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Abstract

This project was an experimental Wide Angle X-ray Scattering (WAXS) study
on different aspects of water transport through a powder sample of a nanoporous
layered synthetic smectite clay, Na-fluorohectorite. Na-fluorohectorite crystal-
lites, like all smectites, are able to swell due to intercalation of water between
the fundamental layer silicate. The dynamics of such a process is reflected in
the scattering signature and can be directly related to the interlayer distance
through application of Bragg’s law.

The temperature was lowered, and a fixed humidity gradient was imposed on
a quasi one dimensional powder sample thereby initiating the transition from
a monohydrous state to a bi-hydrated state implying the intercalation of one
monolayer of water into the interlayer spacing. Applying a pseudo-Voigtian
function the Bragg peaks were fitted and the normalized hydration states es-
timated. These are believed to be proportional to the ratio of crystallites in
a representative scattering volume existing in the corresponding mono- or bi-
hydrated state. The signature of mixed intercalation states in the neighbour-
hood of the intercalation front was demonstrated.

The intercalation front was shown to be modulated with a stretched exponen-
tial. The width and speed of the front through a sample volume was shown to
increase with time and/or spatial ingress. Suggestions of anomalous behaviour
were evident, however the crude inaccuracy did not allow for any definite con-
clusions at this point.

Finally an ordered (linear) and small displacement in the monohydrated peak
center position was observed over a significant spatial interval for positions far
from the intercalation front. This is suggested to be related to the water vapor
front and the ingress of small amounts of water molecules into the interlayer
spacing without altering the water layer state itself, only its dimensionality.
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Pretext

The project work was performed during the spring semester 2006 at the Complex
Systems and Soft Material Group at the Norwegian University of Science and
Technology (NTNU), Department of Physics, in Trondheim, and is a compulsory
subject in the 9th semester of the Master of Science (norwegian: ’sivilingeniør’)
degree.

The work has given a good insight into practical lab work, thorough prepa-
rations and data aquisitions, as well as the subsequent extensive and demanding
data processing and analyzing process.

I greatfully acknowledge my supervisor, professor Jon Otto Fossum, for ex-
tensive training on the X-ray intstrument as well as invaluable guidance and
motivation on the data evaluation. A special thanks also goes to Yves Méheust
for his ideas and contributions to the data analysis, especially with the fitting
function. I would also like to thank the staff at Bruker for useful guidance in
solving hardware problems concerning the X-ray apparature as well as professor
Geraldo Jose da Silva for helpful discussions on certain theoretical matters.

Trondheim, June 22nd, 2006 Lars Ramstad Alme
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Chapter 1

Theory

1.1 Clays

Clays represents one of the traditional materials which applications have played
a major role in traditional as well as modern history; ceramics, building material,
rheology modifications, catalysis and barriers for high level radioactive waste
just to mention a few. Apart from these traditional approaches and diciplines,
the fundamental studies of clay is merely at its beginning.

The majority of natural occuring clays are heterogene mineral mixtures.
However, the increasing availability of pure chemistry synthesized clays, render-
ing possible well controlled chemistry and structure, has led to a deeper interest
for clays as interesting and available experimental as well as theoretical model
systems, and clays have subsequently been included in modern material science
along with often better understood synthetic and complex applicable materials
like colloids, polymers, liquid crystals, biomaterials etc. [1]

Clays belong to the earth, however most of their characteristics are due to
interactions with water and air. Clay minerals constitute the fine grain side of
geology, and originally in the 19th century it was defined as minerals of grain
size < 2µm [2]. Of the minerals classified with respect to grain size, several also
exhibit a common mineral structure; clays, in particular, belong to the group
called phyllosilicates due to the intrinsic layer structure typically described by
high aspect ratio.1

Clays are on one hand regarded as aquous suspensions of physical colloids,
where platelike layer silicates constitute the primary particles. Thus clays must
be included in the physics of hard colloid suspensions. On the other hand,
dehydrated clays are described in terms of intercalation compounds. Thereby
the study of clays in relation to ’nano sandwiches’ is of fundamental importance
[1].

1Which means that the layer length and width dimensions are substancially larger com-
pared to the thickness.
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2 Theory

1.1.1 General considerations

The fundamental building block of all clays is a layered silicate (silicon tetroxide,
SiO4) mesostructure.2 There are two fundamental layer3 types; tetrahedral,
where generally a silicon (Si) atom is tetrahedrally bound to four oxygen (O)
atoms, and octahedral, where generally aluminium (Al) or magnesium (Mg)
are octahedrally bound to six oxygen atoms or hydroxyls (OH−). A platelet
is composed of different associations of these two layer types, whereas a clay
crystallite is subsequently an association of identical platelets.

Figure 1.1: Schematic diagram showing a single silicate tetrahedron to the left and a
single aluminium or magnesium tetrahedral unit to the right. Taken from [3].

(a) (b)

Figure 1.2: Different views of tetrahedral and octahedral layers. The top three il-
lustrates a sideview using three different motifs (space-filling spheres, ball and sticks
and polyhedra). The bottow row shows a top view perspective. Taken from [4]. (a)
Tetrahedral layer made up of single tetrahedral units. (b) Octahedral layer made up
of single octahedral units.

Clay subgroups Clays and clay-intercalation componds (CICs) (see below)
can be devided into subgroups according to the underlying structure and layer
charge; 1) 1:1 layered, 2) 2:1 layered and 3) 2:1 + 1 layered. A variety of different

2The prefix meso signifies ’middle’, which alludes to the layers being middle structrual
composits of the total particle structure.

3The term sheet is often used instead of layer.
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spieces of clays arises through substitutions of cations of the same or different
charges in the tetrahedral and octahedral sites.

(a) 1:1 (b) 2:1 (neutral) (c) 2:1 (charged) (d) 2:1+1

Figure 1.3: Schematic diagrams of different platelet compositions. x is a cation site.
t and o stand for tetrahedral and octahedral layers respectively. All pictures taken
from [5]. (a) Schematic diagram of the 1:1 layer, which usually has no layer charge or
very small layer charge. (b) Schematic diagram of the 2:1 layer with 0 layer charge.
(c) Schematic diagram of the 2:1 layer with interlayer cation. (d) Schematic diagram
of the 2:1+1 layer. The interlayer octahedral sheet is positively charged.

Layer structure The versatility of clays is attributable to the layered mi-
crostructure and platelet morphology. The individual particles are made up of
one or more silicate lamellae or sheets stacked by sharing exchangeable interlayer
cations. Although the layered subunits are crystalline, the relative positioning
and orientations between the lamellae usually display a substantial degree of
disorder [6]. The layered particles can become relatively thick, and according
to [7] they constitute the class of the most rigid layered solid crystals.4

As a result of the high rigidity and the structural anisotrophy, clays are in
pocession of several interesting characteristics of both fundamental as well as
practical interest. Furthermore it supplies the material science with an arena of
low-dimensional (2D) physics.

When a tetraheder- and an octaheder form the surface of adjacent platelets
(as in 1:1 or 2:1+1 type minerals), a force is created due to the hydrogen bonding
between the oxygen atom associated to the tetrahedrally arranged cation and
the hydroxyl ion associated to the octaheder group. This force ensures as stable
crystal.

However, when two tetraheder layers constitute the surfaces of adjacent
platelets, as in the case of 2:1 type clays, there are no hydrogen atoms present
to create these bounds, and the sheets are kept together by electrostatic forces
acting between the platelets due to their the electrical charge [2]. For some
clay minerals (the so-called high-charge structures5) this force is strong as a
result of the presence of a multitude of interlayer ions, while in other (denoted

4Layered silicate clays and clay-intercalation-compounds (CICs) constitute a subgroup of
the general class of layered solids, including i.e. graphite intercalation compound (GICs),
layered perovskites and layered dichalcogenides. These are classified by Solin by the rigidity
of the host layers against transversal displacements perpendicular to the layer planes.[8]

5These minerals hold high charge substitutions, between 0.9 and 1.0 per unit cell [9]. The
bonding connecting the sheets is very tight.
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low-charge structures6) the layers may expand further due to interlayer influx
of water and/or other polar ions and moelcules hence increasing the basal dis-
tance.7

Pores One can, in the case of a powder sample, imagine pore sizes of different
length scales; 1) the ability to intercalate guest ions and molecules counts for a
nanoporous material with sub 10nm pores between platelets, where the sheet
separation can be controlled to a certain degree, 2) mesopores of intermediate
(micrometer) order originating in the air space between the adjacent particles
and 3) ’human inferred’ macropores due to packing effects.8

Clays have, among other materials as e.g. carbon fibres and ceramic mem-
branes, been shown to contain oriented pores in the meso-range [10].

In a clay that undergoes a change in volume by swelling or shrinking, porosity
is altered because of changes in clay volume.

See also 1.3.

Intercalation and swelling As what is typical for layered solids, clays easily
form intercalation compounds in which several guest substances may be inserted
into the interlayer spacing in such a way that the host layer ifself remains fairly
unchanged. However, the number and the form of the guest intercalates suc-
cessfully inserted greatly exceeds the other types of layered solids [8].

Water is attracted to the clay surfaces, thus creating a water reservoar for its
surrondings. The attraction of water molecules to the grain surfaces is called
adsorption, while absorption is the term for describing the incoorporation of
watermolecules into the crystalline- or grain structure (Figure 1.4). All clays
adsorb, though not necessarily absorb. Whether or not a clay mineral undergoes
swelling depends on the layer charge and the contributing Coulomb interaction
between guest cations and host layer [11].

As a result of mainly two aspects, small grain size and the crystallographic,
layered habit with its intercalation features, clays display a high surface to mass
ratio.9 Substitution of metals either in-plane or of the exchangeable interlayer
cations create a residual surface charge10 that in the case of some clay subgroups
affects the water absorption in the interlayer space,11 thereby controlling the
basal spacing [12]. These water layers are loosely structured, however consider-
able effort is needed for the water to leave the surface, either by increasing the
temperature and/or pressure [9].

6These minerals hold low charge substitutions, between 0.2 and 0.9 per unit cell. Hence
the bonding is not as tight, and polar molecules, as water, are allowed between the layers,
thus enabling the swelling ability[9].

7These clays can not strictly be considered as crystals because of the varying basal distance.
However, the dentotation is still used for reasons of simplicity.

8In this experiment we inter alia wish to determine the effect of nanopores on diffusion
through the mesoporous space. The macropores are results of bad sample preparations, which
effects we intend to eliminate through proper grinding and filtering.

9For swelling-clays (see 1.1.2) the specific surface area (surface per mass) can reach up to
800m2 per gram.

10The platelet inhibits a negative surface charge and a smaller positive edge charge.
11The water is absorbed in layers, possibly up till as many as four depending on the sur-

rounding conditions.
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Figure 1.4: Location of type of water in a clay mineral; adsorbed water on the grain
surface, absorbed water in the interlayer spacing and crystalline in-plane water (or
hydroxyls). t and o refer to tetrahedral and octahedral layers respectively.

The ability to adsorb/absorb water is possibly the most important charac-
teristics of clays; hence theye are classified as swelling or non-swelling [9], the
latter being a feature exclusively exhibited by some clays (among them smec-
tites) resulting in considerable volume variations.

Thus there are two types of water inside clays: 1) crystalline water bound in
the internal structure as hydroxyls (OH−) and 2) absorbed water in the interlayer
spacings in the form of H2O. The former contribution is lost at temperatures
above ∼ 500◦C, whereas the latter at temperatures prior to ∼ 120◦C.

A hydrated sytem is a complex system; the detailed interactions between the
interlayer cations, the coordinated water molecules and charged silicate surface
lead to static structural characteristics og hydration dynamics that are not yet
fully understood [7].

1.1.2 Smectite clays

Among the clay families the 2:1 layered silicates are the ones most frequently
studied due to their wide span of chemical composure, intercalation availabilites
of water and other polar ions and molecules, and the characteristics of swelling
and undergo pillaring [11]. Thus their area of application is enormous. 2:1-clays
are, with respect to the layer charge per unit cell, divided into talc-phyrophillite,
smectites, vermiculites and finally micas and brittle-micas, each type differenci-
ated by type and location of cations in the oxygen framework [11].

Smectite is the name for the group of minerals all of which display the
property of being able to expand and contract their structures while maintaining
a two-dimensional crystallographic integrity [5]. The layer charge is sufficiently
high for the individual plateles to be able to stack by sharing cations, and at the
same time moderate enough to allow further intercalation of water molecules
into the resulting ”decks of cards”-like smectite particles (Figure 1.9c)[14]. The
silicate sheets of 2:1 smectites are generally composed of three atomic layers;
one octahedral metal hydroxid layer sandwiched in between two identical silicon
tetrahedral layers. Thus each platelet is ∼ 1nm thick, and the charge per unit
cell varies between 0.4− 1.2e/unit cell. The thickness of each clay crystallite is
typically ∼ 0.1µm, corresponding to ∼ 100 stacked platelets [15].
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(a) Full smectite structure. (b) Tetrahedral layer structure.

(c) Octahedral layer structure. (d) Smectite unit cell.

Figure 1.5: Schematic ball and stick diagrams of a smectite clay mineral structure.
Though the model is not Na-FH (The model has the compostion of a soil smectite
derived from the Webster soil series in south central Minnesota. Its structure is based
on the muscovite structure of Collins and Catlow (1992) with cation substitutions to
accomodate differences in chemistry and changing in spacing between the 2:1 layers.
The structure shown is based on a 14 Ångstrøm c-spacing.), it resembles that of Na-
FH from a structural point of view. The following symbolism is prevailing: light grey
= silicon, red = oxygen, dark grey = aluminium, brown = iron, green = magnesium,
purple = sodium, white = hydrogen. Taken from [13]

Water intercalation The low layer charge implies two important character-
istics; first the interlayer cations are not fixed stably between the layers, and
secondly the incoorporation of polar ions and molecules. The cations are hy-
drated (Figure 1.6) as a function of conditions of relative humidity (RH)12 and
temperatures under ∼ 120◦C. Depending on the chemical characteristics of the
cation, the ion will generally be hydrated with three or six water molecules. The
three molecule situation gives the one water layer (1WL) structure with a gen-
eral increase of the basal distance of roughly ∼ 2.5Å, whereas the six molecule
situation results in a two water layer (2WL) structure with an increase of the
basal distance of additional ∼ 2.5Å [9].13 Different substitutional cations in
their hydrated states display small dimensional variations; monovalent cations

12The reason for this is that in humid air the number of achieved hydrates relies on the
balance between the concentration of water molecules in the humid air and on the basal
surfaces of the crystallites as well as between the hydration levels of the basal surfaces and
the interlamellar space [16].

