awaiting the correct packet.

1.3.- DISCONNECTION Sequence Chart

Figure 1.3. DISCONNECTION Sequence Chart 

DISCONNECT :: Brief Description

When the client side chat application wants to close the connection, it calls close() on A1. A1
then creates a FIN packet and sends it out on to A2. When the FIN has been received by the
server side A1, it sends an ACK packet out on to A2, throws the EOF Exception to the server
side chat application and sends the FIN packet out on to A2. If the client side A1 does not
receive the ACK within a certain time frame, it will trigger a resend of the FIN. When the client
side A1 gets the ACK and FIN, it will send another ACK confirmation out on to A2 and awaits for
a while (typical values of 30 sec, 60 sec, 120 sec) before closing the connection.

  7 

2. – State Diagrams for A1
 
2.1.- CONNECTION & DISCONNECTION State Diagram

 
 
 

Figure 2.1. CONNECTION & DISCONNECTION State Diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TTM4100 :: KTN1 :: GROUP 9
March 2009

 8 

 
3. – Error Handling

3.1.- Description and Detection

This section offers a description of how to handle the different errors that can occur during the
course of execution. The errors, causes of errors, and consequences are depicted in section 3.1
of the user documentation A2. The errors are:

- Package lost.
- Package delayed.
- Package has error in payload.
- Package has error in header.
- Ghost package.

Detection:

- Loss:
If a packet is lost, either from sender or from receiver, it is easily detected as a timeout
will occur. This works either way. The ACK was never received and a timeout makes
sure the packet is resent.

- Delay:
If a packet is delayed, a timeout will trigger if the delay is to long. The problem with
this event is that a packet could appear two times, because the sender thought of it as
lost (see above). This can be detected by checking the packets sequence number. If
this number is not larger than the current sequence + 1, we know that the packet is
the same as one we already have received.

- Error in payload:
The data of the package is corrupted in some way. If this gets through to the receiver,
it could result in messages being unreadable nonsense. The documentation A1-doc
states a method for checking if a package has errors, though is has not been created
yet, this can be used by the receiver to detect errors. It is desirable for us to only use
this method to check for any type of error, so the isValid()-method will include checks
to validate checksum field, address fields, ACK field and sequence field.

For this type of error, we only need to check the checksum of the package, since
payload errors is directly shown by a change in checksum, one can use
calculateChecksum() to find the correct value, and use getChecksum() to find the
current package checksum and then compare them to see if the package is corrupted
in payload.

The corrupted packets will be dropped and the error will be treated as a loss and
hence solved by the timeout/resend methodology.

- Error in header:
The user documentation states that the consequence of this error will result in the
package ending up in the wrong place, in other words, it therefore becomes an
outgoing ghost package, and is a lost package in the context of error handling (see
above, and below). Other errors could also occur since both ACK, sequence and/or
checksum also could be wrong. These errors can be detected by the use of the isValid()
method described in A1-doc and in “Error in payload” above. An idea to solve this is to
run the isValid() check on all packages and act upon the types of errors detected. If

  9 

checksum is wrong ,the package is treated as having error in payload. If the addresses
are wrong, the packet is treated as a ghost. If the ACK is wrong, it can be treated as
lost. If the sequence is wrong, it is treated as delayed.

- Ghost:
Suddenly, from nowhere, a packet appears at the receiver which is not sent by the
sender. This packet can be detected by checking the senders address in the header of
the package. If this is different from the one set up in the connection, the package is
considered to be a ghost-package

 
 

3.2.- Error Handling (Schemas)

 

 
 

Figure 3.1. Package Lost 

 
 

TTM4100 :: KTN1 :: GROUP 9
March 2009

 10 

 
 
 
 

Figure 3.2. Package Delay 

 
 
 

  11 

 

 
Figure 3.3. Package Error 

TTM4100 :: KTN1 :: GROUP 9
March 2009

 12 

Figure 3.4. Ghost 

4. – Test Plan

4.1.- Actions and Expected behavior

The following actions will hereby be referred to as the basic test:

Action:
Open a connection from one host to an other

Expected:
If there exists a network connection, we will expect the return of a Connection instance within a
limited time period. In the case of a severed network, we will expect a correct exception
thrown.

Action:
Send a number (50) of messages from host to host

Expected:
All the send messages should be delivered intact in the right order without duplicates.

  13 

Action:
Perform a disconnect from host.

Expected:
The connection should shut down controlled on both sides

4.2.- Enviroments

The basic test should be performed in the following environments. If an environment produce
errors, the whole test plan will be repeated from the top if the error result in a new version of
the code. The code will be updated if an error is by close inspection to a packet trace of the
sent communication and the built in logs of the Admin module found to be caused by it.

Environments:

Fault free:
Admin module is set to simulate loss free deliveries without delay.

Single fault:
In turn, corruption, loss, delay and miss deliveries (ghost) of packets will be enabled with 10%
and 50% probability.

Multi fault:
Corruption, loss, delay and miss deliveries (ghost) of packets will be enabled all at once with
10% and 50% probability. Should this test produce faults after a successful completion of all
the test in the single fault environment, new environments with faults activated in groups of
two and three will be tested to isolate what faults will produce the errors when occurring
together.

All the tests will be documented, together with any correction done to the code between each
environment.

