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ABSTRACT 

Recent studies in the assessment of risk in maritime trans- 
portation systems have used simulation-based probabilistic 
techniques. Amongst them are the San Francisco Bay 
(SFB) Ferry exposure assessment in 2002, the Washington 
State Ferry ( W F S )  Risk Assessment in 1998 and the Prince 
William Sound (PWS) Risk Assessment in 1996. Repre- 
senting uncertainty in such simulation models is fun&- 
mental to quantifying system risk. This paper illustrates the 
representation of uncertainty in simulation using Bayesian 
techniques to model input and output uncertainty. These 
uncertainty representations describe system randomness as 
well as lack of knowledge about the system. The study of 
the impact of proposed ferry service expansions in San 
Francisco Bay is used as a case study to demonstrate the 
Bayesian simulation technique. Such characterization of 
uncertainty in simulation-based analysis provides the user 
with a greater level of information enabling improved deci- 
sion making. 

1 INTRODUCTION 

In maritime transportation systems, aleatory uncertainty, 
i.e. uncertainty ascribed to system randomness, maybe in- 
troduced, for example, by constantly shifting traffic pat- 
terns caused by weather changes. Epistemic uncertainty, 
i.e. uncertainty due to lack of knowledge of the system, re- 
sults from uncertainties in input data to simulation models 
and truncating estimates made on the results (output) of 
simulation models. There is extensive literature recogniz- 
ing the need to incorporate uncertainty analysis in risk as- 
sessment, however in practice it often is categorized under 
simplifying assumptions. Bayesian simulation analysis al- 
lows treatment of aleatory and epistemic uncertainties 
(Apostolakis 1978; Hora 1996; Hafer 1996; Cooke 1991) 

Amita Singh 
J. RenC van Dorp 

Thomas A. Mayuchi 

Department of Engineering Management 
& Systems Engineering 

George Washington University 
1776 G Street NW 

Washingtan, D.C. 20052,U.S.A. 

as contributing elements to risk analysis. In addition, this 
approach allows the user to make informed decisions based 
on output uncertainty rather than using point estimates 
(Glynn 1986; Cben and Schmeiser 1995; Chen 1996; 
Chick 1997; Chen et al. 1999; Cheng 1999; Chick and 
Inoue 2001; Chick 2000,2001). 

Over the years, various safety implementation meas- 
ures have been developed to prevent and mitigate the dam- 
age caused by maritime accidents, such as the recent sink- 
ing of the Prestige off the Spanish Galician coast and the 
grounding of the Exxon-Vnidez in the Prince William 
Sound. Probabilistic Risk Assessment (PRA) is a relatively 
new method developed to quantify maritime risk and esti- 
mate the effect of such safety measures (Hara and Naka- 
mura 1995; Roeleven et al. 1995; Kite-Powell 1996; Slob 
1998; Fowler and Sorgard 2000; Trbojevic and Can 2000; 
Wang 2000; Guedes Soares and Teixeira 2001). Pate- 
Comell(l996) provides a step-wise approach to character- 
ize uncertainty in probabilistic risk analysis. A six step 
treatment is defmed to address aleatay uncertainty as well 
as epistemic uncertainty: 

1. Identification of hazards 
2. Worst case analysis 
3. Plausible upper bound analysis 
4. Best estimates 
5. Probability and risk analysis 
6. Display of risk uncertainties. 
The PWS (Merrick et al. 2000; Merrick et al. 2002) 

and WSF (van Dorp et al. 2001) risk assessments capture 
the elements of aleatory uncertainty in a more explicit 
manner through integrated systems simulation with PRA 
techniques and expert judgment data. Both these analyses 
are considered at level 5 of the Pate-Come11 scale. So far 
and to the best of our knowledge, epistemic uncertainty has 
not been modeled as a risk element in maritime safety. The 
uncertainty representation described in this paper advances 
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to level 6 by considering aleatory and epistemic uncer- 
tainty distinctly as well as input and output uncertainty, us- 
ing Bayesian analytical methods in simulation models. 

Representation of aleatory and epistemic uncertainty 
in a risk assessment the PWS and WSF risk assessments 
comprises of the following 4 steps: 

1. Representation of uncertainty in simulation 
2. Representation of uncertainty in expert judgment 
3. Propagation of uncertainties through the entire 

model 
4. Performing a trial uncertainty analysis 
This paper describes the first step, the representation 

of uncertainty in simulation, models by incorporating input 
and output uncertainty in a Bayesian framework. As proof 
of concept, we will expand upon the existing San Francisco 
Bay simulation model to address simulation uncertainty 
(Menick, et al. 2003). 