13The zero water layer (0WL) situation generally corresponds to a basal distance of roughly
∼ 10Å
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normally involve smaller basal distances than twovalent cations.

Figure 1.6: Generic structure of smectite with different hydration states coor-
dinated with the intercalation cation found in smectites. Taken from [17]

(a) OWL (b) 1WL (c) 2WL

Figure 1.7: Different hydration states for some smectite mineral structures. (a) Dry
clay mineral. (b) One monolayer of water. (c) Two monolayers of water.

If the smectite minerals are exposed to other polar ions (liquid or vapor),
these molecules will often enter the interlayer and surround the cation-water-
complex, thus expanding the interlayer distance additionally. In systems of
only water present, the amount of bounded water molecules is a function of
both humidity and temperature. Monovalent cations will often easier release
water than divalent cations.

Offset The linking of tetraheders and octaheders is barely offset with respect
to the adjacent oxygen layers, implying that the octahedral cations are not
directly under the tetrahedral cations (Figure 1.8). The mineral structures are
thereby not ortogonal in all directions, but monoclinic. Hence the direction
perpendicular to the layer is not c (one of the unit cell dimensions), but c sin γ
where γ is the monoclinic angle. There will however not be the same regularity in
the atomic configurations in the a and b crystallographic directions as the offset
is placing the different ions in more specific crystallographic sites. The main
result from this geometrical offset is that the dominating X-ray crystallographic
direction is (001) where a multitude of atoms are adjusted to form basal planes.
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Meanwhile, the other primary reflections, as (010) or (100), include fewer atoms
and do not display the same strong diffraction.

Figure 1.8: Schematic figure of the smectite unit cell in perspective and the subsequent
offset, which is general for all clay minerals. The parallel green lines coincide with
the crystallographic ab-plane. Observe that the octahedral ion does not fall directly
below the tetrahedral ion in the layers, thus the mineral structure is not ortogonal
in all directions. However, the offset defines the clay mineral as monoclinic. The
monoclininc angle gamma, defined by this offset, is depicted in the figure. Modified
from [13]

The (001) repetetive distance is the distance between equivalent layers of
basal oxygen atoms (those constituting the basal surface of the tetrahedrally
intervowen oxygen matrix) in the clay structure, and this is equal to the basal
distance c sin γ.14

Cavity The tetraheders in the same layer are bound such that a cavity of
diameter ∼ 3Å is formed inside the hexagonal ring (forming a kagomè lattice
[8]) of interlinked oxygen atoms constituing the basal sheet surface against the
interlayer gallery space. Cation substitutions in the intralayer structure may
bring a charge unbalance upon the sheet. However, this may be compensated
for by inserting cations into the cavities of the basal oxygen matrix. Thus charge
balance is effectuated on the complete structure (i.e. the two adjacent layers).15

In this way the two dimensional sheets are stacked in a regular manner to form
a three dimensional (pseudo-)crystal, each sheet effectively held together by
cations attracted to the cavities.

An ideal hexagonal oxygen matrix is rare in phyllosilicates at normal surface
conditions (22◦C, 1atm). The cavity tends to be deformed into a ditrigonal (or
pseudo-hexagonal) shape mainly accentuated by the different spieces of tetra-
hedral cations and to a lesser extent the other intralayer ions present [9].16

14This is the physical constant used to characterize clays due to the difficulties in measuring
the monoclinic angle γ.

15It should be notet that alternative crystal theories exist suggesting proton exchange as
responsible for the interlayer cation characteristics of the mineral.

16If the tetrahedral and octahedral layers were free (isolated), the interlayers of oxygen
would possess different in-plane lattice parameters. The fusion of these two layers introduces
a strain, which is reduced and compensated for by correlated corrections (rotations) of the
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This deformation may affect the attraction of certain cations for this spesific
crystallographic site.

Morphology Smectite particles have a peculiar shape and appear in networks
that make identification of individual members and definition of shape and form
difficult. Effective dispersion breaks up the networks and and lead to partial
lamellae separation. Determination of the size distribution of a smectite is
therefore mainly a question of clay sample preparation.

(a) Edge-to-edge (b) Face-to-edge (c) Face-to-face

Figure 1.9: Possible structures generated from the 1nm thick platelet of a swelling
clay. Taken from [18] (a) Chain structure (b) Like a house of cards (c) Like decks of
cards

Cation exhange capacity The lattice charge deficite leads to absorption
and exchange of ions and organic and inorganic molecules (Figure 1.10). This
is apparent from the cation exchange capacity (CEC) of the smectites. Under a
set of given circumstances different cations are not equally replaceable and do
not show the same replacing power [16].17

Standard unit cell Following the above reasoning the standard smectite unit
cell is composed of an octahedral layer sandwiched in between two identical
tetrahedral layers with the following composits: 20 oxygen atoms and 4 hy-
droxyl groups together with 8 tetrahedral- and 6 octahedral sites and 4 cavities
surrounded by a sixnumbered oxygen ring on the surface.

Subgroups Differentiated by the type and proportion of tetrahedral- and/or
octahedral elements, smectites are divided into montmorillonites, beidellites,
nontronites, hectorites and saponites [16].

tetraheder around the c-axis of the crystal.[8]
17The exchange-equilibrium equations leads to the Gapon equation, which determines the

proportion of each replaceable cation to the total CEC as the outside concentration varies:

M+m
e

N+n
e

= K
[M+m

o ]1/m

[M+n
o ]1/n

where the subscripts m and b refers to the valence of the cations, e and b refers to the
excangeable and bulk solution ions and K is a function of specific cation adsorption and
nature of the clay surface [16].
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Figure 1.10: Different types of exchange sites on clay particles; surface and absorbed
interlayer sites. These sites are quite similar to the sites of adsorbed and absorbed
water on swelling clays (Figure 1.4).

1.1.3 Hectorite

Hectorites are composed of silicon tetrahedrals (SiO4 and octahedrals of hy-
droxyls and magnesium(Mg)- and lithium(Li)-ions. According to [19] the clay
mineral origins from altered volcanic tuff ash with a high silicate content re-
lated to hot spring activity. The name relates to its locality; Hector, Cal-
ifornia. The mineral structure is monoclinic, and the chemical formulae is
Na0.3(Mg,Li)3Si4O10OH2 per half unit cell.

1.1.4 Na-fluorohectorite

Na-fluorohectorite (Na-FH) is a synthetic clean chemistry customized clay min-
eral where the hydroxyls of ’normal’ hectorites have been substituted with flu-
orine ions (F−). This entails the following chemical formulae of

Nax − (Mg3−xLix)Si4O10F2 per half unit cell (1.1)

where x is the porportion of Li-ions per half unit cell [7].
Na-FH has a rather large surface charge of 1.2e/unit cell, originating from

the substitution of Li+ with Mg2+ in the octahedral layer,18 compared to other
synthetic smectites as for example laptonite (0.4e/unit cell) or montmorillonite
(0.6e/unit cell). It also inhibits a fairly large and variable particle size ranging
from a few nm up til ∼ 10µm in diameter,19 and it is expected to display a
more homogen composure and charge distribution compared to natural occuring
clays [6, 15].

Wide Angle X-ray scattering (WAXS) studies of fluorohectorite in water sus-
pensions show that fluorohectorite particles contain about 80 1nm thick plate-
les. Because of the large surface charge (1.2e/unit cell), the particles remain

18This clay mineral is classified as trioctahedral due to that the octahedral layer sites are
still fully occupied (as opposed to a dioctahedral configuration and two threevalent octahedral
cations).

19The polydispersity in particle size makes gravity effectively sort the water solvent particles
according to size (see [6]).
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intact when suspended in water, as opposed to for instance montmorillonite
[14]. Other literature ([10, 15]) show particles of an average of ∼ 100 platelets,
corresponding to a height of ∼ 0.1µm. This implies that even though the indi-
vidual platelets are stacked in high numbers, the resulting ’grain’ will be a thin
desk with a diameter to height ratio of closer to 100 : 1 in certain occasions.
However, due to the already mentioned polydispersity in lateral size this ratio
is by no mean fixed and may be considerably lower for other grains.

AFM photographs of Na-FH are shown in Figure 1.11a, Figure 1.11b and
Figure 1.11c.

(a) (b) (c)

Figure 1.11: Atomic Force Microscope (AFM) photographs of Na-fluorohectorite.
With the permission of Dr. Ahmed Gmira (Norwegian University of Science and
Technology - NTNU).

Water intercalation Water intercalates under the right conditions into the
interlayer spacing of Na-FH leading to subsequent swelling. For Na-FH this
intercalation process, which is controlled by relative humitidy (RH) and tem-
perature, yields three stable hydration states.20 These structures, normally
referred to as O water layer (OWL), 1 water layer (1WL) and 2 water layers
(2WL), are quite well ordered along the stacking direction. The basal distance
between the stacked paletelets is around 10Å, 12Å and 15Å for the 0WL, 1WL
and 2WL cases respectively [7].

Whereas the number of monolayers able to intercalate is well mapped for
hydration and dehydration by synchrotron X-ray diffraction techniques, the
spatial configuration of the intercalated water molecules with respect to the
silicate sheets and the intercalated cations are not yet fully known [14].

1.2 X-ray diffraction (XRD)

Materials are essential to our technological society. In order to understand the
properties of these materials and to improve them, different means of diffraction
techniques using neutrons from nuclear reactors or particle accelerators or X-
rays from X-ray tubes, rotating anodes and synchrotrons have been developed.

20The high surface charge prevents further water intercalation and subsequent increase
in basal distance. Also the Pauling radius of the intercalation cation is assumed to be an
important contributing factor for explaining this limitation of crystalline swelling [20].



12 Theory

Since 1895 and the discovery of X-rays by William Röntgen plus the dis-
covery of X-ray diffraction by Max Theodor Felix von Laue in the year 1912,
this span of electromagnetic radiation has been established as an invaluable
method to probe the structure of matter. The application’s main limitation has
primarily been the generating source, but since the mid 1970s more powerful
synchrotron souces have been developed leading to more advanced research on
matter.

There are three main processes of interaction of X-rays with matter; elastic
scattering, inelastic scattering and X-ray absorption. Using X-rays in the range
of approximately wavelength of 1Å, small angle scattering can be treated as
elastic coherent scattering [21].

X-rays are scattered by electrons around the nuclei of the atoms composing
the unit cell. However this scattering is modified in three ways: (i) by the
electron distribution of an atom, (ii) by thermal vibrations that tend to blur
the atoms as scattering centers as temperature increases and (iii) by atomic
arrangements within the unit cell. The purpose of this section is to investigate
these effects on the total scattering intensity applied to a layered clay.

1.2.1 Diffraction

About 95% of all solid materials can be described as crystalline [22]. When
X-rays interact with a crystalline substance, one gets a diffraction pattern. X-
ray diffraction (XRD) is the instrumentation most commonly used to study
clay-sized minerals [5], though there are several other methods available.

Diffraction is a particular type of wave interference caused by partial obstruc-
tion or lateral restriction of a wave. The origin of this process is a periodically set
of identical scatterers, whereas this structure may appear in form of one, two or
three dimensional lattices. In principle the entire electromagnetic range can be
utilized as the source beam, but the essential for diffraction is that the distance
between the scattering centers must be of the same order as the wavelength of
the waves being scattered.21

The interlayer spacing in a typical clay crystal and the wavelength of the
X-rays both is of the order Å (or 0.1 nm).

Also, since the crystalline arrangement is studied with detectors some cen-
timetres away from the scatterers (atomic electrons), and the wavelength as well
as the interatomic distance are in the order of 0.1 nm, the observed intensity
may be dealt with in the plane wave approximation.

Thomson scattering

X-rays are electromagnetic radiation that best can be described as a polarized
wave with an oscillatory electrical field, ~E, and an oscillatory magnetic field, ~H,
mutually perpendicular as well as perpendicular on the direction of propagation.

In a classical description of a scattering event the electromagnetic field,
when it encounters an electron, inflicts the electron with an equal frequency
(the electron absorbs a tiny amount of energy from the incoming beam), which

21This is due to the Laue condition which states that the momentum transfer ~Q caused by
a scattering event must coincide with a reciprocal lattice vector ~Ghkl in order for constructive
interference to occur[23, chapter 4.4.1]
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thereby reradiates this energy with the same wavelength in all directions due to
its vibration. This is called coherent scattering, and the radiation is said to be
elastic. Such scattering is also called Thomson scattering.

Quantum mechanically when a photon is scattered against electrons in the
matter, a tiny amount of the incoming particle’s linear momentum (or energy)
is transferred to the electrons, but this loss in energy (or linear momentum) is
so small that the energy and thus the wavelength is assumed to be conserved.

Compton scattering

Energy may also be transferred to the electron with the result that the scattered
photon has a lower frequency (or energy) to that of the incident one. Such an
inelastic scattering process is called Compton scattering.

Elastic X-ray scattering is however the main process that is exploited in the
investigation of the structure of materials, and in this case it mostly suffices to
adopt a classical approach.

1.2.2 Interference

When waves are scattered from different scatterers, a phase difference originates
due to the differences in optical path distance travelled. When two ore more rays
are in phase there is constructive interference, whereas destructive interference
is caused by rays out of phase.

A diffracted beam that can be observed and measured is a beam composed
of an enormous number of constructively interfering rays thereby mutually rein-
forcing one another [5]. For this condition to be achieved, the angle of incident
can only take on certain discrete values most easily determined by Bragg’s law
(see 1.2.3 below).

1.2.3 Bragg’s law of diffraction

The Laue condition, ~Q = ~Ghkl, for a scattering peak is identical to the condition
for constructive interference of waves reflected from hkl planes. The indicent
and the scattered beam vectors are equal in magnitude and make equal an-
gles with the hkl plane. Their difference is the momentum transfer vector, ~Q,
perpendicular to this very plane.

For two waves incident with an angle θ on two parallell planes of interpla-
nar distance d, the reflected waves interfere constructively provided that the
difference in optical path travelled is a multiple of the wavelength22 λ.

