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a b s t r a c t

In the Norwegian offshore oil and gas industry risk analyses have been used to provide decision support

for more than 20 years. The focus has traditionally been on the planning phase, but during the last years

a need for better risk analysis methods for the operational phase has been identified. Such methods

should take human and organizational factors into consideration in a more explicit way than the

traditional risk analysis methods do. Recently, a framework, called hybrid causal logic (HCL), has been

developed based on traditional risk analysis tools combined with Bayesian belief networks (BBNs),

using the aviation industry as a case. This paper reviews this framework and discusses its applicability

for the offshore industry, and the relationship to existing research projects, such as the barrier and

operational risk analysis project (BORA). The paper also addresses specific features of the framework

and suggests a new approach for the probability assignment process. This approach simplifies the

assignment process considerably without loosing the flexibility that is needed to properly reflect the

phenomena being studied.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the offshore oil and gas industry, quantitative risk analyses
(QRAs) have provided valuable information for decision-support
in the planning phase for more than 20 years. Such analyses are
also applied in the operational phase, along with simpler
techniques such as HAZID, Safe Job Analysis and HAZOP. However,
they are often considered to be too general, reflecting typical
offshore installations, not the specific installation in focus. What is
needed for the operational phase are risk analysis methods that
can provide installation-specific decision-support during planning
of operational activities such as maintenance, drilling and annual
stops. Such methods will have to reflect input information at a
more detailed level than the traditional analysis methods do. For
example, in case we are planning an annual shut down should we
extend the shut down period and reduce the time pressure, or can
we keep tight schedules if we use experienced personnel? Since
traditional tools are not well suited for decision-support of this
kind, development of suitable risk analysis tools is needed.

Several existing methods take organizational factors into
consideration for QRAs, for example SAM [1], Omega Factor
Method [2] and I-RISK [3]. In the Barrier and Operational Risk
Analysis project (BORA) [4] ideas from such projects are adapted
ll rights reserved.
to the offshore oil and gas industry. The BORA approach [5,6] are
based upon identification of risk influencing factors (RIFs),
determination of typical failure probabilities, determination of
situation-specific state of the RIF by using an evaluation and
assignment system, and weighting of the importance of each RIF
to the overall risk level.

The use of Bayesian belief networks (BBNs) [7,8] or similar
influence diagram methods is gaining popularity among risk
analysts as they are flexible and well suited for taking the
performance of human and organizational factors into considera-
tion, and they provide a more precise quantitative link between
the performance of RIFs. Recently, a methodology called hybrid
causal logic (HCL) has been developed, allowing BBNs to provide
input information to fault trees and event trees or vice versa
[9–11]. During the development of the framework, the main focus
has been on the aviation industry. We believe that the HCL
framework can be useful for operational risk analyses in the
offshore oil and gas industry.

This paper reviews the HCL framework and discusses its
applicability for the offshore industry. Experience gained in the
BORA project has been an important basis for our work. Since the
BORA method is recognized by the industry, this method is used
as a basis for the application procedure suggested, and for the
discussion. As a part of this procedure, conditional probability
tables must be assigned, linking the RIFs quantitatively to each
other. The number of conditional probabilities to assign is
substantial even for small cases, making the assignment process
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comprehensive to carry out in practice. This problem is well
known and has been addressed in other papers, see for example
Fenton et al. [12]. In the present paper, we present a method that
simplifies the assignment process without loosing the flexibility
that is needed to properly reflect the phenomena that are being
considered. Relevant historical data are often limited since most
events are specific, conditioned on other events. Hence expert
judgements are required. However, assigning all the conditional
probabilities directly will be unmanageable for the expert team,
indicating that some kind of simplification is needed.

The suggested method is based on such a simplification. The
basic idea is that a mechanistic procedure is introduced to
calculate the conditional probability tables. The expert just
assigns a few input parameters. The procedure utilises the
assumption that a probability assigned for a RIF being in a state
that differs considerably from its parents’ states should be smaller
compared to a state equal to its parents’ states. The greater
the deviation between the parents’ states and the RIF in focus, the
smaller the assigned probability. Following this principle the
conditional probability tables can easily be calculated, for
example using a simple computer program. The input parameters
reflect the importance of each parent to the RIF in focus, and how
the probability mass is distributed between states close to or
distant from the parent RIFs’ states.

