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Abstract

We consider stable high order finite difference approximations for the parabolic term
with a variable coefficient in a hyperbolic-parabolic equation. We present three different
approaches to account for this problem. Hyperbolic-parabolic equations with variable
coefficients arise in many application, for example when linearizing the Navier-Stokes
equations. The parabolic term models diffusion and the hyperbolic term convection,
which is why the resulting equation is often called convection diffusion equation.

The diffusion term is of self-adjoint form. It is desirable that a discretization of the
parabolic term is also self-adjoint in order to maintain physical properties that arise from
this form, i.e. a decrease in energy. Since the hyperbolic terms can be treated using
summation by parts (SBP) operators that have been derived earlier, we devised SBP
operators that can be combined with them. We suggest how a self-adjoint SBP operator
that is strictly stable could look like. A simpler and more efficient way to approximate
the diffusive term is to approximate all appearing derivatives separately using the known
SBP operators. Here the self-adjoint form is not conserved and the approach yields a
stable but not strictly stable operator.

As an alternative we propose a fourth order accurate operator based on finite elements.
Using a technique called mass lumping, we obtain a diagonal mass matrix which is why
we can interpret the operator as a finite difference method. This operator is strictly stable
for the parabolic term, but requires hyperbolic terms to be approximated in the same
way.
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1 Introduction

Our objective is to find strictly stable high order finite difference approximations for the
spatial part of the parabolic differential equation

ut(x, t) = (a(x, t)ux(x, t))x (1.1)

u(0, x) = f(x)

in the domain Ω × I. The function a is assumed to be positive, i.e. a(x, t) ≥ amin > 0.

In technical applications, the right hand side of (1.1) models diffusive processes, e.g. mass
diffusion and heat conduction, and constitutes the diffusive part of the convection diffusion
equation

ut(x, t) = (a(x, t)ux(x, t))x + b(x, t)ux(x, t) + (c(x, t)u(x, t))x (1.2)

u(0, x) = f(x)

in the domain Ω × I. Hence a numerical method for solving (1.1) should be applicable to
(1.2).

The method shall be of high order and the bandwidth of the operator shall be as small
as possible in order to yield a consistent and efficient method. For a consistent method,
convergence is equivalent to stability by the Lax-Richtmyer equivalence theorem.

Kreiss and Wu [9] showed that if a stable semi-discretized system is additionally dis-
cretized in time using a Runge-Kutta method, the fully discrete scheme will be stable as well.
Carpenter et al., however, pointed out that the error might nevertheless grow exponentially
in time, which can be avoided for strictly stable semi-discrete schemes [2].

Kreiss and Scherer [8] proposed to design finite difference methods that satisfy a sum-
mation by parts property using some specially defined discrete norms. Operators based on
this idea are called summation by parts (SBP) operators. The summation by parts rule –
a discrete analogon to integration by parts – yields an energy estimate, which guaranties
stability of the difference scheme according to the theory developed in [7].

This idea has been refined by Strand [16] for hyperbolic systems, i.e. for approximations of
the first derivative. Mattsson and Nordström [11] take up this idea and extend it to parabolic
and mixed hyperbolic-parabolic systems by developing summation by parts operators based
on the same norms as the SBP operators for the first derivative. A SBP operator does not
handle the physical boundary data itself, which is why the boundary conditions have to be
implemented additionally. There are different possibilities how to implement the boundary
data [10], among which the Simultaneous Approximation Term (SAT) method is the most
common one (cf. [3] for details about SAT).

However, in [11] only parabolic terms with constant coefficients are considered. The
objective of this work is to devise SBP operators for a parabolic term with non-constant co-
efficients. There have been SBP operators based on different types of norms. We concentrate
on diagonal norms here since they are most feasible in practical applications. We propose
three different possibilities of how to design an operator discretizing (aux)x.

In order to distinguish the different ideas, we first give two different definitions of a
summation by parts operator. In a strict sense a SBP operator shall fulfill a summation by
parts rule where we can transfer one derivative from one vector to the other. As proposed in
[11], it is however reasonable to weaken this strict definition to some extend.

Let (·, ·)H be an inner product based on the diagonal matrix H. H should be the matrix
that is needed to show stability for the SBP operators proposed in [16] and [11]. Denote the
operator approximating (aux)x with Q(a).
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Definition 1.1. A difference operator Q(a) = −H−1P (a) + R(a), where R(a) operates only
on the boundary, approximating ∂

∂xa ∂
∂x is a complete SBP operator for a self-adjoint parabolic

term, if P (a) = DT
1 HaD1, where D1 is a consistent approximation of ∂/∂x.

This definition is reasonable since Q(a) satisfies the following summation by parts rule

(v, Q(a)v)H − boundary terms = vT HQ(a)v − boundary terms = −vT P (a)v

= −vT DT
1 HaD1v = −(D1v)T HaD1v

= −(D1v, aD1v)H ≤ 0

This property can be used to obtain an energy estimate

d

dt
‖u‖H = −vT (P (a) + P (a)T )v + boundary terms ≤ boundary terms

The first equation shows that we essentially need P (a) + P (a)T ≥ 0 to obtain an energy
estimate. This yields the weaker definition

Definition 1.2. A difference operator Q(a) = −H−1P (a) + R(a), where R(a) operates only
on the boundary, approximating ∂

∂xa ∂
∂x is a SBP operator for a self-adjoint parabolic term, if

P (a) + P (a)T ≥ 0.

These definitions are a generalization of the definitions given in [11] for ∂2/∂x2. They are
not very precise since they shall only give a rough idea of SBP operators and are motivated
more carefully in the sequel.

In the following section we investigate the continuous problem in detail to give a basis for
the numerical treatment of the problem.

In section 3 we discuss the possibility of applying the product rule on (aux)x, which yields
auxx + axux, where we can use the SBP operators for ∂/∂x and ∂2/∂x2. Such a method is
based on the weaker definition of an SBP operator. In contrast the operators presented in
section 4 are complete summation by parts operators. In both cases we handle the physical
boundary conditions with the SAT method. The first method leads to simpler stencils, on
the other hand some stability problems arise.

In section 5 we use a different approach, namely we use the theory of finite element
methods to devise the operator. Using a technique called mass lumping however, we obtain
an operator which can be interpreted as a summation by parts difference operator. The
advantage of this operator is that we can treat the physical boundary data in a natural way
based on the finite element theory and thus avoid difficulties with the boundary treatment.
In section 6 we sketch how this ansatz can be extended to the convection diffusion equation.
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2 The Continuous Problem

2.1 Initial-Boundary Value Problem

When considering an initial-boundary value problem (IBVP) governed by the partial differ-
ential equation (1.2), we distinguish between two types of boundary conditions. In the case
of Dirichlet boundary conditions, u is prescribed on ∂Ω× I. Then we get the following IBVP:

ut(x, t) = (a(x, t)ux(x, t))x + b(x, t)ux(x, t) + (c(x, t)u(x, t))x, x ∈ Ω, t ∈ I,

u(x, 0) = f(x), (2.1)

u(0, t) = g0(t), u(1, t) = g1(t),

where a(x, t) ≥ amin > 0 (amin shall be some constant) and I = [0,∞). For our analysis we
further put Ω = [0, 1].

The other type of boundary conditions prescribes ux on ∂Ω × I, a so-called Neumann
boundary condition. Moreover, combinations of both types of boundary conditions are possi-
ble which yield an IBVP of the form

ut(x, t) = (a(x, t)ux(x, t))x + b(x, t)ux(x, t) + (c(x, t)u(x, t))x, x ∈ Ω, t ∈ I,

u(x, 0) = f(x), (2.2)

β0u(0, t) + ux(0, t) = g0(t), β1u(1, t) + ux(1, t) = g1(t),

where a(x, t) ≥ amin > 0 and Ω = [0, 1], I = [0,∞). Such boundary conditions are called
Robin boundary conditions. Note that β0 = β1 = 0 yields Neumann boundary conditions.

2.2 Energy Estimate

The main requirement on an initial boundary value problem is well-posedness. This means
that a unique solution shall exist and the solution shall depend continuously on initial and
boundary data. A convenient way of showing well-posedness is the energy method. For this
purpose we consider a certain norm of the solution, physically identified with an energy.

Let the inner product for real-valued functions u, v ∈ L2(Ω) be defined by (u, v) =∫
Ω u v dx and the corresponding norm by ‖u‖2 = (u, u).

Using the energy method, well-posedness is defined as follows (cf. [7]):

Definition 2.1. We call problem (2.1) or (2.2), respectively, with g0 ≡ g1 ≡ 0 well-posed, if
for every f ∈ C∞ that vanishes in a neighborhood of ∂Ω, there are constants α and K that
do not depend on f such that

‖u(· , t)‖2 ≤ Keαt‖f‖2 (2.3)

Inhomogeneous problems can be transformed into homogeneous problems using some
smooth function that satisfies the boundary conditions. In that way the inhomogeneous
boundary data can be transformed to a forcing term. In order to get an energy estimate, some
regularity requirements on the boundary data arise, i.e. g0 and g1 should be differentiable
(cf. [7]). This reduction process can be avoided using the following definition.

Definition 2.2. Problem (2.1) or (2.2), respectively, is called strongly well-posed, if it is
well-posed and

‖u(· , t)‖2 ≤ Keαt

(
‖f‖2 +

∫ t

0

(
g0(τ)2 + g1(τ)2

)
dτ

)
(2.4)

with some constants K and α that do not depend on f and g.
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Not every problem allows getting such a stringent estimate. Using the energy method, for
Dirichlet boundary conditions one can only show well-posedness and not strong well-posedness
as we will see later. For well-posedness we will therefore require differentiable Dirichlet data.

To get an easier criterion for strong well-posedness, we require the differentiated form of
(2.4) to hold:

d

dt
‖u(· , t)‖2 ≤ αKeαt

(
‖f‖2 +

∫ t

0

(
g0(τ)2 + g1(τ)2

)
dτ

)
+ Keαt

(
g0(t)

2 + g1(t)
2
)
.

If α ≥ 0, we can replace the expression in the big brackets by ‖u(·, t)‖2 using equation (2.4).
For the second term we use the estimate 1 ≤ eαt.
Thus, if we show

d

dt
‖u(· , t)‖2 ≤ α‖u(· , t)‖2 + K

(
g0(t)

2 + g1(t)
2
)
, (2.5)

then (2.4) is satisfied and the problem is strongly well-posed.

We analyze the norm of the solution to (1.2). Taking the time derivative of ‖u‖ leads to

d

dt
‖u‖2 = (ut, u) + (u, ut)

= ((aux)x + bux + (cu)x, u) + (u, (aux)x + bux + (cu)x)

= 2

∫ 1

0
u((aux)x + bux + (cu)x)dx (2.6)

There are several possibilities to estimate the hyperbolic terms bux and (cu)x. We will
make use of two different estimates in the sequel. The first version will be used for the
operators based on finite difference methods derived in the sections 3 and 4, while the second
version for the operator based on finite elements in section 5.

2.2.1 Estimate for the Difference Methods

We assume that the derivatives of a, b and c exist in order to be able to use the identities
2u(cu)x = cxu2 +(cu2)x and 2ubux = (bu2)x−bxu2 and apply integration by parts on (aux)x.
(2.6) becomes

d

dt
‖u‖2 =

∫ 1

0
(−b + c)xu2dx − 2

∫ 1

0
au2

xdx + u(2aux + (b + c)u)
∣∣∣
1

0
. (2.7)

The the first integral can be estimated by

∣∣∣∣
∫ 1

0
(−b + c)xu2dx

∣∣∣∣ ≤ ‖(−b + c)x‖∞
∫ 1

0
u2dx = ‖(−b + c)x‖∞‖u‖2,

while the second integral in (2.7) is bounded by

−
∫ 1

0
au2

xdx ≤ −amin‖ux‖2. (2.8)

Inserting these estimates into (2.6) we get

d

dt
‖u‖2 ≤ −2amin‖ux‖2 + ‖(−b + c)x‖∞‖u‖2 + u(2aux + (b + c)u)

∣∣∣
1

0
. (2.9)
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Concerning the boundary terms, we distinguish between Dirichlet and Robin boundary con-
ditions.

Dirichlet Boundary Conditions.

We consider the term u(2aux+(b+c)u)
∣∣1
0

in (2.9) and insert u(0, t) = g0(t) and u(1, t) = g1(t).

We set d(x, t) = 1
2(b(x, t) + c(x, t))

u(aux + du)
∣∣∣
1

0
= g1(aux + dg1)

∣∣
1
− g0(aux + dg0)

∣∣
0

When trying to get an estimate of the form (2.5), we have to use some technique to split the
terms g0ux|0 and g1ux|1 into u2

x and g2
1. Using the inequality 2

∣∣giux|i ≤ g2
i + u2

x|i, i = 0, 1,
we obtain the term ‖ux‖2

∞. However, ‖ux‖2
∞ cannot be estimated by only using ‖u‖2 and

‖ux‖2. Using the energy method, the strong well-posedness cannot be shown. Thus we set
homogeneous boundary conditions and show well-posedness instead.

We neglect the negative term −2amin‖ux‖2 and obtain an estimate of the form

d

dt
‖u(· , t)‖2 ≤ ‖(−b + c)x‖∞ ‖u(· , t)‖2

which means that (2.1) is well-posed with a constant

α = ‖(−b + c)x‖∞. (2.10)

Robin Boundary Conditions.

Again, we consider the term u(2aux +(b+c)u)
∣∣1
0

in (2.9) and insert ux(0, t) = g0(t)−β0u(0, t)
and ux(1, t) = g1(t) − β1u(1, t):

2
∣∣∣u(aux + du)

∣∣1
0

∣∣∣ = 2
∣∣∣u(ag1 − β1au + du)

∣∣
1
− u(ag0 − β0au + du)

∣∣
0

∣∣∣
≤ (a(1, t) + 2|d(1, t) − β1a(1, t)|)u(1, t)2 + a(1, t)g1(t)

2

+ (a(0, t) + 2|d(0, t) − β0a(0, t)|)u(0, t)2 + a(0, t)g0(t)
2,

using the algebraic inequality 2rs ≤ 1
ε r

2 + εs2 with ε = 1.
Set γ = 2(1 + |β0| + |β1|)‖a‖∞ + 2‖b + c‖∞. Then,

2
∣∣u(aux + du)

∣∣
0
1
∣∣ ≤ γ‖u‖2

∞ + ‖a‖∞
(
g0(t)

2 + g1(t)
2
)
.

We need a so called Sobolev inequality to get the desired estimate.

Lemma 2.3. Let the real-valued function f be continuous and piecewise in C1. Then it holds
for every ε > 0

‖f‖2
∞ ≤ ε‖fx‖2 +

(
ε−1 + 1

)
‖f‖2,

where the derivative is to be interpreted in the weak sense.

Proof. This inequality is shown for a continuously differentiable function f in [7]. In section
6 we need it also for piecewise continuously differentiable functions, which is why we give this
more general proof here.
Let x1 and x2 be points with

|f(x1)| = min
x

|f(x)|, |f(x2)| = max
x

|f(x)| = ‖f‖∞.
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Without restriction, we can assume that x1 < x2. Let k denote the number of discontinuities
of fx in the interval [x1, x2] and yj , j = 1, . . . , k the positions where the discontinuities occur.
Then

∫ x2

x1

2ffxdx =

∫ y1

x1

2ffxdx +

k−1∑

j=1

∫ yj+1

yj

2ffxdx +

∫ x2

yk

2ffxdx

The function 2ffx = (f2)x is continuous in each one of these interval, which implies

∫ x2

x1

2ffxdx = f2
∣∣∣
y1

x1

+

k−1∑

j=1

f2
∣∣∣
yj+1

yj

+ f2
∣∣∣
x2

yk

= f2
∣∣∣
x2

x1

,

that is

‖f‖2
∞ − f(x1)

2 ≤ 2

∫ x2

x1

|f | |fx|dx ≤ 2

∫ 1

0
|f | |fx|dx

≤ 2
√

ε‖fx‖
1

ε
‖f‖ ≤ ε‖fx‖2 + ε−1‖f‖2.

Since f(x1)
2 ≤ ‖f‖2, it follows

‖f‖2
∞ ≤ ε‖fx‖2 +

(
ε−1 + 1

)
‖f‖2.

Using lemma 2.3 with ε = 2amin
γ , we get

2
∣∣∣u(aux + cu)

∣∣1
0

∣∣∣ ≤ 2amin‖ux‖2 +

(
γ2

2amin
+ γ

)
‖u‖2 + ‖a‖∞

(
g0(t)

2 + g1(t)
2
)
.

Using this result in (2.9), we obtain the estimate

d

dt
‖u(· , t)‖2 ≤ α‖u(· , t)‖2 + K

(
g0(t)

2 + g1(t)
2
)

with K = ‖a‖∞ and

α = ‖(−b + c)x‖∞ +
γ2

2amin
+ γ.

We see that in this case the problem is strongly well-posed independently on β0 and β1.

2.2.2 Estimate for the Operator based on Finite Elements

We apply integration by parts to the terms u(aux)x and u(cu)x. This leads to

d

dt
‖u‖2 = 2

∫ 1

0
(b − c)uuxdx − 2

∫ 1

0
au2

xdx + 2u(aux + cu)
∣∣∣
1

0
. (2.11)

The the first integral can be estimated by

∣∣∣∣
∫ 1

0
(b − c)uuxdx

∣∣∣∣ ≤ ‖b − c‖∞
∫ 1

0
|uux|dx ≤ ‖b − c‖∞‖u‖ ‖ux‖,
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where the last inequality is obtained using the Cauchy-Schwarz inequality. Using the algebraic
inequality 2rs ≤ 1

ε r
2 + εs2, we obtain

∣∣∣∣
∫ 1

0
(b − c)uuxdx

∣∣∣∣ ≤
‖b − c‖2

∞

2amin
‖u‖2 +

amin

2
‖ux‖2 (2.12)

for ε = amin
‖b−c‖∞

and

∣∣∣∣
∫ 1

0
(b − c)uuxdx

∣∣∣∣ ≤
‖b − c‖2

∞

4amin
‖u‖2 + amin‖ux‖2 (2.13)

for ε = 2amin
‖b−c‖∞

. We need these two different estimates because of the different treatment of
Dirichlet and Robin boundary conditions.

Dirichlet Boundary Conditions.

We use the estimate (2.13) as an estimate of the hyperbolic part and (2.8). All boundary
terms vanish in the case of homogeneous boundary conditions, and we obtain

d

dt
‖u(· , t)‖2 ≤ ‖(b − c)‖2

∞

2amin
‖u(· , t)‖2,

which shows the well-posedness with

α =
‖(b − c)‖2

∞

2amin
. (2.14)

Robin Boundary Conditions.

We consider the boundary term u(aux + cu)
∣∣1
0

in (2.11) and insert ux(0, t) = g0(t)− β0u(0, t)
and ux(1, t) = g1(t) − β1u(1, t):

2
∣∣∣u(aux + cu)

∣∣1
0

∣∣∣ = 2
∣∣∣u(ag1 − β1au + cu)

∣∣
1
− u(ag0 − β0au + cu)

∣∣
0

∣∣∣
≤ (a(1, t) + 2|c(1, t) − β1a(1, t)|)u(1, t)2 + a(1, t)g1(t)

2

+ (a(0, t) + 2|c(0, t) − β0a(0, t)|)u(0, t)2 + a(0, t)g0(t)
2,

using the algebraic inequality 2rs ≤ 1
ε r

2 + εs2 with ε = 1.
Set η = 2(1 + |β0| + |β1|)‖a‖∞ + 4‖c‖∞. Then,

2
∣∣∣u(aux + cu)

∣∣1
0

∣∣∣ ≤ η‖u‖2
∞ + ‖a‖∞

(
g0(t)

2 + g1(t)
2
)
.

Using lemma 2.3 with ε = amin
η , we get

2
∣∣∣u(aux + cu)

∣∣1
0

∣∣∣ ≤ amin‖ux‖2 +

(
η2

amin
+ η

)
‖u‖2 + ‖a‖∞

(
g0(t)

2 + g1(t)
2
)
.

We use this estimate together with (2.12) and (2.8) and get

d

dt
‖u(· , t)‖2 ≤ α‖u(· , t)‖2 + K

(
g0(t)

2 + g1(t)
2
)

with K = ‖a‖∞ and

α =
η2 + ‖(b − c)‖2

∞

amin
+ η. (2.15)
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If we have homogeneous boundary conditions, i.e. g0 ≡ g1 ≡ 0, we obtain the slightly
sharper estimate

d

dt
‖u(· , t)‖2 ≤ α‖u(· , t)‖2

with

α =
η̃2 + ‖(b − c)‖2

∞

amin
+ η̃, (2.16)

where η̃ = 2(|β0| + |β1|)‖a‖∞ + 4‖c‖∞.
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3 Approximation Using the Product Rule

Finite difference operators satisfying a summation by parts rule have been derived by Strand
[16] for the first derivative and Mattsson and Nordström [11] for the second derivative.
Since equation (1.1) can also be written in the form

ut = ax(x, t)ux(x, t) + a(x, t)uxx(x, t)

if a and ux are sufficiently smooth, these operators can also be used to solve (2.2).

When we are solving the convection diffusion equation (1.2), we write it in the form

ut = a(x, t)uxx(x, t) + (ax(x, t) + b(x, t))ux(x, t) + (c(x, t)u(x, t))x. (3.1)

In the following sections we will use a similar notation as Strand and Mattsson and Nordström
[16, 11]. The domain Ω = [0, 1] is discretized using N + 1 equidistant grid points,

xj = jh, j = 0, 1, . . . , N, h =
1

N

The numerical approximation at the grid point xj is denoted vj , and the discrete solution
vector vT = [v0, v1, . . . , vN ]. We will use the matrices and vectors

e0 = [1, 0, . . . , 0]T , E0 = diag([1, 0, . . . , 0]),

eN = [0, . . . , 0, 1]T , EN = diag([0, . . . , 0, 1]).

3.1 Construction

To apply the energy method on the discretization, we first need a suitable norm ‖ · ‖H . The
mentioned papers cover operators for both diagonal norms and block norms. In applications
the diagonal norms are most common, which is why we concentrate on them.

Consider equation (3.1). The semi-discretized equation has the following form

vt = Λ0D2v + Λ1D1v + D1Λ2v, (3.2)

where D1 = H−1Q and D2 = H−1(−A + BS) stand for summation by parts operators
for the first and second derivative, respectively, Λ0 = diag([a(x0, t), . . . , a(xN , t)]) for a di-
agonal matrix containing the values of the function a(x, t) at the grid points xj , Λ1 =
diag([λ1(x0, t), . . . , λ1(xN , t)]) for a diagonal matrix with λ1 ≈ ax + b and finally Λ2 =
diag([c(x0, t), . . . , c(xN , t)]). The derivative ax in λ1 can either be given or an approximation
in the grid points of sufficiently high order can be used.
The matrix A is positive semidefinite, B = diag([−1, 0, . . . , 0, 1]), Q satisfies Q+QT = B and
S approximates the first derivative at x0 and xN . The matrix H defines a discrete diagonal
norm via ‖v‖2

H =
∑N

j=0 Hiiv
2
i .

3.2 Energy Estimate for the Semi-Discrete Problem

The fundamental property of any discretization of (1.2) is its convergence to the exact
solution. By the Lax-Richtmyer equivalence theorem, convergence of a consistent numeri-
cal method is equivalent to stability. For this reason our goal is to show that the semi-
discretization (3.2) is stable.
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Definition 3.1. Assume homogeneous boundary conditions. A semi-discretization is called
stable if for some discrete norm ‖ · ‖H it holds

‖v‖2
H ≤ Keαst‖f‖2

H (3.3)

for any v, where K and αs are constants that do not depend on h and v.

This definition (cf. [7]) is the discrete counterpart to the definition of well-posedness of the
continuous problem (2.3). With such an estimate, we can ensure that the growth of the
solution is bounded by the data and avoid thereby that roundoff errors could grow arbitrarily
fast. Hence αs/2 is the growth rate of the semi-discretization.
Again, we claim the differentiated form of (3.3) to hold

d

dt
‖v‖2

H ≤ αs‖v‖2
H .

As in the continuous case, if this estimate is satisfied, then (3.3) holds.
For inhomogeneous boundary conditions, we can define strong stability.

Definition 3.2. A semi-discretization is called strongly stable if it is stable and

‖v‖2
H ≤ Keαst

(
‖f‖2

H +

∫ t

0
(g0(τ)2 + g1(τ)2)dτ

)
(3.4)

for any v, where K and αs are constants that do not depend on h and v.

It would be ideal if the growth of the approximation would be related to the growth of
the exact solution. This justifies the next definition (cf. [7, 12]):

Definition 3.3. A semi-discretization is called strictly stable if it is stable and

αs = α + O(h),

where α/2 is the growth rate of the continuous problem.

However, showing strict stability is not always possible, as we will see in the sequel.

The discrete approximation of (2.2) using the numerical method (3.2) needs an additional
boundary treatment in order to implement the physical boundary conditions correctly. This
is done using the Simultaneous Approximation Term (SAT) as proposed by Carpenter et.
al., cf. [3]. For constant coefficients this procedure leads to a strictly stable approximation
in the H-norm.

Here we do not use the norm induced by H, but define the discrete inner product (·, ·) �
H

with a matrix H̃ by (u, v) �
H

= uT H̃v, where H̃ = HΛ−1
0 . As Λ−1

0 > 0, the inner product
‖ · ‖ �

H
is well-defined.

In the following section, we derive an energy estimate neglecting the boundary. The
boundary is treated in the sections 3.2.2 and 3.2.3.

3.2.1 Stability in the Interior

We start with the semi-discretization (3.2) and consider the H̃-norm of the discrete solution
vector v:

d

dt
‖v‖2�

H
=
(
v, vt

) �
H

+
(
vt, v

) �
H

= −vT
(
H̃Λ0H

−1A + (Λ0H
−1A)T H̃

)
v + vT

(
H̃Λ1H

−1Q + (Λ1H
−1Q)T H̃

)
v

+ vT
(
H̃H−1QΛ2 + (H̃H−1QΛ2)

T
)

v

+ vT
(
H̃Λ0H

−1BS + (Λ0H
−1BS)T H̃

)
v.
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Since Λ−1
0 , Λ1 and H are all diagonal matrices, it holds H̃Λ1H

−1 = HΛ−1
0 Λ1H

−1 = Λ−1
0 Λ1

which yields

d

dt
‖v‖2�

H
= −vT (A + AT )v + vT

(
Λ−1

0 Λ1Q + (Λ−1
0 Λ1Q)T

)
v

+ vT
(
Λ−1

0 QΛ2 + (Λ−1
0 QΛ2)

T
)
v + vT

(
BS + (BS)T

)
v.