2dhkl sin θ = nλ (1.2)

where n is an integer. This eqation is known as the Bragg law and was first
worked out by W.L. Bragg in 1912. For reflections from other sets of hkl,

22Some simplifying assumptions have to be taken into account in order to derive Bragg’s law:
the incident beam is assumed to be perfectly monohcromatic as well as perfectly collimated,
and secondly the equation is based on having only three planes of perfectly ordered atoms in
a infinite perfect crystal with the exact orientation for diffraction to occur [5].



14 Theory

Figure 1.12: Scattering from two parallell planes. For constructive interference to
occur the difference in optical path travelled by the two waves must equal a multiplum
of the wavelength. Taken from [24].

constructive interference may also be reached provided that this condition is
met.23

Note that Bragg’s law is purely a simple geometrical interpretation of diffrac-
tion by a crystal grating in contrast to the Laue condition that is based on a
pure physical platform. When a beam of X-rays is reflected in the Bragg sense
from an extended crystal face, the phenomenon is not a surface reflection as
with ordinary light. The X-rays penetrates to a depth of several million layers
of the effectively infinite series of equispaced atomic planes before being appre-
ciable absorbed. At each atomic plane only a minute portion of the beam may
be considered to be reflected. Moreover, though the Bragg condition predics
the angular dependency on peak intensity, it does not enable us to calculate the
numerical value of scattering intensity of constructive interference.

1.2.4 From one electron to a complete lattice

In order to evaluate the integrated intensity of a Bragg reflection from a small
crystal, which is the quantity that is readily determined in an experiment, it is
required to know exactly how this integrated intensity is to be measured. Instead
of referring to the intensity one can more precisely adapt the differential cross-
section. Consequently in this section the differential cross-section for Thomson
scattering from one electron to a whole lattice will be deducted very briefly
[5, 7, 24, 23, 25, 26].

The differential cross-section is in fact a proportionality factor defined by
(per scatterer) (

dσ
dΩ

)
=

Isc

I0N∆Ω
(1.3)

where I0 is the number of photons per second incident on the sample, Isc is the
number of photons scattered per second into a detector that spans a solid angle
∆Ω and N is the number of scatterers.

23The Bragg condition very well enlightens the limitations of wavelengths used in structure
analysis. The Bragg condition clearly states that no intensisty peaks can occur if λ is larger
than twice the largest crystal plane separation.
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One electron

The elementary scattering unit of an X-ray in material is the electron. The
differential cross-section for an atom is(

dσ
dΩ

)
= r20P (1.4)

24

where r0 is the Thomson scattering length which expresses the ability of an
electron to scatter an X-ray, and P is the polarization factor

P =

 1 synchrotron: vertical scattering plane
cos2 ψ synchrotron: horizontal scattering plane
1
2

(
1 + cos2 ψ

)
unpolarized source

(1.5)

where ψ is the direction of the radiated field with respect to the direction of the
incident beam.25

One atom

Figure 1.13: Phase difference in scattering from different parts of an atom. Taken
from [26].

The total scattering length of an atom is given

−r0f0(~Q) = −r0
∫
ρ(~r)ei~Q·~r d~r (1.6)

with atomic form factor or atomic scattering factor

f0(~Q) =
∫
ρ(~r)ei~Q·~r d~r (1.7)

resulting from the contribution of the charge density ρ(~r) in a volume element
d~r in ~r to the scattered field introducing a phase factor ei~Q·~r, where ~Q is the
wavevector or momentum transfer.26

24The power of two arises from the fact that the intensity is proportional to the squared
amplitude of the electric field, which in iteself is proportional to the Thomson scattering
length. The latter is by convention the prefactor of the sperical wave reradiated from the
oscillating electron set in motion by the incoming field

Erad(r, t)

Ein
= r0

eikR

R
cosψ

where R is the distance from the elctron and ψ the angle with respect to the direction of the
incident beam.

25In our case Ψ ≡ 2θ as will be seen later.
26Atomic electrons are necessarily governed by quantum mechanics and have discrete energy
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One molecule

Indexing the different atoms in the molecule by label j, the molecular structure
factor may be written

Fmolecule(~Q) =
∑
~rj

fj(~Q)ei~Q·~rj (1.9)

27 Due to the different spatial locations of the electrons a phase factor was
introduced to the atomic form factor in Equation (1.7). Likewise different spatial
locations of the atoms in the molecule correspondingly introduce another phase
factor, ei~Q·~rj , further complicating the expression of the molecular structure
factor.

A lattice

Following the approach described above and substituting the molecule with the
unit cell, the calculation of the lattice structure factor is straightforward

F crystal(~Q) = F unit cell(~Q) · SN (~Q) (1.10)

=
∑
~rj

fj(~Q)ei~Q·~rj ·
∑
~Rn

ei~Q·~Rn (1.11)

where ~Rn are the lattice vector defining the lattice and ~rj the positions of the
atoms with respect to an arbitrary lattice site.

In the subsequent paragraphs the last sum in Equation (1.10), the lattice
sum,

SN (~Q) =
∑
~Rn

ei~Q·~Rn (1.12)

will be investigated. The lattice points are specified by the lattice vector ~Rn =
n1~a1 + n2~a2 + n3~a3; hence in the case of a three dimensional finite lattice with

levels. The most tightly bound electrons are in the K-shell, with comparable energy levels
to a typical X-ray photon. If the energy of the X-ray photon is significantly smaller than
the bonding energy of the K-shell, the response of these electrons to an external driving field
will be reduced due to the fact that they are bound. On the other hand, electrons in less
tightly bound shells (L, M, etc.) will be able to respond better, but on a whole a reduction
of the atomic scattering length, denoted f ′ by convention, is to be expected. For energies
substantially exceeding the bonding energy, the electrons are to be considered as free and f ′

equals zero. In between these limits f ′ is expected to display resonant behaviour at energies
corresponding to atomic absorption edges.

Apart from altering the real part of the scattering length, the electron is (by analogy with
a forced harmonic ocillator) allowed to display a phase lag with respect to the driving field
represented by the complex term if ′′.

Thus, when scattering is treated in the second order Born approximation, the complete
atomic form factor becomes [27]

f(~Q, ~ω) = f0(~Q) + f ′(~ω) + if ′′(~ω) (1.8)

which in particular is of importance for wavelengths with energies close to absorption edges
of atoms.

27To compute the intensity in absolute units, the multiplicative factor of −~r0 has to be
accounted for in addition to the structure factor in accordance with Equation (1.6).
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N = (N1, N2, N3) unit cells, Equation (1.12) can be written

SN (~Q) =
3∏

j=1

Nj−1∑
nj=0

eiQjnj |~aj | (1.13)

In order to consider the behaviour of the lattice sum when the Laue condition is
almost fulfilled, a small parameter ~ξ = (ξ1, ξ2, ξ3) is introduced, which implies
that

~Q = ~Ghkl + ~ξ = (h+ ξ1)~a∗1 + (k + ξ2)~a∗2 + (l + ξ3)~a∗3

where the momentum transfer ~Q is expressed in terms of the Miller indices,
(hkl), the vector parameter ~ξ and the basis vectors in reciprocal space, ~a∗j (j =
1, 2, 3).

Recognizing the sum in Equation (1.13) as a geometrical series (see page
94), rewriting Equation (1.13) gives

SN (~ξ) =
3∏

j=1

eiπξj(Nj−1) sin(Njπξj)
sin(πξj)

(1.14)

Thus for the real value limited to one dimension j (j = 1, 2 or 3)∣∣SNj (ξj)
∣∣ = sin(Njπξj)

sin(πξj)

∣∣∣
~ξj→0, Nj∼large

−→ Nj∣∣∣SNj

(
ξj = 1

2Nj

)∣∣∣ ≈ 2
πNj ≈ 1

2 (PeakHeight)
(1.15)

28 showing that the peak height is equal to Nj and that the j’th full width at
half maximum (FWHM) is approximately 1

Nj
.

As Nj gets large and the width narrows and tends to zero while the area
remains constant29, the lattice sum can be written in terms of a Dirac delta
function, δ,30 ∣∣SNj (ξj)

∣∣ −→ δ(ξj) (1.16)

The lattice sum may be equivalently written31

|SN (Qj)| −→ |~a∗j |δ(Qj) (1.17)

According to Equation (1.4) it is the squared structure factor and hence the
squared lattice sum that is of interest in a diffraction experiment. By similar

28Since sinx→ x for small values of x and˛̨̨̨
SNj

„
ξj =

1

2Nj

«˛̨̨̨
=

sin(π
2
)

sin( π
2Nj

)
=

1

sin( π
2Nj

)

˛̨̨̨
˛̨
Nj∼large

≈
1
π

2Nj

=
2

π
Nj ≈

1

2
(PeakHeight)

29While the amplitude and the FWHM are dependent of Nj , it can be shown that the area
and consequently the integrated intensity is equal to unity and thus independent of Nj .

30See Appendix A
31The factor |~a∗j | is the j’th one dimensional equivalent to the factor υ∗ appearing in the

three dimensional transformation of δ(~ξj) to δ(~Q− ~G):

δ(~Q− ~G) = δ

0@ 3X
j=1

ξj |~a∗j |

1A =

3X
j=1

δ
`
ξj |~a∗j |

´
=

3X
j=1

1

|~a∗j |
δ(ξj) =

1

υ∗c

3X
j=1

δ(ξj) =
1

υ∗c
δ(~ξ)
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argumentations as above, showing that the peak is proportional to N2
j and the

width inversely proportional to Nj , whereas the sum |SNj
(Qj)|2 still equals

unity, the lattice sum can also be written in terms of a delta function

|SN (Qj)|2 −→ |Nj~a∗j |δ(Qj) (1.18)

The generalization to three dimensions is straightforward, and the delta
function character will be maintained for any crystal shape provided a large
number of unit cells in every direction∣∣∣SN (~Q)

∣∣∣ −→ Nυ∗c δ(~Q− ~G) (1.19)

where N is the total number of unit cells and υ∗c is the volume of a unit cell in
reciprocal space.

1.2.5 Kinematic scattering

When scattering is concidered in a certain sense to be weak, multiple scattering
effects are allowed for to be neglected thereby leading to considerable simplifi-
cations. This limit is also known as the kinematical approximation.

Lattice vibrations

So far the lattice concidered has been assumed to be perfectly rigid. However,
atoms i crystal lattices do vibrate, and this effect will now be investigated.

Vibrations are due to two distinct causes. The first contribution is purely
quantum mechanical in origin and attributed to the uncertainty principle. These
vibrations are independent of temperature and occur even at absolute zero of
temperature. Hence they are known as zero-point fluctuations. The second
contribution arises at finite temperatures and is due to thermal exitation of
elastic waves (or phonons) in the crystal, thus increasing the amplitude of the
vibrations.

To begin with we shall assume scattering from a simple crystal structure in
which we find one type of atom located in each lattice site. Vibrational affects
are allowed for by writing the instantanous position of an atom as ~Rn + ~un,
where ~Rn is the time averaged mean position and ~un is the displacement.

The structure factor is then, according to Equation (1.10) and (1.11),

F crystal(~Q) = F unit cell(~Q) · SN (~Q) =
∑
~rj

fj(~Q)ei~Q·~rj ·
∑
~Rn

ei~Q·~Rn

From Equation (1.3) and (1.4) we observe that the measured intensity, Isc,
is proportional to the structure factor, hence

Isc ∝ 〈
∣∣∣F unit cell(~Q)

∣∣∣2〉 = IDebye−Waller + ITDS (1.20)

where

IDebye−Waller =
∑

m

∑
n f(~Q)e−

1
2 Q2〈u2

Qm
〉ei~Q·~Rmf∗(~Q)e−

1
2 Q2〈u2

Qn
〉e−i~Q·~Rn

ITDS =
∑

m

∑
n f(~Q)ei~Q·~Rmf∗(~Q)e−i~Q·~Rn{eQ2〈uQm uQn 〉 − 1}
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The first term, IDebye−Waller, is recognized as elastic scattering from a lattice
with the atomic form factor being replaced by

fatom = f(~Q)e−
1
2 Q2〈u2

Q〉 ≡ f(~Q)e−W (Q) (1.21)

where f(~Q) is the atomic form factor and the exponential term, e−W (Q), is
known as the Debye-Waller factor. Despite that this term contains contribu-
tions for large values of |~Rm − ~Rn|, it still gives rise to a delta function in the
scattering. We observe that the intensity of the elastic scattering is reduced in
virtue of atomic vibrations, whereas the width does not increase.

As for the second term, ITDS, in crystallographic experiments thermal diffuse
scattering (TDS) gives rise to a background signal which occasionally needs to
be subtracted from the data.32

The generalization of Equation (1.21) is straightforward

F unit cell(~Q) =
∑
~rj

fj(~Q)e−Wj(Q)ei~Q·~rj (1.22)

where each type of atom in a compound in general will have a different Debye-
Waller factor.33

The Debye-Waller factor of each atom in a compound will generally differ,
as should be expected from the fact that lighter atoms normally vibrate more
intensely than heavier ones. Furthermore this factor doesn’t need to be isotropic
due to the bonding may restrict the vibration along certain directions. For
instance the energy required to alter the angle of the bonding is often less
compared to changing the length of the same bonding, so that atoms at the end
of bondings tend to have a larger amplitude perpendicular to the bonding than
along this.

Measured intensity from a crystallite

Combining the Equations (1.4), (1.11) and (1.19), the differential cross-section
for a crystallite, prior to taking the vibrational effects into consideration, can
be written (

dσ
dΩ

)
= r20P

∣∣∣F (~Q)
∣∣∣2Nν∗c δ(~Q− ~G) (1.23)

where r0 is the Thomson scattering length which expresses the ability of an
electron to scatter an X-ray, P is the polarization factor, F (~Q) is the unit cell
structure factor from Equation (1.22), N is the number of unit cells, ν∗c is the
volume of the unit cell in reciprocal space, ~Q is the momentum transfer and ~G
is a reciprocal lattice vector.

32The intensity increases as the average mean displacement decreases, and its width is
determined by the correlations 〈uQmuQn 〉 between the displacements of different atoms.

33Given by

Wj =
1

2
Q2〈u2

Qj
〉 =

1

2

„
4π

λ

«
sin2 θ · 〈u2

Qj
〉 = Bj

T

„
sin θ

λ

«2
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Figure 1.14: The uncollimated
scattering from a crystallite is rep-
resented by the grey ellipse, which
reflects the shape of the crystal in
resciprocal space. By varying the
orientaton of the crystal, scattered
waves with different ~k′-values from
terminating on different red lines
are scattered into and recorded
in the detector, and the result-
ing accumulated intensity shows a
smeared Bragg peak. This arises
from that the Laue condition is not
absolute. Taken from [23].