The paper is organized as follows: In Section 2 we present an
introduction to BBNs and the HCL framework. Then in Section 3
we present the application of the HCL framework to the offshore
oil and gas industry. In Section 4 we present the suggested
conditional probability table assignment method. Section 5
presents a case study, followed by discussion and conclusions in
Section 6.
2. Introduction to BBNs and the HCL methodology

In this section, we briefly review BBNs and the HCL framework.
BBNs are particularly useful for modelling non-deterministic
causal relationships. The variables in a BBN can be continuous
or discrete. In this paper, only the latter kind is considered. A
simple BBN example containing three variables/nodes and two
arcs is presented in Fig. 1.

BBNs provide a compact representation of joint probability
distributions. Since only discrete variables are addressed in this
paper, the causal relationships can be expressed in conditional
probability tables. Knowledge/evidence about which states some
of the variables are in can be considered, and updated probability
distributions can be calculated for other variables.

As an illustration, let the three variables in Fig. 1 be assigned
six states each, designated a, b, c, d, e and f. Then the conditional
probabilities of M being in the states a, b, c, d, e and f, given all
combinations of the states of K and L, will have to be assigned in a
conditional probability table containing 63

¼ 216 probabilities.
Since K and L have no parents, the probability tables for K and L

are reduced to the probability distributions P(K ¼ k) and P(L ¼ l),
where k and l are specific states of K and L. The quantities K and L

are assumed independent.
L

K

M

Fig. 1. Simple Bayesian belief network example.
Let the variables represent RIFs, and the arcs represent causal
relationships between the RIFs. K can for instance reflect the
competence of the maintenance personnel, L can reflect the safety
focus of the management, and M can reflect the safety focus of the
maintenance personnel. In case we have evidence showing that K

and L are in the states a and b, respectively, the probability
distribution for M is described by the probabilities P(M ¼ jjK ¼ a,
L ¼ b) for j ¼ a, b, c, d, e and f. Because K and L are ‘locked’ to
specific states, they are said to be instantiated. Details of the BBN
approach are presented in textbooks and tutorials on the internet,
see for instance Jensen [7], Pearl [8] Bedford and Cooke [13] and
Murphy [14].

A method of applying BBNs in risk analyses has been suggested
in the HCL framework [10], and fully developed in [15] by letting
BBNs to be logically and probabilistically integrated into event
sequence diagrams and fault trees. Then some parts of the risk
analysis can be addressed in fault trees, while other parts are
addressed in BBNs. The analysts can apply the tool they consider
to be the best in each case. Fault trees are often considered as the
best option for technical aspects, while human and organizational
factors in many cases fit better into a BBN. By using the
advantages of both techniques, the result of combining fault trees
and BBNs is normally a more detailed risk model with higher
resolution, compared to traditional fault tree tools.

In the HCL framework, event sequence diagrams are used for
graphical representation of event sequences, as an alternative to
event trees. But since event tree/fault tree structures are
commonly applied in the offshore oil and gas industry, we use
this terminology as a basis for our discussion. The framework will
work both with event sequence diagrams and event trees. The HCL
concept is illustrated in Fig. 2. The figure is a simplification of the
link between BBNs and fault trees.
3. Use of BBNs in offshore risk analyses

3.1. Introduction

This section suggests how the HCL framework can be adapted
to the offshore oil and gas industry. Experience from two specific
risk analysis methods applied to the Norwegian oil and gas
industry has been studied. These methods are
�
 the BORA approach [5,6] and

�
 the technical conditions safety audit approach, TTS [16].
The suggested procedure is a common feature of the HCL
framework and experience from the two above-mentioned
methods. The result is a risk analysis method relevant for
operational risk analyses in the offshore oil and gas industry, in
particular for existing offshore installations, since the operational
input is taken into consideration to greater extent than in
traditional QRAs.

Our starting point is the development of an event tree/fault
tree structure as commonly applied in risk analyses. Next we must
decide upon which events to be modelled in fault trees, and which
ones to be analysed at a more detailed level by using BBNs.

For the risk modelling in BBNs we need a system to specify
which state the RIFs are in, and the natural candidate is the TTS
method [16], since it is recognized by the industry. This is a
method that can be applied to map and monitor the technical
safety level based on the status of safety critical elements and
safety barriers. Each system (node) is designated a state according
to predefined performance standards through an evaluation
process. The TTS method has the main focus on technical aspects,
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Fig. 2. HCL framework.