We can rewrite Q = R+ 1
2B with an skew-symmetric part R, i.e. R = −RT , and the boundary

matrix B. Then,

d

dt
‖v‖2�

H
= −vT

(
A + AT

)
v + vT

(
Λ−1

0 Λ1R + (Λ−1
0 Λ1R)T

)
v

+ vT
(
Λ−1

0 RΛ2 + (Λ−1
0 RΛ2)

T
)
v + vT

(
BS + (BS)T

)
v

+ vT
(
Λ−1

0 (Λ1 + Λ2)B
)
v.

In this section, we neglect the two terms vT (BS + (BS)T )v and vT (Λ−1
0 (Λ1 + Λ2)B)v since

they contribute to the boundary part of the operator. These terms will be treated in the
sections 3.2.2 and 3.2.3 in combination with the implementation of the physical boundary
conditions.

For the continuous problem, we have an estimate of the form (when neglecting boundary
terms)

d

dt
‖u‖2 ≤ −2amin‖ux‖2 + ‖(−b + c)x‖∞ ‖u‖2.

Now we want to derive a similar estimate for the discrete problem.
The matrix A is constructed such that it is positive semidefinite, i.e.

−vT
(
A + AT

)
v ≤ 0 ∀ v. (3.5)

Let C1 = Λ−1
0 Λ1R + (Λ−1

0 Λ1R)T and C2 = Λ−1
0 RΛ2 + (Λ−1

0 RΛ2)
T . We want to obtain

an estimate for the eigenvalues of C1 and C2. First we analyze the order of magnitude of
their entries. We assume that all functions are sufficiently smooth such that all appearing
derivatives exist.

Lemma 3.4. If λ1(x, t) = ax(x, t) + b(x, t) and c(x, t) are Lipschitz continuous with respect

to x, then the entries c
(1)
jk and c

(2)
jk of both C1 and C2 satisfy the estimate

|c(i)
jk | ≤ Kih|j − k| |rjk|, i = 1, 2

with some constants Ki.

Proof. By construction, the elements rjk of R satisfy rjk = −rkj . Then for C1 holds

c
(1)
jk =

(λ1)j

aj
rjk +

(λ1)k

ak
rkj = rjk

(
(λ1)j

aj
− (λ1)k

ak

)
⇒

|c(1)
jk | = |rjk|

∣∣∣∣
(λ1)j

aj
− (λ1)k

aj
+

(λ1)k

aj
− (λ1)k

ak

∣∣∣∣

≤ |rjk|
(∣∣∣∣

(λ1)j

aj
− (λ1)k

aj

∣∣∣∣+
∣∣∣∣
(λ1)k

aj
− (λ1)k

ak

∣∣∣∣
)

= |rjk|
(

1

aj

∣∣(λ1)j − (λ1)k

∣∣+ |(λ1)k|
∣∣∣∣
1

aj
− 1

ak

∣∣∣∣
)

. (3.6)
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Similarily, for C2 holds:

|c(2)
jk | ≤ |rjk|

(
1

aj

∣∣(λ2)k − (λ2)j

∣∣+ |(λ2)j |
∣∣∣∣
1

aj
− 1

ak

∣∣∣∣
)

. (3.7)

Because of the Lipschitz continuity of λi, it holds |(λi)j − (λi)k| ≤ Li
|j−k|

N with a Lipschitz
constant Li = ‖(λi)x‖∞ for i = 1, 2.
The function a is also Lipschitz continuous with respect to x with Lipschitz constant La =
‖ax‖∞. Moreover, the function f(x) = 1/x is Lipschitz continuous in any compact interval
which does not contain 0 (with Lipschitz constant Ls = 1

a2
min

for 1
a(x)). Then it follows

∣∣∣∣
1

aj
− 1

ak

∣∣∣∣ ≤ Ls|aj − ak| ≤ LsLah |j − k|.

Back in (3.6) we get

|c(1)
jk | ≤ |rjk|K1h|j − k|

with a constant

K1 =
‖(λ1)x‖∞

amin
+ ‖λ1‖∞

‖ax‖∞
a2

min

.

For C2 we get from (3.7)

|c(2)
jk | ≤ |rjk|K2h|j − k|

with a constant

K2 =
‖(λ2)x‖∞

amin
+ ‖λ2‖∞

‖ax‖∞
a2

min

.

Using lemma 3.4, we get an estimate for the eigenvalues of C1 and C2 and thus for their
spectral radius.

Lemma 3.5. The spectral radius of both C1 and C2 is in O(h).

Proof. Let

s = max
j=0,...,N

{
N∑

k=0

|j − k| |rjk|
}

.

s does not depend on N because rjk is zero outside 2p + 1 diagonals for interior points and
3p − 1 points around the main diagonal for points in the boundary 2p × 2p block.
Using Gershgorin’s theorem, we find that all eigenvalues of Ci are lying in a disk around 0
(all diagonal elements of C are 0) with radius

Kish

Thus the spectral radius of Ci can be estimated by

ρ(Ci) ≤ Kish,

where

Ki =
‖(λi)x‖∞

amin
+ ‖λi‖∞

‖ax‖∞
a2

min

.
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Using lemma 3.5, we get

vT Civ ≤ ρ(Ci)v
T v ≤ Kisκ‖a‖∞‖v‖2�

H
i = 1, 2, (3.8)

where κ = hρ(H−1) = O(1) is the largest entry in the diagonal matrix hH−1.
With the estimates in (3.5) and (3.8), we get

d

dt
‖v‖2�

H
≤ αs‖v‖2�

H
+ vT

(
BS + (BS)T

)
v + vT

(
Λ−1

0 (Λ1 + Λ2)B
)
v. (3.9)

where

αs =
sκ‖a‖∞

amin

(
‖(ax + b)x‖∞ + ‖cx‖∞ + (‖ax + b‖∞ + ‖c‖∞)

‖ax‖∞
amin

)
. (3.10)

We have now shown stability for the operator in the interior.

3.2.2 Dirichlet Boundary Conditions

For Dirichlet boundary conditions the physical data is implemented with the SAT terms

H̃−1(τ0S
T + σ0I)(E0v − e0g0(t))

for the left boundary and

H̃−1(τ1S
T + σ1I)(ENv − eNg1(t))

for the right boundary. Here τ0, σ0, τ1, σ1 are constants that are to be determined such that
the semi-discretization including the boundary is stable. If we insert the exact solution, the
boundary terms vanish and hence the accuracy of (3.2) is not affected.
This yields the following semi-discretized system:

vt = Λ0H
−1(−A + BS)v + Λ1H

−1Qv + H−1QΛ2v (3.11)

− H̃−1(τ0S
T + σ0I)

(
E0v − e0g0(t)

)
− H̃−1(τ1S

T + σ1I)
(
ENv − eNg1(t)

)
,

v(0) = f.

Taking the time derivative of the discrete H̃-norm leads to

d

dt
‖v‖2�

H
=
(
v, vt

) �
H

+
(
vt, v

) �
H

= −vT
(
A + AT

)
v + vT C1v + vT C2v + vT

(
BS + (BS)T

)
v

+ vT
(
Λ−1

0 (Λ1 + Λ2)B
)
v − 2(τ0(Sv)0 + σ0v0)

(
v0 − g0(t)

)
(3.12)

− 2(τ1(Sv)N + σ1vN )
(
vN − g1(t)

)
.

Setting homogeneous boundary conditions g0(t) = g1(t) = 0, we can derive a condition on
the constants τ0, σ0, τ1 and σ1:

d

dt
‖v‖2�

H
= −vT

(
A + AT

)
v + vT C1v + vT C2v − 2v2

0

(
(ax)0 + b0 + c0

2a0
+ σ0

)

− 2v2
N

(
−(ax)N + bN + cN

2aN
+ σ1

)
− 2v0(Sv)0(1 + τ0)

+ 2vN (Sv)N (1 − τ1).
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The first three terms have been discussed in section 3.2.1. The remaining terms represent
the boundary treatment of the operator. For stability it is required that

τ0 = −1 and τ1 = 1 as well as

σ0 = −(ax)0 + b0 + c0

2a0
and σ1 =

(ax)N + bN + cN

2aN
. (3.13)

In this case we get the estimate

d

dt
‖v‖2�

H
≤ αs‖v‖ �H (3.14)

with αs given by (3.10).

3.2.3 Robin Boundary Conditions

For Robin boundary conditions the semi-discretized system with SAT boundary treatment
has the following form

vt = Λ0H
−1(−A + BS)v + Λ1H

−1Qv + H−1QΛ2v − H̃−1τ0

(
E0(β0I + S)v − e0g0(t)

)

− H̃−1τ1

(
EN (β1I + S)v − eNg1(t)

)
, v(0) = f, (3.15)

where τ0 and τ1 are some constants that are to be determined.
To investigate the accuracy of the added boundary terms in (3.15), we insert the exact solution
u. The term βiu is exact while H̃−1Su = H̃−1ux + O(hτ+1), where τ is the accuracy of S.
The order of accuracy of S can be one order less than the global order of accuracy of the
scheme, see section 3.3 and [11].
If we take the H̃-norm of (3.15), we obtain

d

dt
‖v‖2�

H
=
(
v, vt

) �
H

+
(
vt, v

) �
H

= −vT
(
A + AT

)
v + vT C1v + vT C2v + vT

(
BS + (BS)T

)
v

+ vT
(
Λ−1

0 (Λ1 + Λ2)B
)
v − 2τ0v0

(
β0v0 + (Sv)0 − g0(t)

)

− 2τ1vN

(
β1vN + (Sv)N − g1(t)

)
,

using the notation from the previous sections. We regroup the terms and set µi = (ax)i+bi+ci

2ai
,

i = 0, N , to get

d

dt
‖v‖2�

H
= −vT

(
A + AT

)
v + vT C1v + vT C2v − 2v0(Sv)0(1 + τ0) + 2vN (Sv)N (1 − τ1)

− 2(µ0 + β0τ0)v
2
0 − 2(−µN + β1τ1)v

2
N + 2τ0v0g0 + 2τ1vNg1. (3.16)

We expand the terms in the second line to obtain an expression with the boundary terms
separated:

− 2(µ0 + τ0β0)v
2
0 − 2v2

N (−µN + β1τ1) + 2τ0v0g0 + 2τ1vNg1

= −2(µ0 + β0τ0)

(
v0 −

τ0

2(µ0 + β0τ0)
g0

)2

+
τ2
0

2(µ0 + β0τ0)
g2
0 (3.17)

− 2(−µN + β1τ1)

(
vN − τ1

2(−µN + β1τ1)
g1

)2

+
τ2
1

2(−µN + β1τ1)
g2
1.
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Back in (3.16), we get

d

dt
‖v‖2�

H
= −vT

(
A + AT

)
v + vT C1v + vT C2v − 2v0(Sv)0(1 + τ0) + 2vN (Sv)N (1 − τ1)

− 2(µ0 + β0τ0)

(
v0 −

τ0

2(µ0 + β0τ0)
g0

)2

+
τ2
0

2(µ0 + β0τ0)
g2
0

− 2(−µN + β1τ1)

(
vN − τ1

2(−µN + β1τ1)
g1

)2

+
τ2
1

2(−µN + β1τ1)
g2
1.

For stability is required that all boundary terms involving v are non-positive, i.e.

τ0 = −1 and τ1 = 1 as well as

β0 ≤ (ax)0 + b0 + c0

2a0
and β1 ≥ (ax)N + bN + cN

2aN
. (3.18)

We obtain the energy estimate

d

dt
‖v‖2�

H
≤ αs‖v‖ �H + K

(
g0(τ)2 + g1(τ)2

)
, (3.19)

where

K = max

{
1

2(µ0 − β0)
,

1

2(−µN + β1)

}
.

Remark 3.6. By this procedure we get some requirements on the boundary conditions that
do not occur in this form for the continuous problem. The reason is that we did not prove
a discrete counterpart of the Sobolev inequality in our case which enables us to set positive
boundary terms against the terms −vT (A + AT )v and ‖v‖ �

H
. In the continuous case the

maximum norm can be estimated by the L2-norm of a function and its derivative. In [7] such
an inequality is shown for D2

1 approximating the second derivative.
On the other hand, we can obtain a similar criterion as (3.18) for the continuous case:
We start off from equation (2.9), use d(x, t) = b(x, t) + c(x, t) and insert ux(0, t) = g0(t) −
β0u(0, t) and ux(1, t) = g1(t) − β1u(1, t). Similarly to (3.17), we obtain:

2u(ag1 − β1au + du)
∣∣
1
− 2u(ag0 − β0au + du)

∣∣
0

= −2(d − β0a)

(
u +

a

2(d − β0a)
g0

)2 ∣∣∣∣
0

+
a2

2(d − β0a)
g2
0

∣∣∣∣
0

− 2(−d + β1a)

(
u − a

2(−d + β1a)
g1

)2 ∣∣∣∣
1

+
a2

2(−d + β1a)
g2
1

∣∣∣∣
1

We get the estimate

d

dt
‖u(· , t)‖2 ≤ ‖(−b + c)x‖∞ ‖u(· , t)‖2 + K

(
g0(t)

2 + g1(t)
2
)

in the case

β0 ≤ max
t

b(0, t) + c(0, t)

2a(0, t)
and β1 ≥ min

t

b(1, t) + c(1, t)

2a(1, t)
(3.20)

where

K = max

{
max

t

a(0, t)2

2(d(0, t) − β0a(0, t))
, max

t

a(1, t)2

2(−d(1, t) + β1a(1, t))

}
.

The difference between the continuous condition on β0, β1 and the discrete one is due to the
application of the product rule for the parabolic term and due to the different estimate of the
hyperbolic terms.
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3.2.4 Remark on Strict Stability

We consider Dirichlet boundary conditions. For Neumann boundary conditions the results
are similar.

If we compare the constants α = ‖(−b + c)x‖∞ for the continuous problem in (2.10) and
αs in (3.10), we note some differences.
We see that the application of the triangle inequality in (3.9) splits the term (−b + c)x into
two terms. Additionally, the term ax is added due to the application of the product rule.
The application of the norm induced by H̃ causes some additional terms in the estimate.
When using this norm, they cannot be avoided. Moreover, the norm makes it difficult to
derive an estimate for the term (−b + c)x without using the triangle inequality.
Alternatively, the norm H introduced by Strand [16] could be used. However, we cannot
show stability for the term −v(Λ0A + AT Λ0)v (since we loose the positive definiteness of A),
but for the first derivative parts we could get the term α̃s = ‖(ax +b−c)x‖∞ which is – apart
from ax – the same as in the continuous case.

If b ≡ c ≡ 0, the energy for the continuous problem is non-increasing. For a strictly stable
approximation, the energy should also be either non-increasing or increase only by O(h).
However, our theoretical analysis shows that this is not the case. An analysis of the matrix

X = −(A + AT ) +
(
Λ−1

0 Λ1R + (Λ−1
0 Λ1R)T

)
with a(x) = 0.2(1 + x(x − 1)) and Λ

(i)
1 = ax(xi)

shows that it has only one positive eigenvalue which is in O(h), while all others are negative.
This eigenvalue results in a possibly positive term vT Xv = O(1), i.e. here we do not have
strict stability.
The eigenvector corresponding to the positive eigenvalue is of the form

[1, 1, . . . , 1] + O(h)[f(0), f(h), . . . , f(1)],

where f(jh) = cos(jπh) + some low frequency perturbation.
This means that it represents a low frequency wave. Such waves are usually uncritical for the
error-growth because roundoff-errors are statistical errors and therefore more likely to be of
high frequency. On the other hand, the truncation error can be reduced effectively by taking
a finer mesh. This means that the not optimal energy estimate is still acceptable in terms
of the overall-performance of the operators (the operators have minimal bandwidth and are
thus very efficient).

The numerical results in section 3.5 approve of this appraisement.

3.3 Accuracy

The accuracy of the method to solve (3.2) is determined by the accuracy of D1 and D2. Let
the operators D1 and D2 be of the order 2p in the interior and p at the boundary. The
approximation of ax shall be 2pth order accurate . Then the scheme (3.2) approximates
the right hand side of equation (3.1) with 2pth order accuracy in the interior and pth order
accuracy at the boundary.

We assume that the coefficient functions and the solution are sufficiently smooth.
Let e = u− v be the difference between the exact solution at the grid points and the solution
of the semi-discretization. It satisfies the differential equation

et = Me + T, e(0) = 0, (3.21)

where

M = H−1(−Λ0A + Λ1R + RΛ2)
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for Dirichlet boundary conditions and

M = H−1(−Λ0A + Λ1Q + QΛ2 + β0E0 − β1EN )

for Robin boundary conditions. The vector

T =
[
O(hp), . . . ,O(hp),O(h2p), . . . ,O(h2p),O(hp), . . . ,O(hp)

]T

denotes the truncation error with contributions from the approximation of the derivatives
and the approximation of boundary derivatives (Su) in the SAT penalty term in the case of
Robin boundary conditions.

The energy estimate from section 3.2 allows as an immediate consequence the estimate
‖e‖ �

H
≤ O(hp), which is however not sharp.

Since the approximation (3.2) is stable, a general result by Gustafsson [6] can be applied
which ensures that the global order of accuracy is at least p + 1, i.e. we gain at least one
power at the boundary.
Nordström and Svärd [13] showed that for a parabolic problem with constant coefficients,
two powers at the boundary can be gained.
Mattsson and Nordström [11] considered the convection-diffusion equation ut + aux = εuxx

with constant a and ε > 0 and proved that the semi-discretized scheme vt +aD1v = εD2v+C
with a SAT boundary term C has the global order of accuracy p + 2.

We suppose that this result can also be applied to our problem with variable coefficients.
Indeed, we can apply a similar proof as Mattsson and Nordström to show that we gain two
powers at the boundaries. We assume here that a = a(x) does not depend on time and the
operators are pointwise bounded in order to make it possible to apply the Laplace transform
technique, cf. [7].

Theorem 3.7. Consider the convection-diffusion equation with Dirichlet or Robin boundary
conditions (2.1), (2.2) and the corresponding semi-discrete problems (3.11), (3.15). The error
given by (3.21) satisfies the estimate ‖e‖ �

H
= O

(
hp+2

)
.

Proof. We split the error into three parts e = ei +e
(l)
b +e

(r)
b , where the subscripts (i, b) denote

the inner and left and right boundary points, respectively. Similarily, the truncation error is

divided into T = Ti + T
(l)
b + T

(r)
b , where

Ti =
[
0, . . . , 0,O(h2p), . . . ,O(h2p), 0, . . . , 0

]T
,

T
(l)
b = [O(hp), . . . ,O(hp), 0, . . . , 0, 0, . . . , 0]T ,

T
(r)
b = [0, . . . , 0, 0, . . . , 0,O(hp), . . . ,O(hp)]T .

Concerning ei, we use the energy estimates (3.14) and (3.19) (note that for Robin boundary
data condition (3.18) must hold) and complete them by the term ‖Ti‖ �

H
. Then we get the

estimate

‖ei‖ �
H

≤ eαst0

αs
t0
(
‖Ti‖ �

H

)
max([0,t])

= O
(
h2p
)

at the time t0.
To estimate e

(l)
b and e

(r)
b , we use the Laplace transformation [7] of (3.21). We look at the

error equations for e
(l)
b and e

(r)
b separately.

First we consider only the left boundary. We obtain

sê
(l)
b − Mê

(l)
b = T

(l)
b .
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We multiply this equation by h2 and introduce s̃ = h2s, T̃
(l)
b = h2T

(l)
b , M̃ = h2M as well as

P = s̃I − M̃ in order to rewrite it as

P ê
(l)
b = T̃

(l)
b . (3.22)

For constant coefficients, we can find the solution to (3.22) by solving the characteristic
equation determined by the internal difference scheme

(
ê
(l)
b

)
j

=

2p∑

i=1

σiκ
j
i ,

where the κi are the roots of the characteristic equation and the unknowns σi are determined
by the remaining equations from the boundary. For variable coefficients, the characteristic
equations still depend on the position via aj , i.e. we have to solve the equations

s̃(ê
(l)
b )j − (M̃ ê

(l)
b )j = (T̃

(l)
b )j

with a matrix M̃ whose entries can be different in each row. When considering interior points,

(T̃
(l)
b )j = 0 and we have to solve a homogeneous equation of the form

s̃(ê
(l)
b )j = (M̃ ê

(l)
b )j

We freeze the coefficients at the left boundary and derive an expression for the roots of the
characteristic equation. Let κ = κi be a root of the characteristic equation

s̃κj = a0D̄2κ
j + ((ax)0 + b0 + c0)D̄1κ

j , (3.23)

where the operator D̄l, l = 1, 2, is defined by

D̄lκ
j =

N∑

k=0

h2(Dl)j,kκ
k,

i.e. it operates on κj just as the jth line of h2Dl on the vector v = [κ0, κ1, . . . , κN ].
Denote the roots of the variable coefficient problem as κ + ∆κ. We show that ∆κ = O(h):
Inserting κ + ∆κ into the characteristic equation leads to:

ŝ(κ + ∆κ)j = Λ0D̄2(κ + ∆κ)j + Λ1D̄1(κ + ∆κ)j + D̄1Λ2(κ + ∆κ)j .

If we expand this equation around x0 into its Taylor series and use (κ+∆κ)j = κj+j∆κ·κj−1+
higher order terms, we obtain:

ŝ(κj + j∆κ · κj−1) = a0D̄2κ
j + ((ax)0 + b0 + c0)D̄1κ

j + h∂Λ0D̄2κ
j

+ h(∂Λ1D̄1 + D̄1∂Λ2)κ
j

+ a0∆κD̄2jκ
j−1 + ((ax)0 + b0 + c0)∆κD̄1jκ

j−1 + h.o.t.,

where ∂Λi, i = 0, 1, 2 denote rest terms.
Using (3.23), we can eliminate the leading terms to get

ŝj∆κ · κj−1 = h∂Λ0D̄2κ
j + a0j∆κD̄2κ

j−1 + ((ax)0 + b0 + c0)j∆κD̄1κ
j−1

+
2a0∆κ

h
D̄1κ

j−1 + h((ax)0 + b0 + c0)∆κȲ κj−1 + h.o.t.,
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where we used the identities D̄2jκ
j−1 = jD̄2κ

j−1 + 2
hD̄1κ

j−1 and D̄1jκ
j−1 = jD̄1κ

j−1 +
hȲ κj−1 with some operator Ȳ = O(1). Since D̄1 = O(h), the term h(∂Λ1D̄1 + D̄1∂Λ2)κ

j

was neglected because it is in h2.
Again we use (3.23) to eliminate the terms involving j∆κ and get

0 = h∂Λ0D̄2κ
j +

2a0∆κ

h
D̄1κ

j−1 + h((ax)0 + b0 + c0)∆κȲ κj−1 + h.o.t.

Since the terms ∂Λ0D̄2κ
j and 1

hD̄1κ
j−1 do not depend explicitly on h, ∆κ = O(h) must hold

and the term with Ȳ is a higher order term.
Thus we can get a similar estimate as in the case of constant coefficients

(
ê
(l)
b

)
j

=

2p∑

i=1

σi(κi + O(h))j . (3.24)

We seek conditions for which σi, i = 1, . . . , 2p, are bounded and proportional to hp+2, since

this leads to ‖e(l)
b ‖ �

H
= O

(
hp+2

)
.

We need exactly 2p conditions to solve for the 2p unknowns σi. However, each boundary block
P (l,r) has 2p rows (resulting in 4p rows totally) and the set of equations must be reduced. Let

ê
(ll)
1 =

[
(ê

(l)
b )1, . . . , ê

(l)
b )p

]T
, T̃

(ll)
1 =

[
(T̃

(l)
b )1, . . . , (T̃

(l)
b )p

]T
,

ê
(ll)
2 =

[
(ê

(l)
b )p+1, . . . , ê

(l)
b )3p

]T
, T̃

(ll)
2 =

[
(T̃

(l)
b )p+1, . . . , (T̃

(l)
b )3p

]T
,

ê
(lr)
1 =

[
(ê

(l)
b )N−p+1, . . . , ê

(l)
b )N

]T
, T̃

(lr)
1 =

[
(T̃

(l)
b )N−p+1, . . . , (T̃

(l)
b )N

]T
,

ê
(lr)
2 =

[
(ê

(l)
b )N−3p+1, . . . , ê

(l)
b )N−p

]T
, T̃

(lr)
2 =

[
(T̃

(l)
b )N−3p+1, . . . , (T̃

(l)
b )N−p

]T

and

P (l) =

[
P

(l)
11 P

(l)
12

P
(l)
21 P

(l)
22

]
, P (r) =

[
P

(r)
22 P

(r)
21

P
(r)
12 P

(r)
11

]
,

where P
(l,r)
11 , P

(l,r)
21 are p × p coefficient matrices and P

(l,r)
12 , P

(l,r)
22 are p × 2p matrices. The 4p

equations can be written as

P
(l,r)
11 ê

(ll,lr)
1 + P

(l,r)
12 ê

(ll,lr)
2 = T̃

(ll,lr)
1

P
(l,r)
21 ê

(ll,lr)
1 + P

(l,r)
22 ê

(ll,lr)
2 = T̃

(ll,lr)
2

If P
(l,r)
21 is non-singular (notice that P

(l,r)
21 is independent of s̃), this equation system can be

reduced to

B(l,r)ê
(ll,lr)
2 = T̃

(ll,lr)
f ,

where

B(l,r) = P
(l,r)
12 − P

(l,r)
11

(
P

(l,r)
21

)−1
P

(l,r)
22 , T̃

(ll,lr)
f = T̃

(ll,lr)
1 − P

(l,r)
11

(
P

(l,r)
21

)−1
T̃

(ll,lr)
2 .

This leads to a linear equation system

C(s̃)σ = T̃f , (3.25)
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where

T̃ T
f =

[[
T̃

(ll)
f

]T
,
[
T̃

(lr)
f

]T]
,

C(s̃) =




∑2p
i=1 b

(l)
1,i(κ1 + O(h))p+i . . .

