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Marine and Offshore Safety Assessment by Incorporative
Risk Modeling in a Fuzzy-Bayesian Network of an Induced
Mass Assignment Paradigm

A. G. Eleye-Datubo,1 A. Wall,1 and J. Wang1∗

The incorporation of the human element into a probabilistic risk-based model is one that
requires a possibilistic integration of appropriate techniques and/or that of vital inputs of lin-
guistic nature. While fuzzy logic is an excellent tool for such integration, it tends not to cross
its boundaries of possibility theory, except via an evidential reasoning supposition. Therefore,
a fuzzy-Bayesian network (FBN) is proposed to enable a bridge to be made into a probabilis-
tic setting of the domain. This bridge is formalized by way of the mass assignment theory. A
framework is also proposed for its use in maritime safety assessment. Its implementation has
been demonstrated in a maritime human performance case study that utilizes performance-
shaping factors as the input variables of this groundbreaking FBN risk model.
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1. INTRODUCTION

In risk analysis, cause-effect relationships are vi-
tal for achieving the modeling process. Thus, mod-
eling in a network format becomes useful as it also
gives an intuitive vital representation that mimics the
domain of the real world. The most useful form of
such a model is a causal diagram or network usually
termed a directed acyclic graph, which uses nodes
for representing distribution knowledge of variables
and arcs for representing casual influences between
nodes. If the data for a nodal variable are sufficient
enough to enable the quantitative reasoning, then the
form of the data (e.g., given as frequency of occur-
rence of the event) can be converted into a probabil-
ity distribution for the analysis. The inherent uncer-
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tainty due to randomness then makes this a random
node that can typically be applied in a Bayesian net-
work (BN) (Pearl, 1988). On the other hand, if infor-
mation associated with a node exhibits uncertainty
that is, vague, ambiguous, or fuzzy, then it cannot be
represented precisely by a probability distribution.
Thus, fuzzy logic (FL) (Zadeh, 1975) may have to be
utilized to achieve a possibility distribution via a rule-
base inference engine that permits the subjective rea-
soning (Eleye-Datubo et al., 2004).

When, for example, two nodes are both de-
fined by possibilistic values, they exhibit conditional
possibility and fuzzy set theory features. If they
are both defined by probabilistic values, they ex-
hibit conditional probability and Bayes’s theory fea-
tures. The obvious problem within the casual net-
work arises when a fuzzy event node has a casual
influence connection with that of a random event
node. In this case, Bayes’s theorem cannot be ap-
plied for the casual influence due to the fuzzy event
present in the conditional connection. Therefore, a
method of converting from possibility to probability
distributions is most desirable. If such a method can
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provide bidirectional characteristics, then the fuzzy
nature of a variable can always be recouped. The the-
ory of mass assignment (MA) (Baldwin et al., 1996)
has been proven to offer one such feature. Hence,
the causal formalism of using a combined fuzzy and
Bayesian approach can be made possible. The result-
ing proposed route is given by the model name—
“fuzzy Bayesian network.” In recent research, de-
velopments, and applications, FL and BN have both
emerged as powerful and effective tools for reason-
ing under conditions of uncertainty (Eleye-Datubo
et al., 2004, 2006; Sii et al., 2004, 2005; Wang, 2006).
Thus, it is certainly quite appropriate to investigate
the amalgamation of both techniques.

The amalgamation of FL and BN may well prove
to provide the indispensable means of incorporating
human factors/elements in a probabilistic risk anal-
ysis model domain. Obviously, such an accomplish-
ment is bound to be a key improvement to safety
achievements in the marine and offshore industry,
especially as human error has a substantial impact
on the reliability of complex systems. For example,
the safety of people on board a ship in distress is
very much dependent on an effective emergency es-
cape, evacuation, and rescue (EER) operational sys-
tem (final barrier to avoid fatalities) being in place
and being enabled in due time (Eleye-Datubo et
al., 2006). While much attention has been placed
on improving design, construction, and operations of
the EER system or other maritime operating equip-
ment based on casualties, the human factor element
remains the predominate contributing cause of ac-
cidents (The Nautical Institute, 2003) within each
phase. Certainly, the marine and offshore industry
cannot afford to simply accept that this situation is
inevitable.

This article proposes a novel and flexible risk
modeling approach making use of the advantages of
both FL and BN. Through this approach, interactive
risk scenarios in situations of high uncertainty in data
can be facilitated.

2. A FUZZY-BAYESIAN LITERATURE

Viertl (1987) explains the necessity of develop-
ing a fuzzy-Bayesian inference and this paved the
way for the first works on this inference, which
come from safety project studies in structural re-
liability research (Chou & Yuan, 1993; Frühwirth-
Schnatter, 1993; Itoh & Itagaki, 1989). The research
results based on two examples, a reinforced con-
crete beam and a structural frame, showed that

the fuzzy-Bayesian approach is a viable enhance-
ment to the safety assessment of existing structures
(Chou & Yuan, 1993). Nonetheless, that inference
suffered from numeric stability problems in trying
to achieve a justified fuzzy-probability transforma-
tion and further overlooked the conditional cases
that can arise between fuzzy/possibility distribution
events. The developed theory of MA by Baldwin
et al. (1996) provides a bidirectional transformation
platform between Bayesian probability theory and
possibility/fuzzy set theory, and Dubois and Prade
(1997) introduce a Bayesian conditioning operation
in possibility theory, adapted to the idea of focus-
ing on a body of knowledge for a reference class de-
scribed by available evidence.

The work carried out so far on FBN cannot suit-
ably be applied in the maritime domain, since the
renowned leap in possibility-probability distribution
inference process, as brought about by the theory of
MA, is worthy of appropriate modifications to previ-
ous methodologies. With such modifications in place,
the innovative FBN can now rightly be based on a
more realistic inference process and may well offer
a stable practical solution for those domains contain-
ing continuous and discrete variables and also those
of random and vague uncertainties.

3. FUZZINESS AND PROBABILITY

Probability and fuzziness are related but differ-
ent concepts. Fuzziness is a type of deterministic un-
certainty that describes the event class ambiguity.
Fuzziness measures the degree to which an event oc-
curs, not whether it occurs. An issue is whether the
event class can be unambiguously distinguished from
its opposite. Probability arises from the question of
whether or not an event occurs. Moreover, it assumes
that the event class is crisply defined and that the law
of noncontradiction (i.e., A ∩ Ā= Ø, where A is a set
in the finite space) holds. Kosko (1990) shows that
fuzziness occurs when the law of noncontradiction
(and equivalently the law of excluded middle, that is,
A ∪Ā= X, where X is the universe of discourse) is vi-
olated. However, it seems more appropriate to inves-
tigate the fuzzy probability for the latter case (Dubois
& Prade, 1993), than to completely dismiss probabil-
ity as a special case of fuzziness (Kosko, 1990).