Table 1
States that the RIFs can be in

State State characteristics

f State is unacceptable

e State with significant deficiencies as compared with ‘‘d’’

d State is acceptable and within the statutory regulations’ minimum intended

safety level, but deviates significantly from reference level

c State is satisfactory, but does not fully comply with the reference level

b State is in accordance with reference level

a State is significantly better than the reference level
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but a variant addressing organizational aspects has been devel-
oped recently [17]. We suggest applying a variant of the TTS
evaluation system for all the RIFs in the BBN, see Table 1. To
make the BBN compatible with the TTS evaluation system, we
introduce six states characterizing the RIFs. Two states (success
and failure) are suggested for the binary nodes that provide
information to the fault trees, in order to ensure compatibility
with the fault trees.

3.2. Modelling and risk characterization

The HCL framework can be adapted to the offshore oil and gas
industry through the following steps:
(1)
 Define RIFs and causal relationships for the relevant basic
events of the fault trees;
(2)
 Identify concurrent RIFs;

(3)
 Build a BBN;

(4)
 Assign the conditional probability tables;

(5)
 Evaluate performance, and assign one state for (some of) the

RIFs;

(6)
 Calculate the risk results.
The idea is to carry out the first four steps once and apply the
same event trees, fault trees, BBNs and conditional probability
tables for several operational conditions such as normal operation
and maintenance activities through steps 5 and 6. Then we can
evaluate and assign the state of the RIFs for each specific
operational configuration and calculate risk results that can be
applied as decision-support. The steps are described one by one as
follows.

In step 1, RIFs and causal relationships for the relevant basic
events of the fault trees are described. The RIFs can either be
linked to another RIF or to a binary event/node. Extensive system
knowledge is required when the causal relationships are de-
scribed, including knowledge about the impact of human and
organizational factors. In most cases broad teams, comprising
experts from different disciplines, are needed to obtain this
system knowledge.

In step 2 concurrent RIFs should be identified to make sure that
they are represented only once in the BBN to be constructed. The
third step is to build a BBN based upon the defined RIFs and the
causal relationships. It is often seen that some RIFs have influence
on several basic events of the fault trees. This implies one or a few
rather large BBNs providing information to the event tree/fault
tree structure. Graphically, we recommend that the network is
organized as a wheel with the binary events on the outer edge and
the structure of RIFs in the inner part. Then it is easy to see which
RIFs influence several basic events, implying dependencies
between those basic events. The HCL algorithms developed in
Groen and Mosleh [9] are designed to correctly account for such
dependencies.

The fourth step is the assignment of the conditional probability
tables. Section 4 gives a suggestion on how this assignment can be
carried out in practice.

In the fifth step the performance of the RIFs in the BBN is
evaluated and are assigned states from a to f based upon the
specific operational conditions we are considering, and the
corresponding nodes in the network are instantiated. The RIFs
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Fig. 3. Example Bayesian belief network used in the discussion.
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are assigned one state each—we use no RIF state distribution. We
do not necessarily need to perform such an assignment for all the
RIFs, but the more nodes/RIFs that are instantiated, the more
situation-specific the results will be, since the calculations will be
based upon RIF states reflecting the operational conditions. For
calculations, the assigned states a– f must be transformed to
numbers. Then we can for example use the linear approach
introduced in BORA [5], where a ¼ 3, b ¼ 2, c ¼ 1, d ¼ 0, e ¼ �1
and f ¼ �2.

Now, how should we assign the RIF states? The evaluation and
assignment process must be carried out in such a way that the
analysts and decision-makers have confidence in the states being
assigned. For some RIFs it may be possible to use information
from the TTS performance requirements [16]. Otherwise some
kind of expert evaluations will be the best alternative.

The sixth step is calculation of the risk results. Exact
algorithms of the combination of fault trees and BBNs have been
developed [9] as part of the HCL framework, with high computa-
tional efficiency for complex HCL models. Alternative algorithms
for simpler problems and manual calculations are presented in
Wang and Mosleh [11]. A fundamental problem that has
necessitated the need for such algorithms is the fact that the
introduction of BBNs into fault tree/event tree logic introduces
dependencies among basic events when such basic events have
common causal roots in the same BBN. Therefore, a hybrid model
cannot be quantified by considering the event trees, fault trees
and the BBNs separately. Accordingly, it is not possible to obtain
exact calculations by applying existing separate software tools for
the BBNs and fault trees. However, the algorithms documented in
Groen and Mosleh [9] take the dependency problem into
consideration. In practical implementations a software tool is
needed, capable of solving large-scale risk problems. Such a
software tool is recently released, as part of a research programme
for the FAA [18]. Alternatively, an approximate approach can be
used by handling the BBN part of the risk analysis in a suitable
software tool, e.g. Hugin [19] or Netica [20]. Next the calculated
probabilities for the binary events can be used as input to a fault
tree/event tree software tool, e.g. RiskSpectrum [21] or QRAS [22].
A numeric example showing the difference between the exact and
approximate calculations is presented in Groen and Mosleh [9].
4. How to assign the conditional probability tables

The conditional probability tables and the arcs describe the
causal relationships in BBNs. The amount of conditional prob-
abilities that will have to be assigned is high, even for rather small
BBNs.