∑2p
i=1 b

(l)
1,i(κ2p + O(h))p+i

...
. . .

...∑2p
i=1 b

(l)
p,i(κ1 + O(h))p+i . . .

∑2p
i=1 b

(l)
p,i(κ2p + O(h))p+i

∑2p
i=1 b

(r)
1,i(κ1 + O(h))N−3p+i . . .

∑2p
i=1 b

(r)
1,i(κ2p + O(h))N−3p+i

...
. . .

...∑2p
i=1 b

(r)
p,i(κ1 + O(h))N−3p+i . . .

∑2p
i=1 b

(r)
p,i(κ2p + O(h))N−3p+i




and

σ =




σ1
...

σ2p


 .

Now we can look at the solution to (3.25). The coefficients in M̃ are proportional to (γ1+γ2h),
where γ1 and γ2 are of order one. This means that the solution to the system has terms
proportional to (γ1 + γ2h)−1hp+2 if C(s̃) 6= 0. It holds (γ1 + γ2h)−1 ≈ 1/γ1 − (γ2/γ2

1)h.

This means that the solution ê
(l)
b to (3.22) is proportional to hp+2. Using Parseval’s relation

‖ê(l)
b ‖ �

H
= ‖e(l)

b ‖ �
H

, e
(l)
b is of order hp+2.

The right boundary can be estimated in the same way using the grid point xN instead of x0

in (3.23).
Then,

‖e‖ �
H

= ‖ei + e
(l)
b + e

(r)
b ‖ �

H
≤ ‖ei‖ �

H
+ ‖e(l)

b ‖ �
H

+ ‖e(r)
b ‖ �

H
= O

(
hp+2

)
,

where the triangle inequality has been used.
This proves the theorem.

3.4 Damping of π-Modes

A desirable property of an operator is the damping of the highest-frequency waves, the so
called π-modes.

We assume periodic boundary conditions (i.e. u(0, t) = u(1, t)) and constant coefficients
such that the PDE (1.2) has the form

ut = auxx + bux (3.26)

with constants a and b.
First we expand the exact solution into its Fourier series,

u(x, t) =

∞∑

ω=−∞

ûω(t)e2πiωx.

Inserting this into (3.26), we get

∞∑

ω=−∞

dûω(t)

dt
e2πiωx =

∞∑

ω=−∞

ûω(t)e2πiωx
(
−a(2π)2ω2 + b2πiω

)
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Since
{
e2πiωx, ω ∈ Z

}
is a linearly independent set, this equality must be satisfied for each

summand, i.e.

dûω(t)

dt
= ûω(t)

(
−a (2π)2ω2 + b 2πiω

)
for all ω (3.27)

with the exact solution

ûω(t) = e(−a (2π)2ω2+b 2πiω)t for all ω.

When considering a semi-discretization of (3.26), we modify the operators D2 and D1 to D̃2

and D̃1 such that they approximate problems with periodic boundary conditions.
We assume N = 2r and expand the numerical approximation into its Fourier series

vj(t) =
r∑

ω=−r

v̂ω(t)e2πiωxj . (3.28)

We look at D̃ie
2πiωxj , i = 1, 2 and j ∈ {0, . . . , N}:

• 2nd order accurate scheme:�
D1e

2πiωxj =
1

2h

�
e2πiωh

− e2πiω(−h)� e2πiωxj =
i

h
sin(ξ)e2πiωxj = D̂1,2(ξ)e

2πiωxj�
D2e

2πiωxj =
2

h2
(−1 + cos(ξ))e2πiωxj = D̂2,2(ξ)e

2πiωxj ,

where ξ = 2πωh.

• 4th order accurate scheme:�
D1e

2πiωxj =
i

h �4

3
sin(ξ) −

1

6
sin(2ξ)� e2πiωxj = D̂1,4(ξ)e

2πiωxj�
D2e

2πiωxj =
1

h2 �−5

2
+

8

3
cos(ξ) −

1

6
cos(2ξ)� e2πiωxj = D̂2,4(ξ)e

2πiωxj .

• 6th order accurate scheme:�
D1e

2πiωxj =
i

h �3

2
sin(ξ) −

3

10
sin(2ξ) +

1

30
sin(3ξ)� e2πiωxj = D̂1,6(ξ)e

2πiωxj�
D2e

2πiωxj =
1

h2 �−49

18
+ 3 cos(ξ) −

3

10
cos(2ξ) +

1

45
cos(3ξ)� e2πiωxj = D̂2,6(ξ)e

2πiωxj .

• 8th order accurate scheme:�
D1e

2πiωxj =
i

h �8

5
sin(ξ) −

2

5
sin(2ξ) +

8

105
sin(3ξ) −

1

140
sin(4ξ)� e2πiωxj

= D̂1,8(ξ)e
2πiωxj�

D2e
2πiωxj =

1

h2 �−205

72
+

16

5
cos(ξ) −

2

5
cos(2ξ) +

16

315
cos(3ξ) −

1

280
cos(4ξ)� e2πiωxj

= D̂2,8(ξ)e
2πiωxj .

When inserting (3.28) into the semi-discretization vt = aD̃2v + bD̃1v, we get as before

dv̂ω(t)

dt
= v̂ω(t)

(
a D̂2,2p(ξ) + b D̂1,2p(ξ)

)
for all ω, p = 1, 2, 3, 4. (3.29)

This differential equation has the analytic solution

v̂ω(t) = e(a D̂2,2p(ξ)+b D̂1,2p(ξ))t for all ω, p = 1, 2, 3, 4.
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Concerning the damping of certain modes, we first note that the hyperbolic term is purely
imaginary and does therefore not change the discrete norm of v. In the following we assume
therefore b = 0.
To compare the properties of the exact solution with those of the semi-discretization, we

define D̂0(ξ) = −(2π)2ω2 = − ξ2

h2 . We consider the wave numbers ω = 0, 1, . . . , r which yield
ξ = 0, π/r, . . . , π.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

ξ = 2π ω h

−
h2  D

2,
2p

(ξ
)

Figure 1: Damping of modes with wave number ξ of the exact solution (-), 2nd (- -), 4th (-·),
6th (·) and 8th (x) order accurate operator D2.

We see in figure 1 that for low wave numbers, the damping of the approximation corresponds
almost perfectly to the damping of the exact operator. For higher wave numbers, the damping
of the approximations is somewhat lower than it should be, but still high frequency error
modes get damped very quickly. This is one of the main advantages of a minimal width
operator (an operator that uses 2p + 1 points for an order of accuracy of 2p, i.e. as few as
possible) over an operator arising from using the operator D1 twice as an approximation of
uxx, see also [11].

3.5 Computational Results

We apply the above operators to some test cases.

For the time integration we use the classical fourth order Runge-Kutta method. Since it
is an explicit method, we get a restriction on the time step. To calculate the limit on the
time step, we perform a Fourier stability analysis:
We start with the equation vt = aD2v. When considering the Fourier-transform of this
equation, we get d

dt v̂ω(t) = aD̂2,2p(ω)v̂ω(t), i.e. for each ω we have the scalar test equation
yt = αy. For negative real α, the stability limit for the 4th order Runge-Kutta method is

−2
√

2 ≈ −2.8. This means that a
∣∣∣D̂2,2p(ω)∆t

∣∣∣ ≤ 2.8 for all ω. We see in figure 1 that |D̂2,2p|
takes its maximum for ω = r. The maxima are given in table 1. Using them, we can derive a
limit on the time step ∆t

h2 ≤ 2.8
a|h2D̂2,2p(ω)| . This result for constant coefficients can be extended
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p h2|D̂2,2p(ω = r)| 2.8
a|h2D̂2,2p(ω=r)|

1 4 0.70/a
2 16

3 ≈ 5.33 0.53/a
3 272

45 ≈ 6.04 0.46/a
4 2048

315 ≈ 6.50 0.43/a

Table 1: Maximum of h2D̂2,2p for p = 1, 2, 3, 4.

to the case of variable coefficients. In that case, we substitute a in table 1 with ‖a‖∞. If
we are dealing with the general convection-diffusion equation (1.2), we choose the time step
slightly smaller to account for the additional term ∆t

h |D̂1,2p| from the approximation of the
first derivative.

3.5.1 Results for the Parabolic Term

Example 1.

We consider the simple parabolic equation

ut = 0.2uxx with initial condition

u(x, 0) = sin(πx) + cos(πx).

We choose Dirichlet boundary conditions

u(0, t) = e−0.2π2t, u(1, t) = −e−0.2π2t

and Neumann boundary conditions

ux(0, t) = πe−0.2π2t, ux(1, t) = −πe−0.2π2t.

This problem has the exact solution

u(x, t) = (sin(πx) + cos(πx))e−0.2π2t

for both Dirichlet and Neumann boundary conditions.
We solve the problem at the time t = 1 and use a time step of ∆t = 3h2 for the second order
method and ∆t = 2h2 for the fourth order method (the stability limit is 3.5h2 and 2.65h2,
respectively). We compare the numerical solution with the exact solution at the grid points
by ‖u − v‖h, where ‖v‖2

h = h · vT v denotes the discrete l2-norm.
The numerical order of accuracy qD and qN for both types of boundary conditions is calculated
between two subsequent grid spacings h1 and h2 using the formula

qD,N = log

(‖u − v‖h2

‖u − v‖h1

)/
log

(
h2

h1

)

The numerical results are given in table 2. As expected, the numerical convergence rates
correspond to the accuracy in the interior. For the fourth order method, the boundary
closure is only second order accurate, which means that we gain two orders at the boundary.
This coincides with the results by [11].

Example 2.

We consider the problem

ut(x, t) = (a(x)ux(x, t))x, u(x, 0) = sin(πx) + cos(πx)



24

2nd order accurate scheme 4th order accurate scheme

Dirichlet B.C. Neumann B.C. Dirichlet B.C. Neumann B.C.

N ‖u − v‖h qD ‖u − v‖h qN ‖u − v‖h qD ‖u − v‖h qN

10 6.52 · 10−3 8.58 · 10−3 1.97 · 10−4 6.70 · 10−5

20 1.35 · 10−3 2.27 2.12 · 10−3 2.01 1.01 · 10−5 4.29 3.43 · 10−6 4.29
40 3.03 · 10−4 2.15 5.27 · 10−4 2.01 5.99 · 10−7 4.08 1.79 · 10−7 4.26
80 7.16 · 10−5 2.08 1.31 · 10−4 2.01 3.75 · 10−8 4.00 1.00 · 10−8 4.16
160 1.74 · 10−5 2.04 3.27 · 10−5 2.00 2.36 · 10−9 3.99 5.92 · 10−10 4.08
320 4.29 · 10−6 2.02 8.18 · 10−6 2.00 1.48 · 10−10 3.99 3.50 · 10−11 4.08

Table 2: Numerical results for the equation ut = 0.2 uxx for Dirichlet and Neumann boundary
conditions with the second and fourth order accurate schemes

with

a(x) = 0.2 + 0.4x(x − 1).

We consider Dirichlet boundary conditions of the form

u(0, t) = e−0.2π(π+2)t and u(1, t) = −e−0.2π(π−2)t.

The boundary conditions are chosen such that u(0, 0) and u(1, 0) are well defined (i.e. f(0) =
g0(0) and f(1) = g1(0)) and the differential equation can be satisfied in (0, 0) and (1, 0).
Additionally, we include Robin boundary conditions. To mind the stability condition (3.18),
we choose β0 = −1 and β1 = 1. Thus we have the boundary conditions:

−u(0, t) + ux(0, t) = (−1 + π)e−0.2π(π+2)t and u(1, t) + ux(1, t) = (−1 − π)e−0.2π(π−2)t

Since we cannot get an analytic solution here, we take the numerical solution with the more
accurate fourth order method on a very fine grid (N = 960) as a reference and calculate the
error compared to that.
The derivative of the coefficient function a is approximated with fourth order accuracy using
the standard approximation in the interior and one-sided difference operators at the bound-
ary.
The results are given in table 3. We observe that for both the 2nd and 4th order accurate
semi-discretization the numerical convergence rate is 2nd and 4th order, respectively. Hence
we gain two orders at the boundary here as well.

2nd order accurate scheme 4th order accurate scheme

Dirichlet B.C. Robin B.C. Dirichlet B.C. Robin B.C.

N ‖u − v‖h qD ‖u − v‖h qN ‖u − v‖h qD ‖u − v‖h qN

10 6.27 · 10−3 1.27 · 10−2 1.10 · 10−3 2.81 · 10−4

20 1.10 · 10−3 2.42 3.10 · 10−3 2.03 7.09 · 10−5 3.95 1.60 · 10−5 4.14
40 2.25 · 10−4 2.29 7.65 · 10−4 2.02 4.29 · 10−6 4.04 9.32 · 10−7 4.10
80 5.07 · 10−5 2.15 1.90 · 10−4 2.01 2.62 · 10−7 4.03 5.63 · 10−8 4.05
160 1.20 · 10−5 2.07 4.73 · 10−5 2.00 1.62 · 10−8 4.02 3.46 · 10−9 4.02
320 2.93 · 10−6 2.04 1.18 · 10−5 2.00 9.92 · 10−10 4.03 2.17 · 10−10 4.00

Table 3: Numerical results for the equation ut = (a(x)ux)x, a(x) = 0.2 + 0.4x(x − 1) for
Dirichlet and Robin boundary conditions with the second and fourth order accurate schemes

We try to solve the same problem with Neumann boundary conditions. We have not shown
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stability with the used operators, but we guess that some discrete form of the Sobolev in-
equality exists which gives stability for all β0, β1 in an approximation of (2.2) (cf. remark
3.6). We use

ux(0, t) = πe−0.2π(π+2)t and ux(1, t) = −πe−0.2π(π−2)t.

The results are given in table 4. Indeed we see that we get a convergent method which is
second or fourth order accurate, respectively.

2nd order accurate scheme 4th order accurate scheme

N ‖u − v‖h qN ‖u − v‖h qN

10 1.12 · 10−2 2.94 · 10−4

20 2.73 · 10−3 2.03 1.60 · 10−5 4.20
40 6.73 · 10−4 2.02 9.23 · 10−7 4.12
80 1.67 · 10−4 2.01 5.55 · 10−8 4.05
160 4.17 · 10−5 2.00 3.41 · 10−9 4.02
320 1.04 · 10−5 2.00 2.13 · 10−10 4.00

Table 4: Numerical results for the equation ut = (a(x)ux)x, a(x) = 0.2 + 0.4x(x − 1) for
Neumann boundary conditions with the second and fourth order accurate schemes

Example 3.

Next we consider a non-polynomial a using

a(x) = 0.2(1 + sin(πx))

in the equation

ut(x, t) = (a(x)ux(x, t))x, u(x, 0) = sin(πx) + cos(πx).

As boundary conditions we examine the Dirichlet data

u(0, t) = 1 and u(1, t) = −e−0.4π2t

as well as the Neumann data

ux(0, t) = π and ux(1, t) = −πe−0.4π2t.

Note that for this a condition (3.18) is satisfied.
Concerning the integration of the semi-discretized system, we note that ‖a‖∞ = 0.4 and
hence we choose a time step of 1.5h2 and h2 for the 2nd and 4th order method, respectively.

Example 4.

We conclude the experiments with the parabolic term by an example of a time-dependent a,
namely

a(x, t) = 0.5 ex−2 · (1 + sin(πt))

in the partial differential equation

ut(x, t) = (a(x)ux(x, t))x, u(x, 0) = (sin(πx))2 + 2x.

Our Dirichlet boundary conditions look like

u(0, t) = 0 and u(1, t) = 2 e−1 · e(π2+1)t,
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2nd order accurate scheme 4th order accurate scheme

Dirichlet B.C. Neumann B.C. Dirichlet B.C. Neumann B.C.

N ‖u − v‖h qD ‖u − v‖h qN ‖u − v‖h qD ‖u − v‖h qN

10 9.62 · 10−3 4.07 · 10−3 2.81 · 10−4 8.66 · 10−4

20 2.63 · 10−3 2.03 5.12 · 10−4 2.99 1.71 · 10−5 4.04 8.15 · 10−5 3.41
40 5.86 · 10−4 2.01 6.40 · 10−5 3.00 9.44 · 10−7 4.17 6.45 · 10−6 3.66
80 1.46 · 10−4 2.01 1.16 · 10−5 2.46 5.21 · 10−7 4.18 4.58 · 10−7 3.82
160 3.64 · 10−5 2.00 3.14 · 10−6 1.89 2.96 · 10−9 4.14 3.05 · 10−8 3.91
320 9.09 · 10−6 2.00 8.68 · 10−7 1.86 1.74 · 10−10 4.09 1.95 · 10−9 3.97

Table 5: Numerical results for the equation ut = (a(x)ux)x, a(x) = 0.2(1+sin(πx)) for Dirich-
let and Neumann boundary conditions with the second and fourth order accurate schemes

and our Neumann boundary conditions are

ux(0, t) = 0 and ux(1, t) = 2 e(π2+1)e−1t(1+sin(πt)).

It holds maxt{‖a(·, t)‖} = e−1 ≈ 0.37 which is why we choose the time step ∆t = 1.5h2 for the
second order scheme and ∆t = h2 for the fourth order scheme. The results are given in table
6. In this example the error is relatively large compared with the previous examples. The
main reason is not the more difficult problem, but the fact that the l2-norm of the solution
is about 100 time as large as above due to the growing boundary value.

2nd order accurate scheme 4th order accurate scheme

Dirichlet B.C. Neumann B.C. Dirichlet B.C. Neumann B.C.

N ‖u − v‖h qD ‖u − v‖h qN ‖u − v‖h qD ‖u − v‖h qN

10 3.48 · 10−1 4.16 · 10−2 1.31 · 10−1 1.09 · 10−2

20 1.05 · 10−1 1.73 9.51 · 10−3 2.13 9.30 · 10−3 3.81 5.73 · 10−4 4.25
40 3.60 · 10−2 1.54 2.22 · 10−3 2.10 6.51 · 10−4 3.84 2.67 · 10−5 4.42
80 1.05 · 10−2 1.77 5.35 · 10−4 2.05 4.48 · 10−5 3.86 1.22 · 10−6 4.45
160 2.84 · 10−3 1.89 1.31 · 10−4 2.03 2.99 · 10−6 3.91 5.62 · 10−8 4.45
320 7.38 · 10−3 1.95 3.25 · 10−5 2.01 1.90 · 10−7 3.97 2.51 · 10−9 4.48

Table 6: Numerical results for the equation ut = (a(x, t)ux)x, a(x, t) = 0.5 ex−2(1 + sin(πt))
for Dirichlet and Neumann boundary conditions with the second and fourth order accurate
schemes

3.5.2 Results for the Convection Diffusion Equation

Example 1.

We consider the example ut = (a(x, t)ux(x, t))x + b(x, t)ux(x, t) + (c(x, t)u(x, t))x with coef-
ficients

a(x, t) =
1

10

(
1 +

1

2
sin
(π

2
(x + t)

))
,

b(x, t) = 2 sinh

(
−3x +

3

2

)
(1 + t) and

c(x, t) = 4x(x − 1)
(
xt2 + 1

)
.
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Let the initial condition u(x, 0) = f(x) be given by f(x) = 4(sin(πx) + cos(10x)).
As Dirichlet boundary conditions we choose

u(0, t) = g0(t) = 4e4(−14+1/40·π2+2π sinh(3/2))t ≈ 4 e−1.48t and

u(1, t) = g1(t) = 4 cos(10)e4(−11 cos(10)+2 sinh(3/2)(π+10 sin(10)))t ≈ 4 cos(10)e−2.24t,

while we use

ux(0, t) = g0(t) ≈ 4πe−1.48t and

ux(1, t) = g1(t) ≈ 4(−π − 10 sin(10))e−2.24t

as Neumann boundary conditions.
Note that again we choose the boundary conditions such that the PDE is satisfied in (0, 0)
and (1, 0) and g0(0) = f(0) as well as g1(0) = f(1).
The numerical results are given in table 7. We use a time step of 3h2 for the second order
method and 2h2 for the fourth order method. The results show that we gain two powers
at the boundaries in the case of the fourth order accurate scheme even for the convection
diffusion equation.

2nd order accurate scheme 4th order accurate scheme

Dirichlet B.C. Neumann B.C. Dirichlet B.C. Neumann B.C.

N ‖u − v‖h qD ‖u − v‖h qN ‖u − v‖h qD ‖u − v‖h qN

10 2.62 7.76 · 10−2 1.95 7.00 · 10−3

20 9.94 · 10−1 1.40 1.83 · 10−2 2.08 4.94 · 10−1 1.98 1.82 · 10−3 1.95
40 2.05 · 10−1 2.28 4.49 · 10−3 2.03 7.22 · 10−2 2.78 2.76 · 10−4 2.72
80 3.19 · 10−2 2.68 1.10 · 10−3 2.03 8.01 · 10−3 3.17 3.05 · 10−5 3.18
160 5.06 · 10−3 2.66 2.64 · 10−4 2.06 7.04 · 10−4 3.51 2.43 · 10−6 3.65
320 8.72 · 10−4 2.54 5.51 · 10−5 2.26 5.15 · 10−5 3.78 1.55 · 10−7 3.97

Table 7: Numerical results for the convection diffusion equation using Dirichlet and Neumann
boundary conditions with the second and fourth order accurate schemes

The relatively high errors and bad convergence rates in the case of Dirichlet boundary con-
ditions are due to the properties of the solution. At the right boundary, the solution is very
steep. This steepness cannot be resolved with a low number of grid points in space and
influences the convergence rate especially when the number of grid points is small.

Example 2.

We consider the problem

ut(x, t) = (a(x)ux(x, t))x + b(x)ux(x, t) with

a(x) =
1

10

(
1 +

1

2
sin
(π

2
x
))

and

b(x) = 2 sinh

(
−3x +

3

2

)
.

Let the initial condition u(x, 0) = f(x) be given by

f(x) = sin(πx) +
7

5
cos(10x).
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As Dirichlet boundary conditions we choose

u(0, t) = g0(t) =
7

5
e(−14+1/40·π2+2π sinh(3/2))t ≈ 1.4 e−0.37t and

u(1, t) = g1(t) =
7

5
cos(10)e(−21 cos(10)+2 sinh(3/2)(π+14 sin(10)))t ≈ 1.4 cos(10)e−1.43t,

while we use

ux(0, t) = g0(t) ≈ πe−0.37t and

ux(1, t) = g1(t) ≈ (−π − 14 sin(10))e−1.43t

as Neumann boundary conditions.
Note that again we choose the boundary conditions such that the PDE is satisfied in (0, 0)
and (1, 0) and g0(0) = f(0) as well as g1(0) = f(1).
The numerical results are given in table 8. We use a time step of 3h2 for the second order
method and 2h2 for the fourth order method. It can be seen that the results are very similar
to the previous test case. Again, the numerical order of accuracy is two for scheme that is
second order accurate in the interior and four for the fourth order accurate one.

2nd order accurate scheme 4th order accurate scheme

Dirichlet B.C. Neumann B.C. Dirichlet B.C. Neumann B.C.

N ‖u − v‖h qD ‖u − v‖h qN ‖u − v‖h qD ‖u − v‖h qN

10 7.02 · 10−1 1.34 · 10−2 2.36 · 10−1 4.64 · 10−3

20 1.01 · 10−1 2.79 3.12 · 10−3 2.10 3.00 · 10−2 2.97 8.87 · 10−4 2.39
40 1.56 · 10−2 2.69 7.54 · 10−4 2.05 3.07 · 10−3 3.29 1.26 · 10−4 2.82
80 2.56 · 10−3 2.61 1.85 · 10−4 2.03 2.58 · 10−4 3.57 1.20 · 10−5 3.39
160 4.53 · 10−4 2.50 4.60 · 10−5 2.01 1.88 · 10−5 3.78 8.52 · 10−7 3.81
320 8.88 · 10−4 2.35 1.15 · 10−5 2.00 1.26 · 10−6 3.91 5.09 · 10−8 4.07

Table 8: Numerical results for the convection diffusion equation (c ≡ 0) using Dirichlet and
Neumann boundary conditions with the second and fourth order accurate schemes
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4 Self-Adjoint Form

Equation (1.1) is in self-adjoint form, which makes it possible to obtain an energy estimate
by simply applying integration by parts. In this section we derive operators which imitate
this property in the sense that they allow us to apply a discrete analogon.

4.1 Properties of the Operator

We want to devise a general form for an operator that mimics the summation by parts
property for the parabolic term in (2.2). Let 2p be the order of accuracy in the interior and
p the accuracy at the boundary.

In the continuous case we have the L2-inner product and the operator ∂
∂x . Integration by

parts gives

(u,
∂

∂x
a

∂

∂x
u) = −(

∂

∂x
u, a

∂

∂x
u) + boundary term (4.1)

If we want to mimic this behavior, we have to define two discrete operators Q1, Q2 ap-
proximating ∂

∂x , i.e. in this case we are looking for two separate operators for the two first
derivatives, not for one operator for the whole problem. We also want to include the physical
boundary data using SAT. Thus we look at a semi-discrete scheme of the form

vt = Q1aQ2v + boundary term (4.2)

In order to achieve the accuracy in the interior even for variable a, the inner part of Q1 has
to be 2pth order accurate. Since in the interior we want to have that QT

1 = −Q2, also Q2

will have to be 2pth order accurate.
We want to obtain a discrete analogon of (4.1). In the discrete case the L2 inner product is
replaced by the inner product induced by H, where H is the diagonal norm introduced in
[16]. Thus we want to have

(v, Q1aQ2v)H = −(Q2v, aQ2v)H + boundary term (4.3)

We can transform the left hand side:

(v, Q1aQ2v)H = vT HQ1aQ2v = vT HQ1aH−1HQ2v

=
(
(HQ1H

−1)T v
)T

aHQ2v = ((HQ1H
−1)T v, aQ2v)H

Thus Q1 and Q2 shall be connected in the following way:

HQ1 = −(HQ2)
T + boundary term

This relation can be generalized with a positive definite diagonal matrix K

HQ1 = −(HKQ2)
T + boundary term

without loosing the essential property of (4.3) which becomes

(v, Q1aQ2v)H = −(KQ2v, aQ2v)H + boundary term (4.4)

Since a(x, t) ≥ amin > 0 and K is positive definite and diagonal, it still holds

−(KQ2v, aQ2v)H = −(KQ2v, aK−1KQ2v) ≤ 0
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which was the desired property of the summation by parts rule. Thus we can obtain an
energy estimate in the H-norm when neglecting the boundary part

d

dt

∥∥v
∥∥2

H
− boundary term = vT HQ1aQ2v + (Q1aQ2v)T Hv

= −(KQ2v)T
(
aK−1 + (K−1)T a

)
(KQ2v) ≤ 0.