The incident beam has so far been assumed
to be perfectly monochromatic and perfectly
collimated, so that the scattered beam is also
monochromatic due to its elastic characteris-
tic. However, it will not necessarily be per-
fectly collimated. As the width of the Bragg
peak is inversely related to the number of unit
cells, N (see Equation (1.15)), and as N is not
infinite, the peak has a finite width, thereby
implying that the Laue condition doesn’t need
to be exactly fulfilled in order to record a mea-
surable intensity.

This is illustrated in Figure 1.14. It is as-
sumed that when the momentum transfer ~Q
falls within the grey ellipse, ~Q is sufficiently
close to the reciprocal scattering vector ~Ghkl

for an adequat intensity to be achieved, and
thus the scattered wave will show some diver-
gence (in ~k′). Assuming that every divergent
scattered wave reaches the detector, this im-
plies that all scattering processes where ~k′ ter-
minates on the thick red line will be recorded.
In order to observe the sum of all the scatter-
ing processes where ~Q terminates within the
ellipticly smeared Bragg peak, the crystallite
needs to be rotated with respect to the incoming wave ~k, and the measure-
ments are correspondingly repeated with the other thin red lines. Thereby the
intensity is accumulated.

The Lorentz factor

The Lorentz factor is a combination of two geometrical factors; the first a formu-
lation for the volume of the crystal that is exposed to primary irradiation, while
the second relates the number of crystals favourably oriented for diffraction at
any Bragg angle [5].

Equation (1.23) applies to a single setting of the instrumentations. By the
arguments stated in the above subsections, integration over the scattered wave
~k′ and the angular variable θ, defined by the incident vector ~k and the reciprocal
vector ~Ghkl, must be allowed for in order to be able to compare this intensity
with the measured experimental intensity.
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The final result of these steps gives rise to two additional factors34

1
k3

1
sin 2θ

(1.24)

the last of which is known as the Lorentz factor. This factor depends on ex-
actly how the intensity is integrated and therefore directly on the details of the
experiment.

The above result implies the following modification of Equation (1.23)(
dσ
dΩ

)
= r20P

∣∣∣F (~Q)
∣∣∣2N λ3

νc

1
sin 2θ

(1.25)

35

1.2.6 Powder diffraction

The sample is ground into a large number of small randomly oriented crystals.
Imagen a crystal oriented so that a scattering peak occurs at a scattering angle
θ. Subsequent rotation of the crystal around the direction of the incident wave
produces a scattering ring, a so called Debye-Scherrer ring of interference, in a
detector plane perpendicular to the direction of the incident wave. In the case
of powder crystals the crystals are not rotated, but the effect is nevertheless
much the same as the scattered waves corresponding to the various orientations
are produced simultaneously.

A crystalline powder then consists of a multitude of small crystal grains
randomly oriented. An ideal powder sample implies that the directions of the
reciprocal lattice vectors, ~Ghkl, are isotropically distributed over a sphere in re-
ciprocal space. Given an incident beam defined by ~k, a fraction of the crystallites
has the correct orientation for Bragg scattering. The reciprocal lattice vectors
of these crystallites constitute a circel formed by a cut through the sphere in a
plane perpendicular to the incident wave vector; a cut that constitutes the base
of the so-called Debye-Scherrer cone formed by the scattered wave vectors ~k′

(see Figure 1.15).
For a given (hkl)-reflection the fraction of crystal grains favourably orien-

tated for detection is proportional to the circumference of the circle defining the
basis of the Debye-Scherrer cone. By geometrical conciderations this circumfer-
ence is given by 2π|~Ghkl| cos θ.36 Moreover, permutations of the Miller indices

34With the delta function in Equation (1.23) as the starting point,

δ(~Q− ~G)

variations in ~k′ and θ and integration over ~k′ yieldsZ
δ(~Q− ~G)d~k′ =

2

k
δ(G2 − 2kG sin θ)

Then integrating over θ gives

2

k

Z
δ(G2 − 2kG sin θ)dθ =

1

k3

1

sin 2θ

For details confer a textbook, for example [23].
35Where k = 2π

λ
and υ∗c =

(2π)3

υc
.

36Or 2πk sin 2θ
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Figure 1.15: For an ideal powder
sample, the fraction of the crys-
tallites correctly orientated to the
incident beam may be represented
by a scattered wave vector evenly
distributed on the Debye-Scherrer
cone with ~k as axis and apex half
angle 2θ. The angular acceptance
of the detector is δ. Taken from
[23].

(hkl) may yield spheres with the same ~Ghkl vectors, and this fact is taken into
account by introducing the multiplicity mhkl of the reflections. Consequently
for a given ~Ghkl the intensity is proportional to mhkl cos θ.

At a different ~Ghkl vector the detector will see another fraction of the Debye-
Scherrer defined circle. The circumference can be expressed as 2πk sin 2θ inde-
pendent of ~Ghkl, and the fraction seen by the detector with angular acceptance
δ is kδ

2πk sin 2θ , which is proportional to 1
sin2θ .

Thus two additional factors are introduced to the Lorentz factor of a perfect
powder sample

Lperfect powder =
1

sin 2θ
·mhkl cos θ

1
sin 2θ

=
mhkl

2 sin 2θ sin θ
(1.26)

1.2.7 Putting it all together: The complete differential
cross-section for a crystal

Summarizing the key elements in subsections 1.2.4 to 1.2.6, the total differential
cross-section can be expressed as(

dσ
dΩ

)
= r20P

∣∣∣F (~Q)
∣∣∣2N λ3

νc

mhkl

2 sin 2θ sinβ θ
(1.27)

where each electron in a unit cell has the scattering cross-section r20P ; the
scattering length r0 expressing an electron’s scattering ability and P is the
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source dependent polarization contribution. The total intensity is reduced in
virtue of different optical path distances expressed by the structure factor of the
unit cell, F (~Q) (Equation (1.10) and Equation (1.11)). Differences in optical
path distances of the unit cells also introduce a phase factor expressed by the
lattice sum, which is reduced to a Dirac’s delta function. Summation and proper
integrations of this delta function give rise to the last factors N λ3

υc

mhkl

2 sin 2θ sin θ ,
where N is the number of unit cells, λ the wavelength of the radiation, υc the
volume of the lattice unit cell and mhkl

2 sin 2θ sin θ the Lorentz factor for an ideal
powder. The exponent β in the modulated Lorentz-polarization factor37

Lp =
mhklP (θ)

sin 2θ sinβ θ
(1.28)

(omitting the constant factor of 1
2 in Equation (1.26) and where P (θ) is the po-

larization factor (Equation (1.5))) is related to the number of crystals favourably
orientated for Bragg scattering. In the high-resolution limit β = 0 for a perfect
crystal and β = 1 for a perfect powder [5, 7]. For natural clays and finite resolu-
tion measurements the correct value of β is unknown, and what is only certain
is that the value of β is in between these limits.

The integrated intensity, Isc, is found by the multiplication of the differential
cross-section in eqation (1.27) with incoming flux, Φ0 (the number of photons
per unit area per unit of time)

Isc = Φ0 ·
(

dσ
dΩ

)
(1.29)

1.2.8 Scattering from a layered clay

For larger crystals almost all the scattering is concentrated at the Bragg angles
of diffraction and hence only the structure factor F is needed. The shape of the
diffraction peaks carries little information, and Equation (1.27) is valid.

However, for small, thin crystals as those of clay minerals, there is addi-
tional scattering adjacent to the hkl diffraction peak positions and even in small
amounts between these ’normal’ positions [5]. The characteristics of diffraction
peak shapes originating in this extra scattering, and the correlation with the
structural aggregates of unit cells, can be separated from the structure of the
unit cell itself. This extra contribution is termed the interference function Γ
and is a continuous function in θ.

Layer structure factor

The structure factor of the unit cell, F (~Q) (Equation (1.10) and Equation
(1.11)),

F unit cell(~Q) =
∑
~rj

fj(~Q)ei~Q·~rj

is however defined by hkl. Hence it is not a continuous function in θ.

37As the Lorentz factor and the polarization factor always occur together, it is in practice
convenient to be able to correct for them simultaneously.
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The transformation of a discrete structure factor in hkl to a continuous
function in θ is simple in the one dimensional case; we define a function G,
also known as the layer structure factor or layer scattering factor [5], which is
essentially the same as F , though continuous in θ. Considering the sample as a
centrosymmetric system it permits us to write the structure factor as [5]

G(θ) =
∑

j

njfj(Q)cos(Qzj)

where the summation is still taken over all the atoms of the unit cell, fj is the
temperature-corrected atomic form factor (Equation (1.21)), nj is the number
of atoms of type j located at the distance zj from the origin of the structure,
which in the case of Na-fluorohectorite is chosen to be the plane defined by
the Mg and Li atoms in the octahedral layer.38 Considering the relationship
~Q = ~k− ~k′ for the one-dimensional case, we get

Q = 2k sin θ

from geometrical considerations (see Figure 1.12 on page 14). Setting k = 2π
λ ,

we find Q = 4π
λ sin θ, and

G(θ) =
∑

j

njfj(θ) cos
(

4πzj
sin θ
λ

)
(1.30)

From Equation (1.21) and the expression for the exponent in the Debye-
Waller factor e−Wj(Q) (page 19), the atomic form factor’s θ-dependency can
be expressed as

fatomic form factor
T (θ) = fatomic form factor

rest e−BT ( sin θ
λ )2

where fatom
rest (θ) is the atomic form factor at rest, fatom

T (θ) is the temperature-
corrected value while BT is a measure of the mean square displacement of an
atom from its equilibrium position in the structure.39

Thus Equation (1.30) can be fully expressed as

G(θ) =
∑

j

njf
rest
j e−Bj

T ( sin θ
λ )2

cos
(

4πzj
sin θ
λ

)
(1.31)

with the physical interpretation of |G|2 being the square of the scattered am-
plitude from a single unit cell oriented such that its ab-plane makes the angle θ
with respect to the incident beam.

Interference function Γ

A layered clay will function as a diffraction grating for the purpose of X-ray
diffraction [28]. A diffraction grating can be modeled as a series of equispaced
slits. The net electric field is the sum of all the component fields. Given the
slit separation, d, the optical path difference between succesive beams for a
given observation angle θ is 2d sin θ, and the corresponding phase difference
∆φ = 4πd sin θ

λ (geometry shown in Figure 1.16).
38The complex value of G consists of real cosine terms and complex sine terms. When

squared, in order to find the intensity, the sine terms disappear because of the invoked sym-
metry (sin(x) = −sin(−x)).

39Thermal diffuse scattering (TDS) is neglected.
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Figure 1.16: The layered clay creates as a diffraction grating resulting in multiple
wave interference as a function of differences in the optical path distance (OPD).
Modified from [28].

The field due to the nth slit at a distant observation point is

Ej(θ) = Aei(j−1)∆φ , , j = 1, 2, ...N

where all of the beams have been referenced to the first slit, and there are N
total slits. The net field is

E(θ) =
N∑

j=1

Ej(θ) = A
N∑

j=1

(
ei∆φ

)j−1

which, being a geometrical series (see page 94), simplifies to

E(θ) = A
1− eiN∆φ

1− ei∆φ

The resulting intensity, proportional to the squared absolute value of the field,
is

I(θ) = I0

 sin2
(

N∆φ
2

)
sin2

(
∆φ
2

)
 = I0

[
sin2

(
2Nπd sin θ

λ

)
sin2

(
2πd sin θ

λ

) ]

where I0 is the intensity due to an individual slit.
The locations of the maxima are the same, independent of the number of

slits. A maximum of intensity is obtained whenever the phase difference between
adjacent slits is a multiple of 2π. The maxima occurs at the diffraction angles
given by

sin θ =
nλ

2d
40where n is an integer; that is at the Bragg angles. The intensity at the maxi-
mum increases to N2 times that of a single slit, an this energy is concentrated

40This is the Laue interference function/Bragg’s law.
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into a much narrower range of angles. Thus the interference function produces
peaks with equal areas for all 00l diffraction positions. The full width of a
diffraction peak between intensity zero corresponds to a phase difference ∆φ of
4π
N . The number of intensity zeros between the peaks is N − 1. As the number
of slits increases, the angular resolution or resolving power of the grating greatly
increases.

The interference function Γ for the purpose of Na-fluorohectorite is thus a
continuous function in θ and given by

Γ(θ) =
sin2

(
2πNd sin θ

λ

)
sin2

(
2πd sin θ

λ

) (1.32)

where N is the number of unit cells stacked in coherent scattering array along
the axis perpendicular to the interlayers and d is the interplanar distance d001.

The assumtion that diffraction occurs only for crystals of exactly N unit cells
is unrealistic, and mathematically it produces N−2 weak ripples evenly spaced.
However, a more realistic assumption leading to a more realistic pattern is based
on that the diffraction is composed of a series of crystallites with different N
values and proportions p(N) (where

∑
p(N) = 1) [5]. The different ripples

will then produce a smooth background assuming that the diffraction equation
(Equation (1.32)) can be modified as

Γ(θ) =
N=n2∑
N=n1

p(N)
sin2

(
2πNd sin θ

λ

)
sin2

(
2πd sin θ

λ

) (1.33)

This changes the form of the peaks. Among other things the tails are broader
for a given width at half maximum.

1.2.9 Putting it all together: Intensity for a layered clay

When taking into account section 1.2.8, the intensity for a crystal (Equation
(1.29) through Equation (1.27)) is modulated in the case of a layered clay yield-
ing

Isc(θ) ∝ |G(θ)|2 Lp(θ)Γ(θ) (1.34)

where Isc is the measured intensity, G the continuous unit cell structure factor
(Equation (1.31)), Lp the Lorentz-polarization factor (Equation (1.28)) and Γ(θ)
the interference function (Equation (1.32)), the latter of which is the sought for
function.