2 BAYESIAN SIMULATION OF SAN 
FRANCISCO BAY VESSEL TRAFFIC 

The San Francisco Bay femes expansion project was un- 
dertaken to analyze the impact of increasing ferry opera- 
tions on San Francisco Bay as a measure to relieve traffic 
congestion on the freeways. The state of California pro- 
posed three expansion scenarios: 

1. Enhanced Existing System (least aggressive) 
2. Robust Water Transit System (more aggressive) 
3. Aggressive Water Transit System (most aggres- 

sive) 
To assess the proposed expansion impact, a detailed 

simulation of vessel movements in San Francisco Bay is 
developed. Figure 1 presents a snapshot of the SFB simula- 
tion. Movies of the simulation can be viewed at SFB 
Simil la t  i on  Movies. The simulation assesses vessel 
interaction under the three expansion scenarios defmed 
above. 

A simulation of the San Francisco Bay maritime 
transportation system is developed under a Bayesian 

framework; the model estimates the frequency of possible 
system states. The arrival of vessels and environmental 
conditions are inputs to the model, modeled using avail- 
able data. The input data (vessel arrivals into San Francisco 
Bay) is Limited and reflects input uncertainty (Chick 2001), 
thereby introducing epistemic uncertainty. The aleatory as- 
pect of input uncertainty is captured by assigning a prob- 
ability distribution on the arrivals times using the standard 
renewal process (Law and Kelton, 2001). All non-ferry 
traffic except scheduled regatta events is modeled. Prior 
distributions are specified for the input parameters to 
model epistemic uncertainty and under the Bayesian para- 
digm, available vessel arrival data is used to update these 
prior distributions to obtain the posterior distributions. 

3 THE INPUT UNCERTAINTY MODEL 

The SFB exposure assessment considers 5,277 arrival 
processes of various types of vessels using different routes 
(Memck et al. 2003). Historical inter-arrival times are cal- 
culated using Vessel Traffic Service (VTS) data based at 
Treasure Island. Let @ = (Tk ,. . ., Tifi ] be the mk independ- 
ent inter-arrival times for the k-th arrival process (k = 
1 ,..._, 5277). 

In classical simulation modeling, the distribution of 
inter-arrival times is selected by fust determining best es- 
timates of parameters for families of distributions, e.g. ex- 
ponential, Weibull, gamma, log-normal, based on the data. 
Let F: ( t  I e,’ ) , ..... , F,” ( t  I @’ ) be p families of prob- 
ability distributions, where k denotes the 5,277 arrival 
processes each assigned a different probability distribution 
and therefore a distinct parameter value qk. Estimation 
procedures such as maximum likelihood or method of 
moments are used to select the best estimates of the pa- 
rameters qk from the data d. The best fit distribution is 
selected by comparing the fit of each distribution to the 
data using fit statistics such as Anderesen-Darling, Chi- 
Square and Kolmogorov-Smimov (Law and Kelton, 2001). 
The best fit distribution is selected by taking either the fit- 
ted distribution with the lowest appropriate fit statistic or at 
least a fitted distribution that is not rejected by the corre- 
sponding hypothesis test and that has desirable properties, 
such as simple manipulation of the mean or variance. Us- 
ing this renewal process to model inter-arrival probability 
distributions also allows modeling of aleatory uncertainty. 

Under the Bayesian framework, l7,”(@,3, .... JZ:(Sd, 
denotes the prior distributions defined for the parameters of 
the probability models selected for the inter-arrival times. 
The data 0’ is used to update these prior distributions to 
obtain the posterior distributions n,’(@,‘ 1 @, ...., 
l7:(s,” I @). To demonstrate Bayesian updating proce- 
dures consider container ships arriving from an offshore 
anchor point passing under the Golden Gate Bridge and 
berthing in the Oakland Outer Harbor. Overall 176 such 
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transits occurred between 7/31/1998 and 12/31/2001, with 
an average of 4.44 days between transits. We consider the 
exponential distribution with parameter h and the gamma 
distribution is a natural conjugate prior for h. Thus if we 
assume a priori that h is drawn from a gamma distribution 
with shape parameter a and scale parameter b, then after 
updating with the inter-arrival time data, h will follow a 

m' 
gamma distribution with shape parameter a + ct,k and 

scale parameter b + mk. For the container vessel route, we 
assume a vague prior by setting a = 0.001 and b = 0.001, 
which corresponds. to a prior mean of 1 and a prior vari- 

mt 

ance of 1000. Forthis route, Et,! = 781.44 a n d d =  176. 
1 

andwegetaposteriorofa=781.441 andb= 176.001. 
To select the best fit probability distribution, ap- 

proaches have been described such as the Bayes factors 
(Kass and Rafiery 1995), posterior predictive densities 
(Gelfand 1996) and the most recent yet, the Decision In- 
formation Criterion (Spiegelhalter et al. 2002). In this 
modeling exercise, we chose to use the Decision Informa- 
tion Criterion @IC) method. The Bayesian Deviance is de- 
fmed as 