We now look at the additional boundary part. For summation by parts operators we
implement the Robin physical boundary conditions by a SAT term of the form

−τ0H
−1(E0(β0I + S)v − e0a0g0(t)) − τNH−1(EN (β1I + S)v − eNaNg1(t)), (4.5)

where S is an approximation of a ∂
∂x in the first and last line. Its accuracy can be one order

less than the global order of the summation by parts operator without effecting its accuracy.
Dirichlet boundary conditions are implemented using a SAT term of the form

−τ0H
−1ST (E0v − e0g0(t)) − τNH−1ST (ENv − eNg1(t)), (4.6)

where S is an approximation of a ∂
∂x at x0 and xN as above. When calculating the time deriva-

tive of ‖v‖2
H , we get for both Dirichlet and Robin boundary conditions the same boundary

term vT EiSv + vT ST Eiv, i = 0, N , which is why in the following we only consider Robin
boundary conditions where the additional terms with β0, β1 occur.

Now we want to calculate the energy estimate for the whole scheme including the boundary
part. We make up the semi-discrete scheme by the SAT boundary part, i.e.

vt = Q1aQ2v − τ0H
−1(E0(β0I + S)v − e0a0g0(t))

− τNH−1(EN (β1I + S)v − eNaNg1(t)).

At the inner points Q1 and Q2 shall approximate ∂
∂x 2pth order accurate. At the boundary

we cannot achieve the same accuracy. Furthermore we allow some asymmetry represented
by a matrix R and require only the total operator Q1(·)Q2 to be a pth order accurate ap-
proximation of ∂

∂x

(
· ∂

∂x

)
. Let r be the size of the boundary part. Then R has only non-zero

entries in an r × r part in the upper left and lower right corner. It is defined through

HQ1 = −(HKQ2)
T + R, (4.7)

This yields the following energy estimate

d

dt

∥∥v
∥∥2

H
= −(KQ2v)T (aK−1 + (K−1)T a)(KQ2v) + vT RaQ2v + vT QT

2 aRT v

− 2τ0v0(β0v0 + (Sv)0 − a0g0(t)) − 2τ1vN (β1vN + (Sv)N − aNg1(t))

= −(KQ2v)T (aK−1 + (K−1)T a)(KQ2v) + 2vT RaQ2v

− 2τ0β0

(
v0 −

1

2τ0β0
aNg0(t)

)2

− 2τ1β1

(
vN − 1

2τ1β1
aNg1(t)

)2

+
τ0

2β0
a2

0g0(t)
2 +

τ1

2β1
a2

Ng1(t)
2 − 2v0(Sv)0τ0 − 2vN (Sv)Nτ1.

We can obtain an estimate if R satisfies

v0 (τ0(Sv)0 − (RaQ2v)0) = C0v
2
0, C0 ≥ 0,

vi(RaQ2v)i = −Civ
2
i , Ci ≥ 0, 1 ≤ i ≤ r ∨ N − r ≤ i ≤ N − 1, (4.8)

vN (τN (Sv)N − (RaQ2v)N ) = CNv2
N , CN ≥ 0.
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The easiest way to obtain this is to choose the summation by parts operator for the first
derivative derived by Strand [16] for both Q1 and Q2. However, this procedure has two
drawbacks: First the operator for the whole problem has quite a wide stencil and relatively
large error constants and second the π-modes are not damped.
It is not possible to approximate the first derivative to some order 2p using less points than
Strand on a normal grid. However one can reduce the bandwidth by using a staggered grid.
The idea is now to design two operators with the following properties:

• Q1 approximates the first derivative at the point xj+1/2 in the interior (2pth order
accurate)

• Q2 approximates the first derivative at the point xj−1/2 in the interior (2pth order
accurate)

• Qa = Q1(·)Q2 approximates ∂
∂x

(
· ∂

∂x

)
at the boundary (pth order accurate)

• relation (4.7) holds and

• R is such that (4.8) holds.

This requires that we apply Q1 on a at intermediate points xj−1/2 while u is approximated
at the actual grid points.
Combining Q1 and Q2 with a SAT treatment of the boundary data leads to a strictly stable
high order approximation (even for non-smooth a) for the semi-discretization (1.1).

4.2 Summation by Parts Operator of Order 2

4.2.1 Construction

In this section we will construct a summation by parts operator that is second order accurate
in the interior and first order accurate on the boundary. We will not follow the general
procedure derived in section 4.1 here but make the connection to that afterwards.

The following operator is a discretization of the spatial part of (1.1) imitating the sum-
mation by parts property of the continuous problem.
Let aj−1/2 = a(xj − 1

2h, t), j = 1, ..., N and a−1/2 = 0, Λ = diag([a−1/2, a1/2, . . . , aN−1/2]),

D− =
1

h




1 0 . . . 0

−1 1 0 . . .
...

0 −1 1 0 . . .
...

. . .
. . .

. . .
. . .

. . . 0 −1 1 0
0 . . . 0 −1 1




,

D+ =
1

h




−1 1 0 . . . 0

0 −1 1 0 . . .
...

...
. . .

. . .
. . .

. . .

. . . 0 −1 1 0
. . . 0 −1 1

0 . . . 0 −1
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and

BS =
1

h




3
2a1/2 −(3

2a1/2 + 1
2a3/2)

1
2a3/2

0
. . .

0
1
2aN−3/2 −(3

2aN−1/2 + 1
2aN−3/2)

3
2aN−1/2




.

Define Qa = H−1(−A + BS), where −A = D+ΛD−. Hence

Qa =
1

h2




a1/2 −ã1 a3/2 0

a1/2 −ã1 a3/2 0

0 a3/2 −ã2 a5/2 0
. . .

. . .
. . .

. . .
. . .

0 aN−5/2 −ãN−2 aN−3/2 0

0 aN−3/2 −ãN−1 aN−1/2

0 aN−3/2 −ãN−1 aN−1/2




, (4.9)

where ãj = aj−1/2 + aj+1/2, j = 1, . . . , N − 1.
This is a discretization of (aux)x that is stable and second order accurate in the interior and
first order accurate at the boundary as we will see in the next sections.

Before showing strict stability and the accuracy, we want to complete this section by
looking at the operator in terms of the notation of section 4.1.

• Q1 = D+ + 1
h




0 −2 1 0
0

. . .

0
0 −1 2




• Q2 = D−

• K = I

• R =




−1 1
2 0

0
. . .

0
0 −1

2 1




.
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4.2.2 Consistency

Consider the jth line of the operator for j 6= 0, N . A Taylor expansion of u(xj−1) and u(xj+1)
around xj yields

1

h2
(aj−1/2uj−1 − (aj−1/2 + aj+1/2)uj + aj+1/2uj+1)

=
1

h2
(aj−1/2 − aj−1/2 − aj+1/2 + aj+1/2)uj +

1

h
(−aj−1/2 + aj+1/2)ux(xj)

+
aj−1/2 + aj+1/2

2
uxx(xj) +

h2

6

aj+1/2 − aj−1/2

h
uxxx(xj) + O(h2)

= (ax(xj) + O(h2)))ux(xj) + (a(xj) + O(h2))uxx(xj)

+
h2

6
(ax(xj) + O(h2))uxxx(xj) + O(h2)

= ax(xj)ux(xj) + a(xj)uxx(xj) + O(h2) (4.10)

For the second equality the following identities are obtained by Taylor expansion of a around
xj :

aj+1/2 − aj−1/2

h
=

1

h
(1 − 1)a(xj) + ax(xj) + h(1 − 1)axx(xj) + O(h2)

= ax(xj) + O(h2)

aj+1/2 + aj−1/2

2
=

1

2
(1 + 1)a(xj) +

1

2

(
h

2
− h

2

)
ax(xj) + O(h2)

= a(xj) + O(h2)

Now we look at the accuracy at the boundary:

a1/2u0 − (a1/2 + a3/2)u1 + a3/2u2

h2
=

a3/2 − a1/2

h
ux(x0) +

3a3/2 − a1/2

2
uxx(x0) + O(h)

= (ax(x0) + O(h))ux(x0) + (a0 + O(h))uxx(x0) + O(h) = (aux)x|x0 + O(h)

for the left boundary and

aN−1/2uN − (aN−1/2 + aN−3/2)uN−1 + aN−3/2uN−2

h2

=
aN−3/2 − aN−1/2

h
ux(xN ) +

3aN−3/2 − aN−1/2

2
uxx(xN ) + O(h)

= (ax(xN ) + O(h))ux(xN ) + (aN + O(h))uxx(xN ) + O(h) = (aux)x|xN + O(h)

for the right boundary. Thus the operator is second order accurate in the interior and first
order accurate at the boundary.
The boundary values can be implemented using the SAT technique. Therefore we show that
the first line of S is a second order accurate approximation of (aux)|x0 and for the last row
analogous:

−3a1/2u0 + (3a1/2 + a3/2)u1 − a3/2u2

2h

=
3a1/2 − a3/2

2
ux(x0) +

3a1/2 − 3a3/2

2

h

2
uxx(x0) + O

(
h2
)

=
(
a(x0) + O

(
h2
))

ux(x0) + h2

(
3

4
ax(x1) + O

(
h2
))

uxx(x0) + O
(
h2
)

= a(x0)ux(x0) + O
(
h2
)
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4.2.3 Stability

Consider the initial boundary value problem (2.2) with b ≡ c ≡ 0. This can be approximated
using the above operator and the SAT method for the treatment of the boundary conditions:

vt = H−1(−A + BS)v − H−1τ0 (E0(β0I + S)v − e0g0(t))

− H−1τ1 (EN (β1I + S)v − eNg1(t)) , v(0) = f. (4.11)

The energy method applied on this approximation leads to

d

dt

∥∥v
∥∥2

H
= −vT (A + AT )v + vT (BS + (BS)T )v

− 2τ0v0 (β0v0 + (Sv)0 − a0g0(t)) − 2τ1vN (β1vN + (Sv)N − aNg1(t)) .

Using the above notation gives

d

dt

∥∥v
∥∥2

H
= vT

(
D+ΛD− + (D+ΛD−)T

)
v

− 2v0(Sv)0 + 2vN (Sv)N − 2τ0v0(β0v0 + (Sv)0 − a0g0(t)

− 2τ1vN (β1vN − (Sv)N + aNg1(t) (4.12)

= −2(D−v)T Λ(D−v) − 2τ0β0

(
v0 −

a0

2β0
g0(t)

)2

+
τ0

2β0
a2

0g0(t)
2 − 2τ1β1

(
vN − aN

2β1
g1(t)

)2

+
τ1

2β1
a2

Ng1(t)
2

− 2v0(Sv)0(1 + τ0) + 2vN (Sv)N (1 − τ1)

Hence an energy estimate exists if the condition

β0 ≤ 0 and β1 ≥ 0

(compare also (3.20) for c ≡ 0) holds and additionally:

τ0 = −1 and τ1 = 1. (4.13)

4.3 Summation by Parts Operators of Higher Order

The system that has to be solved for the boundary part of an SBP-operator of order 2p,
where p ≥ 2, is rather complicated since it is non-linear. Therefore we did not solve the
system and cannot tell how accurate the boundary part can be designed.
A possible inner stencil is a minimal width stencil of order 2p on a staggered grid, which can
be calculated using a formula given by Fornberg [4].

As an example we give the inner stencil for Q1 and Q2, respectively, in the case of 2p = 4:

(Q1v)i =
1

24
vj−1 −

8

9
vj +

8

9
vj+1 −

1

24
vj+2 (4.14)

(Q2v)i =
1

24
vj−2 −

8

9
vj−1 +

8

9
vj −

1

24
vj+1 (4.15)

This leads to the following stencil for the whole operator Qa = Q1aQ2v in the interior:

1

576
aj−3/2vj−3 −

3

64

(
aj−3/2 + aj−1/2

)
vj−2 +

3

64

(
aj−3/2 + 27aj−1/2 + aj+1/2

)
vj−1

− 1

64

(1

9
aj−3/2 + 81aj−1/2 + 81aj+1/2 +

1

9
aj+3/2

)
vj+

3

64

(
aj−1/2 + 27aj+1/2 + aj+3/2

)
vj+1 −

3

64

(
aj+1/2 + aj+3/2

)
vj+2 +

1

576
aj+3/2vj+3
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4.4 Damping of π-Modes

As done in section 3.4 for the operator based on the product rule, we want to consider the
damping of different wave numbers also for the operators presented above.

For a constant coefficient a, the second order operator Qa in (4.9) reduces to the second
order operator proposed by Mattsson and Nordström [11]. Hence the Fourier transform Q̂2

looks the same as for the D2 operator, which is already presented in 3.4

Q̂2 =
2

h2
(−1 + cos(ξ)) , ξ = 2πωh.

Since we only look at the inner stencil, we can also consider the 4th order scheme, which we
denote by Q4. The Fourier transform for a ≡ 1 is given by:

Q̂4 =
1

h2

(
−365

144
+

87

32
cos(ξ) − 3

16
cos(2x) +

1

288
cos(3x)

)
, ξ = 2πωh.

Figure 2 shows the damping of different wave numbers by the operators compared with the
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)

Figure 2: Damping of modes with wave number ξ of the exact solution (-), 2nd (- -) and 4th
(-·) order accurate operator Q.

damping of the exact solution. Like for the operators based on the product rule, the damping
gets worse for growing wave numbers. But at least all wave numbers are damped to some
amount.

4.5 Computational Results

We now present the results of some numerical experiments we have performed on equation
(1.1) using the second operator derived above for the space discretization and the classical
fourth order Runge-Kutta for time integration.
The stability limit is the same as the one for the second order operator based on the product
rule, since both operators are reduced to the same operator for constant a. If we assume a
to be Lipschitz continuous the a depending coefficients of the term in the Fourier transform
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of the a depending operator can by estimated by a(xj) + O(h2). Therefore we use the same
time steps as in section (3.5.1).
We choose the same examples as in section 4. In the cases where we do not know the exact
solution, we use the solution calculated with the product rule operator of 4th order on a grid
with 320 points.

Example 1 We consider the problem

ut = 0.2uxx

u(x, 0) = sin(πx) + cos(πx)

Dirichlet: ux(0, t) = e−0.2π2t, ux(1, t) = −e−0.2π2t or

Neumann: ux(0, t) = πe−0.2π2t, ux(1, t) = −πe−0.2π2t

with the exact solution

u(x, t) = (sin(πx) + cos(πx))e−0.2π2t.

In this case a is constant, which is why the operator is of the same form as the second order
method based on the product rule. The result are hence given in table 2.

Example 2 We consider the problem

ut =
∂

∂x
((0.2 + 0.4x(x − 1))ux)

u(x, 0) = sin(πx) + cos(πx)

Dirichlet: u(0, t) = e−0.2π(π+2)t, u(1, t) = −e−0.2π(π−2)t or

Neumann: ux(0, t) = πe−0.2π(π+2)t, ux(1, t) = −πe−0.2π(π−2)t.

Table 9 shows the results at time t = 1.

Dirichlet Neumann

N ‖u − v‖h qD ‖u − v‖h qN

10 2.38 · 10−3 5.03 · 10−4

20 5.24 · 10−4 2.18 1.19 · 10−3 2.08
40 1.63 · 10−4 1.68 2.88 · 10−4 2.04
80 4.59 · 10−5 1.83 7.10 · 10−5 2.02

160 1.21 · 10−5 1.92 1.76 · 10−5 2.01
320 3.21 · 10−6 1.96 4.38 · 10−6 2.01

Table 9: Numerical results for the equation ut = ((0.2 + 0.4x(x − 1))ux)x

Example 3 We consider the problem

ut =
∂

∂x
(0.2(1 + sin(πx))ux)

u(x, 0) = sin(πx) + cos(πx)

Dirichlet: u(0, t) = 1, u(1, t) = −e−0.4π2t or

Neumann: ux(0, t) = π, ux(1, t) = −πe−0.4π2t.



37

Dirichlet Neumann

N ‖u − v‖h qD ‖u − v‖h qN

10 8.14 · 10−4 3.69 · 10−3

20 7.22 · 10−5 3.50 8.77 · 10−4 2.07
40 2.78 · 10−5 1.38 2.14 · 10−4 2.03
80 9.81 · 10−6 1.50 5.30 · 10−5 2.02

160 2.85 · 10−6 1.78 1.32 · 10−5 2.01
320 7.66 · 10−7 1.90 3.29 · 10−6 2.00

Table 10: Numerical results for the equation ut = (0.2(1 + sin(πx))ux)x

Table 10 shows the results at time t = 1.

Example 4 We consider the problem

ut =
∂

∂x

(
0.5ex−2(1 + sin(πt))ux

)
with u(x, 0) = (sin(πx))2 + 2x

Dirichlet: u(0, t) = 0, u(1, t) = 2ee−1(π2+1)t or

Neumann: ux(0, t) = ux(0, t) = 2 ee−2(π2+1)t, ux(1, t) = 2 ee−1(π2+1)t.

Table 11 shows the results at time t = 1.

Dirichlet Neumann

N ‖u − v‖h qD ‖u − v‖h qN

10 1.21 2.14 · 10−1

20 1.55 · 10−1 2.96 4.86 · 10−2 2.14
40 1.82 · 10−2 3.10 1.14 · 10−2 2.09
80 2.36 · 10−3 2.94 2.75 · 10−3 2.05

160 5.12 · 10−4 2.21 6.75 · 10−4 2.03
320 1.41 · 10−4 1.86 1.67 · 10−4 2.01

Table 11: Numerical results for the equation ut =
(
0.5ex−2(1 + sin(πt))ux

)
x

The experiments show that the solution converges with second order, which is in accor-
dance with the theoretical analysis.

4.6 Extension to the Convection Diffusion Equation

The approximation of the parabolic term (aux)x can be used in an approximation of the
convection diffusion equation (1.2) combined with the operator D1 derived by Strand [16] for
the hyperbolic terms. However, the straight-forward implementation of the equation in the
form vt = Qav + ΛbD1v + D1(Λcv) is not optimal since it does not lead to a strictly stable
approximation if we use a higher order (2p > 2) operator D1 as an approximation of the first
derivative (cf. [14]). Hence we assume that b and c are both differentiable with respect to x
and use the identities bux = 1

2

(
(bu)x + bux − bxu

)
as well as (cu)x = 1

2

(
(cu)x + cux + cxu

)
.

Denote d(x, t) = 1
2(b(x, t) + c(x, t)), Λ = diag([d(x0, t), . . . , d(xN , t)]) the diagonal matrix

containing the values of d and Γ = 1
2 diag([−bx(x0, t) + cx(x0, t), . . . ,−bx(xN , t) + cx(xN , t)]).

Then (1.2) can be approximated by (cf. [14])

vt = Qav + ΛD1v + D1Λv + Γv, (4.16)
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where Qa is the operator derived in the previous sections that approximates ∂
∂xa ∂

∂x . The
derivative −bx + cx can either be given or approximated to sufficiently high order.

4.6.1 Stability

To prove stability, we use the energy method. Before giving details on the implementation of
boundary conditions, we analyze the terms arising from the semi-discretization in the interior.

Taking the discrete H-norm of some vector v ∈ R
N+1 leads to

d

dt
‖v‖2

H = (v, vt)H + (vt, v)H

= (v, Q1aQ2v)H + (Q1aQ2v, v)H + (v,ΛD1v)H + (ΛD1v, v)H

+ (v, D1Λv)H + (D1Λv, v)H + (v,Γv)H + (Γv, v)H .

We use property (4.4) for the parabolic terms with the boundary term BS. Then,

d

dt
‖v‖2

H = −(KQ2v, aQ2v)H − (aQ2v, KQ2v)H + vT
(
BS + (BS)T

)
v

+ vT HΛD1v + vT DT
1 ΛHv + vT HD1Λv + vT ΛDT

1 Hv + 2vT Γv.

For the terms vT HD1Λv and vT ΛDT
1 Hv, we use HD1 = Q = −QT + B = −DT

1 H + B and
DT

1 H = QT = −Q + B = −HD1 + B, respectively. This leads to

d

dt
‖v‖2

H = −(KQ2v, aQ2v)H − (aQ2v, KQ2v)H + vT
(
BS + (BS)T

)
v

+ vT HΛD1v − vT DT
1 HΛv + vT DT

1 ΛHv − vT ΛHD1v

+ vT BΛv + vT ΛBv + 2vT Γv.

Since both H and Λ are diagonal matrices, they commute, and we get

d

dt
‖v‖2

H = −(KQ2v, aQ2v)H − (aQ2v, KQ2v)H + vT
(
BS + (BS)T

)
v

+ vT HΛD1v −
(
vT HΛD1v

)T
+ vT DT

1 ΛHv −
(
vT DT

1 ΛHv
)T

+ vT BΛv + vT ΛBv + 2vT Γv.

The terms vT HΛD1v and vT DT
1 ΛHv are real numbers, which is why they equal their trans-

pose. This means that they cancel each other. Hence

d

dt
‖v‖2

H = −2(KQ2v, aQ2v)H + 2vT BSv + 2vT BΛv + 2vT Γv. (4.17)

In the following we consider both types of boundary conditions separately.

Dirichlet boundary conditions are implemented by the SAT terms

H−1(τ0S
T + σ0I)(E0v − e0g0) and H−1(τ1S

T + σ1I)(ENv − eNg1),

where τ0, τ1, σ0 and σ1 are constants that are to be determined such that the approximation
is strictly stable. These boundary terms are just those in (4.6) extended by the additional
terms σiI, i = 0, 1 arising from the approximation of hyperbolic terms.
The approximation of (2.1) has the form

vt = Qav + ΛD1v + D1Λv + Γv − H−1
(
τ0S

T + σ0I
)
(E0v − e0g0) (4.18)

− H−1
(
τ1S

T + σ1I
)
(ENv − eNg1).
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For showing stability, we set homogeneous boundary conditions as for the error estimate
in the continuous case in section 2.2.1 and also used in section 3.2.2 for the ansatz with the
product rule.
Taking the time-derivative of the discrete H-norm of v leads to

d

dt
‖v‖2

H = −2(KQ2v, aQ2v)H + 2vT BSv + 2vT BΛv + 2vT Γv − 2τ0v
T ST E0v

− 2τ1v
T ST ENv − 2σ0v

T E0v − 2σ1v
T ENv

= −2(KQ2v, aQ2v)H + 2vT Γv + 2v0(Sv)0(−1 − τ0) + 2vN (Sv)N (1 − τ1)

+ 2v2
0(−d0 − σ0) + 2v2

N (dN − σ1).

If we require

τ0 = −1, τ1 = 1, σ0 = −d0 = −1

2
(b0 + c0), σ1 = dN =

1

2
(bN + cN ),

we get the estimate

d

dt
‖v‖2

H ≤ αs ‖v‖2
H ,

where αs = ‖(−b + c)x‖∞, which is exactly the same constant as α in the continuous case.
Hence (4.18) is a strictly stable approximation of (2.1).

Robin boundary conditions are implemented by the SAT terms

H−1τ0(E0(a0β0I + S)v − a0e0g0) and H−1τ1(EN (aNβ1I + S)v − aNeNg1),

where τ0 and τ1 are constants that are to be determined such that the approximation is
stable. These boundary terms are exactly those in (4.5).
The approximation of (2.2) has the form

vt = Qav + ΛD1v + D1Λv + Γv − H−1τ0(E0(a0β0I + S)v − a0e0g0)

− H−1τ1(EN (aNβ1I + S)v − aNeNg1).

Applying the energy method to v gives

d

dt
‖v‖2

H = −2(KQ2v, aQ2v)H + 2vT BSv + 2vT BΛv + 2vT Γv

− 2
(
τ0v

T E0Sv + τ1v
T ENSv

)

− 2
(
τ0β0a0v

T E0v + τ1β1aNvT ENv + τ0a0v0g0 + τ1aNvNg1

)

= −2(KQ2v, aQ2v)H + 2vT Γv + 2v0(Sv)0(−1 − τ0) + 2vN (Sv)N (1 − τ1)

+ 2(−d0 − τ0β0a0)

(
v0 −

τ0a0

−2(d0 + τ0β0a0)
g0

)2

− τ2
0 a2

0

−2(d0 + τ0β0a0)
g2
0

+ 2(dN − τ1β1aN )

(
vN − τ1aN

2(dN − τ1β1aN )
g1

)2

− τ2
1 a2

N

2(dN − τ1β1aN )
g2
2.

We require

τ0 = −1, τ1 = 1

and condition (3.20) on β0, β1 to hold:

β0 ≤ min
t

b(0, t) + c(0, t)

2a(0, t)
and β1 ≥ max

t

b(1, t) + c(1, t)

2a(1, t)
.

Then we obtain a growth constant of αs = ‖(−b + c)x‖∞ = α, i.e. the constant is the
same as in the continuous case which was treated in the remark 3.6. This means that the
approximation is strictly stable.
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4.6.2 Accuracy

The accuracy of the method is determined by the accuracy of Qa and D1. If Qa and D1 are
both 2pth order accurate in the interior and pth order accurate at the boundary, the overall
scheme has the local order of accuracy p at the boundary and 2p in the interior. Since there
is a parabolic term, we suspect that a similar proof as in theorem 3.7 shows global order of
accuracy p + 2. However, we do not give it here since we have not derived an operator with
p > 1.