A fuzzy probability extends the traditional no-
tion of a probability when there are outcomes that
belong to several event classes at the same time
but to different degrees. It is important to note
that neither fuzziness nor probability governs the
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physical processes in nature, though they are orthog-
onal concepts that characterize different aspects of
human experience (Dubois & Prade, 1993).

4. COMPARISON OF AXIOMS OF
PROBABILISTIC AND
POSSIBILITY-BASED METHODS

The objective of this section is to identify the dif-
ferences in the axioms of probability and possibility
and the impact of these differences on how prob-
abilistic and fuzzy set methods model uncertainties
and assess the reliability of a system.

Fuzzy set methods use possibility, which mea-
sures the degree to which an event is feasible, to
quantify the likelihood this event will occur. One can
think of possibility as complementary to the degree
of surprise if an event occurs (Chen et al., 1999). Pos-
sibility ranges from zero to one, like probability.

A key axiomatic difference between possibility
and probability is that the possibility of a union of
events (disjoint or overlapping) is equal to the max-
imum of the possibilities of the individual events,
whereas the probability of a union of disjoint events
is equal to the sum of the probabilities of these
events. This leads to the following observations
(Chen et al., 1999).

1. The possibilities of an event and its comple-
ment may add up to more than one, whereas
the probabilities of an event and its comple-
ment must add up to one.

2. The possibility of failure of a system, con-
sisting of identical, independent components
connected in series, is equal to the possibil-
ity of failure of one component, whereas the
probability of failure of the system increases
with the number of components.

3. The possibility of failure of a system, con-
sisting of identical, independent components
connected in parallel, is equal to the possibil-
ity of failure of a single component.

4. From Observation 2, it is concluded that the
possibility of an event can be smaller than its
probability. For example, even if the possi-
bility of failure of each component is greater
than the corresponding probability, a system
with enough components will have a possibil-
ity of failure smaller than its probability of
failure. This result is counterintuitive—since
one may reason that the possibility of an event
should be greater or equal to its probability

because if an event is probable it should also
be possible.

According to Observation 2, a fuzzy set method
is likely to underestimate the chance of failure of a
system with a large number of independent failure
modes. On the other hand, it can be too conservative
in systems for which the failure region is very small
compared to the range of the uncertain variables.
Therefore, compared to fuzzy set methods, proba-
bilistic methods may provide a more accurate esti-
mate of the chance of failure if there are enough data
to model random uncertainties accurately and mod-
eling errors are small.

On the other hand, it is easier to determine the
most conservative fuzzy set model than to determine
the most conservative probabilistic model that is con-
sistent with given information about a problem. A
primary reason is that, although the area below the
probability density function of a random variable
must be equal to one, there is no such constraint on
the possibility density function.

5. PROPOSED SEMANTICS FOR A
FUZZY-BAYESIAN NETWORK

The key feature of the proposed fuzzy-Bayesian
networks (FBNs) is that they enable modeling and
reasoning about uncertainty that can be due to a
combination of inherent vagueness and randomness.
Hence, essential to their formalism is the idea of re-
lating, combining, and converting possibilitistic val-
ues into their probabilistic counterpart for use within
the same model framework. As such, it is quite pos-
sible that the proposed FBN modeling may realize
anything FL can do and also inherit the entire rigor,
flexibility, and other superior properties of proba-
bilistic approaches.

5.1. Possibility-Probability Directed Acyclic Graph

A FBN provides factorized representation of
a possibility-probability model that explicitly cap-
tures both a logical and network structure typical in
human-engineered models. More generally, a FBN is
a DAG of a BN nature that allows for the encoded
probability distribution of a node to be derived from
its fuzzy derivation. The fuzzy-to-probability distri-
bution conversion is normally induced via a suitable
algorithm, for example, by mass assignment (MA)
formalism.
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(a) A fuzzy (i.e., possibilistic) 
event chance node 

(b) A Bayesian (i.e., 
probabilistic) event chance node 

Fig. 1. Proposed nodal representation for fuzzy and Bayesian
chance events.

Fig. 1(a) gives a proposed nodal representation
for a fuzzy event, A. Such a node basically obtains its
prior probability input from a fuzzy set output. In or-
der to enable this conversion of probability distribu-
tion, a conversion inference via MA is utilized. The
typical representation of a random event, B, in a BN
is as shown in Fig. 1(b).

To understand how they are utilized in a FBN, it
is worth having the most basic formats of their rep-
resentation within the network. These are as given in
Fig. 2(a)–(d).

As expected, from a Bayesian viewpoint, a di-
rect probabilistic inference linking from Event G to
Event F is represented by a line of its terminating
arrowhead resting on the later. An optional direct
possibilistic inference (not shown in Fig. 2) may be
represented as a dashed terminating arrowhead line
between fuzzy events. Such an optional possibilistic
inference can enable a means by which a comparison
study can be effected between conditional possibility
and conditional probability of the fuzzy events.

5.2. Conditional Probability of Fuzzy Events

For a probability distribution P(.) on a finite uni-
verse X, the conditional probability of f (a state of
Event F) given g (a state of Event G) can now be de-
fined as the expected value of the conditional prob-
ability of the focal elements for mass assignment of

F
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F

G

FF

G

(a) Fuzzy-to-
fuzzy 

(b) Fuzzy-to-
Bayesian 

(c) Bayesian-
to-fuzzy 

(d) Bayesian-
to-Bayesian 

Fig. 2. Proposed FBN semantic
representations between two random
nature event nodes.

f , mf , given the focal elements for mass assignment
of g, mg, relative to P(.) and assuming that the joint
MA generated by f and g is given by mf × mg (Bald-
win et al., 1996). Basically, every set for A ∈ P(X) for
which m(ø) > 0 is usually called a focal element of m.
As the name suggests, focal elements are subsets of
X on which the available evidence focuses. The idea
behind this is that since the definitions for f and g are
uncertain there is also uncertainty regarding to which
(classical) conditional probability P( f | g) refers. If
the assumption is made that the two definitions come
from different and independent sources, then mf ×
mg gives us a probability distribution across possible
conditional probability values. In this case a natural
estimate for P( f | g) is to take the expected value of
this distribution.

For P(.), a probability distribution on a finite uni-
verse X, and f and g fuzzy subsets of X such that g is
normalized, the conditional probability of f given g is
defined by:

P( f | g) =
∑

Fi

∑
Gj

P(Fi ∩ Gj )
P(Gj )

mf (Fi )mg(Gj ), (1)

where mf , {Fi}i, and mg, {Gj}j are the MAs and focal
elements for f and g, respectively.

Now for any normalized fuzzy set g, a poste-
rior distribution result from conditioning on g can be
clearly defined, according to Equation (1). This is re-
ferred to as the least prejudiced distribution (lpd) of
g with respect to the prior P(x).