How should the conditional probability tables be assigned?
Historical data can be applied if available, but unfortunately such
data are in many cases either irrelevant or very limited.
Consequently, the conditional probability tables should normally
be based upon some kind of expert judgements.

Either a group of experts can determine every single prob-
ability distribution directly, or we can use some kind of
‘mechanistic’ calculation procedure. Due to the high number of
conditional probabilities that will have to be assigned, the first
alternative is in practice not manageable. And a fully ‘mechanistic’
procedure is not desirable, since this does not take valuable
knowledge into consideration. As a result, a method in-between is
suggested.

4.1. Conditional probability tables for the RIFs

This section suggests an assignment procedure for the
conditional probability tables for the RIFs. How to handle the
binary events, providing information to the fault trees, is
discussed in Section 4.2.

Consider the simple BBN in Fig. 3 consisting of two arcs and
three RIFs, each designated six states a, b, c, d, e and f.

In case K and L are in states a and b, respectively, which
probability distribution should be assigned for M, P(M ¼ jjK ¼ a,
L ¼ b), (j ¼ a, b, c, d, e, f)? It makes sense that a probability
assigned for a RIF being in a state that differs considerably from its
parents’ states should be small compared to a state equal to or
close to its parents’ states. The greater the deviation between the
parents’ states and the RIF in focus, the smaller the probability
that should be assigned. Consequently, P(M ¼ bjK ¼ a, L ¼ b)
should be higher than P(M ¼ fjK ¼ a, L ¼ b). And P(M ¼ djK ¼ a,
L ¼ b) should be somewhere in-between these two probabilities.
This means that the more ‘distant’ the state of M from the parents’
states, the lower the probability that should be assigned. This
principle is the basis for the suggested method.

By considering the ‘distance’ as mentioned above, as well as a
few parameters assigned by the analysts, the probability distribu-
tion for the six states of each RIF can be determined. Details are
described in the next paragraphs.

First we need to determine the importance of the parent RIFs
relative to each other. We suggest that this can be addressed by
some weights wi for each parent i determined by expert
judgement. The weights for all parents should sum up to 1. But
how should such weights be determined? We suggest a procedure
inspired by Sklet et al. [5], demonstrated by the use of the
example in Fig. 3: Determine by expert judgement the relative
change in the expectation value E(M) when K is changed from
state a to state f, and L is locked to state c, which is an average/
typical state. Next the exercise is repeated to determine the
relative change in E(M) when L is changed from a to f and K is
locked to state c. The resulting values are normalized such that
they sum up to 1, and are applied as weighs wK and wL. In general,
if an RIF has more than two parents, the procedure is repeated
once for each parent, with the other parents in state c.

When the weights have been determined they can be applied
to calculate Zj, a measure reflecting the distance from the state of
the RIF we are considering and the weighted average parents’
state. This distance measure is determined by the equation:

Zj ¼
Xn

i¼1

jZijjwi Zj 2 ½0;6� (4.1)

where Zij is the ‘distance’ between the state of parent i and the
state of the RIF we are considering, n is the number of parents, and
j is a possible state of the RIF we are considering, j ¼ a, b, c, d, e, f.
Absolute values are used to reflect that the relative ‘distance’ is
interesting, not whether the state of the RIF we are considering is
better or worse than the parents’ states. This means that changes
in both directions are given equal importance. In cases where this
assumption is not suitable, it is easy to extend the procedure to
differentiate between positive and negative ‘distances’.

As an example of how to implement Eq. (4.1), consider the
situation in Fig. 3 where K ¼ a and L ¼ b. Suppose we are
considering the case where M is in state d, i.e. j ¼ d, the distance
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between a and d is three states. Therefore, ZKd equals 3.
Correspondingly, the distance between b and d is two states,
and hence ZLd equals 2. Let us presume that the analysts have
assigned the weights wK ¼ 0.7 and wL ¼ 0.3. Then the weighted
‘distance’ for the RIF M in state d equals Zd ¼ 0.7�3+0.3�2 ¼ 2.7.
Correspondingly, Za equals Za ¼ 0.7�0+0.3�1 ¼ 0.3. In this way,
all the six Zj’s for the RIF M can be calculated.