4.6.3 Computations

We use the same example as in section 3.5.2 to test the implementation of the convection-
diffusion equation:

ut = (a(x, t)ux(x, t))x + b(x, t)ux(x, t) + (c(x, t)u(x, t))x, where

a(x, t) =
1

10

(
1 +

1

2
sin
(π

2
(x + t)

))
, b(x, t) = 2 sinh

(
−3x +

3

2

)
(1 + t),

c(x, t) = 4x(x − 1)(xt2 + 1) with initial condition

u(x, 0) = 4(sin(πx) + cos(10x))

As boundary conditions we use Dirichlet and Neumann boundary conditions of the form

u(0, t) = g0(t) = 4e4(−14+1/40·π2+2π sinh(3/2))t ≈ e−1.48t and

u(1, t) = g1(t) = 4 cos(10)e4(−11 cos(10)+2 sinh(3/2)(π+10 sin(10)))t ≈ cos(10)e−2.24t

and

ux(0, t) = g0(t) ≈ 4πe−1.48t and

ux(1, t) = g1(t) ≈ 4(−π − 10 sin(10))e−2.24t,

respectively.
The time step for the Runge-Kutta method is chosen as in the case of the product rule to be
3h2.
Table 12 shows the results at time t = 1. For Dirichlet boundary conditions we see as in the
section 3.5.2 that the steep boundary part causes difficulties when the number of grid points
is small. When N increases, the numerical rate of convergence tends to the expected value
of 2.

Dirichlet Neumann

N ‖u − v‖h qD ‖u − v‖h qN

10 2.29 · 103 2.76 · 10−2

20 3.11 9.53 5.09 · 10−3 2.44
40 2.49 · 10−1 3.64 1.19 · 10−3 2.10
80 3.47 · 10−2 2.84 2.89 · 10−4 2.04

160 5.37 · 10−3 2.69 7.17 · 10−5 2.01
320 8.89 · 10−4 2.60 1.79 · 10−5 2.00

Table 12: Numerical results for the convection diffusion equation
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5 Approximation Using Finite Elements

5.1 Introduction

In this section we present an operator approximating the spatial part of equation (1.1) using
a finite element ansatz.
With the so called mass lumping, the mass matrix can be reduced to a diagonal matrix, which
makes it possible to interpret the finite element operator as a finite difference operator. This
ansatz is based on an idea of Zemui, presented in his PhD-thesis [17].

5.2 Variational Formulation of the Semi-Discretization in Space

The semi-discretization is based on a variational formulation of (1.1) when using a finite
element ansatz.

First we consider Neumann boundary conditions, i.e.

∂

∂x
u(x0, t) = g0(t),

∂

∂x
u(xN , t) = g1(t), t ∈ I. (5.1)

Let V = H1
0 (Ω) be the Sobolev space of functions with first derivatives in the weak sense

and compact support.
In order to obtain a weak formulation of the problem, we multiply (1.1) for a fixed t ∈ I by
a function v ∈ V and integrate over Ω:

∫

Ω
utvdx =

∫

Ω
(aux)xv dx

= −
∫

Ω
auxvx dx + a(xN )g1(t)v(xN ) − a(x0)g0(t)v(x0) (5.2)

For the last equality we use integration by parts and the boundary conditions (5.1).
Let (·, ·) denote the L2(Ω) inner product. If a(x, t) > 0, we can define the following positive
semidefinite bilinear form:

s(u, v) =

∫

Ω
a(x, t)uxvxdx, u, v ∈ V (5.3)

i.e. the L2 inner product for the derivatives with weight function a. Using this notation we
get the variational formulation of (1.1):
Find u(t) ∈ V, t ∈ I, such that

(ut, v) = −s(u, v) + a(xN )g1(t)v(xN ) − a(x0)g0(t)v(x0) ∀ v ∈ V, t ∈ I (5.4)

u(0) = f(0)

Now let Vh be a finite-dimensional subspace of V with basis {ϕ0, . . . , ϕN}. Replacing V
be its subspace Vh we can obtain an analogue variational formulation for the semi-discrete
problem:
Find uh(t) ∈ Vh, t ∈ I, such that

(
duh

dt
, vh) = −s(uh, vh) + a(xN )g1(t)vh(xN ) − a(x0)g0(t)vh(x0) ∀ vh ∈ Vh, t ∈ I (5.5)

uh(0) = f(0)

We can now rewrite uh as a linear combination of the basis functions with time-dependent
coefficients:

uh(x, t) =
N∑

i=0

bi(t)ϕi(x), t ∈ I (5.6)
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Using this representation of uh and the basis functions as test functions, we get

N∑

i=0

b′i(t)(ϕi, ϕj) = −
N∑

i=0

bi(t)s(ϕi, ϕj) + a(xN )g1(t)ϕj(xN ) − a(x0)g0(t)ϕj(x0),

j = 0, . . . , N, t ∈ I (5.7)

N∑

i=0

bi(0)(ϕi, ϕj) = (f, ϕj)

We can write this system using matrices:

Mh d

dt
b = Shb + aNg1eN − a0g0e0, (5.8)

where

Mh = (ϕi, ϕj)

is the mass matrix,

Sh = −s(ϕi, ϕj)

the stiffness matrix and b the coefficient vector.
If we choose a nodal basis, b is a discrete representation of u and will in accordance with the
notation in the prior sections be denoted v in the following.

Remark:

In the case of Dirichlet boundary conditions

u(0, t) = g0(t), u(1, t) = g1(t),

we get the same variational formulation except for the two boundary points. Thus we solve
the system (5.8) at the grid points xj , j = 1, . . . , N − 1, and impose the boundary conditions
at x0 and xN .

For our further analysis we assume Ω = [0, 1] for simplicity.

5.3 Construction

5.3.1 Basis Functions

In order to obtain a fourth order accurate scheme, cubic polynomials are chosen as basis
functions. We choose the basis functions such that (5.6) is a piece-wise cubic Lagrange in-
terpolant of u(x, t), if vi = u(xi).
From the Lagrange interpolation formula we get the following expression for the basis poly-
nomials ϕj , j = 4, 5, . . . , N − 4

ϕj(x) = ϕ
(x

h
− j
)

where

ϕ(x) =





1
6(x + 1)(x + 2)(x + 3), −2 ≤ x ≤ −1
−1

2(x − 1)(x + 1)(x + 2), −1 ≤ x ≤ 0
1
2(x − 1)(x − 2)(x + 1), 0 ≤ x ≤ 1
−1

6(x − 1)(x − 2)(x − 3), 1 ≤ x ≤ 2
0, elsewhere
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The basis functions ϕj , j = 0, 1, 2, 3, have to be modified in the interval [x0, x1] – and similarly
ϕN−j , j = 0, 1, 2, 3, in the interval [xN−1, xN ] – such that (5.6) corresponds to the one-sided
cubic Lagrange polynomial. This yields the following basis functions ϕj , j = 0, 1, 2, 3,

ϕj(x) =

{
ϕb

j(
x
h), x0 ≤ x ≤ x1

ϕ(x
h − j), x1 ≤ x ≤ xN

where

ϕb
0(x) = −1

6
(x − 1)(x − 2)(x − 3), 0 ≤ x ≤ 1

ϕb
1(x) =

1

2
x(x − 2)(x − 3), 0 ≤ x ≤ 1

ϕb
2(x) = −1

2
x(x − 1)(x − 3), 0 ≤ x ≤ 1

ϕb
3(x) = −1

6
x(x − 1)(x − 2), 0 ≤ x ≤ 1

and analogously for the right boundary.

We want to collect some properties of the basis function that are useful for the further
analysis. They can also be found in [17].

1. {ϕj , j = 0, . . . , N} is a nodal basis.

2. The support of ϕj is [max(xj−2, x0), min(xj+2, xN )], j 6= 3, N − 3 and x0 ≤ x ≤ x5 or
xN−5 ≤ x ≤ xN for j = 3 and j = N − 3, respectively.

3. ϕj(x) is continuous and its derivative is piece-wise continuous in 0 ≤ x ≤ 1, which
means that it is a conforming finite element basis for second order systems.

We now look at the approximation property of the basis set.

4. The error of (5.6) is given by

uh(x) − u(x) =
u(4)(ζ)

24
p(x), xi ≤ x, ζ ≤ xi+1,

where

p(x) =





(x − xi−2)(x − xi−1)(x − xi)(x − xi+1), i 6= 0, i 6= N
(x − x0)(x − x1)(x − x2)(x − x3), i = 0
(x − xN−3)(x − xN−2)(x − xN−1)(x − xN ), i = N

5. Property 4 implies that cubic polynomials are exactly reproduced by the interpolant
(5.6). Thus the approximation power of the basis is O(h4) which is equivalent to

N∑

i=0

ϕi(x) = 1 (5.9)

N∑

i=0

(xi − α)nϕi(x) = (x − α)n, n = 0, 1, 2, 3, any α. (5.10)
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6. By differentiation of (5.9) we get

N∑

i=0

ϕ′
i(x) = 0. (5.11)

7. For 4 ≤ i ≤ N − 4 the following moment conditions are valid

∫ xi+2

xi−2

ϕi(x)dx = h (5.12)

∫ xi+2

xi−2

(x − xi)
nϕi(x)dx = 0, n = 1, 2, 3. (5.13)

8. From property 7 it follows

∫ xi+2

xi−2

u(x)(x − xi)
nϕi(x)dx = O(hn+1), n ≥ 0 (5.14)

since the support of ϕi is O(h) around xi.
For the derivative ϕi we get the estimate with one order less.

5.3.2 Mass Matrix

The elements of the mass matrix are given by

Mh = (ϕi, ϕj)

as we have seen in section 5.2. This means that the matrix has a bandwidth of 7 and system
(5.8) is an ordinary differential equation system for v that is implicit. This requires solving
linear systems, which is computationally quite costly.

Therefore we now apply a technique called mass lumping to replace the matrix by a
diagonal one.
Let w(x, t) = ∂

∂tu(x, t). Then we can write the ith row of the left hand side of system (5.8)
in the following way:

N∑

j=0

Mh
ijwj =

N∑

j=0

∫
ϕi(x)ϕj(x) dx wj (5.15)

Expanding w(xj) into its Taylor series around xi yields:

N∑

j=0

Mh
ijwj =

N∑

j=0

(∫
ϕi(x)ϕj(x)dx

(
3∑

k=0

1

k!
(xj − xi)

kw
(k)
i + O(h4)

))

=

∫
ϕi(x)

3∑

k=0


 1

k!
w

(k)
i

N∑

j=0

ϕj(x)(xj − xi)
k


 dx + O(h5) (5.16)

=

∫
ϕi(x)

(
wi + (x − xi)w

′
i +

1

2
(x − xi)

2w′′
i +

1

6
(x − xi)

3w′′′
i

)
dx

+ O(h5),
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where the identity (5.10) was used for the last equality. Here w(k) denotes the kth derivative
with respect to x.
For the inner points, i.e. 4 ≤ i ≤ N − 4, we get

N∑

j=0

Mh
ijwj = wi

∫
ϕi(x)dx + O(h5) (5.17)

using the moment condition (5.13). Thus we can achieve diagonal lumping for the interior
points by defining

ML
ii wi = wi

∫ xi+2

xi−2

ϕi(x) dx.

This integral can be directly calculated using (5.12):

ML
ii = h. (5.18)

We now look at the boundary part. Here it is more difficult to achieve diagonal lumping
as we are lacking an identity similar to (5.13). Therefore we give up two orders of accuracy
locally in order to achieve a diagonal matrix. We will see later on that this does not reduce
the global accuracy (see section 5.5). We consider only the left boundary, but the right one
can be treated in the same way. For the boundary treatment we have to consider Neumann
and Dirichlet data separately.

Neumann Boundary Conditions

We start off from equation (5.16) and apply w′
i = w′

0 + ihw′′
0 + O(h2) and w′′

i = w′′
0 + O(h)

in the cases i = 1, 2, 3. We find that

N∑

j=0

Mh
ijwj = wi

∫ xi+2

x0

ϕi(x) dx + w′
0

∫ xi+2

x0

ϕi(x)(x − xi) dx

+ w′′
0

∫ xi+2

x0

ϕi(xi)

(
(x − xi)ih +

1

2
(x − xi)

2

)
dx + O(h4) (5.19)

i = 0, 1, 2, 3.

Hence we could obtain a diagonal mass matrix with mass lumping of third order defining

ML
ii wi = wi

∫ xi+2

x0

ϕi(x) dx + w′
0

∫ xi+2

x0

ϕi(x)(x − xi) dx, (5.20)

where we need to know w′
0 = ∂2

∂x∂tu(0, t). In the case of Neumann boundary conditions, ux is
given at x = 0 as a function of t. Hence we can calculate w′

0 from the physical boundary data
by taking its derivative with respect to t. In practical applications where the exact derivative
is not available, it can be approximated second order accurate.

We can rewrite the lumped mass matrix as

MLw = M̃w − m̃0
d

dt
g0(t) − m̃1

d

dt
g1(t) (5.21)

where

M̃ij = δij

∫
ϕi(x) dx (5.22)
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and

m̃
(i)
0 =

{ −
∫ xi+2

x0
ϕi(x)(x − xi) dx, i ∈ {0, 1, 2, 3}

0, else

m̃
(i)
1 =

{ −
∫ xN

xi−2
ϕi(x)(x − xi) dx, i ∈ {N − 3, N − 2, N − 1, N}

0, else.

Dirichlet Boundary Conditions

In the case of Dirichlet boundary conditions the first and last row of the operator are neglected
since the values are given in advance and can be imposed directly. Thus in this section we
only consider i = 1, 2, 3.

Again we start off from equation (5.16). This time we use

w′
i =

wi − w0

xi − x0
+

1

2
(xi − x0)w

′′
i + O(h2) =

wi − w0

ih
+

1

2
ihw′′

0 + O(h2) (5.23)

and w′′
i = w′′

0 + O(h) to obtain

N∑

j=0

Mh
ijwj = wi

1

ih

∫ xi+2

x0

ϕi(x)(x − x0) dx − w0
1

ih

∫ xi+2

x0

ϕi(x)(x − xi) dx

+ w′′
0

1

2

∫ xi+2

x0

ϕi(x)((x − xi)
2 + (x − xi)ih) dx + O(h4). (5.24)

Like in the case of Neumann boundary conditions, we can use the physical boundary data to
gain accuracy by calculating w0 = ∂

∂tu(0, t) = ∂
∂tg0(t). This leads us to the following mass

lumping of third order

ML
ii wi = wi

1

ih

∫ xi+2

x0

ϕi(x)(x − x0) dx − w0
1

ih

∫ xi+2

x0

ϕi(x)(x − xi) dx (5.25)

Treating the right boundary in the same way we can write the lumped mass matrix as

MLw = M̃w − m̃0
d

dt
g0(t) − m̃1

d

dt
g1(t)

where

M̃ij =





1
ih

∫ xi+2

x0
ϕi(x)(x − x0) dx i = 1, 2, 3

δij

∫ xi+2

xi−2
ϕi(x) dx 4 ≤ i ≤ N − 4

1
(i−N)h

∫ xN

xi−2
ϕi(x)(x − xN ) dx i = N − 3, N − 2, N − 1

(5.26)

and

m̃
(i)
0 =

{ − 1
ih

∫ xi+2

x0
ϕi(x)(x − xi) dx, i ∈ {1, 2, 3}

0, else

m̃
(i)
1 =

{ − 1
(i−N)h

∫ xN

xi−2
ϕi(x)(x − xi) dx, i ∈ {N − 3, N − 2, N − 1}

0, else.
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5.3.3 Stiffness Matrix

The elements of the stiffness matrix shall approximate

Sh = −s(ϕi, ϕj) (5.27)

Since a(x, t) is usually only given at some discrete points, this integral cannot be solved
analytically. Thus it has to be approximated in some way. We choose to evaluate the
integrals by numerical integration. Using the cubic basis functions, we can eventually obtain
a fourth order accurate finite difference scheme. When approximating the integral in (5.27),
we have to choose a quadrature formula which is at least fifth order accurate because M−1Sv
should be fourth order accurate and M is O(h). Since a is given at the grid points, it is
appropriate to use a Newton-Cotes quadrature formula because it is based on a regular grid.
Another difficulty is that the derivative of the basis functions is not continuous at the grid
points. Hence we have to approximate the integral for each interval between two grid points
separately.

For these reasons we choose the Simpson rule in each interval of length h, i.e. the integral
over [xi, xi+1] for some j, k is calculated by the formula:

h

6

(
a(xi)ϕ

′
j(x

+
i )ϕ′

k(x
+
i ) + 4a(xi+1/2)ϕ

′
j(xi+1/2)ϕ

′
k(xi+1/2) + a(xi+1)ϕ

′
j(x

−
i+1)ϕ

′
k(x

−
i+1)

)
,

(5.28)

where ϕ′
l(x

+
m) = limx→xm,x>xm ϕ′

l(x) and ϕ′
l(x

−
m) = limx→xm,x<xm ϕ′

l(x).
This means that the value of a is needed on a finer grid with step size h

2 .
Let S denote the stiffness matrix obtained by numerical integration in the following.

Hence we replace the inner product s by a discretized one, which means that we are using
nonconforming finite elements. Therefore we have to investigate the influences of numerical
integration on accuracy and stability. We will do this with the help of finite difference theory.
In the interior we do not loose accuracy due to the numerical integration (see section 5.4).
At the boundary however we have to do some corrections in the mass matrix in order not to
loose accuracy (see section 5.3.4).

Remark 5.1. One could also choose a different ansatz in order to approximate the elements
of the stiffness matrix by approximating the function a(x, t) in a Lagrange polynomial using
the basis functions. The resulting integrals could then be calculated analytically. This has the
advantage that we would not have to care about influences of numerical integration. However
we did not choose this ansatz because stability problems may arise in this case. Since the
basis functions are less than 0 in some intervals, it might happen that the approximation for
a is smaller than 0, which means that s(·, ·) is no longer positive semidefinite.

5.3.4 Influences of Numerical Integration

When using numerical integration, some problems arise at the boundary. The objective of
this section is to correct the lumped mass matrix such that the local error of the difference
scheme at the boundary, that we obtain by evaluating the integral exactly, is kept.

We consider the left boundary. The right boundary can be treated in the same way.
Let thus i ∈ {0, 1, 2, 3}. We first show that the local error at the boundary is of the order h2

in the case of exact evaluation of the integral in the stiffness matrix. Let u(x, t) and a(x, t)
be sufficiently smooth functions in x for this analysis.
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We start with some transformation of the stiffness matrix:

N∑

j=0

Sh
ijvj = −

i+3∑

j=0

∫ xi+2

x0

a(x)ϕ′
i(x)ϕ′

j(x) vj dx

= −
i+3∑

j=0

j 6=i

∫ xi+2

x0

a(x)ϕ′
i(x)ϕ′

j(x)vj dx + vi

∫ xi+2

x0

a(x)ϕ′
i(x)

N∑

k=0
k 6=i

ϕ′
k(x) dx

= −
3∑

k=1

(vi+k − vi)

∫
a(x)ϕ′

i(x)ϕ′
i+k(x) dx

−
i∑

k=1

(vi−k − vi)

∫
a(x)ϕ′

i(x)ϕ′
i−k(x) dx

The second equality follows from (5.11). Expanding the exact solution u(x) in its Taylor
series, we obtain

N∑

j=0

Sh
ijuj = −

∫ xi+2

x0

a(x)ϕ′
i(x)h

(
i+3∑

k=0

(k − i)ϕ′
k(x)

)
u′

idx

−
∫ xi+2

x0

a(x)ϕ′
i(x)

1

2
h2

(
i+3∑

k=0

(k − i)2ϕ′
k(x)

)
u′′

i dx

−
∫ xi+2

x0

a(x)ϕ′
i(x)

1

6
h3

(
i+3∑

k=0

(k − i)3ϕ′
k(x)

)
u′′′

i dx

−
∫ xi+2

x0

a(x)ϕ′
i(x)

1

24
h4

(
i+3∑

k=0

(k − i)4ϕ′
k(x)

)
u

(4)
i dx + O(h5)

For x0 ≤ x ≤ x2 we can derive the following identities by differentiation of (5.10):

i+3∑

k=0

h(k − i)ϕ′
k(x) =

N∑

k=0

h(k − i)ϕ′
k(x) =

d

dx
(x − xi) = 1

1

2

i+3∑

k=0

h2(k − i)2ϕ′
k(x) =

1

2

N∑

k=0

h2(k − i)2ϕ′
k(x) =

1

2

d

dx
(x − xi)

2 = (x − xi)

1

6

i+3∑

k=0

h3(k − i)3ϕ′
k(x) =

1

6

N∑

k=0

h3(k − i)3ϕ′
k(x) =

1

6

d

dx
(x − xi)

3 =
1

2
(x − xi)

2

Using these identities yields

N∑

j=0

Sh
ijuj = −

∫ xi+2

x0

a(x)ϕ′
i(x)

(
u′

i + (x − xi)u
′′
i +

1

2
(x − xi)

2u′′′
i

+
1

6
(x − xi)

3u
(4)
i

)
u′

idx + RS
i u

(4)
i (x) + O(h5),

where

RS
i = −

∫ xi+2

x0

a(x)ϕ′
i(x)

[
1

24
h4

(
i+3∑

k=0

(k − i)4ϕ′
k(x)

)
− 1

6
(x − xi)

3

]
dx. (5.29)
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We now use

u′(x) = u′
i + (x − xi)u

′′
i +

1

2
(x − xi)

2u′′′
i +

1

6
(x − xi)

3u
(4)
i + O(h4) (5.30)

which leads us to

N∑

j=0

Sh
ijuj = −

∫ xi+2

x0

a(x)ϕ′
i(x)u′(x) dx + RS

i u
(4)
i (x) + O(h5). (5.31)

Using integration by parts, the first term in (5.31) becomes

−
∫ x2

x0

ϕ′
0(x)a(x)u′(x) dx = a0u

′
0 +

∫ x2

x0

ϕ0(x)(a(x)u′(x))′ dx

−
∫ xi+2

x0

ϕ′
i(x)a(x)u′(x) dx =

∫ xi+2

x0

ϕi(x)(a(x)u′(x))′ dx

Now we turn to the mass matrix. Here we have to consider Neumann and Dirichlet
boundary conditions separately.
First assume Neumann data.
We start off from equation (5.19) combined with the definition of ML in (5.20) and Mh in
(5.15), which yields

ML
ii wi =

N∑

j=0

∫ xi+2

x0

ϕi(x)ϕj(x)dx wj + RM
i w′′

0 + O(h4)

=

∫ xi+2

x0

ϕi(x)
N∑

j=0

ϕj(x)wj dx + RM
i w′′

0 + O(h4), (5.32)

where

RM
i = −

∫ xi+2

x0

ϕi(xi)
(
(x − xi) +

1

2
(x − xi)

2
)

dx (5.33)

Using the interpolation property w(x) =
∑N

j=0 ϕj(x)wj + O(h4), we get

ML
ii wi =

∫ xi+2

x0

ϕi(x)w(x) dx + RM
i w′′

0 + O(h4).

We use the differential equation w = ut = (aux)x which yields

ML
ii wi =

∫ xi+2

x0

ϕi(x)(a(x)ux(x))x dx + RM
i w′′

0 + O(h4) (5.34)

Finally we can conclude that

1

h
(Mu − Shu)i = O(h2), (5.35)

i.e. that the local truncation error at the boundary is found to be of order h2 in each row
in the case of exactly evaluated stiffness matrix elements. The scaling with 1

h is necessary
because we consider second derivatives.
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Now we consider the additional error because of the numerical integration. In order to
identify it, we expand

∑N
j=0 Sh

ijuj in its Taylor series around xi:

N∑

j=0

Sh
0ju(xj) = a(x0)ux(x0) +

1

3
h(aux)x|x0 +

2

45
h2(aux)xx|x0 −

1

45
h3(aux)xxx|x0

+ h3 1

30
a(x0)u

(4)(x0) + O(h4)

N∑

j=0

Sh
1ju(xj) =

31

24
h(aux)x|x1 −

7

36
h2(aux)xx|x1 +

7

80
h3(aux)xxx|x1

− h3 139

1440
a(x1)u

(4)(x1) + O(h4)

N∑

j=0

Sh
2ju(xj) =

5

6
h(aux)x|x2 +

23

90
h2(aux)xx|x2 −

1

5
h3(aux)xxx|x1 (5.36)

+ h3 7

90
a(x2)u

(4)(x2) + O(h4)

N∑

j=0

Sh
3ju(xj) =

25

24
h(aux)x|x3 −

19

180
h2(aux)xx|x3 +

79

720
h3(aux)xxx|x3

− h3 7

480
a(x3)u

(4)(x3) + O(h4)

and compare the results with the Taylor series for the stiffness matrix Svi based on numerical
integration

N∑

j=0

S0ju(xj) = a(x0)ux(x0) +
1

3
h(aux)x|x0 +

7

144
h2(aux)xx|x0 −

1

48
h3(aux)xxx|x0

+ h3 11

288
a(x0)u

(4)(x0) + O(h4)

N∑

j=0

S1ju(xj) =
31

24
h(aux)x|x1 −

59

288
h2(aux)xx|x1 +

55

576
h3(aux)xxx|x1

− h3 31

288
a(x1)u

(4)(x1) + O(h4)

N∑

j=0

S2ju(xj) =
5

6
h(aux)x|x2 +

19

72
h2(aux)xx|x2 −

31

144
h3(aux)xxx|x1 (5.37)

+ h3 25

288
a(x2)u

(4)(x2) + O(h4)

N∑

j=0

S3ju(xj) =
25

24
h(aux)x|x3 −

31

288
h2(aux)xx|x3 +

9

64
h3(aux)xxx|x3

− h3 5

288
a(x3)u

(4)(x3) + O(h4)

The comparison shows that already the coefficients in front of h2 differ, which means that
the local error (after scaling) will be reduced by one order. Let Ci be the error coefficients of
h2, i.e.

C0 =
1

240
, C1 = − 1

96
, C2 =

1

120
, C3 = − 1

480
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It holds

Ci(aux)xx(xi) = Ci(ut)x(xi) = Ciutx(x0) + O(h). (5.38)

Thus we can avoid loosing local accuracy at the boundary if we add Ci to the correction

vector m̃
(i)
0 .

In the following, let us denote the corrected mass matrix with M and its correction vectors
with m0 and m1, respectively.