D($) = -ZIUP(D' I 0:) + Z I U ~ ( D ~ )  (1) 

wheref(I)') is a fully specified standardizing term that is a 
function of the data alone and does not affect the model 
comparison. The model fit is then represented by 

B = E[D(O:) ID'] (2) 

which denotes the expected deviance after updating with 
the available data. An estimate of the effective number of 
parameters pD is calculated as the difference between the 
expected Bayesian deviance after updating with the avail- 
able data and the Bayesian deviance calculated at the ex- 
pected value of the parameters after updating with the 
available data i.e. 

The DIC is set equal to - p D  , which is the model penal- 
ized by the number of parameters of the model. We com- 
pare the exponential, Weibull, gamma and log-normal dis- 
tributions for selection of the best fit probability 
distributions to the arrival process discussed above, with 
appropriate vague priors chosen for the parameters of each 
distribution. Table 1 shows the DIC results. The calcula- 
tions in Table I were performed in WinBugs version 1.4 
(Spiegelhalter et al. 1996). The effective number of pa- 

rameters is very close to the true number of parameters in 
the model. Overall, the gamma distribution has the best 
ranking, although the difference in the Weibull distribution 
is negligible and can be attributed to sampling error. 

Table 1 : DIC 

Ex onential 
Weibull 

837.349 E Lo -normal 847.731 

In the simulation, inter-arrival times for the exponen- 
tial-gamma process are sampled by first sampling from a 
gamma distribution with shape 781.441 and scale 176.001 
to obtain a sample for h and then sampling from an expo- 
nential distribution with the parameter set to the sampled 
value of h (Chick 2000). Equivalently, inter-arrival times 
could be sampled from a Pareto distribution with shape 
781.441 and scale 176.001 (Bedford and Cooke 2001, 
chapter 4). Thus the simulation models aleatory uncertainty 
represented by the exponential probability model and the 
epistemic uncertainty represented by the gamma posterior 
distribution on the parameter of the exponential. 

Overall, we have 5,277 arrival processes and the inter- 
arrival times follow an exponential distribution with pa- 
rameters a and b. To update these arrival times to o + 

",a 

Et: and b + mk, a database query is performed using 

VTS's transit log. The posterior distribution of the arrival 
rates is obtained using this data. The sum of the inter- 
arrival times is the same as the time between the f is t  and 
last arrival in the database. The query rehuned the fmt ar- 
rival, the last arrival and the total number of log entries for 
each combination of vessel type, origin and destination. 

The feny transits for the existing schedule as well as 
the proposed alternatives are based on a pre-defmed sched- 
ule. Environmental factors such as visibility and wind con- 
ditions were obtained from National Oceanographic and 
Atmospheric Administration (NOAA) observation stations' 
databases in the study area. The vessel interaction counting 
methodology is also programmed in to the simulation. 
Further details of the simulation model are discussed in 
Memck et al. (2003). 

4 THE OUTPUT UNCERTAINTY MODEL 

The output of the simulation model is the (yearly and 
daily) number of vessel interactions, N, which denotes the 
number of vessel interactions in the r-th replication of the 
simulation. To model output uncertainty under the Bayes- 
ian simulation framework, a probability distribution is as- 
signed a priori to the simulation model output and updated 
with observed data from the true output values. Such 

1 
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treatment of output data is characterized as meta-modeling 
(Chick 2000; Law and Kelton 2001). 

The model output of vessel interaction frequency is as- 
signed a Poisson distribution with rate p using a conjugate 
gamma prior on p with shape and scale parameters aand  b 
respectively. Let 

denote the likelihood function for the r replications, This 
likelihood function is used to update the prior to derive the 
posterior distribution of the vessel interaction. The poste- 
rior distribution is a gamma with updated shape and scale 

parameters a+ E n i  andD+r ,  respectively. This mod- 

eling approach of output uncertainty described by the pos- 
terior gamma distribution includes epistemic uncertainty 
about the expected number of interactions and the Poisson 
distribution assigned to the data models aleatory uncer- 
tainty of the actual number of interactions. 