More formally:

∀x ∈ X; lpdg(x) = P(x|g) = P(x)
∑

Gj :x∈Gj

mg(Gj )
P(Gj )

. (2)

Indeed, it can be shown (Baldwin et al., 1996)
that the probability of f given g as defined in
Equation (1) is equivalent to the probability of f
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relative to the distribution lpdg on X (Zadeh, 1968),
that is:

P( f | g) =
∑
x∈�

μ f (x)lpdg(x), (3)

where μf (x) is the membership function of the fuzzy
subset f on X.

The notion of lpd provides a mechanism by
which a fuzzy set can be converted into a probabil-
ity distribution. In the absence of any prior knowl-
edge, the lpd might be relative to the uniform prior
on knowing that g naturally infers the distribution
lpdg. If, however, fuzzy sets are to serve as descrip-
tions of probability distributions, the converse must
also hold. In other words, given a probability dis-
tribution, it will be required to hold that there is a
unique fuzzy set conditioning on which this distribu-
tion yields.

6. MECHANISM FOR FUZZY-BAYESIAN
CONVERSION

Fuzzy-Bayesian inference is not quite as direct as
one would like to imagine. Instead, it relies on the use
of the theory of MAs to play the central role. There-
fore, the inferential pattern goes from a fuzzy set into
MAs, and then from MAs into the prior probabili-
ties. With Bayesian inference being enabled, the like-
lihood probabilities must be provided by the likes of
this similar means. Similarly, the concept of condi-
tional independence is applied to simplify the joint
probability distribution of the modeling domain.

6.1. Basics of Mass Assignment

MA unifies probability, possibility, and fuzzy sets
into a single theory termed mass assignment theory
(MAT). If two or more groups of MAs are neces-
sary to provide a single MA, then operations of MAT
would have to be applied.

6.1.1. Mass Assignment Theory

The theory of MAs has been developed by Bald-
win (Baldwin, 1992; Baldwin et al., 1995) to provide a
formal framework for manipulating both probabilis-
tic and fuzzy uncertainties. Without such a theory,
the construction of systems capable of handling un-
certainty in a unified manner may be difficult.

The motivation for considering MAs (Baldwin,
1991, 1992; Baldwin et al., 1995) is to provide seman-
tics for membership functions of fuzzy sets. Essen-

tially, the idea is that a fuzzy (or vague) concept is
simply a concept for which the definition is uncer-
tain or variable (across, say, a population of voters
(Williamson, 1994)). Each possible definition corre-
sponds to a subset of the universe of discourse and a
probability distribution MA across these definitions
can then be defined. Given such a distribution, the
focal sets are taken to be those with nonzero mass.
In fact, for the above definition the added assump-
tion is made that the uncertainty is only regarding
the degree of generality or specificity of the defini-
tion so that the focal sets form a nested hierarchy.
The membership value of an element is then defined
as the sum of the masses for the focal sets contain-
ing that element. Given these constraints, there is
a unique MA corresponding to any fuzzy set. Note
that a slightly different perspective on the above is to
view the definition of a vague concept as a random set
into the power set of the universe and the MA as its
distribution (Goodman & Nguyen, 1985; Kreinovich,
1997).

A MA on a finite set X is a function m : P(X)
→ [0, 1] such that �S⊆X m(S) = 1. Note that mf

has the property that it is nonzero only on some se-
quence of subsets of X{Si} such that Si ⊆ Si+1. Such
MAs are strongly related to consonant basic proba-
bility assignments, which, in actual fact, represent a
family of probability distributions. Furthermore, mf

satisfies �S⊆X m(S) = μf (x). This is a fundamental
requirement of any MA corresponding to f .

6.1.2. Operations of Mass Assignment

One of the most attractive features of MA theory
is that operations of MA are defined in a way com-
patible to set operations (Baldwin et al., 1995). They
include the complement (−), meet (∩), and join (∪).
Given two MAs, m(A) = {Mi : mi} and m(B) = {Mj

: mj}, on universal set X, the general definitions of
these operations are stated as follows.

• Meet of m(A) and m(B) is the intersection:
m(A) ∩ m(B) = {xk : yk}, where the new
focal elements are given by xk = Mi ∩ Mj and
yk = ∑

i, j ;xi j =xk
yi j , respectively.

• Join of m(A) and m(B) is the union: m(A) ∪
m(B) = {xk : yk}, where the new focal ele-
ments are given by xk = Mi ∪ Mj and yk =∑

i, j ;xi j =xk
yi j , respectively.

• Complement of m(A) is the complementation:
m(A) = m(Ā = X – A), ∀A ∈ P(X). Also, the
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focal elements of m(A) are the complements of
the focal elements of m(A).

∑
j yij = mi ∀i and

∑
i yij = mj ∀j are referred

to as the row and column constraints, respectively.
It can be noted that the complement is determined
uniquely. However, the meet and the join opera-
tions are not determined uniquely because of possi-
ble combinations of redistribution of mass over new
focal elements as determined by taking either inter-
section (meet) or union (join) of original focal ele-
ments.

6.2. Inferential Relationship

In order to enable inference via MA from a fuzzy
set (FS) weights have to be assigned by a population
of voters or a panel of experts to every fuzzy subset,
μ1, μ2, . . . , μn, on the universe of discourse. In this
layer, each weight, wi, by members can be either 0
or 1. This can then be transformed to the correspond-
ing MA, that is, m1, m2, . . . , mn, at the MA layer on
each focal element, xi. In contrast to the basic prob-
ability assignment in Dempster-Shafer (DS) theory,
ø can be a focal element. At the probability distribu-
tion (PD) level, wi → [0, 1] and �wi = 1.

Fig. 3 gives a mapping overview of the FS-MA-
PD inferential relationship. Sections 6.2.1 to 6.2.3
provide the breakdown of this inferential process.
Note that the entire inferential process is bidirec-
tional. The key advantage offered by the bidirec-
tional nature is that the originally normalized output
fuzzy set values can be obtained from the achieved
probability distribution values and vice-versa.

μ1 μ2 ... μn

m1 m2 ... mn

P1 P2 ... Pn

B
id

ir
ec

ti
on

al

Fuzzy set

Probability distribution

Fuzzy set layer

Mass assignment layer

Probability distribution layer

wi = 0 or 1

wi = 1/|xi| or 0

wi → [0,1], Σwi =1

Fig. 3. Illustrative overview of a FS-MA-PD inferential relation-
ship.