Equation (1.34) may produce results that are at variance with Bragg’s law
when N is small (typical < 10). Then the various orders will be shifted from
their nominal positions due to the width of the interference function at small
N . If, as often is the case, the maximum in the interference function occurs
in an angular region where the |G|2Lp function has a significant slope, the
multiplication of Γ will cause the peak maximum to shift in the direction of this
slope. The smaller the N , the bigger the width and hence the bigger the shift.
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1.2.10 Modelling the intensity for Na-fluorohectorite

The chemical formula for Na-FH is Nax(Mg3−xLix)Si4O10F2 per half unit cell
where x is the variable proportion of octahedral Li atoms. For the sample used
in this experiment (see 2.2.1) x = 0.6.

In this section a modelled theoretical presumtion of the two hydration states
(1WL and 2WL) is performed.

Layer structure factor G The summation of Equation (1.31) is taken over
only half of the cell and the result multiplied by two, for by symmetry the other
half is identical. Also note that only half of the actual number of atoms in the
symmetry plane is included in the sum as they are shared by adjacent unit cells.

Half-ionized atomic scattering factors are used for Si and silicate O (Si3+

and O− respectively), while fully ionized values are used for the other cations.
For water and OH− the scattering factor is the sum of the factors for H+ and
O2− [5].

The evaluation of the complete atomic scattering factor (Equation (1.8)) is
an elaborate process. The ’normal’ (non-dispersive) coherent contribution f0 is
found in literature as a discrete function of the Bragg angle as well as the energy
of the radiation (through the momentum transfer ~Q in Equation (1.7) and the
Laue condition (or Bragg’s law) for constructive interference) and consequently
has to be fitted with a proper function in order to be continuously evaluated
over the proper interval of interest.

The dispersive contributions, f ′ and f ′′, are multi-termed, where each term
is tabulated in [29]. Two of these terms are discretely tabulated as a func-
tion of energy, and thus a function fit is appropriate in order to determine the
contribution for the proper wavelength of this experiment.

For a fully and detailed elaboration of the complete atomic scattering factor,
see Appendix B. The results for the complete atomic scattering factor squared
over the appropriate angular interval (2θ ∈ [2.0◦, 10.8◦]) are summarized in
Table 1.1.

The distance z from the location of the atom to the origin, in this case the
horizontal plane defining the center of symmetry of the platelet (the octahedral
Li and Mg atoms), and the proportions of each element of the intralayer clay
sheets were obtained from [7]. See Figure 1.17.

Typical values of BT for layer silicates show considerable variations as the
quantity includes not only the effects of thermal vibration, but also the effects
of structural and substitutional order. From crystal structure analysis different
values for each atom in the unit cell have been isolated suggesting that BT ∼ 1.4
for cations and BT ∼ 1.8 for oxygen are good average values for layer silcates
[30]. Other litterature suggests BT ∼ 1.5 for cations and BT ∼ 2 for anions,
while BT ∼ 11 is used for one of the water molecule sites in the two layered
water-smecite structure [5]. [31] also suggests BT ∼ 11 for one of the molecule
sites in the bi-hydrated case and BT ∼ 2 for the other water molecule sites.41

In [7] BT ∼ 1.6 is utilized for all of the intercalants.

41In [31] it is shown that accounting for hydration heterogeneity (which means that the water
molecules may display different values) allows better fitting of the profiles of all experimental
00l reflections for the bi-hydrated case, expecially for the higher order reflection peaks.
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|f |2 for 2θ ∈ [2.0◦, 10.8◦]

H 3.4535E-07†
Li [3.9951,3.9006]
O [81.8530,73.5716]‡

[101.0170,90.5710]††
F [101.3753,94.7750]
Na [102.4551,99.1559]
Mg [103.2587,100.7009]
Si [126.5147,122.5386]

Table 1.1: Atomic scattering factor squared for all of the composite elements of Na-
FH.
† Hydrogen appears as H+-ion (or proton). Thus there are no scattering electrons
present, and only the dispersive contributions are included, for which the order indi-
cates that they can be neglected.
‡ For the O− case.
†† For the O2− case.

Figure 1.17: Schematic representation of the elements comprising the Na-
fluorohectorite unit cell (see also Table 1.2). The centre of symmetry defined by
the octahedral Li and Mg atoms is taken as origin. The positions are labeled on the
left whereas the proportions are labeled on the right. The upper and lower halves
represent the 1WL and 2WL case respectively. Taken from [7].
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Silicate layer

z(Å) n |f |2 BT

0.0 0.6Li [3.9951, 3.9006] 1.4
2.4Mg [103.2587, 100.7009] 1.4

1.09 2F [101.3753, 94.7750] 1.8
4O [101.0170, 90.5710] 1.8

2.70 4Si [126.5147, 122.5386] 1.4
3.28 6O [81.8530, 73.5716] 1.8

One water layer (1WL)
n z(Å) |f |2 BT

5.67 0.6Na [102.4551, 99.1559] 1.6
6.16 1.2H2O [101.0170, 90.5710] 1.6

Two water layers (2WL)

n z(Å) |f |2 BT

5.65 0.40Na [102.4551, 99.1559] 1.6
7.52 0.20Na [102.4551, 99.1559] 1.6
6.41 2.8H2O [101.0170, 90.5710] 1.6

Table 1.2: Values for the proportions n [7], the positions Z(Å) [7], the atomic form
factors f and the Debye-Waller BT values [30].

However, we observe from the exponential term e−BT ( sin θ
λ )2

that as long as
the calculated intensities are restricted to low diffraction angles, large errors will
not be caused by uncertainties in BT .42

Thus the layer structure factor squared |G|2 is by Equation (1.31) illustrated
graphically in Figure 1.18 for the angular interval where the two hydration peaks
(1WL and 2WL) appear. Structural parameters used for the calculations are
listed in Table 1.2.

Lorentz-polarization factor Lp The Lorentz-polarization factor for random
powders (β = 1) and for single crystals (β = 0) are very different at low values of
2θ. Previous experiments [7] using clay from the same original sample provided
a fitted β parameter to the Lorentz-polarisation factor (Equation (1.28)) of
β = 0.98 ± 0.14 and β = 0.94 ± 0.16 for the 0WL and 1WL case respectively.
For our purpose the mean value of β = 0.96 was chosen for both hydration
cases.43

The multiplicity of Na-FH clay mineral is 1. However, in this context it is
of no importance.44

Thus the general Lorentz-polarization factor (Equation (1.28)) in this case is
concretized as

Lp ∝ 1 + cos2 2θ
sin 2θ sin0.96 θ

(1.35)

Figure 1.19 shows a graphical representation of the Lorentz-polarization factor
determined by Equation (1.35).

42For instance at 2θ = 10◦ BT values of 1.0 and 2.0 amounts to a difference in the layer
structure factor of only ∼ 0.3%. At lower angles the difference is less.

43A mean value of β = 0.96± 0.16 is typical for natural clay minerals [7].
44This factor is static and therefore unimportant for studying the dynamical diffusive be-

haviour.
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Figure 1.18: Graphical representation of the layer structure factor squared, |G|2,
over the interval 2θ ∈ [5.0◦, 8.0◦]. Note that different hydration states imply different
factors. For transition states an intermediate factor of the two must be assumed.

Figure 1.19: Graphical representation of the Lorentz-polarization factor, Lp, over the
interval 2θ ∈ [5.0◦, 8.0◦]. Note that this factor is independent of hydration state.

The combined effect of the squared layer structure factor and the Lorentz-
polarization factor, |G|2Lp, is demonstrated in Figure 1.20. For the angular
range covered in this experiment this calculated effect is sufficiently consistent
with the corresponding experimentally obtained plot in [7].45

45There seems to be a scaling error in the abscisse of Figure 6 in [7]. Also note that different
polarization factors (Equation (1.5)) are prevailing for the two respective experiments. This
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Figure 1.20: Graphical representation of the squared layer structure factor and the
Lorentz-polarization factor, |G|2Lp, over the interval 2θ ∈ [5.0◦, 8.0◦].

Interference function Γ The interference function originates in thin crystals
creating additional scattering adjacent to or between the ’normal’ diffraction
positions determined by the structure factor F . The interference function shows
maxima of equal intensity at the Bragg angles and thereby carries the very
information that relates the measured intensity to the interplanar distance d001

through Bragg’s law. Thus this function is of the very interest for the purpose
of studying the dynamics of the intercalation front (and thereby hopefully the
dynamics of the diffusion).

Figure 1.21 shows a graphical representation of the interference function Γ
determined by Equation (1.32) and the assumption of a clay crystallite composed
of ∼ 100 plateles.

Method Γ applies to centers that scatter equally in all directions. However,
real minerals do not contain such centers, and as we have seen, the observed
diffraction profile consists of Γ multiplied by ohter factors (Equation (1.34)).46

Thus, in order to study the dynamics of the intercalation front, the measured
intensities must be adjusted for unwanted contributing factors, in the case of
Na-FH primarily G and Lp, before applying the analysis to the then ’pure’
interference function, Γ.

taken into account the agreement is sufficient for low angles. For higher angles both the shapes
and scaled amplitudes seem to differ slightly. This disagreement may be due to differently
chosen scattering factors (the scattering factors presented in this experiments were based on
ionized elements) and Debye-Waller factors (which mainly gives a noticeable contribution at
higher angles).

46Equation (1.34) in fact demonstrates that the atomic distribution in an individual unit
cell is experimentally observable only when the interference function has finite values, or as
stated in [30] as ”the interference function provides the only ’window’ through which we may
study the layer factor, that is, the atomic structure of the unit cell.”
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Figure 1.21: Graphical representation of the interferencefunction, Γ, over the interval
2θ ∈ [5.0◦, 8.0◦]. Note that the peaks for different pure hydration states (1WL and
2WL) are identical in shape and differs only by the angular centering. N = 100 stacked
platelets in a clay crystallite is assumed.

In Figure 1.22 a comparison of the contributions from the different factors
(|G|2, Lp and Γ) is displayed, while Figure 1.23 represents the final expected
theoretical intensity for the two pure hydration states (1WL and 2WL) in Na-
fluorohectorite.

1.2.11 Peak width

Note that destructive interference is just as much a consequence of diffraction
from a periodically repeating structure as is constructive interference. The
slightest deviation from the Bragg angle, and destructive interference from a
multilayer structure will occur making the Bragg peaks narrow. For an infinite
layered structure, the Bragg peaks will in fact modulate delta functions, that is
the width tending to zero. However, as no real structure is infinite layered, the
peaks will demonstrate a finite width (see also 1.2.4, especially Equation (1.15)
on page 17.)

Instrumental width Other factors contribute to the peak broadening. Al-
though assumed perfectly collimated and perfectly monochromatized incident
beam, neither is technically possible and both of these deviations add some peak
broadening. These effects are purely instrumental. Other instrumental factors
add to this instrumental width.

Sample width Several microstructural parameters contribute to the sam-
ple peak broadening. The diffraction peaks, when corrected for all non-Bragg
components, i.e. background, instrumental contribution etc., bear informations
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Figure 1.22: Graphical comparison of the different contributing factors, Γ, Lp and Γ,
over the interval 2θ ∈ [5.0◦, 8.0◦]. The Lp factor is very small in size compared to |G|2
and Lp (it almost disappeares in the abscisse), however its contribution is essential
due to that it is biased with respect to the angular distribution (see Figure 1.19).

Figure 1.23: Theoretical modelled intensity for pure hydration states in Na-
fluorohectorite. Note that the area of the 2WL hydration states is expected to be
almost three times that of the 1WL hydration state according to this model.

about crystallite size, mean-square strain and other microstructural parameters
[32].

Disorder A characteristic of all minerals is imperfection in crystal order
because of their small crystal size. Many clays are often 1000Å in the largest
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dimension and may have disordered subunits within this distance. These small
crystallites cause noticeable line broadening.

This line broadening effect which results from random displacements of unit
cells or groups of unit cells from their ideal positions of perfect registry, is simply
denoted strain broadening.

Shape transform Particle-size broadening or, in the case of Na-fluorohectorite,
thickness of the crystal is conveniantly inferred from the FWHM [5]. Since the
thickness only is of the order micrometer, the extension of the scattering region
due to the limitation of the lattice in the direction of the beam is considerable.
An estimate of the particle-size or the crystal thickness can be found by the
Scherrer equation[5]

L =
λK

β cos θ
(1.36)

where λ is the radiating wavelength, L the mean crystallite dimension47 along
a line normal to the reflecting plane, K is a the shape factor, a constant near
unity,48 and β is the FWHM.

Impurities Another reason for line broadening is the impurity of the sample
and hence the mixed layering, also known as interstratification, of different kinds
of clay minerals. This, however, is not a big issue concerning synthetic clays,
although the degree of ion exchange may affect the line broadening.

Temperature Finally temperature (phonons) contributes to the peak broad-
ening. However, a further investigation of this effect is omittet in this context.

1.2.12 Hendricks-Teller state

The behaviour of the hydration states in smecite clays is dependant on several
external parameters (humidity, temperature, pressure etc.) [33]. Changing these
parameters will often, once a critial parameter is reached, effectuate a hydration
transition from one state to another. This transition is a dynamic transition;
thus we may encounter a two-state coexistence which will be manifestet in the
recorded diffraction spectra. In general, this phenomena gives rise to different
maxima which are found at positions intermediate between the poles of the two
constituents [9]. Furthermore, the exact position of this combined band depends
upon the proportion of each component and the state of ordering of the sequence
of layers.

In 1953 Hendricks and Teller published a report on diffraction phenomena
caused by different types of disorder, in particular layer lattices in which phase
shifts between consecutive layers and the layer structure factor are not strictly
periodic [34]. The application of this assumtion comprises the case of water
intercalation in smecite clays, and a formulae for the diffraction effect to be
expected from random interstratification of pairs of spacings likely to occur in
this type of clay is easily developed.

The purpose of this section is to enlighten the effects of mixed water inter-
calation states on the diffraction spectra and very briefly calculate the accom-
panying diffraction formulae.

47L is equivalent to the value of N times d001 in Equation (1.32)
48A more accurate value of K is 0.91 [30]
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Formula for random interstratification

For the case of a finite number of phase shifts between layers, Hendricks and
Teller made the following assumtions: 1) all layers have the same structure
factors, 2) all crystallites are of infinte extent and 3) the succession of phase
changes is completely random.

The amplitude of the radiation for the entire clay crystallite is obtained
from adding the scattered radiation from all layers constituting the crystallite.
Thus the problem is reduced to a one dimensional challenge as the calculation
is reduces to a single summation over layer structure factors.