Now, how much lower probability should be assigned for a
high Zj compared to a low Zj? We suggest that the probability
distribution is calculated by

Pj ¼
e�RZj

Pf
j¼ae�RZj

Pj 2 ½0;1� (4.2)

where the numerator determines the probability mass between
the six possible states j for the RIF in focus, and the denominator is
a normalization factor that makes the six Pj’s sum up to 1. The
distance measure Zj is calculated by Eq. (4.1), and the outcome
distribution index R distributes the probability mass between the
possible outcomes. The higher the R index, the lower the
probability that the RIF in focus is in a state distant from its
parents’ states. This means that if the analysts assign a high R

index, they express a low probability of the RIF being in a state
that is ‘distant’ from its parents’ states.

The outcome distribution index R remains to be determined.
How should we distinguish between for example R ¼ 0.5 and 1?
We should ideally have a method for assigning the R indices that
is intuitive for the experts. We suggest a method that focuses on
the relative difference between a perfect and an average situation.
With reference to Fig. 3 the experts can base their assignment on
the following: Suppose that the parents K and L are in perfect
states (a). How much higher probability should be assigned for M

being in a perfect state (a) than for M being in an average state
(c)? Based on this expert assignment, the outcome distribution
index R can be calculated. If, for example, the experts assign a
factor 10, the R index equals 1.15 based upon solving the equation
e�0R

¼ 10e�2R. In practice, it can be difficult for the experts to
distinguish between the RIFs when they are assigning the
outcome distribution indices R. Consequently, the assignment
process should be based upon a default value and typical upper
and lower values.

Suppose that we are to assign the conditional probabilities for
M ¼ j (j ¼ a, b, c, d, e, f), when K and L are in the average states (c).
The resulting probability distributions for three values of R are
illustrated in Fig. 4. We see that R ¼ 0 gives a uniform distribution,
while higher values of R result in narrower probability distribu-
tions.

By using the suggested method, the assignment process is
considerably simpler than assigning the conditional probabilities
0
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M

=j
|K

=c
, L

=c
)

j=b j=c j=d j=e j=f

Fig. 4. Example of calculated probability distributions for three values of the

outcome distribution index R.
one by one. And the method is based upon an assumption that in
most cases is reasonable; the greater the deviation between the
parents’ states and the RIF in focus, the smaller the probability
that should be assigned. But even though the method is based
upon a mechanistic procedure, the analysts have the required
flexibility to choose representative input information in such a
manner that they and the decision-makers have confidence in the
resulting probability distributions.

Summing up, only the weights wi for each parent RIF, as well as
the outcome distribution index R for the RIF being considered,
have to be assigned, based on which the conditional probability
tables can be calculated for example by a computer software. This
process is much easier than assigning all the conditional
probabilities directly one by one.

4.2. Conditional probability tables for the binary events

Since the binary nodes reflect events they have to be addressed
differently from the RIFs. We suggest using a method where
expert judgement is used to adjust a basis probability. How to
adjust such a probability is a general problem, and many
approaches exist in the literature, see e.g. SAM [1] and I-Risk
[3]. We propose applying the BORA method [5,6], as it is
specifically developed for this industry. The method can be
described through the following steps with one binary event in
focus:
(1)
Tabl
Adju

Pare

f

e

d

c

b

a

a

Quantify basis probability;

(2)
 Determine by expert judgement maximum deviation from the

basis probability;

(3)
 Calculate the conditional probability tables.
In the first step, the basis probability of the event in focus is
assigned. It can in most cases be determined by use of historical
generic data combined with a model.

In the second step expert judgement is used to determine a
factor reflecting how much the basis probability should be
adjusted if the parent RIFs are in the extreme states a or f. In
the BORA method, a default factor 10 up and down from the
average state (c) is suggested. The adjustment factors for the
states b, d and e are found by linear regression, and are presented
in Table 2.