6.2.1. Fuzzy Set-Mass Assignment Relation

Let S be a sample space. Then, a mass assign-
ment mS associated with S is a function from the
power set, P(X), to an interval of real numbers such
that mS : P(X) → [0, 1] and �A⊆S mS(A) = 1. A sub-
set A ⊆ S is referred to the focal element for mass
assignment mS if mS(A) > 0. Given a normalized dis-
crete fuzzy subset F = x1/μ1 + . . . + xn/μn over S,
it can be denoted that μi = μF(xi). Without loss of
generality for the normalized fuzzy subset, one can
assume that:

1 = μ1 ≥ . . . ≥ μn ≥ μn+1 = 0.
Then a MA with nested focal elements {x1,. . .,

xi} for i = 1, . . ., n can be derived as:

mS(A) = μi − μi+1, if A= {x1, . . ., xi }. (4)

In effect, then, the definition of MA is a weakening
of the definition of DS basic probability assignments
to allow for the possibility of allocating nonzero mass
to the empty set. Besides the fact that the calculus be-
yond the verification role is enhanced, the MA theory
furnishes the calculus to handle imprecision, whereas
the theory, due to DS, deals mainly with uncertainty
caused by lack of information from the probability
point of view.

6.2.2. Mass Assignment-Probabilities Relation

In MA theory, there exists the relation between
a discrete probability distribution, for example, a
normalized histogram, associated with elements of a
sample space, S, on the power set, P(X), and a least
prejudiced probability distribution, lpdA, (i.e., a se-
lection rule) for each A ∈ P(X). Basically, lpdA is the
case for which the assumption is made that mass as-
signed to a set A is equally likely to belong to any
element in A. As a result mass assigned to A is dis-
tributed equally across all elements in A. More for-
mally, given a mass m(A):

ms({x}) =ms(A)
|A| , ∀x ∈ A, (5)

where 1/|A| is the lpd of A. |A| denotes the magni-
tude (modulus) of A, which refers to its size.

Masses assigned to singletons {x} are now
summed and assigned as probabilities for X.

A probability Ps(x) is therefore defined as:

Ps(x) =
∑

A⊆S,x∈A

ms(A)
|A| =

∑
A⊆S,x∈A

lpdA(x)ms(A). (6)
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MAT

Fig. 4. Mapping consistency between a fuzzy set and a probability
distribution.

The main role of the selection rules is in maintaining
consistency between a fuzzy set and different proba-
bility distributions that satisfy Equation (6).

6.2.3. Mapping Between Fuzzy Set and Probability

Using the relation of fuzzy set-MA and MA-
probability, one can now obtain the mapping be-
tween a fuzzy set and a probability distribution as
shown in Fig. 4. Let Ps(xk) be a probability of a sam-
ple space S, and lpdAi(xk) be a selection rule for xk

from the focal element Ai = x1,. . . , xi, i = 1,. . . , k of
a MA. Then:

Ps(xk) =
n∑

i=k

lpdAi(xk).(μi − μi+1). (7)

It is noted that all focal elements are nested as they
correspond to the level sets (α-cuts) for μi∀i = 1,. . .,
n.

The selection rules lpdAi can be tuned if the fuzzy
set (i.e., the membership values μi’s) is always manu-
ally changed in order for Ps to remain the same. This
feature is important to determine the valid range of
data for a given fuzzy set. Inconsistency in the data
set is detected by obtaining some invalid probability
in Equation (7). Such results are obtained when the
order of membership values is not maintained. From
a different angle, this can be used to determine what
is lacking in order to keep the consistency.

The selection rules can also be used to estab-
lish a many-to-many relationship between probabil-
ity distributions of data and its fuzzy set definition.
Selection rules can also be one way of implementing
experts’ perception. In this case, selection rules are
given arbitrarily. Then either a fuzzy set for a given

data set or an ideal data set biased by experts’ per-
ception (i.e., a selection rules) for a fuzzy set repre-
senting a concept can be obtained by Equation (7).

7. PROPOSED FUZZY-BAYESIAN
NETWORK METHODOLOGY

A FBN reasoning process has been developed to
provide a natural framework for maritime risk as-
sessment and decision support. A flow chart of the
approach is shown in Fig. 5, and this format en-
sures that the FBN analyses are conducted in a dis-
ciplined, well-managed, and consistent manner that
promotes the delivery of quality maritime decision-
making results. The depth or extent of application of
the methodology should be commensurate with the
nature and significance of the problem. Nonetheless,
the entire methodology is made up of three key mod-
ules:

• Module 1: Normalized Fuzzy Set from Output
Values of FL Module.

• Module 2: MA Module.
• Module 3: Input Values as Prior Probabilities

of BN Module.

In building a FBN model, one can first focus on
specifying the qualitative structure of the domain and
then focus on quantifying the influences. When fin-
ished, one is guaranteed to have a complete spec-
ification of the possibility and probability distribu-
tions. Then following evidence propagation, an intu-
itive evaluation for decision making can be enabled
through added nodes of decisions and utilities as in
a BN. Hugin (Jensen, 1993) can thus be is used as
the robust BN programming environment for the risk
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from output values of 
fuzzy logic module 

Input values as prior 
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mn

μ1 μ2 μn

P1 P2 Pn
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. . .
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Fig. 5. Flow chart of a proposed FBN framework of analysis.
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modeling and its probability calculations. Explana-
tions for each of the underlying modules are given
as follows.

Module 1: Normalized fuzzy set from output val-
ues of FL module. The aggregation procedure act-
ing on fuzzy sets means that fuzzy sets are generated
from data sets, and aggregated by fuzzy set opera-
tions.

Module 2: MA module. The aggregation proce-
dure acting on MAs means applying MA theory op-
erations such as meet and join on MAs generated
least prejudiced distributions. Only then can the ag-
gregated MA (as in Equation (5)) be suited for its
transformation into the probability distributions of
its essential focal elements.

Considering the original motivation of MA the-
ory as a treatment of evidence, it is natural to treat
each data set as evidence and, thus, to treat features
extracted from a single text as a focal element and
sizes of features are aggregated directly as selected
rules of aggregated MA’s using MA theory.

Module 3: Input values as prior probabilities of
BN module. The aggregation procedure acting on
least prejudiced distributions means that it can be
generated from the MAs, and transformed into a
probability distributions using Equation (6).

8. HUMAN ELEMENT ISSUE IN MARINE
AND OFFSHORE SAFETY-CRITICAL
APPLICATIONS

Wherever there is a human interacting with a sys-
tem there is a human element issue. Modern technol-
ogy has revolutionized the way in which a ship is op-
erated, but lack of attention to the human-system in-
terface, in terms of the design, layout, and integration
of systems, and training in their use, is a major root
cause of many accidents today. The maritime indus-
try recognizes that such accidents are the direct con-
sequence of human failings and that in reality many
of the disregarded incidents and errors have a strong
element of human involvement.

8.1. Human Errors in Maritime Operations

Human errors include (HSE, 2002):

• Slips—making an unintended action through
lack of attention or skill.

• Lapses—unintended action through memory
failures.

• Mistakes—an intended but incorrect action.

• Violations—a deliberate deviation from stan-
dard practice.