The scattered radiation may be represented by a vector in the complex plane

|~Ψ| = Ψeiϕ

where Ψ is the amplitude and ϕ the phase of the wave. The influence of the
layer structure factor is included in Ψ. Let ~Ψk represent the scattering from the
kth layer, and assume, for the sake of simplicity, that only two phase shifts, ϕ(1)

and ϕ(2), between neighbouring layers may occur.49 Then the total scattering
function from the entire crystallite of n layers will be

~Ψtotal =
n∑

k=1

~Ψk

and subsequently the total intensity

Itotal = | ~Ψtotal|2 = ~Ψtotal
∗
· ~Ψtotal

Hence, the average intensity per layer is

I =
1
n

n∑
k=1

n∑
l=1

~Ψk ∗ ~Ψl

Intermediate calculations50 give

I = Ψ2 1− [cos 1
2 (ϕ(1) − ϕ(2))]2

1− 2 cosϕ cos 1
2 (ϕ(1) − ϕ(2)) + [cos 1

2 (ϕ(1) − ϕ(2))]2
(1.37)

where ϕ = 1
2

(
ϕ(1) + ϕ(2)

)
. Equation (1.37) gives the mean scattered intensity

in every direction for which Ψ 6= 0. If both ϕ(1) and ϕ(2) approach multiples
of 2π at the same rate as their difference approaches multiples of 2π, then the
equation approaches infinity.51 This corresponds to the case of a interference
maxima, as should be the case.

Equation (1.37) will produce sharp interference maxima where the maxima
of these two crystallite conditions respectively (2θ(1)c and 2θ(2)c ) occur near the
same angle. On the other hand, lower and wider maxima are found for the case
of isolated maxima poles of the two conditions [34].

49This corresponds to the case where there are either one or two water layers between two
neighbouring layers.

50Specially interested readers are advised to see [34]
51The nominator approaches zero linearly while the denominator approaches zero quadrat-

ically.
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Another way of expressing Equation (1.37) would be by [35]

I ∝

 2p(1− p) sin2
(
π (d2−d1)

d′

)
1− 2p(1− p) sin2

(
π (d2−d1)

d′

)
− p cos 2π d1

d′ − (1− p) cosπ d2
d′

 (1.38)

where p (0 ≤ p ≤ 1) is the proportion of expanded layers and (1 − p) the
proportion of unexpanded layers. d′ is the apparent interlayer spacing (apparent
due to its continuous representation and hence does not necessarily represent
any physical interplanar distance), whereas d1 represents the higher and d2 the
lower interlayer spacing.

Remarks

Of the three assumptions for the derivation of the Hendricks-Teller mixed inter-
calation state in the previous subsection, the two first are obviously impossible
in reality; the first assumption is equal to saying that the identical layers are
separated by different distances, but with no interlayer material to support these
separations. However, provided that the layers consist of relatively heavy atoms
and the interlayer material is of low scattering power, then the assumption is
reasonably accurate.52

The second assumption implies diffraction peaks approaching a delta func-
tion, i.e. very sharp. However, finite crystallites of small size show considerable
peak broadening,53 though otherwise the diffraction pattern is the same [35].

It should be stated that this is a very simplified description of the real physical
conditions, which for the time being lacks a complete description.54 However,
this simplified model does provide a very basic explanation of the intermediate
peaks that often occurs in the dynamical transitions from one hydration state
to another.

1.3 Diffusion

Diffusion is a type of transport phenomena described as the spontaneous spread-
ing of matter (particles), heat or momentum. The transport originates in the
driving force of the system towards chemical equilibrium and is consequently
due to movement of particles from a higher to a lower chemical potential.55

Thus diffusion is a physcial process rather than a chemical reaction. Further-
more it is a spontaneous process. In most cases the chemical potential can be
represented by a change in the concentration.

52Hendricks and Teller also provided calculations in cases of different layer structure factors,
but the additional mathematical complications are not justified for in this context.

53See 1.2.4 and 1.2.8 for details.
54There is current resarch on this matter going on [36].
55Diffusion is a direct result of the second law of thermodynamics, stating that the entropy or

disorder of any closed non-equilibrium system must always increase with time until equilibrium
is reached. When water vapor is diffusing from a region with high concentration to a region
of lower concentration, the water is moving from a higher order to a lower order state in
accordance with the second law of thermodynamics.
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Short on random walks and diffusion

A random walk considers a ’walker’ which starts at a given point and takes steps
in random directions. Sometimes the length of the step may be random as well.
In the limit as the steps length and time between steps both goes to zero, the
walker inhibits a form of Brownian motion [37].

The Central Limit Theorem simply states that ’most’ random walks spred
out like normal diffusion. Mathematically normal diffusion is defined as the
variance of a group of random walkers growing linearly in time; < (∆x)2 >= D·t
whereD is the diffusion constant and t the time. By the Central Limit Theorem,
for most random walks the details of the random walk only change the diffusion
constant.

For anomalous diffusion the variance does not vary linearly with time, but
goes like < (∆x)2 >∝ D · tγ (γ = 1 naturally still corresponds to normal
diffusion). γ > 1 is defined as superdiffusion, which for instance applies to the
fragments of an exploding rocket (thereby often also called ballistic diffusion).
In some cases γ < 1, which is denoted subdiffusion and corresponds to cases
where average time steps become infinite56 [37].

Diffusion equation

For quantitatively modelling diffusion, different diffusion equations are used for
different diffusion forms. For a steady-state57 bi-molecular diffusion, we utilize
Fick’s first law

~j = −D(W )∇W (~r, t) (1.39)

which assumes that the net flux of the transported molecules is equal to the
physical property of diffusitivity (diffusion coefficient), D, multiplied by a local
concentration gradient, ∇W .

The continuity equation,

∂W

∂t
+∇ ·~j = 0

where ~j is the flux of the diffusing material, combined with Fick’s first law yields
the diffusion equation

∂W

∂t
= ∇ ·D(W )∇(~r, t) (1.40)

a nonlinear partial differential equation where W is the density of the diffusing
material, D is the diffusion coeffisient and ~r and t the spatial and time coordi-
nates respectively. Also notice that the continuity equation introduces a time
dependency, thus applying the diffusion equation to non-steady- or continuously
changing state situations58 as well. Equation (1.40) also goes by the name of
Fick’s second law.

56An infinite average step size only means that while long steps are rare, they are not so
rare that the average term is finite.

57Steady-state implies that the concentration within the diffusion volume does not change
with respect to time; ~jin = ~jout.

58i.e. when the concentration within the diffusion volume changes with respect to time.
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Clay

The porosity of Na-fluorohectorite was briefly mentioned in 1.1.1. From [6] we
know that the porosity (pore-volume to total volume in the dried-out 0WL state)
of the sample used in this experiment is 41%. Here we study the transport of
water vapor through the porous network originating from both the interparticle
as well as the interlayer spacings in the solid framework of clay crystallites. Most
of the water transport is expected to take place in the mesoporous space between
the clay grains. However, water transport is also expected in the nanoporous
interlayer space between the platelets. These represent two completely different
sets of pore types, and the water ingress into these pores is likely to display
significantly different time constants.

Water vapor will distribute itself over the available porous space by diffusion.
The subject of this study is for one thing to investigate whether or not the nature
of the diffusion is normal or anomalous (see 1.3.2), and if so if it it plausible that
the anomalous effect originates in the nanoporous water flow. It is important to
note that we are only able to study the intercalation front, not the water front.
The next question that naturally arises is what is then the relation between the
intercalation front and the water front.

Boltzmann’s transformation

A useful mathematical technique in studying the diffusion process is the appli-
cation of similarity transformations, such as Boltzmann’s transformation

η =
x

t1/2
(1.41)

This transformation leads to approximations that are shown to be valid
provided that certain physical parameters satisfy given limiting conditions [38].
These conditions are reflected in the assumption of a semi-infinite media [39]
and may be explicitly expressed in the boundary conditions of the given case
(see for example Equation (1.44) in 1.3.1).

The theoretical deductions of the mathematical content in the two subsequent
sections (1.3.1 and 1.3.2) are mainly based on [40].

1.3.1 Normal diffusion

In our experiment water vapor diffuses through a highly porous medium packed
in a very thin and long glass capillary. Consequently we consider the diffusion
to be one-dimensional from a macroscopic point of view.

Thus, according to the one dimensional representation of Equation (1.40),
we define W (x, t) as the local water concentration in a representative volume
element (volume water/element volume). Then the one dimensional normal
diffusion equation (deducted from Equation (1.40)) can be written as

∂W (x, t)
∂t

=
∂

∂x

(
D1

∂W (x, t)
∂x

)
(1.42)

where D1 is the normal Fickian diffusivity, D1(W ), assumed to be a function
only of the concentration of the diffusing medias.
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Assuming the validity of Boltzmann’s transformation (Equation (1.41)), we
introduce a new variable, the spatio-temporal scaling variable η,

η =
x

t1/2

with partial derivatives

∂η
∂x = 1

t1/2 ⇒ δx = t1/2δη
∂η
∂t = − 1

2
x

t3/2 = − 1
2tη ⇒ δt = −2t 1

η t
1/2δη

Thus Equation (1.42) with respect to the one spatio-temperal variable η
becomes

− 1
2tη

∂W (x,t)
∂η = 1

t1/2
∂
∂η

(
D1(W ) 1

t1/2
∂W (x,t)

∂η

)
= 1

t
∂
∂η

(
D1(W )∂W

∂η

)
⇓

− 1
2η

∂W (η)
∂η = ∂

∂η

(
D1(W )∂W

∂η

)
⇓

− 1
2η

dW (η)
dη = d

dη

(
D1(W )dW

dη

)
(1.43)

This very transformation is useful with the assumption of a semi-infinite (x ≥ 0)
solid in contact with a water reservoar located in x < 0 so that the boundary
conditions can be expressed as

W (x = 0, t) = W0 for t > 0
W (x, t = 0) = 0

}
⇔

{
W (η = 0) = W0

W (η →∞) = 0 for t > 0

(1.44)
thus fulfilling the conditions for the validity of Boltzmann’s transformation
(Equation (1.41)).

Application As both the diffusion equation (Equation (1.43)) as well as the
boundary conditions (Equation (1.44)) are functions of the variable η alone, the
same should apply to the local water concentration variable, W = W (η). This
directly implies that a universal curve should be obtained when the normalized
concentration profiles, W

W0
, for all values of x and t, are plotted as a function of

the scaling variable η = x
t1/2 .59

1.3.2 Anomalous diffusion

Anomalous diffusion differs, as briefly initially stated (see page 37), from normal
diffusion by the diffusion velocity. For systems displaying a lower diffusion
velocity than that of normal diffusion, we denote the phenomena subdiffusion,
whereas superdiffusion is the notation utilized for higher diffusion velocities.

59Note that it is essential to assume a concentrationdependant diffusivity, D(W), in order to
achieve a scaling variable leading to a universal curve. For other assumptions such a behaviour
is not garanteed.
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Subdiffusion

Subdiffusion is observed in several structures. Assuming a constant generalized
diffusivity, Dγ [cm/sγ ], subdiffusion can be characterized in one dimension by
the mean quadratic displacement

< (∆x)2 >=
2Dγt

γ

Γ(1 + γ)
(1.45)

where 0 < γ < 1 and Γ is Euler’s gammafunction.

However, when a macroscopic concentration gradient exists in a real system
displaying normal diffusion (γ = 1), the Fickian diffusivity can in general not be
expected to be a constant, but is assumed to vary with the local concentration
of the diffusing media. A similar behaviour is also to be expected for subdiffusive
transport areas [40].

One of several generalization of Equation (1.42) is by the method of the time-
fractional diffusion equation

∂γW (x, t)
∂tγ

− t−γ

Γ(1− γ)
W (x, 0) =

∂

∂x

(
Dγ

∂W (x, t)
∂x

)
(1.46)

for 0 < γ < 1 and where Dγ is a function of W .60

We here only consider the case where the diffusitivity is not a constant,
but a function of the concentration of the diffusing medias, and thus seek a
generalization of Equation (1.43) for 0 < γ < 1. The boundary conditions are
assumed to be

Wδ(x, 0) = δ(x)
Wδ(x, t) → 0 for x→ ±∞ (1.47)

thereby fulfilling the criterias for the validity of Boltzmann’s transformation
(Equation (1.41)).

Thus the term W (x, 0) in Equation (1.46) can be omitted. Once again
introducing the generalized term Φ(x, t) = W (x,t)

W0
, where W0 is deducted from

placing a water reservoir at x < 0 so that W (x, 0) = W0 for all t > 0, Equation
(1.46) can be written

1
Γ(1− γ)

∂

∂t

∫ t

0

Φ(x, t′)
(t− t′)γ

dt′ =
∂

∂x

(
Dγ(Φ)

∂Φ(x, t)
∂x

)
(1.48)

Then rewriting the variables

u = t′

t η = x
tγ/2

and performing the time derivative in Equation (1.48), we get

1
Γ(1− γ)

∫ t

0

[
(1− γ)Φ(η/uγ/2)− (γ/2)η

∂Φ(η/uγ/2)
∂η

]
du

(1− u)γ
=

∂

∂η

(
Dγ

∂Φ
∂η

)
(1.49)

60The Riemann-Liouville fractional derivative operator ∂β

∂tβ is defined by

∂βW (x, t)

∂tβ
=

8<:
1

Γ(1−β)
∂
∂t

R t
0

W (x,t)

(t−t′)β dt′ for 0 < β < 1

1
Γ(−β)

∂
∂t

R t
0

W (x,t)

(t−t′)1−β dt′ for β < 0
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Application The important issue in this context is neither the mathematical
deduction nor the final differential equation itself, but the fact that Equation
(1.49) and its boundary conditions (Equation (1.47)) solely is a function of the
scaling variable η alone. Thus, as in the case of normal diffusion, a universal
curve is to be expected for all values of x and t.

1.3.3 Method

Assume a graphical plot of the diffusive front. Introducing the scaling variable
η = x

t1/2 as the abscisse variable as well as allowing for anomalous diffusion,
represented by the time-fractional parameter γ (thereby η = x

tγ/2 ), we should
obtain a universal curve according to the theory described above. Thus for
normal diffusion we expect γ = 1, whereas 0 < γ < 1 is expected in the case of
subdiffusive behaviour.

1.4 Pseudo-Voigtian approximation

Several functions have been used to model X-ray peak shapes, and the Voigt
function has been shown to demonstrate good results [41].