In the third step, the conditional probability tables are
calculated based upon the parent RIFs’ states and the adjustment
factors Qi as

Pj ¼ Pbasis

Xn

i¼1

wi

Xf

k¼a

PikQik Pj 2 ½0;1� (4.3)

where Pik are the probabilities of each parent RIF i to be in each of
the states k ¼ a, b, c, d, e and f. Qik are the corresponding
adjustment factors, according to Table 2, and wi are the weights
for the parents i, summing up to 1. The index j are the possible
e 2
stment factors for the basis probabilities

nt RIF’s state Adjustment factors Q

10a

7a

4a

1

0.55

0.1

These adjustment factors are only valid for basis probabilities po0.1.
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states of the event we are considering (j ¼ success or failure).
Suppose that K and L in Fig. 3 reflect two parent RIFs, and M

reflects a binary event. Suppose K and L have equal importance
(wK ¼ 0.5 and wL ¼ 0.5), and that the probability distribution for K

is a ¼ 0.5, b ¼ 0.3, c ¼ 0.1, d ¼ 0.06, e ¼ 0.03 and f ¼ 0.01.
Correspondingly, suppose the probability distribution for L is
a ¼ 0.2, b ¼ 0.3, c ¼ 0.3, d ¼ 0.1, e ¼ 0.09 and f ¼ 0.01. Then
Pfailure ¼ 1.24Pbasis. In case K has a lower weight than L, for
example wK ¼ 0.1 and wL ¼ 0.9, Pfailure ¼ 1.54Pbasis. Correspond-
ingly, in case K has a higher weight than L, for example wK ¼ 0.9
and wL ¼ 0.1, Pfailure ¼ 0.94Pbasis.
5. Example case

This section presents a case study demonstrating the
method described in Sections 3 and 4, using a hydrocarbon
release scenario as a starting point. The aim of the example is to
highlight the basic ideas presented, and we prefer to use a rather
simple example from the BORA project [5]. The example case
focuses on the initiating event ‘release due to incorrect fitting
of flanges or bolts during flowline inspection’. The assembling of
the flowlines occurs after inspection, but prior to the process
start-up.

The event sequences caused by the initiating event are
presented as a barrier block diagram in Fig. 5. This is a graphical
presentation that resembles an event sequence diagram. There are
three barrier functions to prevent the initiating event to occur. As
can be seen from Fig. 5 [5], the technician carries out self-control
after assembling the flowlines. Thereafter, third-party control is
carried out. Finally, a leak test is carried out prior to the process
start-up. To each of these barrier functions fault trees are
presented in Figs. 6–8 [5].

The next paragraphs present and discuss the steps 1–6 in the
procedure presented in Section 3.2.

The first step is to define RIFs and causal relationships for the
relevant basic events of the fault trees. There are three basic
events in each fault tree. Suppose that the analysts want to apply
the BBN tool for all nine basic events. They also want to use the
BBN technique to analyse the causal relationship for the initiating
event ‘Incorrect fitting of flanges during maintenance’. The RIFs
selected are based upon the RIFs selected in the BORA project. For
details, refer Sklet et al. [5]. The identified RIFs and causal
relationships are presented in Fig. 9.
Barrier fu

Incorrect
fitting of 

flanges during 
maintenance

Initiating
event

1: Self 
control/

checklists

2: Third 
party 

control of 
work

Fig. 5. Barrier block diagram present
In Step 2 concurrent RIFs shall be identified. In this case it is
rather easy to identify RIFs that reflect the same phenomenon. Only
the RIFs having the same description in Fig. 9 are considered to be
concurrent. This means, e.g., that it is distinguished between training
and experience for technicians and third-party checkers. But both
personnel groups are assumed to relate to the same work permit.

In Step 3 a BBN is built, based upon the causal relationships
defined in Fig. 9. The network is presented in Fig. 10.

The fourth step is to assign the conditional probability tables.
Different procedures apply to the RIFs and the event tree basic
events. Let us start with the RIFs. For illustration purposes, the
suggested assignment method is described for one of the RIFs,
being ‘execution of leak test’. Since the RIF in focus and the parent
RIFs are assigned six states each, there are 65

¼ 7776 probabilities
to assign. To simplify the extent of the assignment process, the
method as described in Section 4.1 is used. The RIFs and the
required input are presented in Fig. 11. Abbreviations have been
used for the RIF names, where E ¼ execution of leak test,
P ¼ procedures for leak test, C ¼ communication between tech-
nician and control room, T ¼ training/experience technician and
M ¼ test medium.

Let us start with the assignment process for the weights wi,

carried out as described in Section 4.1. Suppose that the assign-
ment process results in the factors and weights described in
Table 3.