Now we turn to Dirichlet data. The mass matrix is given by (5.25) and its leading error
term can be obtained by comparing equation (5.25) with (5.24). If we calculate the occurring
integrals, we get the following expression for the lumped mass matrix in each irregular row:

N∑

j=0

ML
1jut(xj) = h

79

72
ut(x1) + h

7

36
ut(x0)

= h
31

24
ut(x1) − h2 7

36
utx(x1) + h3 7

72
utxx(x0) + O(h4)

N∑

j=0

ML
2jut(xj) = h

173

180
ut(x2) − h

23

180
ut(x0)

= h
5

6
ut(x2) + h2 23

90
utx(x2) − h3 23

90
utxx(x0) + O(h4) (5.39)

N∑

j=0

ML
3jut(xj) = h

1087

1080
ut(x3) + h

19

540
ut(x0)

= h
25

24
ut(x3) − h2 19

180
utx(x3) + h3 19

120
utxx(x0) + O(h4)

The stiffness matrix is the same as in the Neumann case except that the 0th row is missing.
Comparing the expression for the mass matrix (5.39) with the one for the stiffness matrix
with exact integration (5.36) derived above, we see that the local truncation error is of order
h2 like in the case with Neumann data, whereas with the numerically integrated stiffness
matrix (5.37) we again have a local error of order h.
We can correct the mass matrix such that the local truncation error is not reduced by one
order.
Like in the Neumann case we want to correct with a multiple of (aux)x = (ut)x. Let Ci

denote the coefficient in front of (aux)x in the expansion of S, i.e.

C1 = − 59

288
, C2 =

19

72
, C3 = − 31

288
.

However, in the present case this is not that easy since we have given u instead of ux as a
function of t. Therefore we approximate the x-derivative by the one-sided difference operator,
i.e. (ut)x(xi) = (ut(xi) − ut(x0))/(ih) + O(h), like we did it in the derivation of the mass
matrix (cf. (5.23)). Hence we replace the exact value of the integral

∫ xi+2

x0
ϕi(x)(x − xi) dx

by Ci/(ih) in both the mass matrix and its correction term. This leads to a slightly different
mass matrix, which we denote by M with the correction terms m0 and m1 in the following.

5.3.5 Finite Difference Method

We want to round off the section about the construction by stating the operator that has
been derived above.
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The operator has been developed using the theory of finite elements. However, using
mass lumping, we obtained a diagonal mass matrix M , which can be inverted by taking the
reciprocal of the diagonal elements. Thus we obtain the operator

L(·) = M−1S(·) + M−1

(
m0

d

dt
g0(t) + m1

d

dt
g1(t)

)
(5.40)

which can be interpreted as a finite difference method.

Note: For simplicity we have chosen the same notation for mass and stiffness matrix for
both different cases of boundary data even though the matrices are slightly different at the
boundary.

For Neumann data we have the following system

d

dt
v(t) = Lv(t) + M−1

NNa(1)g1(t) − M−1
00 a(0)g0(t) (5.41)

v(t) = fh(t), fh(j)(t) = f(xj , t), j = 0, 1, . . . , N.

and for Dirichlet data

d

dt
v(t) = Lv(t) (5.42)

v0(t) = g0(t), vN (t) = g1(t),

v(t) = fh(t), fh(j)(t) = f(xj , t), j = 0, 1, . . . , N.

We present the operator in more detail in appendix A.
The following convergence analysis is based on typical techniques for finite difference methods.

5.4 Local Order of Accuracy

We now look at the order of accuracy that can be obtained using the finite element system
with the lumped mass matrix (5.41) and (5.42), respectively.
Let u(x, t) and a(x, t) be sufficiently smooth functions in x.
We use here the conventional error analysis for finite difference methods and therefore first
look at the local order of accuracy at each grid point in order to obtain the global error.
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5.4.1 Local Error at the Inner Points

We can show fourth order accuracy in the interior using Taylor expansion.
Let 4 ≤ j ≤ N − 4. We look at the difference operator L:

j+3�
k=j−3

Ljkvk =
1

6h2 �� 1

18
aj−2 −

1

144
aj−3/2 +

1

18
aj−1

�
vj−3+�

1

12
aj−2 +

3

16
aj−3/2 −

2

3
aj−1 +

3

16
aj−1/2 +

1

12
aj
�
vj−2+�

−
1

6
aj−2 −

3

16
aj−3/2 −

1

3
aj−1 −

81

16
aj−1/2 −

1

3
aj −

3

16
aj+1/2 −

1

6
aj+1

�
vj−1+�

1

36
aj−2 +

1

144
aj−3/2 +

10

9
aj−1 +

81

16
aj−1/2 +

1

2
aj +

81

16
aj+1/2 +

10

9
aj+1

+
1

144
aj+3/2 +

1

36
aj+2

�
vj+�

−
1

6
aj−1 −

3

16
aj−1/2 −

1

3
aj −

81

16
aj+1/2 −

1

3
aj+1 −

3

16
aj+3/2 −

1

6
aj+2

�
vj+1+�

1

12
aj +

3

16
aj+1/2 −

2

3
aj+1 +

3

16
aj+3/2 +

1

12
aj+2

�
vj+2+�

1

18
aj+1 −

1

144
aj+3/2 +

1

18
aj+2

�
vj+3�

If we now insert the sufficiently smooth functions u and a and expand u in its Taylor series
around xj we get:

j+3�
k=j−3

Ljku(xk) = −
1

6h2 	
h
�
−

1

6
aj−2 −

1

6
aj−3/2 +

4

3
aj−1 +

9

2
aj−1/2 −

9

2
aj+1/2 −

4

3
aj+1 +

1

6
aj+3/2 +

1

6
aj+2

�
ux(xj)+

h2

2

�
2

3
aj−2 +

1

2
aj−3/2 −

8

3
aj−1 −

9

2
aj−1/2 −

9

2
aj+1/2 −

8

3
aj+1 +

1

2
aj+3/2 +

2

3
aj+2

�
uxx(xj)+

h3

6

�
− 2aj−2 −

9

8
aj−3/2 + 4aj−1 +

27

8
aj−1/2 −

27

8
aj+1/2 − 4aj+1 +

9

8
aj+3/2 + 2aj+2

�
uxxx(xj)+

h4

24

�
17

3
aj−2 +

9

4
aj−3/2 −

20

3
aj−1 −

9

4
aj+1/2 + 2aj −

9

4
aj+1/2 −

20

3
aj+1 +

9

4
aj+3/2 +

17

3
aj+2

�
u

(4)(xj)+

h5

120

�
− 16aj−2 −

33

8
aj−3/2 + 8aj−1 −

9

8
aj−1/2 +

9

8
aj+1/2 − 8aj+1 +

33

8
aj+3/2 + 16aj+2

�
u

(5)(xj)

+ O(h4)

We insert the Taylor series of a(x) around xj and obtain

j+3�
k=j−3

Ljku(xk) = �ax(xj) + O(h4)� ux(xj) + �a(xj) + O(h4)� uxx(xj)

+ �123

864
h

4
axxx(xj) + O(h5)� uxxx(xj) + � 41

288
h

4
axx(xj) + O(h5)� u

(4)(xj)

+ � 41

480
h

4
ax(xj) + O(h5)� u

(5)(xj) + O(h4)

= (a(x)ux(x))x xj
+ O(h4)

Thus the operator (5.40) is 4th order accurate in the interior. Let Tj = O(h4) denote the
local truncation error at a regular point xj .

5.4.2 Local Error at the Boundary

In section 5.3.4 we have already considered the local order of accuracy at the boundary. In
this section, however, we want to define the local truncation error a bit more detailed since
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we need it for the analysis of the global error in the next section.
For this purpose we expand Lu. The expansion of Su is given in section 5.3.4 by equation

(5.37). We multiply the jth row by M−1
jj and add m

(j)
0 d/dtg0 + m

(j)
1 d/dtg1 to get an expan-

sion for Lu.

In the Neumann case this yields

N∑

j=0

L0ju(xj) = 3
1

h
a(x0)ux(x0) + (aux)x|x0 +

7

48
h(aux)xx|x0 −

1

16
h(aux)xxx|x0

+ h2 11

96
a(x0)u

(4)(x0) + O(h3) − 7

48
h(aux)xx|x0

= 3
1

h
a(x0)ux(x0) + (aux)x|x0 −

1

16
h(aux)xxx|x0 + h2 11

96
a(x0)u

(4)(x0)

+ O(h3)

N∑

j=0

L1ju(xj) = (aux)x|x1 −
59

372
h(aux)xx|x1 +

55

744
h2(aux)xxx|x1

− h2 1

12
a(x1)u

(4)(x1) + O(h3) +
59

372
h(aux)xx|x0

= (aux)x|x1 −
21

248
h2(aux)xxx|x0 − h2 1

12
a(x0)u

(4)(x0) + O(h3)

N∑

j=0

L2ju(xj) = (aux)x|x2 +
19

60
h(aux)xx|x2 −

31

120
h2(aux)xxx|x2 (5.43)

+ h2 5

48
a(x2)u

(4)(x2) + O(h3) − 19

60
h(aux)xx|x0

= (aux)x|x2 +
3

8
h2(aux)xxx|x0 + h2 5

48
a(x0)u

(4)(x0) + O(h3)

N∑

j=0

L3ju(xj) = (aux)x|x3 −
31

300
h(aux)xx|x3 +

27

200
h2(aux)xxx|x3

− h2 1

60
a(x3)u

(4)(x3) + O(h3) +
31

300
h(aux)xx|x0

= (aux)x|x3 −
7

40
h2(aux)xxx|x0 − h2 1

60
a(x0)u

(4)(x0) + O(h3)

Finally we get the local truncation error Tj at each irregular grid point (left boundary) by

ut − (Lu)j − M−1
NNa(1)g1(t) + M−1

00 a(0)g0(t) = Tj , (5.44)

where

T0 =
1

16
h2(aux)xxx|x0 − h2 11

96
a(x0)u

(4)(x0) + O(h3)

T1 =
21

248
h2(aux)xxx|x0 + h2 1

12
a(x0)u

(4)(x0) + O(h3)

T2 = −3

8
h2(aux)xxx|x0 − h2 5

48
a(x0)u

(4)(x0) + O(h3)

T3 =
7

40
h2(aux)xxx|x0 + h2 1

60
a(x0)u

(4)(x0) −O(h3)

The truncation error for the right boundary can be calculated analogously.
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Remark 5.2. In the first row ux is approximated additionally. Therefore it might be rea-
sonable not to scale the error in this row. Nevertheless we prefer to do so, since we treat
the operator as a finite difference scheme of the form (5.41) and use the scaling given in this
form. However we state that the error in the first derivative at x = 0 and x = 1 would be one
order less than the error of the scheme as we treated it above.

Now we consider Dirichlet data, where we get the following expansion

N∑

j=0

L1ju(xj) =
372

313
(aux)x|x1 −

59

313
h(aux)xx|x1 +

55

626
h2(aux)xxx|x1

− h2 31

313
a(x1)u

(4)(x1) + O(h3) − 59

313
h(aux)x|x0

= (aux)x|x1 −
2

313
h2(aux)xxx|x0 − h2 31

313
a(x0)u

(4)(x0) + O(h3)

N∑

j=0

L2ju(xj) =
120

139
(aux)x|x2 +

38

139
h(aux)xx|x2 −

31

139
h2(aux)xxx|x2 (5.45)

+ h2 25

278
a(x2)u

(4)(x2) + O(h3) +
19

139
h(aux)x|x0

= (aux)x|x2 +
7

139
h2(aux)xxx|x0 + h2 25

278
a(x0)u

(4)(x0) + O(h3)

N∑

j=0

L3ju(xj) =
900

869
(aux)x|x3 −

93

869
h(aux)xx|x3 +

243

1738
h2(aux)xxx|x3

− h2 15

869
a(x3)u

(4)(x3) + O(h3) − 31

869
h(aux)x|x0

= (aux)x|x3 −
18

869
h2(aux)xxx|x0 − h2 15

869
a(x0)u

(4)(x0) + O(h3)

Finally we get the local truncation error Tj at each irregular grid point (left boundary) by

ut − (Lu)j = Tj , (5.46)

where

T0 = 0

T1 =
2

313
h2(aux)xxx|x0 + h2 31

313
a(x0)u

(4)(x0) + O(h3)

T2 = − 7

139
h2(aux)xxx|x0 − h2 25

278
a(x0)u

(4)(x0) + O(h3)

T3 =
18

869
h2(aux)xxx|x0 + h2 15

869
a(x0)u

(4)(x0) + O(h3)

The truncation error for the right boundary can be calculated analogously.

5.5 Global Error

In section 5.4 we have derived the local error T at each grid point. Now we are interested in
an estimate of the global error wi = u(xi)− vi. In order to obtain an estimate for the global
error, we insert the exact solution u into the discrete scheme and subtract Lv, i.e. Lu − Lv.
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This yields the error equation

wt = Lw + T (5.47)

w(0) = 0,

Neumann: wx(0) = 0, wx(1) = 0.

Dirichlet: w(0) = 0, w(1) = 0.

For Dirichlet data we impose the boundary conditions, which is why the boundary conditions
for the solution and its approximation are the same and the error vanishes at the boundary.
In case of Neumann data, however, the derivative of the error at the boundary is not exactly
zero, but of order h3 (cf. remark 5.2). This is due to the fact that we approximate the first
derivative in the boundary lines of the operator and subtract the given data for the derivative.
Therefore we prescribe homogeneous boundary conditions for the global error, while the error
in its derivative is part of the truncation error that we have found at the boundary. In the
following, we will denote the boundary conditions by

B0w(0) = 0, B1w(1) = 0,

where B0,1 may stand for Dirichlet or Neumann data.
For the semi-discrete approximation (5.47) we have an energy estimate as it will be shown in
section 5.6, which leads us to the following error estimate

‖w‖M ≤ O(h2) (5.48)

However this error estimate is not optimal. For finite difference schemes it is often the case
that the global error is of higher order than the local truncation error in the neighborhood
of boundaries. As shown by Gustafsson [6], the local error at the boundary can be one order
less than the global error, if there exists an energy estimate (cf. section 5.6). However, even
this estimate is not sharp in our case.
In order to obtain an optimal error estimate, we split the error into interior and boundary
part, i.e. w = wi + wb, where

wi
t = Lwi + T i (5.49)

wi(0) = 0,

B0w
i(0) = 0, B1w

i(1) = 0,

with T i = [0, 0, 0, 0, T4, ..., TN−4, 0, 0, 0, 0] for Neumann and T i = [0, 0, 0, T4, ..., TN−4, 0, 0, 0]
for Dirichlet data, respectively, and

wb
t = Lwb + T b,

wb(0) = 0,

B0w
b(0) = 0, B1w

b(1) = 0,

with T b = [T0, T1, T2, T3, 0, ..., 0, TN−3, TN−2, TN−1, TN ] for Neumann boundary data and
T b = [T1, T2, T3, 0, ..., 0, TN−3, TN−2, TN−1] for Dirichlet data, respectively.
For (5.49) we get an error estimate analogously to (5.48):

‖w‖M ≤ O(h4) (5.50)

To investigate wb, we first simplify the semi-discrete problem by Laplace transforming in
time, i.e. we consider the problem

L̂ŵb = T,

B0ŵ
b(0) = 0, B1ŵ

b(1) = 0,
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where

L̂ = −L + s (5.51)

where s ∈ C, Re s ≥ const > 0. We assume a to be independent of time.
In order to get an estimate for ŵb, we investigate the operator L̂ and prove some properties.
For this purpose we introduce the continuous analogon of (5.51) by

L̂c =

(
− d

dx
a

d

dx
+ s

)

We want to characterize the solution to the equation

L̂cu(x) = f(x) (5.52)

B0u(0) = 0, B1u(1) = 0,

with some integrable function f . This can be done with the help of the Green’s function
defined by

L̂cG(x, ξ) = δ(x − ξ) (5.53)

B0G(0, ξ) = 0, B1G(1, ξ) = 0

where δ stands for the Dirac distribution. The solution to (5.52) would then be given by

u(x) =

∫ 1

0
G(x, ξ)f(ξ)dξ

The Green’s function can be expanded in terms of the eigenfunctions of the operator Lc =
d
dx

(
a d

dx

)
(cf. [15], for Green’s function of self-adjoint operators see [5]). Let µn be an

eigenfunction of the real valued, self-adjoint operator Lc to the eigenvalue λn, i.e.

Lcµn(x) = λnµn(x)

B0µn(0) = 0, B1µn(1) = 0.

In [15] it is shown that all µn as well as all λn are real and that the Green’s function defined
by (5.53) is given by the bilinear series

G(x, ξ) =
∑

n

µn(x)µn(ξ)

s − λn
.

Furthermore all eigenvalues of Lc are nonpositive, if a(x) ≥ amin > 0, since

(Lcu, u) =

∫ 1

0
a(x)u∆u dx ≤ −amin

∫ 1

0
∇u∇u dx = −amin‖∇u‖2 ≤ 0.

Since λn is a nonpositive real number for all n and Re s > 0, the bilinear series has no
singularity.
From this representation it can be seen that the Green’s function is symmetric in its arguments
x and ξ. Furthermore G is continuous even for x = ξ and its derivative is continuous except
for x = ξ where it has a jump of magnitude − 1

a(x) . If we assume a(x) ≥ amin > 0 the jump

of the derivative is bounded by 1
amin

(cf. [15]).
Let y ∈ [0, 1] be fixed and η = 0 + O(h), where h is the step size of the discrete problem.
Then it holds

d

dx
G(η, y) =

d

dx
G(0, y) + O(1)
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because the jump of the derivative is bounded by 1
amin

, which is independent of h. If y > η,
∂
∂xG(·, y) is continuous in the interval [0, η] and thus we even get an estimate of the oder h.
Using this argument and that G is symmetric, we get

G(y, η) = G(η, y) = G(0, y) + h
d

dx
G(0, y) + O(h) (5.54)

For homogeneous Neumann boundary conditions we have

G(xj , ξ) = G(xj , x0) + O(h), j = 0, . . . , N,

and for homogeneous Dirichlet data

G(xj , ξ) = G(xj , x0) + O(h) = G(x0, xj) + O(h) = O(h), j = 0, . . . , N.

Now we consider the discrete problem. Like in the continuous case, we define the discrete
Green’s function Gh by

L̂Gh
jl = δh

jl,

where

δh
jl =

{
1
h , if j = l
0, else.

We want to investigate the relation between the discrete and the continuous Green’s function.
Let l ∈ {0, 1, 2, 3}. Consider the following continuous problem

L̂Γl(x) =
1

h
χ[xl,xl+h[(x), (5.55)

where

χ[a,b](x) =

{
1, x ∈ [a, b]
0, elsewhere.

Since for all j ∈ {0, 1, 2, ..., N − 1, N} it holds that

δh
jl =

1

h
χ[xl,xl+1[(xj),

we can use (5.48) to obtain

Γl(xj) − Gh
jl = O(h2) for all j ∈ {0, 1, 2, ..., N − 1, N}. (5.56)

The solution to (5.55) can be given using the Green’s function

Γl(x) =
1

h

∫ xl+1

xl

G(x, ξ)dξ (5.57)

Since xl = x0 + O(h), we can apply the estimate (5.54), which yields

Γl(x) = G(0, x) + h
d

dx
G(0, x) + O(h) (5.58)

Combining (5.56) and (5.58) yields the following estimate for the discrete Green’s function

Gjl = G(0, xj) + h
d

dx
G(0, xj) + O(h)
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or for the special case of homogeneous Neumann conditions

Gjl = G(0, xj) + O(h)

and for homogeneous Dirichlet conditions

Gjl = O(h)

For l ∈ {N − 3, N − 2, N − 1, N} we can obtain an analoguous estimate by defining Γl by

L̂Γl(x) =
1

h
χ]xl−h,xl](x).

Now we can use the discrete Green’s function to describe the solution to (5.47). We first look
at the Neumann case

ŵb(xj) =
N∑

l=0

hGjlTl =
3∑

l=0

hGjlTl +
N∑

l=N−3

hGjlTl

=

3∑

l=0

h (G(0, xj) + O(h)) Tl +

N∑

l=N−3

h (G(1, xj) + O(h)) Tl = O(h4)

In the Dirichlet case it is

ŵb(xj) =
N∑

l=0

hGjlTl =
3∑

l=0

hGjlTl +
N∑

l=N−3

hGjlTl = O(h)

(
3∑

l=0

hTl +
N∑

l=N−3

hTl

)

= O(h4).

Hence we can estimate the boundary error wb in the discrete M -norm using Parseval’s relation
by

‖wb‖M ≤ O(h4). (5.59)

Combining this with the estimate (5.50), it follows applying the triangle inequality that

‖w‖M ≤ O(h4). (5.60)

The same estimate also holds in the discrete l2-norm.

5.6 Stability

In order to prove stability of the discretization, we use the energy method derived in [7]. We
consider homogeneous boundary conditions here, which is sufficient in the case of boundary
condition which are differentiable with a bounded first derivative (cf. [7]). We prefer this
method since our method requires differentiable boundary data anyway and this poof has the
advantage that we do not require any regularity on the function a.

We define an inner product using the lumped mass matrix M in the following way:

(u, v)M = uT Mv

Let ||u||M =
√

(u, u)M be the corresponding norm. Using this energy norm, we have:

d

dt

∥∥v
∥∥2

M
= vT (S + ST )v
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We treat both boundary conditions together because the 0th and Nth row is put to zero in
the case of homogeneous Dirichlet data anyway.
Since S is symmetric, stability is equivalent to −S = R positive semidefinite. The element
(i, j) of R approximates the following integral:

∫ 1

0
a(x, t)ϕ′

iϕ
′
j dx

For sufficiently smooth a, stability follows immediately. However, we will give a proof in
which we do not have to claim any smoothness of a.

The above integral is approximated using the Simpson rule between two grid points, i.e.

� 1

0

a(x, t)ϕ′

iϕ
′

j dx =
h

6

2�
k=−1

�a(xi−k)ϕ′

i(x
+
i−k)ϕ′

j(x
+
i−k) + 4a(xi−k+1/2)ϕ

′

i(xi−k+1/2)ϕ
′

j(xi−k+1/2)

+ a(xj−k+1)ϕ
′

i(x
−

i−k+1)ϕ
′

j(x
−

i−k+1)� + O(h5) = (φ(i))T Λφ
(j) + O(h5),

where

φ
(i)
3k+l =





(ϕ(i))′(x+
k ), l = 0, k = 0, 1, . . . , N − 1

(ϕ(i))′(xk+1/2), l = 1, k = 0, 1, . . . , N − 1

(ϕ(i))′(x−
k+1), l = 2, k = 0, 1, . . . , N − 1.

and

Λ =
h

6
diag(a(x0), 4a(x1/2), a(x−

1 ), a(x+
1 ), 4a(x1+1/2), a(x−

2 ), . . . , a(xN )).

Using this vector notation, we have

Rij = (φ(i))T Λφ(j).

For v ∈ R
N+1 this leads to

vT Rv =
∑

i

∑

j

vivj((φ
(i))T Λφ(j)) =

∑

i

∑

j

((viφ
(i))T Λ(vjφ

(j))) = ΦT PΦ, (5.61)

where

Φi+k = viφ
(i)
k , k = 0, 1, 2, . . . , 3N − 1, i = 0, 1, 2, . . . , N

and P ∈ R
(N+1)(3N)×(N+1)(3N) with

Pi+k,j+l = Λk,l, k, l = 0, 1, 2, . . . , 3N − 1, i, j = 0, 1, 2, . . . , N.

Since the matrix P is symmetric, it is positive semi-definite if and only if all eigenvalues are
non-negative.
First we state that rank(P ) = rank(Λ). Thus P has at most 3N eigenvalues that are different
from 0.
Next we prove the following

Lemma 5.3. Let λi be the ith diagonal element of Λ (i ∈ {0, . . . , 3N − 1}). Then (3N)λi is
an eigenvalue of P with corresponding eigenvector v(i),

v
(i)
k =

{
1, k = i + (3N)l, l = 0, 1, . . . , N
0, else
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Proof.

(Pv(i))k =
N∑

l=0

Pk,lv
(i)
l =

N∑

m=0

Pk,i+m(3N)

=

{
(3N)λi, k = i + (3N)l, l = 0, 1, . . . , N
0, else

= ((3N)λiv
(i))k.

For a(x, t) > 0 all λi = a(xi/2) > 0. Thus all eigenvalues of P are either positive or 0.

From that we can finally conclude that R is positive semi-definite and thus the operator
is strictly stable, since we have shown that the energy is diminishing.

5.7 Damping of π-Modes

In this section we want to investigate how the highest-frequency waves, the π-modes, are
damped by the operator derived with finite elements. The theory was derived in section 3.4.
The Fourier transform L̂ of the inner stencil of the operator L for constant a is given by

L̂(ξ) = a
1

h2

(
− 5

144
cos(3ξ) +

1

24
cos(2ξ) +

103

48
cos(ξ) − 155

72

)
, (5.62)

where ξ = 2πωh. Figure 3 shows how the different wave numbers are damped by the operator
L compared to the the continuous operator (a ≡ 1). The agreement gets worse with increasing
wave number. But there is a damping even for the high wave numbers.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

ξ = 2π ω h

−
h2  L

(ξ
)

Figure 3: Damping of modes with wave number ξ of the exact solution (-) and the FEM
operator with mass lumping (- -).
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5.8 Computational Results

In this section we present some numerical experiments which have been performed using the
operator L and the classical fourth order Runge-Kutta method for time integration.

Since the time integrator is an explicit method, we are faced with a stability limit for the
time integration. The limit on the time step can be detected by Fourier transforming the
space variable of our difference equation:

d

dt
v̂ω(t) = L̂(ω)v̂ω(t)

Equation (5.62) gives the Fourier transformed operator for constant a at the interior points.
If a is variable, the coefficients will depend on a. These coefficients can be expanded into
their Taylor series. If we neglect all terms in O(h), we only have to take into account the
term with a and none of its derivatives.
However for Lipschitz continuous a it is sufficient to consider the problem with amax =
maxx∈[0,1] a(x) instead of a variable a because for each row we can estimate the a-depending
coefficients by a(xj) + O(h) in the jth row. Thus we consider the operator L for a ≡ amax.
From (5.62) we get an estimate for L̂ based on the stencil for the interior points

0 ≥ L̂ ≥ −38

9

As described in section 3.5, this leads to the following limit on the time step

∆t ≤ 0.66

amax

However computations close to this limit show that this estimate is not rigid enough.
Plotting the error over the grid points in space shows that the instability comes from the
boundaries. Therefore it is necessary to consider also the Fourier transform of the irregular
stencil in the neighborhood of the boundaries.
Since the irregular stencils are not symmetric around the diagonal, L̂(ξ) is a function with
complex codomain and negative real part. Table 13 gives the value of |L̂| in each irregular
row for Neumann and Dirichlet data: The stability domain of the Runge-Kutta method has

row Neumann Dirichlet

0 1.02 -
1 8.43 7.10
2 4.95 7.97
3 4.77 4.61

Table 13: Maximum for L̂ (irregular lines)

a little complicated shape. However, except for the first row where the radius is very small
anyway, the imaginary part of L̂ is smaller than 1. Close to the negative real axis the stability
domain comprises the semi-circle around 0 with radius 2.8. Therefore we require |L̂| ≤ 2.8.
From these data we can finally get a feasible limit on the time step

Neumann: ∆t ≤ 0.33

amax
and Dirichlet: ∆t ≤ 0.36

amax
.