5 UNCERTAINTY RESULTS OF 

i=l 

THE EXISTING FERRY SYSTEM 

The results of the simulation of the vessel movements in 
the San Francisco Bay provide us with a count of the inter- 
actions of these vessels in different geographic areas of the 
Bay under the three proposed feny expansion scenarios. 
The interaction count is provided on a daily as well as 
yearly basis. Daily counts will result in larger uncertainty 
bands than yearly counts. Hence for the purpose of this pa- 
per, we will focus on the daily counts. 

To compare interaction frequency between geographic 
areas and under the proposed expansion alternatives, we 
.compare the distribution of the expected number of interac- 
tions in a given period across these cases. Quantile maps of 
the expected rate of interactions in a grid of cells across the 
San Francisco Bay are created. Let ,u'[x,y] denote the ex- 
pected number of interactions in the grid cell indexed by x 
andy for alternative 0. Maps of the 5th, 50th and 95th per- 
centiles of the posterior distribution of the ,u'[x,y]'s for 
each alternative are created. 

The simulation was mn for 1 replication of 1 day of 
the current ferry system (Base Case). We assume a vague 
prior for the expected number of interactions in each grid 
cell, ,u'[x,y], by setting each a= 0,001 a n d a =  0.001. This 
corresponds to a prior mean of 1 and a prior variance of 
1000. In total there were 9,430 interactions in the simu- 

a 5th percentile of 6802 interactions and a 95th percentile 
of 12,711 interactions. 

To reflect the results across the grid of cells, 5th, 50th 
and 95th percentile maps were created as shown in Figure 
2. The red box at the center of the map sUirounds the ferry 
building in San Francisco. The accompanying count shows 
the percentage of the interactions that occur in this vicinity. 
We ohserve that with only 1 replication of a day, there is 
considerable variability ahout this quantity. However, ex- 
amining the color of the cells, with darker cells having 
more interactions, the colors do not change much &om the 
5th to the 95th percentile especially in the central hay area. 

lated day. The posterior distribution of each p [x,yl was 
calculated and summed over all x and y to fmd the poste- 
rior distribution of the total expected numher of interac- 
tions. This distribution has a median of 9,430 interactions, 

Figure 2: 5*, SOm and 95* Percentiles of the Daily Ex- 
pected Number of Interactions in the Base Case 

452 

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on May 18, 2009 at 07:42 from IEEE Xplore.  Restrictions apply.



Merrick, Dinesh, Singh 

Thus any conclusions drawn from these maps are robust to 
the uncertainties in the simulation, even with only a single 
replication of a day. 

In risk assessment, replications of much higher order 
need to be performed. Furthermore risk can change 
throughout the year due to environmental or traffic pattern 
changes. Therefore, we consider a full year of simulation 
as one replication and the quantity of interest is the ex- 
pected yearly number of interactions. We performed 50 
replications of a year fmdmg an average of 8,348,381 in- 
teractions per year. The posterior distribution of the total 
yearly expected number of interactions has a median of 
8,348,381 interactions, a 5th percentile of 8,333,496 inter- 
actions and a 95th percentile of 8,363,357 interactions, in- 
dicating a small range of uncertainty. 

6 UNCERTAINTY RESULTS FOR THE 
AGGREGATE ALTERNATIVES 
COMPARISON 

Comparing the existing ferry system (Base Case) to the 
three proposed expansion scenarios, we make this com- 
parison in aggregate using the posterior distribution of the 
expected number of interactions in the whole system for 
each alternative. 

One replication of one day was simulated for each of 
the three altematives to obtain the posterior distribution of 
the daily expected number of interactions. Figure 3 shows 
the comparison, plotting the median of this distribution 
against the total number of ferry transits in each simula- 
tion. Error bars are also added to indicate the range from 
the 5th to the 95th percentiles of the posterior distribution 
for each altemative. 

Figure 3: Daily Expected Number of Interactions for 
the Four Scenarios 

A major conclusion drawn from the original study in 
San Francisco Bay was that the number of ferry to vessels 
interactions grows exponentially with the number of ferry 
transits. Thus the safety levels currently enjoyed by the San 

I van DOT, and Mmuchi 

Francisco Bay feny service cannot be maintained under the 
planned expansion scenarios without equally aggressive 
investment in risk interLention (Memck et al. 2003). Fig- 
ure 3 shows that thii conclusion is not affected by the epis- 
temic uncertainties in the results. Despite the single repli- 
cation of a day for each alternative, the level of uncertainty 
in these posterior distributions is small relative to the large 
differences between the alternatives. 