Now we have to assign the outcome distribution index RE. This
index is assigned by using expert judgement by determining the
relative difference in the probability for E to be in the perfect state
(a) and the average state (c) given that all parents P, C, T and M are
in the perfect state (a). Suppose that the experts have assigned a
factor 20 based on a default value, then the outcome distribution
index R can be calculated by solving the equation e�RZ0 ¼ 20e�RZ1

where
�

ncti

ing
Z0 ¼ 0. Distance between the parents’ states (a) and E being in
the perfect state (a).

�
 Z1 ¼ 2. Distance between the parents’ states (a) and E being in

the average state (c).

The calculated index R equals 1.50. Now all the conditional
probabilities can be calculated based upon the assigned input and

Eq. (4.2).

In general, when conditional probability tables are assigned,
we consider the parents’ states only, and do not have to include
knowledge about RIFs at lower levels. Thus, in cases with many
ons
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prospective event sequences.
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levels of RIFs, the number of conditional probability tables is high,
not necessarily the complexity of the probability tables. The
example case in Fig. 10 is based on a rather simple BBN, with only
one and two levels of RIFs. This makes the assignment process less
comprehensive since for many RIFs only unconditional probabil-
ities have to be assigned.

Until now we have focused on the conditional probability
tables for the RIFs. In the next paragraphs we present how to
assign the conditional probability tables for the binary events,
following the method described in Section 4.2. This is based on
the description in the BORA case study [5] and is only briefly
summed up. Let us use the event ‘failure to detect leak in leak test’
in Fig. 10 as an example. The first step is to quantify a basis
probability for the event to occur. Suppose a probability 0.1% is
expressed based upon expert judgements and generic databases
(e.g. THERP [23]). This should be interpreted as the probability of
failure given that all parent RIFs are in the average state (c). The
next step is to determine by expert judgement the maximum
deviation from the basis probability. This factor reflects how much
the generic probability should be adjusted if the parent RIFs are in
the extreme states a or f compared to the average state c. Suppose
a factor 10 in both directions from the average state is used as a
default value, and that this value is assigned by the experts. By
using Eq. (4.3) the adjusted failure probability can be calculated.
We refer to the example case presented in Section 4.2. Now the
BBN has been constructed, and the conditional probability tables
for both the RIFs and the binary events have been assigned. The
BBN is linked to the fault trees. The result is a framework that can
be used in risk analyses with information reflecting specific
operational conditions. Such conditions can be reflected in the
state evaluation and assignment for each RIF, following step 5 of
the procedure in Section 3.2. And finally, the risk results can be
calculated as described in step 6 of the procedure.
6. Discussion and conclusions

The HCL method provides a high resolution in the causal
relationships since it allows for several RIF levels. It is a flexible
framework where realistic causal relationships can be expressed.
There are several benefits of gathering all RIFs and binary events
in a BBN. Firstly, the analysts have to address each RIF once only
during the risk modelling and characterization. The result is a
more user friendly interface. Secondly, the BBN provides a
graphical presentation of the causal relationships, and hence
gives a useful presentation of dependencies. And since exact
calculations can be performed in the HCL framework, such
dependencies are taken into consideration.

But there is also another important aspect of dependencies:
There may be correlations between RIFs. See, e.g., the example
introduced in Section 2, where K reflects the competence of the
personnel, L reflects the safety focus of the management and M

reflects the safety focus of the personnel on the offshore
installation (see Fig. 1). If both K and L are considered to be in
the best state (a), the probability of M being in the worst state (f)
can be assigned; it will in most cases be a low value. Now, let us
consider the opposite example, where both K and L are in the
worst state (f). What probability should then be expressed for M to
be in the best state (a)? And should the probabilities in the two
examples be equal? Most experts will express a lower probability
for the latter case, since the probability of excellent safety focus to
the personnel is seen as almost impossible given that both their
competence and the performance of the management is in the
worst states. But Eq. (4.1) does not take the sign of the distance
into consideration. Consequently, the suggested method does not
reflect such correlations to the extent wanted for this example.

In the suggested application of the HCL framework, correla-
tions can be taken into consideration by adjusting the assigned
states for example by the changes indicated below:
�
 Absolute values are removed from Eq. (4.1). Then the weighted
‘distance’ Zj will be in the range [�6, 6].

�
 Different outcome distribution indices R are applied in cases

where it is believed to be a correlation between the parent
RIFs.

�
 The corresponding R indices are applied for the calculations of

each of the six numerators in Eq. (4.2). The denominator is
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replaced with the sum of the six numerators, making the
resulting six probabilities sum up to 1.
Expanding the method in such a manner makes it more
detailed, but also more complicated to understand and carry out
in practice.