Human errors in marine operations, such as tow-
ing or ballast system operation, tend to have imme-
diate effects. They may be recovered with no harm
done, or they may have some direct harmful impact.
This may then require some form of emergency re-
sponse to mitigate the impacts. Similarly, errors may
occur during evacuation, with a direct effect, for ex-
ample, incorrect release of a lifeboat.

Errors can also occur during maintenance, and
may then remain undiscovered (latent) until the
equipment is required. These errors in effect cause
equipment unavailability, and the significance of this
depends on the system design. For example, this
type of error may result in a ballast pump being un-
available when required. In fact, human error is hu-
man misery: careers blighted, lives lost, seafarers in-
jured, and the environment despoiled. As continually
stressed by the UK P&I Club, equipment, mechani-
cal, and structural failure together are far outstripped
by human error as the sole or major cause of inci-
dents giving rise to claims. In looking at major claims,
a current report (The Nautical Institute, 2003) finds
that more than 62% are directly attributable to error
by one or more individuals.

8.2. Human Factors in Maritime Risk Assessments

Since it is rightly the crew and the shipboard
management that will always be working in an in-
creasingly demanding, technically complex system,
the maritime industry needs to grasp human element
issues at a higher, more integrated level to make a
real difference to safety. A FBN may well prove to
be adequate in an integrated task of reducing the risk
due to human factor. Obviously, the key to improve-
ment is in the close involvement of all stakeholders
to ensure that a ship is “fit for purpose,” and that the
master and the crew are provided with the proper
tools and adequately training to be able to conduct
their business in a safe and efficient manner.

9. FUZZY-BAYESIAN ANALYSIS MODEL IN
A MARITIME DOMAIN

The fuzzy-Bayesian approach possesses great
potential across many domains of marine and off-
shore applications. To provide a brief insight into
some potential areas that could quite easily use
fuzzy-Bayesian modeling, the following case is sited:
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• Incorporation of human element in a risk anal-
ysis

To illustrate the universal applicability of FBNs
to a modeling domain, it is best to imagine a situ-
ation in which causality plays a role but where an
understanding of what is actually going on exhibits
both vague and random features. Thus, things need
to be described possibilistically, probabilistically, and
by inference.

Human reliability analysis (HRA) endeavors to
predict the probability of human error (typically un-
corrected error) against a specified base rate. While
it is concerned with causal analysis, it relies heav-
ily on factors (in the operator, the environment, the
equipment or the task) that affect the likelihood of
error. These factors, which are termed “performance-
shaping factors,” are not models in their own right,
but, rather, they are input attributes that have an ef-
fect on the output of human performance. In the mar-
itime industry, the quantification of such attributes
exhibits a vast amount of vagueness for which their
direct input into a probabilistic model needs to allow
for this uncertainty. Hence, FBN is offered as the as-
sessment platform.

9.1. Performance-Shaping Factors as
Model Variables

Performance-shaping factors (PSFs) are those
factors that can have positive or negative influ-
ence/effect on the effectiveness of human perfor-
mance and the likelihood of errors (HSE, 1999). It is
essential that the proper PSFs be identified to deter-
mine the effect external influences have on the basic
human error probabilities (HEPs). Examples of PSFs
in the marine and offshore industry, as well as in most
industries, include (Boring & Gertman, 2004; Brown
& Amrozowicz, 1996):

• Available time.
• Stress and stressors.
• Experience and training.
• Complexity and workload.
• Ergonomics (including human-machine inter-

action).
• Environmental effects.
• The quality of operating procedures.
• Language and culture.
• Morale and motivation.
• Operator fitness for duty.
• Work processes.

These factors, which are “human process vari-
ables” in the operator, the environment, the equip-
ment, or the task, may be linked directly to human
error through quantification. Despite their clear im-
portance in human error likely situations, they have
been hard to implement in quantitative risk assess-
ment. The reason for this is more or less obvious:
How is it possible to estimate, for example, culture or
self-confidence that actually does influence the safety
of a system? PSFs are therefore important to take
into account, but the integrating strategy is more in-
distinct (Kjestveit et al., 2003). Seaver and Stillwell
(1983) addressed the need for approaches that ex-
plicates paired comparisons, ranking and rating, di-
rect numerical estimation, and indirect numerical es-
timation techniques applied to error estimation, with
a particular emphasis on aggregating the estimates
from multiple experts to arrive at error probabilities.
Thus, due to the qualitative characteristics of PSFs, a
FL approach can be utilized to allow for their input
via expert judgment process.

PSFs work to increase or decrease the error rate
due to situational characteristics. If, for example,
the person is experiencing considerable stress, his or
her task performance will decrease proportionate to
the level of stress. Conversely, if a person has ex-
tensive training and practice doing a task, that per-
son’s proficiency may mitigate the chance of human
error.

9.2. Developing Degree of Relationship Rule Base

Individual performance is degraded when the
body’s circadian rhythms are disrupted. For example,
when loading and unloading cargo is coupled with
scheduling pressures, time stress can occur. In addi-
tion to the stress that can be induced from long work
hours, fatigue/nonfitness for duty becomes a critical
factor. Studies have shown that as fatigue increases,
the detection of visual signals deteriorates and in-
dividuals exhibit more errors (Swain & Guttmann,
1983). Table I (Boring & Gertman, 2004) gives the
relationship on how available time as a PSF (PSF 1)
is influenced by the other PSFs (PSFi) and, as well,
how it affects them.

The parametric relationship between one PSF
and another for a marine vessel or an offshore instal-
lation is determined by simulation and expert opin-
ion.

Note that PSFs can be combined for specific rules
in a FL rule base. In the case where more than one
PSF is being considered, absolute HEP values can be
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Table I. Influence of and Effects on Other PSFs on Time Availability

Available Time, PSF1

PSFi Influence Effect

Stress and stressors, PSF2 Amount of stress does not
change the available time.

Less time may increase stress.

Experience and training, PSF3 Greater experience means that
less time is required for actions
and decisions.

Available time has little or no
effect on experience
and training.

Task complexity, PSF4 Too much complexity and
workload can make the time
available insufficient.

Little time makes the task more
complex, for which the workload
may require more hands on.

Ergonomics (including human-
machine interaction), PSF5

Poor layout can result in
increased reaction time,
lessening the available time
to respond.

Available time has little or no
effect on ergonomics and
human-machine interaction.

Environmental effects, PSF6 The likes of room temperature,
vibration, and sea motion can
make the time available
insufficient.

Available time has no
effect on environmental
state/condition.

The quality of operating
procedures, PSF7

Complex or poorly conceived
procedures increase how much
time one needs to act.

Available time has little or no
effect on the quality of
operating procedures.

Language and culture, PSF8 Misunderstanding can result in
increased reaction time,
lessening the available time
to respond.

In some cases, time may lead to
misunderstanding in language
and culture.