As discussed in 1.2.11 there will occur a peak broadening due to both in-
strumental resolution and peak widths intrinsic to the sample. The combined
effects of these two contributions constitute a Voigt distribution, which in fact is
a convolution of Gaussian and Lorentzian functions. Unfortunately, an analytic
form for the Voigt function is not available. However, a practical approxima-
tion to the Voigt distribution has been adopted; namely the pseudo-Voigtian
approximation.

1.4.1 Gaussian distribution

The Gaussian distribution, also known as the normal distribution, is a family of
distributions of the same form differing in their location and scale parameters,
the mean (’average’) and standard deviation (’variability’) respectively [42],

fG(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (1.50)

µ being the mean and σ the standard deviation (Figure 1.24a).

1.4.2 Lorentzian distribution

The Cauchy-Lorentz, named after Augustin Cauchy and Hendrik Lorentz, is a
continuous probability distribution with probability density function [42]

fL(x, xc, ω) =
1

πω
[
1 +

(
x−xc

ω

)2
] =

1
π

ω

(x− xc)2 + ω2
(1.51)

where xc is the location parameter, specifying the location of the peak, and ω
is the scale parameter, specifying the half-width at half maximum (HWHM)
(Figure 1.24b).
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(a) (b)

Figure 1.24: (a) Gaussian distributions with different means and standard deviation.
The green line is the standard Gaussian distribution. (b) Lorentzian distributions with
different location and scale parameters. The green line is the standard Lorentzian
distribution.

The Cauchy-Lorentz distribution, or simply the Lorentz distribution among
physicist, is among other things important in spectroscopy largely due to the
fact that it describes the line shape of spectral lines which are broadened by
several mechanisms.

1.4.3 Convolution

In functional analysis, in particular, convolution is a mathematical operator
which takes two functions f and g and produces a third function that in a
sense represents the amount of overlap between f and a reversed and translated
version of g.

h(t) = (f ⊗ g) =
∫ t

0

f(τ)g(t− τ)dτ (1.52)

A convolution is thus a kind of a very general moving average, as one can see
by taking one of the functions to be an indicator function of an interval.

Deconvolution is a process used to reverse the effects of convolution on
recorded data. In general, the object of deconvolution is to find the solution of
a convolution equation of the form

f · g = h

Usually, as in our case, h is a recorded signal, and f is the signal we wish to
recover, but has been convolved with some other signal g before we recorded it.
As long as we know g or at least the form of this, we can perform deterministic
deconvolution.

However, in physical measurements the situation is usually closer to

(f · g) + ε = h (1.53)

where ε is noise that has entered the recorded signal. If we assume that the
recorded signal is noiseless when trying to make a statistical analysis of g and
f , the estimate will be incorrect. And the lower the signal-to-noise ratio, the
poorer the estimate. However, if one have some knowledge of the type of noise
in the data, one may be able to improve the estimate of g and hence f .
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(a) (b)

Figure 1.25: The Voigt distribution is the convolution between a Gaussian and a
Lorentzian distribution. (a) The Voigtian distribution is a combinations of the Gaus-
sian and the Lorentzian distribution. (b) Voigtian distributions all centered and with
combinations of different Gaussian and Lorentzian distributions (varying Gaussian
standard deviation σ and Lorentzian scale parameter ω). Both figures taken from
[43].

1.4.4 Voigtian distribution

The Voigtian distribution is therefore a convolution between a Gaussian and a
Lorentzian and is often used in X-ray work.

V (x;µ, σ, xc, ω) = (G⊗ L)(x;µ, σ, xc, ω) =
∫ ∞

−∞
G(τ ;µ, σ)L(x− τ ;xc, ω)dτ

(1.54)
The Voigt distribution is furthermore normalized since it is the convolution

of normalized distributions.

1.4.5 Pseudo-Voigtian distribution

The Voigt functional form has several practical applications for quantitative
analysis. Unfortunately, an analytical form for the convolution of a Gaussian
with a Lorentzian is not available, hence for practical systems two pseudo-Voigt
approximations are adapted. The first allows for different FWHMs

fpV(x;xc, η, ωG, ωL) = (1− η)fG(x;xc, ωG) + ηfL(x;xc, ωL) (1.55)

where fG(x;xc, ωG) and ηfL(x;xc, ωL) are the normalized Gaussian and Lorentzian
functions and η is the shape parameter that adjusts the relative contribution of
the two; a shape factor of zero is pure Gaussian and a shape factor of one is
pure Lorentzian.61

The second version includes Gaussian and Lorentzian distributions with the
same FWHM, ω,

fpV(x;xc, η, ω) = (1− η)fG(x;xc, ω) + ηfL(x;xc, ω) (1.56)

61The domain of physical significance in terms of convolution is restricted to 0 ≤ η ≤ 1.
However, cases may be encountered where least-squares fitting gives values outside this range.
Such sharply peaked super-Lorentzians (η > 1) or flat-topped super-Gaussians (η < 0) clearly
indicate that other mechanisms apply [44].
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However, both the shape parameter η and the width ω are functions of the
Gaussian and Lorentzian FWHMs, ωG and ωL respectively, through [41, 44]

ω = 1.36603ωL

ω − 0.47719
(

ωL

ω

)2 + 0.11116
(

ωL

ω

)3

η = (ω5
G + 2.69269ω4

GωL + 2.42843ω3
Gω

2
L + 4.47163ω2

Gω
3
L + 0.07842ωGω

4
L + ω5

L)
(1.57)

It has been shown that such a linear combination using lines with the same
FWHM as the Voigt profile provides an approximation accurate to about 1%
[44].62

The useful range of the approximation includes lines sharper than Lorentzian
and flatter at the top than Gaussian (compare with the Voigtian function, Figure
1.25a).

1.4.6 Application

The noise created in this type of experiment will primarily be due to small
angle scattering, which is known to follow a power law. In order to study the
dynamics of the intercalation front, frequent scans (shorter scan time) will be
preferred as opposed to greater resolution (long scan time) (see 2.2.3), resulting
in a lower signal-to-noise ratio. Therefore, after fitting the background of the
aquired data63, the noise ε, according to Equation (1.53) must be subtracted
from the recorded data h before properly deconvolving the signal.64

Sample-related X-ray diffraction profiles are often fitted with a pseudo-Voigt
function [32]. For our purpose this is a good approximation to the experimental
data, and we apply a least square approximation of the pseudo-Voigt function
type II (Equation (1.56)) in the form

fpV(x; η, xc, ω) = A

[
η

2
π

ω

4(x− xc)2 + ω2
+ (1− η)

√
4 ln(2)√
πω

e−
4 ln(2)

ω2 (x−xc)
2

]
(1.58)

where A is the area, η the profile shape factor, xc the center of the distribution
and ω the full width at half maximum. The Gaussian full width at half maximum
ωG and the Lorentzian full width at half maximum ωL are subsequently derived
through Equations (1.57).

62Better approximations have been obtained by including higher order terms, or simply by
including additional peak functions [45].

63The background fitting is performed over intervals on both sides of and sufficiently far
from the diffraction peaks. This small angle scattering varies with the positional sample
composition. Thus a background fit must be performed for each scan frame.

64As the peak widths are relatively narrow compared to the slope of the background noise,
a linear fit in the prevailing interval would be sufficient. However, we choose the power law fit
as this is closer to the real physical conditions, though the fitting procedure is slightly more
cumbersome. Also, this will not, at least, introduce additional errors.



Chapter 2

Experiment

2.1 Experimental setup

The X-ray scattering experiment was conducted at Norwegian University of Sci-
ence and Technology (NTNU) utilizing NanoSTAR (Figure 2.1), a small angle
X-ray scattering (SAXS) system, from Bruker AXS.1 NanoSTAR uses a two di-
mensional detector and has the possibility of several different sample to detector
distances.

Figure 2.1: NanoSTAR hardware. a) Rotating anode b) Pinhole collimating system
c) Sample chamber d) Detector. Taken from the Bruker webpage.

2.1.1 Components of the SAXS system

The instrumentational setup is, broadly spoken, composed of four main parts;
a generating source, a pinhole collimating system, a sample chamber and a
detector. The first two parts constitute an optical system that conditions the
primary X-ray beam to be monochromatic and well collimated.

1The main feature of the NanoSTAR SAXS system is that not only isotropic materials
can be studied, by also more complex samples, escpecially anisotropic ones, such as fibrous or
layered structures.

45
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Generating source

The SAXS system uses a point focus source, which means that a source with
line focus F is arranged in such a way that the multilayer mirror system ’sees’
a point focus. This is obtained when the mirror system is arranged in the line
direction and the take off angle α is small. Then the active source shape is the
projection of the line and hence similar to a point. In the projection the line a
is thus shortened by a factor sinα by geometrical considerations, dimensioning
the ’point focus’ to (a sinα) × b. See Figure 2.2

Figure 2.2: The line focus is projected to a ’point’ focus with dimensions (a sin α) × b
through the geometrical setup.

The generating source is a water cooled rotating copper (Cu) anode.2 A
crossed coupled multilayer monochromator, the Göbel mirrors (Figure 2.3), se-
lects the characteristic Kα radiation from the continuous white spectrum and
conditions the original two dimensional divergent beam to a two dimensional
parallel beam.3

Figure 2.3: Göbel mirrors optics. The parabolic shape of the multilayers with a large
scattering contrast monochromatises as well as collimates the beam. Taken from [21].

Deviations from the ideal situation implies that the ’parallel’ beam of a cross
coupled Göbel mirrors system without any pinhole collimating system has an
intrinsic divergence FWHM of Kα radiation (property of the X-ray mirror).
Additionally there is a part of divergent non-monochromatic parasitic radiation
of several mrad (property of the ’point’ focus X-ray source) if no collimators,
pinholes and slits are used.4 See also Figure 3.8a.

2Kα1 = 1.540562Å, Kα2 = 1.544390Å, customary weighed mean Kα = 1.541838Å and
Kβ = 1.392218Å [46].

3Signifying a monochromatization and collimation of the X-ray radiation respectively.
4This parasitic radiation is divergent and only appears in the direct vicinity of the primary
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Pinhole collimating system

The pinhole collimation system (Figure 2.4) to a certain extent mends the above
deviations and conditions a small X-ray beam with a defined cross section.
The combination of three pinholes limits the divergence and shadows the edge
scattering of the system.

Figure 2.4: Geometrical principle of the three pinehole collimating system. The
first two pinholes, called the divergence pinhole and the beam defining pinhole, limit
the divergence whereas the third pinhole, the antiscatter pinhole, shadows the edge
scattering of the second pinhole. Taken from [21].

The outcome from the first two parts of the NanoStar is a well defined and
conditioned parallel and monochromatic X-ray beam. The size of the ’point’
focus is 0.4mm× 0.8mm (width x height) [21], and the wavelength of the beam
is λ = 1.541838Å.

Sample chamber

The sample chamber has a software operated goniometer drive allowing for
precise and reproducible positioning of the sample in an xy-plane perpendicular
to the incoming beam. This automatic sample changer allows sample positioning
over distances of 100mm in y- and 80mm in x-direction with an accuracy of
better than 10µm each.

Detector

The HiStar detector is a two dimensional multiwire grid detector with pressur-
ized xenon gas which enables us to determine the x- and y-positions of X-rays
in its imaging area. Noble gas atoms are ionized by incident X-rays. These
charged particles are attracted to and interact with an electrode assembly to
produce electrical signals indicative of the x- and y-positions of the original X-
ray. Provided the signal, after amplification, falls within a fixed pulse height
window, the signal is finally positioned and produced as a 14-bit (0 to 16383)
location in x and y. These 14-bit values are mapped to a frame pixel (0 to 1023).
The diameter of the active area is 10.5 cm with with a resolution of 1024×1024
pixels [21].

beam and hence it does not disturb the normal XRD measurements. Furthermore the intensity
is low because it comes from the continous white bremsstrahlung near the Kα line.
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(a) (b)

Figure 2.5: The glass capillary mounted on the sample holder consisting of, from
bottom to the top, a mounting platform made of aluminium, a thermal isolator made
of teflon and the copper block. (a) The capillary is glued on with thermal paste. (b)
The chambers are sealed with silicon gel. The photograph pictures i) the channels
through which the air with controlled humidity is circulated, ii) the dry chamber also
containg grains of silica gel, iii) the humid chamber and iv) the point at which the
indirect temperature of the sample is measured.

2.1.2 Sample holder

A custom made humidity- and temperaturecontrolled sample holder5 was uti-
lized in the experiment (figure 2.5). A glass capillary containing the sample was
mounted with thermal paste on the sharp top edge of a copper block (Figure
2.5a).

Then a humidity gradient was imposed across the sample by exposing the
two open ends of the capillary tube to closed chambers with different humidi-
ties, which were controlled by circulating air with controlled humidity through
channels drilled through these chambers (Figure 2.5b). One end was kept at
high humidity by circulating air above a saturated K2SO4 solution, whereas the
opposite end was kept dry by filtering air through a silica gel desiccant column
(Figure 2.6). The relative humidity and temperature of the circulating air of
both sides were measured by therma-hygrometers prior to passing through the
chambers with the sample.

The temperature was controlled by water from a variable temperature heat
sink circulating through interior channels in the lower part of the copper block
and a temperature read of the copper block close to the sample using a ther-
mistor sensor as an indirect temperature measurement of the sample.

2.1.3 Software

The SAXS software provided easy methods for pre-programmed scans of the the
sample. The built-in integration function included flat-field detector corrections
and pixel sensitivity corrections. A script was written to integrate the entire
frame range (see Appendix C).

Fit2D provided an easy way of finding the center of the beam, which is
essential for unbiased integration of the frames.

5Modified version of the sample holder originally designed by Bjørnar Sandnes at the
University in Oslo (UiO)
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Figure 2.6: Setup of the circulating air; there are two systems, one for dry air passing
through the blue silica gel, and one for humid air passing through the water solution of
saturated K2SO4. Relative humidity sensors were placed close to the inlet air channels
as a check on the imposed humidity gradient.

OriginPro 7.0 was among other things utilized for simultanuous updates of
the water intercalation in the sample.

MatLab 7.0 was preferred to OriginPro 7.0 as the main tool for analysis due
to its flexibility. Much time and effort was spent in order to comprehend and
make fully use of the program, but the result was several scripts easy adaptable
to similar problems in likely future studies.