7 UNCERTAINTY RESULTS FOR THE 
GEOGRAGAPFIIC ALTERNATIVES 
COMPARISON 

Further detail can be obtained by comparing the number of 
expected interactions in each grid cell across the San Fran- 
cisco Bay. This is done by calculating the probability that 
the rate in a given grid cell in one alternative is greater than 
or equal to that for the same cell in another alternative. We 
denote the probability of this ratio as P(jf’[x,yJ> #[x,yfi 
for all x and y and all combinations of a and b and the 
maps generated using these calculations are termed prob- 
ability dominance maps. Since P(jf’[x,y]> #[x,yfi cannot 
be calculated in closed form for the gamma distribution, 
sampling approximations are made from jf’[x,y]and #[x,yJ 
and the proportion jf[x,yJ> #[x,y] is calculated. 

The aggregate analysis shows conclusive differences 
between the current ferry system and the three alternatives. 
Each addition of feny transits results in additional interac- 
tions, with the growth being exponential. However exami- 
nation of the probability dominance maps give a more de- 
tailed picture of the differences between the alternatives. 
Certain areas are observed to be ‘hot spots’ for feny inter- 
actions while some areas in the Bay see fewer interactions. 

Figure 4 shows the probability dominance map for the 
Base Case compared to Alternative 3. As indicated in the 
legend, black cells indicate almost certainty that Alterna- 

Figure 4: Base Case Compared to Alternative 3 
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tive 3 will see more interactions in that location than the 
Base Case, with'less certainty shown in red. Blue cells 
show the reverse with almost certainty, while green indi- 
cates less certainty. The numbers of interactions in yellow 
cells are not different between these two scenarios. That is, 
the posterior distributions of the expected number of inter- 
actioni in a yellow cell are almost identical between the 
two alternatives mapped. Thus, the probability that one is 
higher than the other is 0.5 (50%) and corresponds to yel- 
low on the color scale. 

As observed in Figure 4, the majority of the grid cells 
are black. This reinforces our conclusions from the aggre- 
gate results that Altemative 3 has significantly more inter- 
actions overall than the Base Case. We also observe that 
that there are some blue cells primarily around the Golden 
Gate Bridge and Richardson Bay. The femes in this area 
run from San Francisco to Sausalito and Tiburon or are 
tours around the Bay visiting the Golden Gate Bridge. The 
tours were unchanged from the Base Case to the alterna- 
tives. The schedules supplied for the alternatives consist of 
a start time, end time and time between femes. The Sausa- 
lit0 and Tiburon femes start at 7 am and run every 30 min- 
utes until 10 pm during the week. On the weekend they run 
every 60 minutes. This is significantly more than in the 
Base Case, but this means that there are defmite patterns to 
the transits that are not reflective of a more mature sched- 
ule. These femes do not interact as much because of the 
timing of the transits. The number of interactions in this 
area is very low as compared to other areas of the Bay. 
This is also shown on the northerly routes to Larkspur and 
Vallejo. The blue in the middle of the black area is actually 
on the ferry routes. There are only certain places where fer- 
ries going in different directions meet due to the schedule 
(the black cells along the route). In other parts of the route 
fewer interactions occur (blue cells). 

8 CONCLUSIONS 

In this paper, we have described an approach to model out- 
put uncertainty in simulation models under a Bayesian 
framework.. This methodology also allows treatment of 
epistemic and aleatory uncertainty introduced through in- 
put data and the process of simulation. 

The San Francisco Bay ferry expansion simulation 
was used as proof of concept to provide an uncertainty 
bandwidth on the simulation output of the expansion alter- 
natives. Quantile maps of the expected rate of ferry interac- 
tions were used to conclude that geographic areas in the 
Bay with an expected high level of vessel interaction show 
consistency to the interaction (un)certainty. Probability 
dominance maps were generated to compare interactions 
between expansion alternatives over different geographic 
areas in San Francisco Bay. 

The methodology presented in this paper discusses a 
detailed approach to uncertainty representation in simula- 

tion. Research for aggregating expert judgment and repre- 
senting uncertainty therein is ongoing. A forthcoming pa- 
per will present a Bayesian model integrating uncertainty 
representation in expert judgment data to accident prob- 
ability models. 
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