Moral and motivation, PSF9 Greater motivation means that
less time is required for actions
and decisions.

In some cases, time may have a
significant effect on moral and
motivation.

Operator fitness for duty, PSF10 Illness or drug abuse may
require increased time to
decide or act.

Available time has little or no
effect on the operator’s fitness
for duty.

Work processes, PSF11 Poor shift turnover of
information can reduce
time available.

In some cases, time may
enhance or compromise
work processes.

computed by adding individual PSF multipliers. This
would be the case, for example, if available time and
stress contributed to a human error (Boring & Gert-
man, 2004).

In the event of multiple concurrent tasks, as is
common in most real-world scenarios, Boring and
Gertman (2004) state that the HEP values may also
be combined. If two events must occur together for
an error to occur, the HEP values are multiplied to-
gether to create a logical “AND” relationship. For
example, losing a fresh program file that is important
to the shipboard system requires the user both to fail
to save the program file and to quit the program. If,
however, errors are not in any way related to one an-
other, the two task HEP values are added together
to create a logical “OR” relationship. For example, a
person may not be able to log in to an authorizing
computer either by forgetting his or her computer

password or by failing to type the password in the
correct CapsLock case. Thus, using the generic PSFs
as fuzzy linguistic variables, specific IF-THEN rules
can be created via such logical “OR” and “AND” op-
erators for a FL rule base.

9.3. Categorization of Performance-Shaping Factors

PSFs are characterized according to whether the
task is cognitively engaging (i.e., a diagnosis task) or
routinized (i.e., an action task). Operational research
suggests that for cognitively engaging tasks such as
diagnosis, people tend to exhibit a base human error
rate equal to 1.0 × 10−2 (Boring & Gertman, 2004).
This means that people have about a 1 in 100 chance
of making a diagnosis error. For tasks that are more
action oriented, the base human error rate is equal to
about 1.0 × 10−3, suggesting about a 1 in 1,000 chance
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Table II. Available Time in a Fault-Intolerant Condition

Available Time
Variable, PSF 1,i Diagnosis HEP Action HEP

Inadequate time, PSF1,1 If the operator cannot perform the
task in the amount of time
available, no matter what s/he
does, then failure is certain.

1.0 If the operator cannot execute
the appropriate action
in the amount of time
available, no matter what s/he
does, then failure is certain.

1.0

Barely adequate time,
PSF1,2

Two-thirds of the average time required
to complete the task is available.

0.1 There is just enough time to
execute the appropriate action.

0.01

Nominal time, PSF1,3 On average, there is sufficient
time to diagnose the
problem.

0.01 There is some extra time
above what is minimally required to
execute the appropriate action.

0.001

Extra time, PSF1,4 The time available is between
one to two times greater than
the nominal time required.

0.001 There is an extra amount of
time to execute the appropriate action
(i.e., the approximate ratio of 5:1).

0.0001

Expansive time, PSF1,5 The time available is greater
than two times the nominal
time required.

0.0001 There is an expansive amount of time
to execute the appropriate action
(i.e., the approximate ratio of 50:1).

0.00001

Insufficient information,
PSF1,6

If you do not have sufficient
information to choose among the
other alternatives, assign this PSF level.

0.01 If you do not have sufficient information
to choose among the other
alternatives, assign this PSF level.

0.001

of making an error (Boring & Gertman, 2004). Base
error rates for the two task types associated with the
Standardized Plant Analysis Risk Human Reliability
Analysis (SPAR-H) method were calibrated against
other HRA methods. The calibration revealed that
the SPAR-H human error rates fall within the range
of rates predicted by other methods (Gertman et al.,
2004).

The PSFs are further classified according to
whether they occur in a fault-tolerant situation or a
fault-intolerant condition (Boring & Gertman, 2004).
Table II (Boring & Gertman, 2004) exhibits how
PSFs shape human error by using available time in
a fault-intolerant condition, which is the condition of
occurrence during critical operation.

Now, given PSFi as a fuzzy input of an ith PSF
having subset PSFi,j as its jth category, the rule base
for a fuzzy output of human performance, Hp, with
subset Hp,k for its kth category, can be represented
for the lth rule as:

Rl rule = IF PSF1 is PSF1, j AND/OR
PSF2 is PSF2j, AND/OR, . . ., AND/OR
PSF11 is PSF11,j, THEN Hp is Hp,k.

(8)

In this study, only the “AND” operation is applied.
A complete example of fuzzy rule from the rule base
of human performance is:

IF “available time” is “extra” AND “stress and
stressors” is “minimal” AND “experience and train-
ing” is “very good” AND “task complexity” is “slight”

AND “ergonomics” is “fantastic” AND “environ-
mental effects” is “inconsequential” AND “quality of
operating procedures” is “high” AND “language and
culture” is “fair” AND “moral and motivation” is “ac-
ceptable” AND “operator fitness for duty” is “certified
very healthy” AND “work processes” is “normal,”

THEN “human performance” is “excellent.”
Owing to the number of input PSFs in rule, Rl, a

software program, such as Fuzzy Logic Toolbox 2.2.1
of Matlab 6.5 (The MathWorks, 2005), may be most
essential to minimize complexity of the fuzzy mathe-
matics.

9.4. Determination of Human Performance Output

PSFs determine whether individual performance
will be very poor, excellent, or at some level in be-
tween. For this performance output, the assessment
team assigns numeric values based on a 0–100%
fuzzy scale (Fig. 6) as anchored by linguistic variables
and descriptors provided in the evaluation layer of
instrument.

This process of measuring the output attribute is
in a similar fashion as those undertaken for all 11
PSFs in the antecedent of the FL rule base. The
typical fuzzy set definition for the output attribute
(i.e., human performance, Hp), which is represented
by membership functions in which each fuzzy set
overlaps to a certain degree with its neighbors
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Fig. 6. Human performance grading scale for fuzzy set definition.

(Eleye-Datubo et al., 2004; Sii et al., 2004, 2005), can
be expressed as shown in Fig. 7.

In utilizing expert judgment while executing the
rule base of the generic PSF via the FL module of the
FBN methodology that has been presented in Sec-
tion 7, the fuzzy Hp set is obtained as the fuzzy out-
put result of the study. A hypothetical example of a
normalized fuzzy set, as shown in Fig. 8, is employed
herein as the yielded discrete result for Hp to demon-
strate the applicability of the FBN framework.

Membership values for each element in the Hp

fuzzy set are μHp 1 = 0, μHp 2 = 0, μHp 3 = 0, μHp 4

= 1, μHp 5 = 0.7, μHp 6 = 0.5, and μHp 7 = 0.1. Since
focal elements of Hp have to be only those elements
of P(Hp) that have nonzero probability assignment,
then clearly μHp 1, μHp 2, and μHp 3 are not required
for further analysis into their probability conversion.