In our experiments we multiplied the limit by 0.9 in order to keep it a bit away from the
stability limit in order to avoid difficulties.
The global error ‖u − v‖h is calculated in the discrete h-norm, where we use as reference u
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either the exact solution, if it can easily be calculated analytically, or the numerical solution
calculated with N = 960. Out of these results we calculate the convergence rate using the
formula

qD,N = log

(‖u − v‖h1

‖u − v‖h2

)/
log (2) , h1 = 2h2

Remark:

Since the time step is of the order h2, the main error will be the one made by the discretiza-
tion in space. Hence the convergence analysis for the operator L will not be disturbed be the
time discretization error.
We will now consider the same test problems as for the product rule operator.

Example 1 We consider the problem

ut = 0.2uxx

u(x, 0) = sin(πx) + cos(πx)

Neumann: ux(0, t) = πe−0.2π2t, ux(1, t) = −πe−0.2π2t or

Dirichlet: ux(0, t) = e−0.2π2t, ux(1, t) = −e−0.2π2t

with the exact solution

u(x, t) = (sin(πx) + cos(πx))e−0.2π2t.

Table 14 shows the results at time t = 1.

Neumann Dirichlet

N ‖u − v‖h qN ‖u − v‖h qD

10 2.28 · 10−4 7.39 · 10−5

20 1.13 · 10−5 4.33 4.51 · 10−6 4.03
40 5.60 · 10−7 4.34 2.80 · 10−7 4.01
80 2.98 · 10−8 4.23 1.74 · 10−8 4.00

160 1.70 · 10−9 4.13 1.09 · 10−9 4.00
320 1.02 · 10−10 4.06 6.76 · 10−11 4.01

Table 14: Numerical results for the equation ut = 0.2uxx

Example 2 We consider the problem

ut =
∂

∂x
((0.2 + 0.4x(x − 1))ux)

u(x, 0) = sin(πx) + cos(πx)

Neumann: ux(0, t) = πe−0.2π(π+2)t, ux(1, t) = −πe−0.2π(π−2)t or

Dirichlet: u(0, t) = e−0.2π(π+2)t, u(1, t) = −e−0.2π(π−2)t.

Table 15 shows the results at time t = 1.

Example 3 We consider the problem

ut =
∂

∂x
(0.2(1 + sin(πx))ux)

u(x, 0) = sin(πx) + cos(πx)

Neumann: ux(0, t) = π, ux(1, t) = −πe−0.4π2t or

Dirichlet: u(0, t) = 1, u(1, t) = −e−0.4π2t.
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Neumann Dirichlet

N ‖u − v‖h qN ‖u − v‖h qD

10 4.10 · 10−4 2.36 · 10−4

20 2.04 · 10−5 4.33 1.48 · 10−5 4.00
40 1.09 · 10−6 4.22 9.36 · 10−7 3.99
80 6.33 · 10−8 4.11 5.86 · 10−8 4.00

160 3.81 · 10−9 4.06 3.66 · 10−9 4.00
320 2.30 · 10−10 4.05 2.27 · 10−10 4.01

Table 15: Numerical results for the equation ut = ((0.2 + 0.4x(x − 1))ux)x

Neumann Dirichlet

N ‖u − v‖h qN ‖u − v‖h qD

10 2.12 · 10−4 9.02 · 10−5

20 1.84 · 10−5 3.53 7.60 · 10−6 3.57
40 1.27 · 10−6 3.85 5.20 · 10−7 3.87
80 8.02 · 10−8 3.99 3.24 · 10−8 4.01

160 4.91 · 10−9 4.03 2.03 · 10−9 4.00
320 2.83 · 10−10 4.12 1.48 · 10−10 3.78

Table 16: Numerical results for the equation ut = (0.2(1 + sin(πx))ux)x

Table 16 shows the results at time t = 1.

Example 4 We consider the problem

ut =
∂

∂x

(
0.5ex−2(1 + sin(πt))ux

)

u(x, 0) = (sin(πx))2 + 2x

Neumann: ux(0, t) = 2 ee−2(π2+1)t, ux(1, t) = 2 ee−1(π2+1)t or

Dirichlet: u(0, t) = 0, u(1, t) = 2ee−1(π2+1)t.

Table 17 shows the results at time t = 1

Neumann Dirichlet

N ‖u − v‖h qN ‖u − v‖h qD

10 3.55 · 10−2 4.65 · 10−2

20 2.06 · 10−3 4.11 3.67 · 10−3 3.66
40 1.11 · 10−4 4.22 2.53 · 10−4 3.87
80 5.67 · 10−6 4.29 1.62 · 10−5 3.97

160 2.78 · 10−7 4.35 1.01 · 10−6 4.00
320 1.34 · 10−8 4.38 6.19 · 10−8 4.03

Table 17: Numerical results for the equation ut =
(
0.5ex−2(1 + sin(πt))ux

)
x



65

6 Finite Element Ansatz for the Convection Diffusion Equa-

tion

In this section we give a short overview of how the finite element ansatz can be extended to
the convection diffusion problem. The operator L derived in section 5 is strictly stable in the
M -norm. If we want to apply it to the convection diffusion equation, we have to design an
operator for the first derivative that is strictly stable in the same norm. Therefore we cannot
use the SBP operator for the first derivative derived by Strand [16].

We can however use the finite element ansatz that has led us to L also for the first
derivative. We discuss two different possibilities of doing so.

The first ansatz is to handle the hyperbolic parts like the parabolic part by evaluating the
stiffness matrix using numerical integration. This leads to an operator that is strictly stable
for the convection diffusion equation if we require continuous and piecewise continuously
differentiable coefficient functions a, b and c. However the local order of accuracy at the
boundary will be reduced to order h only because of the additional errors due to numerical
integration.

Therefore we propose an alternative treatment, which leads to a strictly stable operator
if all coefficients are continuous and piecewise continuously differentiable. In this case the co-
efficient functions are approximated by their Lagrange interpolant and the resulting integrals
are evaluated exactly. This idea was already described in remark 5.1.

Before discussing the numerical treatment, we will extend the variational formulation of
the semi-discrete problem to the convection diffusion equation.

6.1 Variational Formulation

We want to derive the variational formulation of the partial differential equation (1.2) with
Neumann boundary conditions. We define the Sobolev space V like in section 5.2. We first
multiply (1.2) by a function v ∈ V and integrate over [0, 1], which yields

∫ 1

0
utv dx =

∫ 1

0
((aux)x + bux + (cu)x) v dx

=

∫ 1

0
(−auxvx + buxv − cuvx) dx + v(aux + cu)

∣∣1
0

If we introduce Vh as a subspace of V with the basis functions ϕj , j = 0, 1, . . . , N , we obtain
an ODE system with mass and stiffness matrix analogously as in section 5.2 of the form

Mh d

dt
v = T hv + aNg1eN − a0g0e0 + cNvN − c0v0,

where the mass matrix Mh is the same as in the pure parabolic case and the new stiffness
matrix T h is given by

T h
kl = −

∫ 1

0
a(x, t)ϕ′

k(x)ϕ′
l(x) dx +

∫ 1

0
b(x, t)ϕk(x)ϕ′

l(x) dx −
∫ 1

0
c(x, t)ϕ′

k(x)ϕl(x) dx.

Remark:

Like in the case of the pure parabolic problem, we handle Dirichlet data by neglecting the
first and the last line of the system and imposing the physical boundary conditions at the
boundary points.
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6.2 Operator Based on Numerical Integration

6.2.1 Construction

We want to solve the convection diffusion equation using the operator derived in section 5 for
the parabolic part. Therefore we use the mass matrix M with its correction terms m0,1 and
the stiffness matrix S (notation from section 5). The stiffness matrix S has to be extended by
some part T b and T c taking care of the two hyperbolic terms in equation (1.2). The integrals
appearing in T b and T c shall also be approximated using the Simpson rule.

6.2.2 Stability

The stability proof will be similar to that in section 5.6. Also here we will consider homoge-
neous boundary conditions. We show that the method is strictly stable by finding an estimate
for the discrete energy in the M -norm identical to the estimate for the continuous problem
neglecting higher order terms. The estimate for the analytic problem is given by (2.14) and
(2.16) for Dirichlet and Neumann data, respectively.

Differentiating the discrete energy of some vector v ∈ R
N+1 yields

d

dt
‖v‖2

M = vT (T + T T )v + 2vN (aN (vx)N + cNvN ) − 2v0(a0(vx)0 + c0v0) (6.1)

We first look at the inner part. The matrix T = S + T b + T c is an approximation of
the stiffness matrix using Simpson’s rule. A Taylor expansion shows that the error of this
approximation is in O(h2) at the boundary and in O(h4) in the interior if all coefficients are
sufficiently smooth. We require the coefficients to be continuous and piecewise continuously
differentiable such that the integration error of each single integral is in O

(
h2
)
. Hence it

holds

vT (T + T T )v =

N∑

k,l=0

vkvl

(
−2

∫ 1

0
a(x, t)ϕ′

k(x)ϕ′
l(x) dx

+

∫ 1

0
b(x, t)

(
ϕk(x)ϕ′

l(x) + ϕ′
k(x)ϕl(x)

)
dx

−
∫ 1

0
c(x, t)

(
ϕ′

k(x)ϕl(x) + ϕk(x)ϕ′
l(x)

)
dx

)
+ O(h)

= 2

(
−
∫ 1

0
a(x, t)zx(x, t)zx(x, t) dx

+

∫ 1

0
(b(x, t) − c(x, t)) (z(x, t)zx(x, t)) dx

)
+ O(h),

where we define the function z(x, t) =
∑N

l=0 vlϕl(x, t), which equals vl at the grid points xl.
We use the Cauchy-Schwarz inequality and estimate the functions a, b and c, which yields

vT (T + T T )v ≤ 2
(
−amin‖zx(·, t)‖2 + ‖b(·, t) − c(·, t)‖∞ ‖z(·, t)‖ ‖zx(·, t)‖

)
+ O(h),

where ‖ · ‖ denotes the L2-norm.
We use the algebraic equality 2‖z‖ ‖zx‖ ≤ ε‖zx‖2 + 1

ε‖z‖2 for some value ε, which yields

vT (T + T T )v ≤ (−2amin + ‖b − c‖∞ε) ‖zx‖2 + ‖b − c‖∞
1

ε
‖z‖2 + O(h). (6.2)

We consider the boundary part in equation (6.1). In the case of homogeneous Dirichlet
boundary conditions it is zero. Therefore we choose ε = 2amin

‖b−c‖∞
such that the norm of the

derivative vanishes.
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In the case of homogeneous Neumann data we have to consider the term −c0v
2
0 + cNv2

N

for the boundary. In the continuous case we have used the Sobolev inequality (see lemma
2.3), which is valid for piecewise continuously differentiable functions. In order to be able
to use this inequality here as well, we use that z(xj) = vj and z is piecewise continuously
differentiable. Thus it holds

−c0v
2
0 + cNv2

N ≤ 2‖c‖∞ ‖z‖2
∞ ≤ 2‖c‖∞

(
δ‖zx‖2 +

(
1 +

1

δ

)
‖z‖2

)
(6.3)

Combining (6.2) and (6.3), we get

d

dt
‖v‖2

M ≤ (−2amin + ε‖b − c‖∞ + 4δ‖c‖∞) ‖zx‖2

+

(
‖b − c‖∞

1

ε
+ 4‖c‖∞

(
1 +

1

δ

))
‖z‖2 + O(h).

If we choose ε = amin
‖b−c‖∞

and δ = amin
4‖c‖∞

, we get

d

dt
‖v‖2

M ≤ αs‖z‖2 + O(h),

where αs = 16‖c‖2
∞

+‖b−c‖2
∞

amin
+ 4‖c‖∞.

Finally we substitute the L2-norm of z by the M -norm of v. The norm can be written as

‖z‖2 =
N∑

k,l=0

vkvl

∫ 1

0
ϕk(x)ϕl(x) dx

Therefore we use the arguments form mass lumping the other way round to get

N∑

k=0

vkvl

∫ 1

0
ϕk(x)ϕl(x) dx

=

{
vl

∫ 1
0 ϕl(x) dx + O(h3), l ∈ {0, 1, 2, 3, N − 3, N − 2, N − 1, N}

vl

∫ 1
0 ϕl(x) dx + O(h5), else.

Thus we can state the following connection to the M -norm

‖z‖2 = ‖v‖2
M + O(h3).

Using this relation, we obtain the following estimate for Dirichlet data

d

dt
‖v‖2

M ≤ ‖b − c‖2
∞

2amin
‖v‖2

M + O(h),

and for Neumann data

d

dt
‖v‖2

M ≤ αs‖v‖2
M + O(h),

In both cases we have identical estimates as in (2.14) and (2.16) for the continuous case if we
neglect higher order terms. Hence the method is strictly stable.

6.3 Operator Based on Interpolated Coefficient Functions

In the following we derive the operator for the convection diffusion equation and show that
this leads to a strictly stable semi-discretization.



68

6.3.1 Construction

For this operator we do not use numerical integration, which is why we apply the lumped
mass matrix M without the corrections that we did to account for the numerical integration.
Now we discuss the calculation of the stiffness matrix.

Stiffness Matrix for (aux)x

We have to approximate the integrals −
∫ 1
0 a(x, t)ϕ′

j(x)ϕ′
k(x) for j, k = 0, ..., N . As proposed

in remark 5.1, we define an interpolation ah to a by ah(x, t) =
∑N

l=0 a(xl, t)ϕl(x). If a is
sufficiently smooth, it holds ah = a + O(h4), which is why the accuracy of the operator will
not be affected by this approximation. Since we will only require ah = a +O(h) for stability,
we assume here a to be continuous and to have a piecewise continuous first derivative.
Let A be our stiffness matrix for the parabolic part (aux)x. Then the elements will be given
by

Aij = −
∫ 1

0
ϕ′

i(x)ϕ′
j(x)ah(x, t)dx = −

N∑

l=0

a(xl, t)

∫ 1

0
ϕl(x)ϕ′

i(x)ϕ′
j(x)dx.

Stiffness matrix for bux

Let B be the stiffness matrix for the part bux. We calculate the integrals using the Lagrange
interpolation for b, i.e. bh(x, t) =

∑N
l=0 b(xl, t)ϕl(x). Thus an element of B looks the following

Bij =

∫

Ω
bh(x, t)ϕi(x)ϕ′

j(x) dx =
N∑

l=0

b(xl, t)

∫ 1

0
ϕl(x)ϕi(x)ϕ′

j(x)dx.

Stiffness matrix for (cu)x

Let C be the stiffness matrix for the part (cu)x. Again we approximate the matrix by
introducing an interpolant: ch =

∑N
l=0 c(xl, t)ϕl(x).

Using ch, we get

Cij = −
∫

Ω
ch(x, t)ϕj(x)ϕ′

i(x) dx = −
N∑

l=0

c(xl, t)

∫

Ω
ϕl(x)ϕj(x)ϕ′

i(x) dx.

to be the stiffness matrix.

All occurring integrals can be evaluated exactly.

6.3.2 Order of Accuracy

By Taylor expansion it can be shown that this approximation has a local truncation error
of the order h4 in the interior and of the order h2 at the boundary. In section 5.3.4 we
have already considered the case of a stiffness matrix without error terms due to numerical
integration. This has to be extended to the convection diffusion equation.

Since the convection diffusion equation is not an equation in self-adjoint form, the global
accuracy proof based on the Green’s function for the pure parabolic problem cannot be carried
over straightforward to the convection diffusion problem. Using Sturm-Liouville theory it is,
however, be possible to transform the equation into self-adjoint form (cf. [1]). It is to be
examined whether the proof can be applied to the problem after such a transformation.
Alternatively, it might be possible to use a proof based on the Laplace transform like in
section 3.3 for the product rule. Anyway it is clear that the global error is at least of order
h3 since an energy estimate holds (cf. section 6.3.3) as shown by Gustafsson [6].



69

6.3.3 Stability

Like for the stability in the pure parabolic case, we use the energy method. We assume
that a, b and c are continuous and piecewise continuously differentiable, so that ah(x, t) =
a(x, t) + O(h), bh(x, t) = b(x, t) + O(h) and ch(x, t) = c(x, t) + O(h).

We define an energy using the norm induced by the mass matrix M̃ .
We first consider Neumann boundary conditions.

In the M̃ -norm it holds

d

dt
‖v‖2�

M
= vT (A + AT )v + vT (B + BT )v + vT (C + CT )v + 2vT m̃0

d

dx
g0 + 2vT m̃1

d

dx
g1

+ vNaNg1 − v0a0g0 + 2cNv2
N − 2c0v

2
0

If we define z(x, t) =
∑N

j=0 vjϕj(x), we get

1

2

d

dt
‖v‖2�

M
= −

∫ 1

0
ah(x, t)z2

x(x, t)dx +

∫ 1

0
bh(x, t)zx(x, t)z(x, t)dx

−
∫ 1

0
ch(x, t)zx(x, t)z(x, t)dx + vT m̃0

d

dx
g0 + vT m̃1

d

dx
g1

+ vNaNg1 − v0a0g0 + cNv2
N − c0v

2
0

= −
∫ 1

0
ah(x, t)z2

x(x, t)dx +

∫ 1

0
(bh(x, t) − ch(x, t))zx(x, t)z(x, t)dx

+ vT m̃0
d

dx
g0 + vT m̃1

d

dx
g1 + vNaNg1 − v0a0g0 + cNv2

N − c0v
2
0.

Using the approximation property of ah, bh and ch, we obtain

1

2

d

dt
‖v‖2�

M
≤ −(amin + O(h))

∫ 1

0
z2
x(x, t)dx + ‖b − c‖∞

∫ 1

0
|zx(x, t)z(x, t)|dx

+ vT m̃0
d

dx
g0 + vT m̃1

d

dx
g1 + vNaNg1 − v0a0g0 + cNv2

N − c0v
2
0

≤ −(amin + O(h))‖zx‖2 + ‖b − c‖∞‖z‖‖zx‖ + vT m̃0
d

dx
g0 + vT m̃1

d

dx
g1

+ vNaNg1 − v0a0g0 + cNv2
N − c0v

2
0, (6.4)

where ‖ · ‖ denotes the L2-norm.
Now we consider the boundary part:

For the part a0v0g0 + c0v0 we use v0 = z(x0), which yields

−c0v
2
0 − a0v0g0 ≤ ‖a‖∞‖z‖∞|g0| + ‖c‖∞ ‖z‖2

∞ ≤ 1

2
‖a‖∞(‖z‖2

∞ + |g0|2) + ‖c‖∞ ‖z‖2
∞

The mass matrix correction term can be estimated in the following way

vT m̃0
d

dx
g0 =

3∑

j=0

m̃
(j)
0 vj

d

dx
g0 ≤ 3

5
h2‖z‖∞| d

dx
g0| ≤

3

10
h2

(
‖z‖2

∞ + | d

dx
g0|2

)

The right boundary can be treated in the same way. If we assume the derivative of the
boundary conditions to be bounded, we get the following estimate for the whole boundary
part:

vT m̃0
d

dx
g0 + vT m̃1

d

dx
g1 + vNaNg1 − v0a0g0 + cNv2

N − c0v
2
0

≤ 1

2
‖a‖∞

(
g2
0 + g2

1

)
+ (‖a‖∞ + 2‖c‖∞)‖z‖2

∞ + O(h2)
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If we insert this estimate into (6.4), we obtain

1

2

d

dt
‖v‖2�

M
≤ −(amin + O(h))‖zx‖2 + (‖b − c‖∞ + O(h))‖z‖‖zx‖ +

1

2
‖a‖∞

(
g2
0 + g2

1

)

+ γ‖z‖2
∞ + O(h2),

where γ = ‖a‖∞ + 2‖c‖∞.
As a next step, we estimate the L2-norm of zx and the maximum-norm of z by the norm

of z. For this purpose we use an algebraic inequality for the inner part and the Sobolev
inequality for the boundary part, i.e.

2‖z‖‖zx‖ ≤ ε‖zx‖2 +
1

ε
‖z‖2 and ‖z‖2

∞ ≤ δ‖zx‖2 +

(
1 +

1

δ

)
‖z‖2

with some constants ε and δ. This yields

d

dt
‖v‖2�

M
≤ ‖zx‖2 (−(2amin + O(h)) + (‖b − c‖∞ + O(h))ε + 2γδ)

+ ‖z‖2

(‖b − c‖∞ + O(h)

ε
+ 2

(
1 +

1

δ

)
γ

)
+ ‖a‖∞

(
g2
0 + g2

1

)
+ O(h2)

We choose ε = amin+O(h)
‖b−c‖∞+O(h) and δ = amin+O(h)

2γ , such that the norm of the derivative vanishes
in the estimate. This leads to

d

dt
‖v‖2�

M
≤ ‖z‖2

(‖b − c‖2
∞

amin
+ γ +

4γ2

amin
+ O(h)

)
+ ‖a‖∞

(
g2
0 + g2

1

)
+ O

(
h2
)

= αs‖z‖2 + ‖a‖∞
(
g2
0 + g2

1

)
+ O

(
h2
)
,

where αs = ‖b−c‖2
∞

amin
+ 2γ + 4γ2

amin
+ O(h). This is the same constant as in the continuous case,

see (2.15).

Finally we convert the L2-norm of z to the M̃ -norm of v. Like in the stability proof for the
other method, we get

‖z‖2 = ‖v‖2�
M

+ O(h).

The error is of order h in the present case since we are considering inhomogeneous boundary
conditions.
This yields the following energy estimate

d

dt
‖v‖2�

M
≤ αs‖v‖2�

M
+ ‖a‖∞

(
g2
0 + g2

1

)
+ O(h),

which is identical to the analytic estimate if we neglect higher order terms. Hence the operator
is strictly stable.

In the case of Dirichlet boundary conditions we consider homogeneous boundary condi-
tions to prove stability like for well-posedness in the continuous case.
We get a similar estimate as with Neumann data except that we have no boundary terms and
we put the first and last line of each matrix to zero. The latter modification has however no
effects since we have homogeneous boundary data which means that the boundary part will
be set to zero anyway, if we consider the product of the vector v with the stiffness matrix.
The same transformations for the inner part as above yield

d

dt
‖v‖2�

M
≤
(
−(amin + O(h)) + (‖b − c‖∞ + O(h))

ε

2

)
‖zx‖2

+

(‖b − c‖∞ + O(h)

2ε

)
‖z‖2,



71

where we choose the constant ε = 2amin+O(h)
‖b−c‖∞+O(h) in this case. Thus we have

d

dt
‖v‖2�

M
≤
(‖b − c‖2

∞

4amin
+ O(h)

)
‖z‖2,

Again we can transfer the L2-norm to the M̃ -norm, which yields

d

dt
‖v‖2�

M
≤ αs‖v‖2�

M
+ O(h2),

with αs = ‖b−c‖2
∞

4amin
+O(h). Since this is identical to the analytic estimate in (2.14) if we neglect

higher order terms, the operator for homogeneous boundary conditions is strictly stable as
well.

6.4 Computational Results

We give here one example for the performance of the operator, where the stiffness matrix is
calculated using an interpolation of the coefficient functions. Let us consider the following
problem

ut(x, t) = (a(x)ux(x, t))x + b(x)ux(x, t) with

a(x) =
1

10

(
1 +

1

2
sin
(π

2
x
))

and b(x) = 2 sinh

(
−3x +

3

2

)
.

f(x) = sin(πx) +
7

5
cos(10x)

Neumann: ux(0, t) = g0(t) ≈ 3.14 e−0.37t and ux(1, t) = g1(t) ≈ 4.74 e−1.43t

Dirichlet: u(0, t) = g0(t) ≈ 1.40 e−0.37t and u(1, t) = g1(t) ≈ −11.8 e−1.43t.

This problem has already been treated with the product rule based operator.
The numerical results are given in table 18. We use a time step of 2h2, since the Fourier
transform of this operator is rather similar to the one where we used numerical integration
and amin = 0.15 in our example.

Neumann Dirichlet

N ‖u − v‖h qN ‖u − v‖h qD

10 7.42 · 10−3 2.72 · 10−1

20 8.90 · 10−4 3.06 7.74 · 10−2 1.81
40 1.06 · 10−4 3.07 1.53 · 10−2 2.33
80 8.83 · 10−6 3.58 1.83 · 10−3 3.07
160 5.97 · 10−7 3.89 1.48 · 10−4 3.62
320 4.20 · 10−8 3.83 9.76 · 10−6 3.92

Table 18: Numerical results for the convection diffusion equation (c ≡ 0) using Dirichlet and
Neumann conditions

In the experiment we observe that the solution converges with a rate of 4.
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7 Concluding Remarks

We have discussed three different approaches to discretize the parabolic term (aux)x appear-
ing in the convection diffusion equation. To round off our work, we compare some properties
of the three operators. For this purpose we consider efficiency, stability and damping proper-
ties. We finish our investigation with an outlook on open questions that could be considered
in future work.

7.1 Comparison of the Operators

An efficient method should be designed such that the number of floating point operations to
obtain a certain accuracy is minimal. Therefore we want to minimize the number of function
evaluations of the diffusion coefficient a and the band width of the stencil to approximate the
derivatives. The latter property also simplifies a parallel implementation of the operator.