The suggested application of the HCL framework also provides
flexibility when it comes to the RIF state evaluation and assign-
ment process. The analysts can assign a probability distribution
over the possible states a–f, as an alternative to one specific state
such as for example in the BORA method.

There are also some weaknesses of the method. Firstly, it is
resource intensive. Secondly, there are several simplifications in
the method. Particularly, the suggested procedure for assigning
the conditional probability tables includes to some extent
mechanistic aspects. However, this is considered necessary in
order to make the assignment process manageable in practice.

We would also like to give some comments to the validity of
the results, and the acceptance by the stakeholders. Many of the
steps described in Section 3.2 include evaluation by the risk
analysts, and of course, different analysts may conclude on
different RIFs, causal relationships, etc. This is, however, not
unique for the HCL framework, but is a challenge we face in every
risk analysis. To achieve results that are trusted by the
stakeholders, it is important to pay attention to the process
behind the risk calculation results. For example, subjective input
to the risk analysis should to a large extent as possible be assigned
by broad groups of experts, rather than by one single expert. In
general, validation of risk analyses is important, and the HCL
framework is no exception. However, there exist no simple
solutions. A method for assigning probabilities cannot be
validated in the sense that you can check that the results are
accurate relative to some true probabilities. The probabilities
in our framework are subjective expressing uncertainties, and
there are no correct numbers. However, all stakeholders need to
have confidence in the process of transforming the analysts’
knowledge and lack of knowledge into probabilities. Certainly this
is a critical aspect of the analysis, but it is not a specific problem
for this method. If you use a certain probability distribution in a
reliability or risk analysis, how can we verify the distribution?
We do not at the time of the assessment have sufficient data
for specifying one particular correct distribution. If such a
requirement had been made, it would not have been possible to
carry out QRAs.

Some would perhaps think that there is a problem by moving
‘between the Bayesian world and the statistical distributions’. This
is, however, not the case. Even if you adopt subjective probabil-
ities, you may choose to introduce a procedure that simplifies
your assignments, there is no problem in doing this.

All in all the suggested application of the HCL framework
provides a flexible method for combining event trees and fault
trees with input information (RIF state assignments) at a detailed
level. In the offshore oil and gas industry we need methods at
various levels with respect to details. It is up to the risk analysts to
select the best tool for each specific job, based upon the required
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Table 3
Weights wi for the parent factors of the RIF ‘Execution of leak test’

RIF: Execution of leak test Factors assigned by

expert judgement (%)

Normalized

weights wi

P: Procedures for leak test 40 wP ¼ 0.286

C: Communication between

technician and control room

20 wC ¼ 0.143

T: Training/ experience technician 60 wT ¼ 0.429

M: Test medium 20 wM ¼ 0.143P
wi ¼ 1
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level of detail and the resources available. The HCL framework
provides a supplement to existing methods for situations where
there is a need for detailed causal relationship modelling.
We are aware of the discussion and criticism of this type of
modelling and analysis. Our approach may be considered a special
case of system engineering [24]; an approach which, to a large
extent, is based on causal chains and event modelling. Some
researchers argue that the standard methods used in such
analyses are not able to capture ‘systemic accidents’. Hollnagel
[25], for example, argues that to model systemic accidents it is
necessary to go beyond the causal chains—we must describe
system performance as a whole, where the steps and stages on the
way to an accident are seen as parts of a whole rather than as
distinct events. It is interesting not only to model the events that
lead to the occurrence of an accident, which is done in for example
event and fault trees, but also to capture the array of factors at
different system levels that contribute to the occurrence of these
events. Alternative approaches have been suggested, see e.g.
CREAM [26] and STAMP (System-Theoretic Accident Modelling
and Processes) [27,28].

A critical review of the causal chain and event modelling
approach is of course important. Obviously, we need a set of
different approaches and methods for analysing risk. No approach
is able to meet the expectations with respect to all aspects.
The causal chains and event modelling approach have shown
to work for a number of industries and settings, and the overall
judgement of the approach is not as negative as Hollnagel
and other express. Furthermore, the causal chains and event
modelling approach is continuously improved, for example by
using BBNs. It is not difficult to point at limitations of these
approaches, but it is important to acknowledge that the suitability
of a model always has to be judged by reference to its ability
to represent the real world, but also its ability to simplify the
world. All models are wrong, but they can still be useful, to use a
well-known phrase.
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