Hp1 Hp3 Hp4 Hp7Hp5 Hp6Hp2
1.0 

25 40 60 85 100% 
0

0

Human performance score, Hp

503515 56 5 75 95

Fig. 7. Fuzzy set definition for human performance output.

1

0.8

0.6

0.4

0.2

0
Hp4 Hp5 Hp6 Hp7

μHp

Hp2Hp1 Hp3

Fig. 8. An example of a normalized fuzzy set utilized as human
performance output, Hp.

Therefore, the normalized fuzzy set of Hp may be
represented as:

Hp = {Hp5/1 + Hp5/0.7 + Hp5/0.5 + Hp5/0.1}.
The mass assignment, m(Hp), is derived from Hp by
weighting the combined mass of each element in Hp.
As assigned in Fig. 9, the weighting of 10, 9, and 8 is
attributable to only Hp4, the weighting of 7 and 6 is
attributable to only Hp4 or Hp5, the weighting of 5, 4,
3, and 2 is attributable to only Hp4 or Hp5 or Hp6, and
the weighting of 1 is attributable to any of Hp4, Hp5,
Hp6, or Hp7 . Normalizing the number of weighting at-
tributable to any one proposition then generates the
mass assignment m(Hp) for fuzzy set Hp as based on
the use of Equation (4), which is given as:

m(Hp) = {Hp4} : μHp4 − μHp5 , {Hp4, Hp5} :
μHp5 − μHp6 , {Hp4, Hp5, Hp6} :

μHp6 − μHp7 , {Hp4, Hp5, Hp6, Hp7} : μHp7

= {Hp4} : 0.3, {Hp4, Hp5} :

0.2, {Hp4, Hp5, Hp6} :

0.4, {Hp4, Hp5, Hp6, Hp7} : 0.1.

This obtained MA can be restricted using the least
prejudiced distribution to give a single probability
distribution. This probability distribution is defined
across the human performance set Hp as is the corre-
sponding fuzzy set. First, the magnitude of masses in
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m{Hp4} =0.3

m{Hp4, Hp5} =0.2

m{Hp4, Hp5, Hp6} =0.4

m{Hp4, Hp5, Hp6, Hp7} =0.1
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Fig. 9. A weighting interpretation of mass assignment of human
performance output, Hp.

Hp is:

|{Hp}| = |{Hp4}| : 1, |{Hp4, Hp5}| :
2, |{Hp4, Hp5, Hp6}| :
3, |{Hp4, Hp5, Hp6, Hp7}| : 4.

Having converted a fuzzy set into a MA, the calculus
of MA can now be used to reason with fuzzy sets at
the mass level. The advantage of this representation
is the close relationship between MAs and their cor-
responding families of probability distributions. MA
therefore provides the crucial link between probabil-
ity and fuzzy sets. This is a great enabler in devel-
oping maritime human element solutions based on a
more unified theory than those that may be enacted
by just an individual BN or FL approach.

By distributing mass across singleton subsets of
the four focal elements, this now provides the proba-
bilities from using Equation (6) as follows:

P(Hp4) = {Hp4}
|{Hp4}| + {Hp4, Hp5}

|{Hp4, Hp5}| + {Hp4, Hp5, Hp6}
|{Hp4, Hp5, Hp6}|

+ {Hp4, Hp5, Hp6, Hp7}
|{Hp4, Hp5, Hp6, Hp7}|

= 0.3 + 0.2
(

1
2

)
+ 0.4

(
1
3

)

+0.1
(

1
4

)
≈ 0.5583′,

P(Hp5) = {Hp4, Hp5}
|{Hp4, Hp5}| + {Hp4, Hp5, Hp6}

|{Hp4, Hp5, Hp6}|

+ {Hp4, Hp5, Hp6, Hp7}
|{Hp4, Hp5, Hp6, Hp7}|

= 0.2
(

1
2

)
+ 0.4

(
1
3

)
+ 0.1

(
1
4

)
≈ 0.2583s xs′,

P(Hp6) = {Hp4, Hp5, Hp6}
|{Hp4, Hp5, Hp6}| + {Hp4, Hp5, Hp6, Hp7}

|{Hp4, Hp5, Hp6, Hp7}|

= 0.4
(

1
3

)
+ 0.1

(
1
4

)
≈ 0.1583′,

P(Hp7) = {Hp4, Hp5, Hp6, Hp7}
|{Hp4, Hp5, Hp6, Hp7}|= 0.1

(
1
4

)
≈ 0.0250.

Thus, the probability distribution achieved from the
fuzzy event of human performance, Hp, is given as

P(Hp4) = 0.5583′, P(Hp5) = 0.2583′, P(Hp6)
= 0.1583′, P(Hp7) = 0.0250.

Note that ′is used after to show a recurring decimal
digit, which in this case is the number 3. The re-
verse operation is also possible, that is, converting a
probability distribution into a MA, and then into a
fuzzy set. For this reverse operation some assump-
tions must be made to generate only one fuzzy set
rather than a whole family of fuzzy sets. The prob-
lem arises since masses are assigned across members
of the P(Hp) while the Hp fuzzy set is defined on the
universe of Hp itself.

Once again, the least prejudiced distribution ap-
proach of distributing mass across singleton subsets
of the MA focal elements is favored. This least prej-
udiced distribution notion relies on an assumption of
an equal-likelihood prior to generate a single fuzzy
set.

For a normalized fuzzy set, the membership of an
element with the largest frequency is always 1. This
element is also that which gives the largest probabil-
ity associated with the least prejudiced distribution
assumption, since the order of frequencies in Hp is
given for the probabilities as

P(Hp4) >P(Hp5) >P(Hp6) >P(Hp7).

Then, the order of frequencies in Hp is given for the
elements in its fuzzy set can be given as:

μHp4 > μHp5 > μHp6 > μHp7.
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1 0.7 0.5 0.1

0.3 0.2 0.4 0.1

0.559 0.258 0.158 0.025

Fuzzy set level of Hp:

Mass assignment level of Hp:

Probability distribution level of Hp:

Fig. 10. Levels and values in the bidirectional processed human performance output, Hp.

Therefore, the MA for Hp is well generated, by ap-
plying Equation (4), as:

m(Hp) = {Hp4} : μHp4 − μHp5 , {Hp4, Hp5} : μHp5

−μHp6 , {Hp4, Hp5, Hp6} : μHp6

−μHp7 , {Hp4, Hp5, Hp6, Hp7} : μHp7 .