Concerning efficiency, the operator based on the product rule is the best choice. Both the
operator for the first and second derivative used in this approximation have minimal band
width. The operator is especially efficient if the diffusion term is not time-dependent. In
that case an approximation of the derivative of the diffusion coefficient can be calculated
in advance and therefore the work for approximating the convection diffusion equation is
only slightly increased when going from constant to variable coefficients. For the two other
methods, the band width is not that small. The fourth order method derived by the product
rule has a band width of 5 (the main diagonal and two subdiagonals on each side), while
the operator for the self-adjoint form and the one based on finite elements both have a band
width of 7. Moreover, the approximation of a is about twice as costly for the self-adjoint
operators.

However, the local efficiency of the operator based on the product rule has a drawback.
In contrast to the other two operators, it is not strictly stable. This means that the growth
of the numerical solution is not directly linked to the growth of the analytical solution of the
partial differential equation. Even though the Lax-Richtmyer equivalence theorem guarantees
the convergence of a consistent approximation, roundoff errors could grow exponentially in
time. This makes the error estimate in terms of eαstO(hp+2) (where αs is the growth rate of
the semi-discretization and p the order of accuracy of the operator at the boundary) useless
for practical purposes, where h cannot be chosen as small as necessary. However, in our
experiments such problems did not occur.

Both the other ideas rely on the self-adjoint form, which is why the approximations are
strictly stable. This is the advantage of these operator. Strict stability holds even if the
coefficients do not fit the regularity requirements needed for stability of the operator derived
from the product rule. A self-adjoint operator designed according to the suggestions in section
4 would have all wished properties, but it is unsure whether the system for the weights of
the boundary section can be solved.

The last ansatz is based on a different theory, namely finite elements, which is why it
cannot be combined with the known SBP operators as the other two methods. Nevertheless
it is possible to apply the operator to the convection diffusion equation by designing an
operator for the first derivative that is also based on the finite element ansatz.

As a third feature we require good damping properties. The natural way for approximat-
ing (aux)x would be to apply a known SBP operator for the first derivative twice. Besides
efficiency lacks, such an operator shows clear disadvantages in damping high frequency error
modes. In figure 4 it can be seen that this operator has a very poor damping for high wave
numbers.

This effect can be seen in numerical results where high frequency errors represent the
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Figure 4: Damping of modes with wave number ξ of the exact solution (-), D1 applied twice
(- -), the operator D2 as base for the product rule (-·), the operator Q derived from the
self-adjoint form (·) and the operator L based on finite elements with mass lumping (x). All
operators are fourth order accurate.

main error source. This problem was one of the motivations to devise new operators for this
problem. As seen in figure 4, all operators proposed in this work overcome this problem. The
damping is however not as strong as provided by the exact differential operator, but it is the
better the higher the order of the method.

7.2 Outlook

When we consider the stability of the two methods based on finite differences, we get a
stronger requirement on the boundary data than for the continuous problem. This is be-
cause we cannot apply the Sobolev inequality onto the semi-discretization. However, in the
experiments we did not observe stability problems when violating the additional stability
conditions. Therefore it would be interesting to prove a discrete analogon of the Sobolev
inequality.

For the operator derived from the self-adjoint form we have only done a theoretical anal-
ysis of the boundary treatment for higher order methods. However, we did not succeed in
calculating the weights for the boundary part of the operator except for the order two.

The finite element ansatz has only been investigated for fourth order accuracy in this
work. It would be interesting to use higher order polynomials as basis functions in order
to get sixth or eighth order accurate operators. The question is how feasible the idea of
mass lumping is in these cases. Furthermore, the extension of this operator to the convection
diffusion equation requires a more thorough investigation, especially concerning accuracy.
Furthermore, the accuracy proof using the Green’s function might also be applicable for
showing the order of accuracy of finite difference methods.
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8 Summary in Swedish

Differensapproximationer av högre ordningen för paraboliska och hyper-
bolisk-paraboliska problem med variabla koefficienter

Denna rapport handlar om den numeriska lösningen av tidsberoende partiella differen-
tialekvationer med variabla koefficienter. Ett exempel p̊a en hyperbolisk-parabolisk ekvation
är den lineariserade Navier-Stokes-ekvationen som styr flöden av gaser och vätskor. Ekvatio-
nen dyker till exempel upp inom aerodynamiken och i simuleringen av förbränningsprocesser.
Huvuddelen av arbetet är undersökningen av en parabolisk diffusionsterm konstruerad av
den första derivatan av produkten av koefficienten och första derivatan av lösningen. Denna
form kallas själv-adjungerad. För att karakterisera den analytiska lösningen definerar man
en energi som en integral över kvadraten p̊a lösningen. Den själv-adjungerade formen ger
upphov till att diffusionstermens bidrag till lösningens energi minskar i tiden, som beror p̊a
möjligheten att använda partiell integration p̊a den diffusiva termen.

I tidigare arbete av Strand och Mattsson/Nordström härleddes högre ordningens finita
differens-metoder för hyperboliska ekvationer och för paraboliska termer med konstanta ko-
efficienter. Dessa metoder är strikt stabila, dvs den diskreta operatorn förh̊aller sig som
den analytiska derivatan vad gäller tillväxt och dämpning. Stabilitet byggs p̊a en partiell
summationsregel (som ersätter partiell integration för diskretiseringen), som operatorerna
uppfyller i en viss norm. Stabilitet i det diskreta fallet kan betraktas som den diskreta ver-
sionen till en energiuppskattning. S̊adana metoder kallas för SBP (“Summation By Parts”)-
metoder. Målet med detta arbete är att hitta differensmetoder som är effektiva och imiterar
de fysikaliska egenskaperna s̊a bra som möjligt även för variabla koefficienter.

Vi undersökte tre olika ansatser för att uppn̊a m̊alet. I första ansatsen diskretiserar vi
koefficienterna och lösningen var för sig genom att använda produktregeln p̊a den diffusiva
termen. P̊a s̊a sätt kan man använda samma operatorer som för problemet med konstanta
koefficienter. Denna metod är mycket effektiv, men operatorerna uppfyller inte längre en
partiell summationsregel eftersom vi inte utnyttjar den själv-adjungerade formen och inte f̊ar
en energiuppskattning som liknar den kontinuerliga. Detta kan leda till stabiltetsproblem
fast v̊ara experiment inte visade s̊adana.

Vi undersökte ocks̊a möjligheten att konstruera en metod som utnyttjar den själv-adjun-
gerade formen. Detta ledde till ett icke-linjärt ekvationssystem för randoperatorn, vilket vi
inte lyckades lösa för metoder av högre ordning än tv̊a.

Den tredje ansatsen är att använda teorin fr̊an finita element-metoden, dvs vi interpolerar
lösningen med polynom och integrerar differentialekvationen för den approximativa lösnin-
gen. P̊a s̊a sätt kan man utnyttja den själv-adjungerade formen genom att använda partiell
integration p̊a integralerna. Om man beräknar approximationernas integraler, f̊ar man ett
ordinärt differentialekvationssystem i tiden. Men systemet blir implicit för denna ansats,
vilket vi undviker genom att reducera det till en explicit form. Denna process kallas för
“mass-lumping”. Det explicita systemet kan tolkas som en differensmetod. Metoden är sta-
bil, men stabiliteten bygger inte p̊a samma norm som de tidigare operatorerna. Därför kan
man inte kombinera metoderna för att lösa en hyperbolisk-parabolisk ekvation. För att kunna
använda denna metod krävs att man härleder en diskretisering av den hyperboliska termen
med samma metod som vi ocks̊a gjorde. För b̊ade den paraboliska och den hyperbolisk-
paraboliska ekvationen härledde vi med hälp av finita elementmetoden 4:e ordningens finita
differensmetoder.
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A Finite elements with Numerical Integration

We now present the the difference scheme L(·) = M−1S(·) + m0
d
dtg0 + m1

d
dtg1 developed in

section 5.

Stiffness matrix:
Left boundary part:

h · S0,0 = −
121

216
a0 −

529

24
a1/2 −

1

864
a1 −

1

864
a3/2 −

1

216
a2

h · S0,1 =
11

12
a0 +

161

288
a1/2 −

1

18
a1 +

1

32
a3/2 +

1

36
a2

h · S0,2 = −
11

24
a0 +

23

288
a1/2 +

1

9
a1 −

1

32
a3/2 −

1

72
a2

h · S0,3 =
11

108
a0 −

23

864
a1/2 −

1

54
a1 +

1

864
a3/2 −

1

108
a2

h · S1,0 =
11

12
a0 +

161

288
a1/2 −

1

18
a1 +

1

32
a3/2 +

1

36
a2

h · S1,1 = −
3

2
a0 −

49

96
a1/2 −

1

12
a1 −

27

32
a3/2 −

5

27
a2 −

1

864
a5/2 −

1

216
a3

h · S1,2 =
3

4
a0 −

7

96
a1/2 +

1

6
a1 +

27

32
a3/2 +

1

18
a2 +

3

32
a5/2 +

1

36
a3

h · S1,3 = −
1

6
a0 +

7

288
a1/2 −

1

36
a1 −

1

32
a3/2 +

1

9
a2 −

3

32
a5/2 −

1

72
a3

h · S1,4 = −
1

108
a2 +

1

864
a5/2 −

1

108
a3

h · S2,0 = −
11

24
a0 +

23

288
a1/2 +

1

9
a1 −

1

32
a3/2 −

1

72
a2

h · S2,1 =
3

4
a0 −

7

96
a1/2 +

1

6
a1 +

27

32
a3/2 +

1

18
a2 +

3

32
a5/2 +

1

36
a3

h · S2,2 = −
3

8
a0 −

1

96
a1/2 −

1

3
a1 −

27

32
a3/2 −

1

12
a2 −

27

32
a5/2 −

1

54
a3 −

1

864
a7/2 −

1

216
a4

h · S2,3 =
1

12
a0 +

1

288
a1/2 +

1

18
a1 +

1

32
a3/2 +

1

18
a2 +

27

32
a5/2 +

1

18
a3 +

1

32
a7/2 +

1

36
a4

h · S2,4 = −
1

72
a2 −

1

32
a5/2 +

1

9
a3 −

1

32
a7/2 −

1

72
a4

h · S2,5 = −
1

108
a3 +

1

864
a7/2 −

1

108
a4

h · S3,0 =
11

108
a0 −

23

864
a1/2 −

1

54
a1 +

1

864
a3/2 −

1

108
a2

h · S3,1 = −
1

6
a0 +

7

288
a1/2 −

1

36
a1 −

1

32
a3/2 +

1

9
a2 −

3

32
a5/2 −

1

72
a3

h · S3,2 =
1

12
a0 +

1

288
a1/2 +

1

18
a1 +

1

32
a3/2 +

1

18
a2 +

27

32
a5/2 +

1

18
a3 +

1

32
a7/2 +

1

36
a4

h · S3,3 = −
1

54
a0 −

1

864
a1/2 −

1

108
a1 −

1

864
a3/2 −

5

27
a2 −

27

32
a5/2 −

1

12
a3

−
27

32
a7/2 −

5

27
a4 −

1

864
a9/2 −

1

216
a5

h · S3,4 =
1

36
a2 +

1

32
a5/2 +

1

18
a3 +

27

32
a7/2 +

1

18
a4 +

1

32
a9/2 +

1

36
a5

h · S3,5 = −
1

72
a3 −

1

32
a7/2 +

1

9
a4 −

1

32
a9/2 −

1

72
a5

h · S3,6 = −
1

108
a4 +

1

864
a9/2 −

1

108
a5
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The inner scheme (l = 4, 5, . . . , N − 4) is given by

h · Sl,l−3 = −
1

108
al−2 +

1

864
al−3/2 −

1

108
al−1

h · Sl,l−2 = −
1

72
al−2 −

1

32
al−3/2 +

1

9
al−1 −

1

32
al−1/2 −

1

72
al

h · Sl,l−1 =
1

36
al−2 +

1

32
al−3/2 +

1

18
al−1 +

27

32
al−1/2 +

1

18
al +

1

32
al+1/2 +

1

36
al+1

h · Sl,l = −
1

216
al−2 −

1

864
al−3/2 −

5

27
al−1 −

27

32
al−1/2 −

1

12
al

−
27

32
al+1/2 −

5

27
al+1 −

1

864
al+3/2 −

1

216
al+2

h · Sl,l+1 =
1

36
al−1 +

1

32
al−1/2 +

1

18
al +

27

32
al+1/2 +

1

18
al+1 +

1

32
al+3/2 +

1

36
al+2

h · Sl,l+2 = −
1

72
al −

1

32
al+1/2 +

1

9
al+1 −

1

32
al+3/2 −

1

72
al+2

h · Sl,l+3 = −
1

108
al+1 +

1

864
al+3/2 −

1

108
al+2

Right boundary part:

h · SN,N = −
121

216
aN −

529

24
aN−1/2 −

1

864
aN−1 −

1

864
aN−3/2 −

1

216
aN−2

h · SN,N−1 =
11

12
aN +

161

288
aN−1/2 −

1

18
aN−1 +

1

32
aN−3/2 +

1

36
aN−2

h · SN,N−2 = −
11

24
aN +

23

288
aN−1/2 +

1

9
aN−1 −

1

32
aN−3/2 −

1

72
aN−2

h · SN,N−3 =
11

108
aN −

23

864
aN−1/2 −

1

54
aN−1 +

1

864
aN−3/2 −

1

108
aN−2

h · SN−1,N =
11

12
aN +

161

288
aN−1/2 −

1

18
aN−1 +

1

32
aN−3/2 +

1

36
aN−2

h · SN−1,N−1 = −
3

2
aN −

49

96
aN−1/2 −

1

12
aN−1 −

27

32
aN−3/2 −

5

27
aN−2

−
1

864
aN−5/2 −

1

216
aN−3

h · SN−1,N−2 =
3

4
aN −

7

96
aN−1/2 +

1

6
aN−1 +

27

32
aN−3/2 +

1

18
aN−2 +

3

32
aN−5/2 +

1

36
aN−3

h · SN−1,N−3 = −
1

6
aN +

7

288
aN−1/2 −

1

36
aN−1 −

1

32
aN−3/2 +

1

9
aN−2 −

3

32
aN−5/2 −

1

72
aN−3

h · SN−1,N−4 = −
1

108
aN−2 +

1

864
aN−5/2 −

1

108
aN−3

h · SN−2,N = −
11

24
aN +

23

288
aN−1/2 +

1

9
aN−1 −

1

32
aN−3/2 −

1

72
aN−2

h · SN−2,N−1 =
3

4
aN −

7

96
aN−1/2 +

1

6
aN−1 +

27

32
aN−3/2 +

1

18
aN−2 +

3

32
aN−5/2 +

1

36
aN−3

h · SN−2,N−2 = −
3

8
aN −

1

96
aN−1/2 −

1

3
aN−1 −

27

32
aN−3/2 −

1

12
aN−2 −

27

32
aN−5/2

−
1

54
aN−3 −

1

864
aN−7/2 −

1

216
aN−4

h · SN−2,N−3 =
1

12
aN +

1

288
aN−1/2 +

1

18
aN−1 +

1

32
aN−3/2 +

1

18
aN−2 +

27

32
aN−5/2

+
1

18
aN−3 +

1

32
aN−7/2 +

1

36
aN−4

h · SN−2,N−4 = −
1

72
aN−2 −

1

32
aN−5/2 +

1

9
aN−3 −

1

32
aN−7/2 −

1

72
aN−4

h · SN−2,N−5 = −
1

108
aN−3 +

1

864
aN−7/2 −

1

108
aN−4
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h · SN−3,N =
11

108
aN −

23

864
aN−1/2 −

1

54
aN−1 +

1

864
aN−3/2 −

1

108
aN−2

h · SN−3,N−1 = −
1

6
aN +

7

288
aN−1/2 −

1

36
aN−1 −

1

32
aN−3/2 +

1

9
aN−2 −

3

32
aN−5/2 −

1

72
aN−3

h · SN−3,N−2 =
1

12
aN +

1

288
aN−1/2 +

1

18
aN−1 +

1

32
aN−3/2 +

1

18
aN−2 +

27

32
aN−5/2

+
1

18
aN−3 +

1

32
aN−7/2 +

1

36
aN−4

h · SN−3,N−3 = −
1

54
aN −

1

864
aN−1/2 −

1

108
aN−1 −

1

864
aN−3/2 −

5

27
aN−2 −

27

32
aN−5/2

−
1

12
aN−3 −

27

32
aN−7/2 −

5

27
aN−4 −

1

864
aN−9/2 −

1

216
aN−5

h · SN−3,N−4 =
1

36
aN−2 +

1

32
aN−5/2 +

1

18
aN−3 +

27

32
aN−7/2 +

1

18
aN−4 +

1

32
aN−9/2 +

1

36
aN−5

h · SN−3,N−5 = −
1

72
aN−3 −

1

32
aN−7/2 +

1

9
aN−4 −

1

32
aN−9/2 −

1

72
aN−5

h · SN−3,N−6 = −
1

108
aN−4 +

1

864
aN−9/2 −

1

108
aN−5

The mass matrix is depending on the kind of physical boundary data:
For Neumann data we have the following mass matrix:

M = h




1
3

31
24

5
6

25
24

1
. . .

1
25
24

5
6

31
24

1
3




Boundary correction of the mass matrix:

m0 = h2

(
− 7

144
,

59

288
,−19

72
,

31

288
, 0, ...

)

m1 = h2

(
0, ..., 0,− 31

288
,
19

72
,− 59

288
,

7

144

)

The mass matrix for Dirichlet data is given by

M = h




313
288

139
144

869
864

1
. . .

1
869
864

139
144

313
288
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Boundary correction of the mass matrix:

m0 = h

(
59

288
,− 19

144
,

31

864
, 0, ...

)

m1 = h

(
0, ..., 0,

31

864
,− 19

144
,

59

288

)

B Finite Elements with Approximated Basis Functions

The mass matrix is depending on the kind of physical boundary data for this ansatz as well:
Neumann data

Mass matrix:

M̃ = h




1
3

31
24

5
6

25
24

1
. . .

1
25
24

5
6

31
24

1
3




Boundary correction of the mass matrix:

m̃0 = h2

(
− 2

45
,

7

36
,−23

90
,

19

180
, 0, ...

)

m̃1 = h2

(
0, ..., 0,− 19

180
,
23

90
,− 7

36
,

2

45

)

Dirichlet data

M̃ = h




79
72

173
180

1087
1080

1
. . .

1
1087
1080

173
180

79
72




Boundary correction of the mass matrix:

m̃0 = h

(
7

36
,− 23

180
,

19

540
, 0, ...

)

m̃1 = h

(
0, ..., 0,

19

540
,− 23

180
,

7

36

)
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Stiffness matrix for the parabolic term (aux)x:

Left boundary part:

h · A0,0 = −
77

108
a0 −

641

945
a1 +

173

756
a2 −

46

945
a3

h · A0,1 =
947

945
a0 +

22

35
a1 −

23

105
a2 +

52

945
a3

h · A0,2 = −
1381

3780
a0 +

1

15
a1 +

1

140
a2 −

8

945
a3

h · A0,3 =
8

105
a0 −

16

945
a1 −

16

945
a2 +

2

945
a3

h · A1,0 =
947

945
a0 +

22

35
a1 −

23

105
a2 +

52

945
a3

h · A1,1 = −
89

63
a0 −

2303

1728
a1 −

18733

60480
a2 −

2071

60480
a3 +

11

20160
a4

h · A1,2 =
167

315
a0 +

47191

60480
a1 +

569

1344
a2 +

107

4032
a3 −

121

60480
a4

h · A1,3 = −
113

945
a0 −

4631

60480
a1 +

37

320
a2 −

449

12096
a3 +

59

60480
a4

h · A1,4 =
29

60480
(a1 + a4) −

617

60480
(a2 + a3)

h · A2,0 = −
1381

3780
a0 +

1

15
a1 +

1

140
a2 −

8

945
a3

h · A2,1 =
167

315
a0 +

47191

60480
a1 +

569

1344
a2 +

107

4032
a3 −

121

60480
a4

h · A2,2 = −
277

1260
a0 −

2053

2240
a1 −

389

432
a2 −

3781

6048
a3 +

593

15120
a4 +

11

20160
a5

h · A2,3 =
52

945
a0 +

461

6720
a1 +

15203

30240
a2 +

7853

15120
a3 +

1

160
a4 −

121

60480
a5

h · A2,4 =
59

60480
(a1 + a5) −

503

15120
(a2 + a4) +

47

480
a3

h · A2,5 =
29

60480
(a2 + a5) −

617

60480
(a3 + a4)

h · A3,0 =
8

105
a0 −

16

945
a1 −

16

945
a2 +

2

945
a3

h · A3,1 = −
113

945
a0 −

4631

60480
a1 +

37

320
a2 −

449

12096
a3 +

59

60480
a4

h · A3,2 =
52

945
a0 +

461

6720
a1 +

15203

30240
a2 +

7853

15120
a3 +

1

160
a4 −

121

60480
a5

h · A3,3 = −
11

945
a0 +

1627

60480
a1 −

9203

15120
a2 −

1673

1728
a3 −

7397

12096
a4 +

593

15120
a5 +

11

20160
a6

h · A3,4 = −
121

60480
(a1 + a6) +

1

160
(a2 + a5) +

31243

60480
(a3 + a4)

h · A3,5 =
59

60480
(a2 + a6) −

503

15120
(a3 + a5) +

47

480
a4

h · A3,6 =
29

60480
(a3 + a6) −

617

60480
(a4 + a5)
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The inner scheme (l = 4, 5, . . . , N − 4) is given by

h · Al,l−3 =
29

60480
(al−3 + al) −

617

60480
(al−2 + al−1)

h · Al,l−2 =
59

60480
(al−3 + al+1) −

503

15120
(al−2 + al) +

47

480
al−1

h · Al,l−1 = −
121

60480
(al−3 + al+2) +

1

160
(al−2 + al+1) +

31243

60480
(al−1 + al)

h · Al,l =
11

20160
(al−3 + al+3) +

593

15120
(al−2 + al+2) −

7397

12096
(al−1 + al+1) −

209

216
al

h · Al,l+1 = −
121

60480
(al−2 + al+3) +

1

160
(al−1 + al+2) +

31243

60480
(al+1 + al)

h · Al,l+2 =
59

60480
(al−1 + al+3) −

503

15120
(al + al+2) +

47

480
al+1

h · Al,l+3 =
29

60480
(al + al+3) −

617

60480
(al+1 + al+2)

Stiffness matrix for the hyperbolic term bux:

Left boundary part:

B0,0 = −
1

3
b0 −

151

630
b1 +

5

54
b2 −

37

1890
b4

B0,1 =
151

315
b0 +

19

63
b1 −

29

315
b2 +

1

45
b3

B0,2 = −
5

27
b0 −

1

14
b1 +

1

210
b2 −

1

270
b3

B0,3 =
37

945
b0 +

1

105
b1 −

1

189
b2 +

1

945
b3

B1,0 = −
151

630
b0 −

38

63
b1 +

103

630
b2 −

2

63
b3

B1,1 =
19

63
b0 −

607

1728
b2 +

1501

30240
b3 +

1

20160
b4

B1,2 = −
1

14
b0 +

607

1728
b1 +

4229

20160
b2 +

11

2520
b3 −

19

8640
b4

B1,3 =
1

105
b0 −

1501

15120
b1 −

481

20160
b2 −

221

10080
b3 +

19

8640
b4

B1,4 = −
1

10080
b1 +

113

60480
b2 −

1

3024
b3 −

1

20160
b4

B2,0 =
5

54
b0 +

103

630
b1 −

1

105
b2 +

17

1890
b3

B2,1 = −
29

315
b0 −

607

1728
b1 −

4229

10080
b2 +

131

6720
b3 +

1

3024
b4

B2,2 =
1

210
b0 +

4229

20160
b1 −

7117

30240
b3 +

157

7560
b4 −

1

20160
b5

B2,3 = −
1

189
b0 −

481

20160
b1 +

7117

15120
b2 +

509

2160
b3 −

19

8640
b5

B2,4 =
113

60480
b1 −

157

3780
b2 −

103

3360
b3 −

157

7560
b4 +

19

8640
b5

B2,5 = −
1

10080
b2 +

113

60480
b3 −

1

3024
b4 −

1

20160
b5
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B3,0 = −
37

1890
b0 −

2

63
b1 +

17

1890
b2 −

2

945
b3

B3,1 =
1

45
b0 +

1501

30240
b1 +

131

6720
b2 +

221

5040
b3 −

113

60480
b4

B3,2 = −
1

270
b0 +

11

2520
b1 −

7117

30240
b2 −

509

1080
b3 +

103

3360
b4 +

1

3024
b5

B3,3 =
1

945
b0 −

221

10080
b1 +

509

2160
b2 −

14249

60480
b4 +

157

7560
b5 +

1

20160
b6

B3,4 = −
1

3024
b1 −

103

3360
b2 +

14249

30240
b3 +

14249

60480
b4 −

19

8640
b6

B3,5 =
113

60480
b2 −

157

3780
b3 −

103

3360
b4 −

157

7560
b5 +

19

8640
b6

B3,6 = −
1

10080
b3 +

113

60480
b4 −

1

3024
b5 −

1

20160
b6

The inner scheme (l = 4, 5, . . . , N − 4) is given by

Bl,l−3 =
1

20160
bl−3 +

1

3024
bl−2 −

113

60480
bl−1 +

1

10080
bl

Bl,l−2 = −
19

8640
bl−3 +

157

7560
bl−2 +

103

3360
bl−1 +

157

3780
bl −

113

60480
bl+1

Bl,l−1 =
19

8640
bl−3 −

14249

60480
bl−1 −

14249

30240
bl +

113

3360
bl+1 +

1

3024
bl+2

Bl,l = −
1

20160
bl−3 −

157

7560
bl−2 +

14249

60480
bl−1 −

14249

60480
bl+1 +

157

7560
bl+2 +

1

20160
bl+3

Bl,l+1 = −
1

3024
bl−2 −

103

3360
bl−1 +

14249

30240
bl +

14249

60480
bl+1 −

19

8640
bl+3

Bl,l+2 =
113

60480
bl −

157

3780
bl −

103

3360
bl+1 −

157

7560
bl+2 +

19

8640
bl+3

Bl,l+3 = −
1

10080
bl +

113

60480
bl+1 −

1

3024
bl+2 −

1

20160
bl+3

The right boundary part is constructed analogously to left one.
The stiffness matrix C for (cu)x can be calculated from B by interchanging the coefficient
function and taking the negative transpose.
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