Now, using the least prejudiced distribution assump-
tion, a corresponding fuzzy set can be generated by
assigning each element within each focal element.
The probability distribution of the mass assigned to
that focal element can be obtained via Equation (7)
as follows:

P(Hp4) = μHp4 − μHp5 +
(

1
2

) (
μHp5 − μHp6

)

+
(

1
3

)
(μHp6 − μHp7 )

+
(

1
4

)
μHp7 ≈ 0.5583′,

P(Hp5) =
(

1
2

)
(μHp5 − μHp6 ) +

(
1
3

)
(μHp6−μHp7 )

+
(

1
4

)
μHp7 ≈ 0.2583′,

P(Hp6) =
(

1
3

)
(μHp6−μHp7 ) +

(
1
4

)
μHp7 ≈ 0.1583′,

P(Hp7) =
(

1
4

)
μHp7 ≈ 0.0250.

Thus, in working backward, the focal element’s mem-
bership values are obtained as:

μHp7= 0.1,μHp6= 0.5,μHp5= 0.7 and μHp4= 1.

Hence, this gives the discrete fuzzy set of Hp as:

Hp= {1/Hp4
+0.7/Hp5

+0.5/Hp6
+0.1/Hp7

}.
The bidirectional processed values for the fuzzy,
mass, and probability level of the Hp output set fo-
cal elements, are pictorially represented as shown in
Fig. 10.

It has been well recognized that the element of
human factor holds an all-essential input role into
countless maritime risk investigation domains. For
example, successful marine emergency escape, evac-
uation, and rescue (EER) are achieved through an ef-
fective and efficient interaction of the evacuees’ hu-
man performance and the mechanical performance
of the physical EER system (Bercha et al., 2003).
Nonetheless, without a fit for the function physical
EER system, human performance becomes an act
of brute survival—running, jumping, swimming, and
fighting hypothermia. Clearly, the subject here is not
on human performance alone, but rather on the mod-
eling of the interaction between humans and EER
physical systems.

A typical marine evacuation scenario for examin-
ing the reliability of an EER system, as based on per-
formance aspects relating to both mechanical and hu-
man cause-effect relationships with free-fall lifeboats
and rescue boats, may utilize the BN models of
Fig. 11(a) and Fig. 11(b), respectively. Moreover,

Fig. 11. Bayesian network of a cause-effect evacuation scenario.
(a) Evacuation causing the use of life rafts and rescue boats.
(b) Human element affecting use of life rafts and rescue boats.
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such a BN can be constructed from the likes of other
causal models such as fault trees, event trees, and
risk contribution trees (Eleye-Datubo et al., 2006)
and still pave the way for inference processing that
is based on the sound Bayes’s theorem.

The state of evacuation being necessary is not
typically dependent on evacuees. Rather, the state
may be effected by some accident event such as
fire, contact and collision, and/or loss of hull in-
tegrity (LOHI) (IMO, 1997). Evacuees normally ex-
hibit fuzzy qualities that are dependent on the PSFs
of the marine environment. In utilizing the hypothet-
ical Hp output that has been analyzed earlier in this
section, interactions of the evacuees with the physi-
cal EER system can thus give an intuitive evacuation
domain FBN of the type presented in Fig. 12. The
probabilistic cause-effect analysis of this underlying
network can be achieved via the BN module of the
FBN methodology that has been presented in Sec-
tion 7.

Fig. 12. A fuzzy-Bayesian network of a typical marine evacuation
analysis domain.

Fig. 13. A fuzzy-Bayesian decision model for a typical marine evacuation analysis domain.

In this setting, the human performance node will
always remain as a fuzzy event/variable node since its
probability cannot be directly ascertained unless via
PSF interactions. In cases where sufficient data be-
come available for a fuzzy event, then the node for
such an event becomes a complete Bayesian chance
variable node (as in the nodes for fire, contact and
collision, LOHI, evacuation, life rafts, and rescue
boat in the network).

Owing to the MA bidirectional transformation
enabled earlier in the Hp output analysis, the human
performance node can now utilize the probability dis-
tribution values in the normal way of a BN analysis.
Fig. 13 shows the calculated probabilistic values for
the FL-MA-BN human performance event. The fig-
ure gives further addition of new nodes that one may
also wish to study in the evacuation analysis. These
include a fire and a hull stress alarm as the effect of
the fire and the LOHI event, respectively. These two
nodes are also those of Bayesian chance variables
for which reliable probability data could be obtained.
Also, the life-saving node and the marine evacuation
system (MES) optimal survival node, represent, the
standard utility node and decision node, respectively,
that aids in achieving the decision-making aspect of
the model.

In this case study, the Hp output modeled into
the evacuation FBN does designate evacuees to be
normally meeting the requirements of their standard
work practice. Therefore, the conditional probabil-
ity of life rafts and rescue boats given these human
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Fig. 14. Propagation of human performance in a typical marine evacuation fuzzy-Bayesian model.

performance values have been modeled to reflect
a reliable EER operation. When “human perfor-
mance = very good” is the entered evidence, this ef-
fect on the probability of life rafts being launched
is that of a slight increase from 0.3728 to 0.3797
while its effect on the probability of rescue boats be-
ing launched becomes that of a slight decrease from
0.2903 to 0.2854 (See Figs. 13 and 14). As one would
inevitably expect, values of such events as LOHI and
that of a necessary evacuation have been unaffected
by this human performance propagation.

If “LOHI = damaged” is additionally entered as
new evidence, then the probability of evacuation be-

Fig. 15. Propagation of LOHI event and human performance in a typical marine evacuation fuzzy-Bayesian model.

ing necessary shoots up from 0.3310 to 0.7176 (see
Figs. 13 and 15), which in turn causes the probabil-
ity of life rafts being launched to increase drastically
to 0.7234. Similarly, the probability of rescue boats
being launched increases to 0.5705.

10. CONCLUDING REMARKS

In the risk analysis of a safety-critical maritime
system, each hazard event within the domain may
be subject to prior insufficient and vague knowledge
or that of an inherently random nature. To permit a
combination of both such uncertainty characteristics,
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the modeling of their cause-effect relationship will
require some form of possibility-probability linked
inference mechanism. As the theories of possibility
and probability, which can be handled by FL and
BN, respectively, are completely distinct but paral-
lel, a link is made possible by way of their compati-
bility with MA theory. A framework for a proposed
FBN permits the application of the inference algo-
rithm while justifying data problem cases and, at the
same time, aiding to provide a proficient graphical
tool for risk-based decision making of the model.
Following from the analysis outcome of the typi-
cal ship evacuation scenario case study, incorpora-
tion of the human element into maritime risk as-
sessment is an area prone to benefit from the com-
bined use of fuzzy and Bayesian principles as a causal
network solution. The hypothetical human perfor-
mance outcome in the case study has demonstrated
how the fuzzy PSFs can be incorporated into any
random processing risk-based model. The FBN is
also able to handle the cause-effect relationship of
FTs, ETs, and RCTs and still provide update rea-
soning that considers untreated uncertainty within
the domain model. Therefore, the FBN modeling
should offer a sound means for improving safety
knowledge/assessments/practices in the marine and
offshore industry.
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