2.2 Experimental method

2.2.1 Clay sample

The clay sample was made from synthetic fluorohectorite (Corning Inc., New
York) which had been subject to an ion-exchange process in order to produce a
pure sodium fluorohectorite (Na− FH) sample [33].6

6The raw material had been processed by dissolving clay powder in deionized water with
subsequent stirring for several days. In order to make pure sodium fluorohectorite (Na− FH)
samples, an ion exchange method had been utilized. Na+ in the form of NaCl had been
added to the clay suspension in an amount of approximately 10 times the interlayer charge.
Due to the added salt, the suspension flocculated, and after stirring for about two weeks, the
supernatant was removed. The flocculated clay was then placed in dialysis membranes, end
excess ions were removed by dialysis where the deionized water was exchanged every second
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To destroy the clusters of particles the powder was filtered and then thor-
oughly grinded in a mortar and filtered again. It is important to use the
proper force when performing the grinding; too hard and the packing becomes
anisotropic; conversely too loose and air filled voids arise in the sample which
influence the diffusion process in an unwanted and uncontrolled manner.

Figure 2.7: Mortar and X-ray glass capillary used for the grinding and filling of the
Na-fluorohectorite respectively.

Once grinded the clay powder was filled in an X-ray glass capillary7 of length
80mm, outside diameter 1.0mm and wall thickness 0.01mm (Figure 2.7). The
closed end of the capillary was cut, and the now dual open ended capillary was
attached to the sample holder using a thermal paste (see Figure 2.5a). The
distance from the X-ray exposed capillary to the physical capillary opening8

was measured to be 3.55± 0.50mm and 2.60± 0.50mm for the dry and humid
ends respectively.

The sample holder was mounted on the goniometer in the sample chamber
thus enabling precise and reproduceable measurements in the xy-plane perpen-
dicular to the incoming beam, and tubes for circulating air and for temperature
control were properly connected. It is worth noticing that the circulating air
could possibly introduce a pressure gradient between opposite chambers that in
the worst case might influence the diffusion process. We did not have the proper
equipment in order to measure the differential pressure, but not to enhance this
effect and thus at least partly remedy the problem the pumps circulating the
air were both set at an equally low frequency.

2.2.2 Scattering geometry

In a powder sample the particles are randomly orientated with respect to their
angular distributions. Thus a fraction of the particles will have the correct

day. A check on this procedure was made by adding AgNO3 to detect possible Cl− ions,
which would precipate as insoluble AgCl. The flocculated sediment was then heated for 6h at
120◦C so as to remove its water content [7].

7Produced by Hilgenberg.
8The chamber copper lids effectively screen both ends of the capillary. See Figure 2.5.
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orientation for Bragg scattering to occur. The scattering picture is a Debye-
Scherrer cone with radius given as r sin 2θ (Figure 2.8), where θ is the angle
of incident with respect to the 001 orientation and r the sample to detector
distance.

Figure 2.8: Schematic illustration of scattering geometry. a) The incident beam is
scattered from a powder sample, where the particles are randomly orientated, thus
resulting in a Debye-Scherrer scattering pattern on the 2D-detector. b) Cross-section
of the capillary containing randomly oriented clay grains. c) Micron-scale clay particle
formed from stacked lamellae. d) Layer configuration inside the particle grain. The
angle between the incident beam and the 001 normal vector from a scattering particle
is θ, hence the scattering angle is 2θ. e) Generic structure of fluorohectorite synthetic
clay.

The use of powder sample automatically implies that all the statistics are
included in one scan frame, i.e. all particle shape and size variants as well as
particle angular distributions.
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2.2.3 Preparations

Setup settings

The sample position was detected with nanography (Figure 2.9).

Figure 2.9: Sample nanography with equal x- and y-increments of 0.125mm (note
that this is less than the actual beam size dimensions (2.1.1 on page 47)) and a scan
time of 2s. The intensity is displayed as number of hits, and the dense sample region
is recognized as the vertically grenn-, red- and yellow coloured stripes. The white-blue
region represents empty air, wheras the black region is due to the copper device being
poorly penetrable to X-rays.

The beam stop was properly adjusted with a horizontal and a vertical align-
ment screw. Then the beam center was found applying a sharp interference
ring for a 1WL peak. These coordinates in terms of pixel numbering were set
to (x, y) = (512.3, 506.4).9

The pre-calibrated system was based on a different sample setting with a
sample to detector distance of 260.0mm. However, the sample in this experiment
was ∼ 1.5mm closer to the detector. The errors introduced were not big,10 but
in order to avoid unnecessary errors, a script was written to change the sample
to detector setting in the heading of the raw data file in order for the subsequent
integration to be correct.11

Pretest for 2WL

The start-up setting of the experiment required the sample to be in a pure 1WL
hydration state. A pretest with the purpose of checking the sample for extra
intercalated water was carried out at chosen sites in the sample (two at the

9Fit2D has a function that locates the beam center provided that three or more points on
the circular arc can be defined. The beam center was found for several data frames, and the
mean value was chosen as the correct center.

If the beam center is not properly set, the result will be smeared out and/or slightly shifted
peaks. Thus sharp peaks of pure hydration states is an explicitt indications of a correctly
defined beam center.

10For the originally calibrated detector system we define the sample to detector distance
a = 260.0mm and the corresponding detection spot height b, wheras for the real system we
define the corresponding variables a′ = 258.5mm and b′. Based on a and b the SAXS software

calculates the scattering angle 2θ (θ = arctan
“

b
a

”
). We note that b = b′. Then the real 2θ

value is

2θ′ = arctan

„
b′

a′

«
= arctan

“ a

a′
tan 2θ

”
For 2θ ∈ [5◦, 8◦], corresponding to the angular range for the mono- and by-hydrated peaks in
our experiment, the subsequent errors would have been ∆(2θ) = |2θ′−2θ| ∈ [0.0289◦, 0.0458◦].

11Though we are primarily interested in the dynamical evolution of the peaks and not
necessarily their correct numerical values.
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beginning, two at the end and two in the middle). They all demonstrated pure
1WL Bragg peaks indicating no intercalation of additional water in the sample.

Setting of scan variables

As a result of the accumulated intensity from test scans along with an estimated
diffusion velocity based on [7], the measurement time was set to 20 minutes for
each frame. This is close to a reasonable lower limit determined by the level
of background noise. However, the demand for frequent scans weighed heavier
than the wish for high resolution as the primary interest in this experiment was
the dynamics. The interpositional increment12 in lateral direction (along the
capillary) was set to 0.5mm.13

The scans were performed with the source settings of 40kV and 100mA.

Initial reference scans

Reference diffraction scans, for later analytical application (Chapter 3), were
taken at ambient temperature and humidity14 while the sample state was pure
1WL, that is under equilibrium conditions.

2.2.4 Scans

From experiments on hydration transitions in Na-FH [33] it is known that a sig-
nificant volume of the clay sample resides in the 1WL intercalation state only for
a small temperature interval between 25◦C and 40◦C. For lower temperatures
the 2WL regime becomes more dominant. Thus the sample temperature was
lowered to about ∼ 15◦C while circulating dry air15 at both ends. As for the
stabilization of thermal equilibrium we waited about 45min before imposing a
humidity gradient by circulating humid air at one side. This moment marks the
start of the experiment, t ≡ 0.

At the humid side water vapor starts to penetrate the sample by diffusing
through the pore space between the clay particles. Thereby the pore space
vapor concentration increases, and at some critical parametric values yet not
fully understood a subsequent process of water intercalation into the particle’s
interlayer space is iniciated. By studying the scattering profiles at different
times and distances from the humid side of the sample the dynamics of the
intercalation front can be traced.

The humidity control system and the temperature control system mantained
the measured humidities, RHdry = 0.307% and RHhumid = 99.90%16, and tem-

12The interpositional increment should as a minimum exceed the width of the beam.
13An alternative method would have been a scan time of for example 30 minutes and a

positional incremental of 0.75mm
14Tsample,initial = 30.2◦C and Tsample,end = 29.4◦C
15RHdry ∈ [0.28%, 0.31%]
16The immediate measurement at t ≡ 0 read RHhumid90.4%. However, it took a good

30h before the relative humidity stabilized at 99.9%. The time-weighed average is calculated
with respect to the measurements subsequent to this, that is after circulating air humid-
ity equilibrium is reached. Conversely, the time-weighed average for the entire period is
RHhumid = 99.81% with an uncertainty of ∆RHhumid ∈ [−9.46%, 0.14%].
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perature, Tsample = 14.92◦C constant to within ∆RHdry ∈ [−0.032%, 0.018%],
RHhumid ∈ [−0.05%,−0.05%] and ∆Tsample ∈ [−0.32◦C, 0.33◦C].17

Terminating reference scan At the end of the experiment a scan series was
conducted for the entire positional range thus acting as a terminating reference
scan. The dynamics at this state was extremely slow, which meant that as-
suming the reference series to be performed ’simultaneously’ is an appropriate
assumption.

2.2.5 Series

Three series of scans were conducted with 381, 404 and 1271 scan frames re-
spectively. The two first series were terminated because of different reasons.18

However, they both served as invaluable trials for properly adjusting the set-
tings for the third and final experiment. Among other things different solutions
for maintaing a fixed imposed humidity were tried, and important knowledge
on the estimated intercalation speed was achieved. The two first series also
function as controll series of the data gathered in the third series, which is the
fundament of the results here presented and subsequently referred to.

17The mean values were time-weighed averages, and the intervals were calculated as the
differences between the mean and the two extremities of the series.

18The first experiment was terminated due to the holidays while the second was terminated
due to maintainance of the NanoSTAR SAXS machine.



Chapter 3

Data processing, analysis
and results

3.1 Data aquisition and processing

3.1.1 Frames

The single scans were stored as pixel frames (Figure 3.1.1) with binary raw data
as well as information on spatial- and timecoordinates in the frame header.

(a) t = 2.87h (b) t = 6.57h (c) t = 9.25h (d) t = 12.39h

(e) t = 14.06h (f) t = 16.40h (g) t = 20.08h (h) t = 406.52h

Figure 3.1: Photoseries of time-evolution of Debye-Scherrer scattering rings for x =
4.6mm into the sample. The time of the scan is given in the figure text.

55
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Unwarp

The SAXS software includes an integrated function called unwarp for essential
corrections of the detected raw data. The two factors automatically corrected
for are the (lack of) curvature of the detector as well as pixel sensitivity (some
pixels are more sensitive than others).

Spatial- and timecoordinates

From the frame header xy-coordinates and time and date of the scan were read
and subsequently converted to spatial- and time coordinates for the sample
frames; x ≡ 0 was defined at the humid side of the capillary. The time coordinate
for the individual scans was defined at the middle of the timescan.

3.1.2 Integration

The pixel frames were radially integrated, that is with respect to conic line
segments, utilizing the function bin normalization, which includes radial nor-
malization (see 3.1.3) simultaneously to the integration process (Figure 3.1.2).

Figure 3.2: Radial integration of the raw data of the frames in Figure 3.1.1. Notice
that the area of the pure 2WL peak is considerable larger than that of the pure 1WL
peak. This is because of the scattering factors (layer structur factor and Lorentz-
polarization factor) described in 1.2.8.

Step size The angular step size defines the interval between each integrated
data point. The detector pixels are squared with sides of 100µm. By geometrical
considerations (Figure 3.3), a detector pixel covers an angular interval of

∆x = x2 − x1 = r(tan 2θ2 − tan 2θ1) ⇔ tan 2θ1 = tan 2θ2 −
∆x
r
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Figure 3.3: Each pixel in the pixel frame covers an angular interval of ∆(2θ)pixel.

∆(2θ)pixel = 2θ2 − 2θ1 = 2θ2 − arctan
(

tan 2θ2 −
∆x
r

)
(3.1)

Thus for 2θ ∈ [2.0◦, 10.8◦], we get ∆(2θ)pixel ∈ [0.0214◦, 0.0313◦].1

However, choosing the integration option bin normalization, the bin term
permits us to set a lower step width without creating any additional noise.
Thereby we define the integration resolution to be better than the detector
resolution, but the software performs the necessary interpolation due to this
inferior dectector resolution.

As the pure peaks are relatively narrow we would like as many integrated
data points as possible for the subsequent curve fit (see 3.1.4) to be good.
Therefore we set the step width to 0.01◦.

3.1.3 Normalization

Radial normalization

When integrating pixels along a conic line segment (see 3.1.2), each pixel may be
weighted by a normalization factor. This is due to geometrical considerations
inferred from when integrating a raw data frame radially, the intensity with
respect to the angular value, 2θ, is necessarily proportional to the circumference
of the conic segment, 2πr sin(2θ) (where r is the sample to detector distance
(see Figure 3.3)). Thus the normalization included in the software integration
function basicly divides each conic segment (as a function of 2θ) by sin(2θ).

Background subtraction

A background scattering, decaying with increasing angle, is clearly visible in
the integrated frame plots. Small-angle scattering from the clay is expected.

1The lower limit corresponding to 2θ = 10.8◦ and ∆x = 100µm and the upper limit
corresponding to 2θ = 2.0◦ and ∆x =

√
2100µm (for the diagonal of the pixel).
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Variations in the background shape and intensity, both with time and spa-
tial coordinate, is evidence of contributions beyond the clay itself. These are
assumed to be primarily due to scattering from non-vaccum air and from the
glass capillary. Also the amounts of water in the clay may affect the background
scattering. Furthermore scattering from the copper sample holder is also possi-
ble in some cases, depending on how the sample holder is adjusted with respect
to the beam.2

Small-angle crystal scattering is known to follow a power-law, thus resulting
in asymmetrical peaks especially visible for broader peaks. Thereby we assume
the collected contributions to follow a small-angle scattering. Because of time-
and spatial background variations, a background power-law-fit is performed for
each frame over an angular interval sufficiently far from the Bragg peaks (Figure
3.4a), typically 2θ ∈ [2.0◦, 3.8◦] ∪ [8.5, 10.8],3 and the result is subtracted from
the raw data (Figure 3.4b) thus removing the unwanted background noise.4

Layer structure factor and Lorentz-polarisation factor corrections.

As discussed in 1.2.8 and 1.2.9 there are several contributing factors to the total
recorded scattering intensity. According to Equation (1.34) these are the layer
structure factor, the Lorentz-polarization factor and the interference function.
The interference function is directly related to the interlayer spacing through
Equation (1.32). The dynamics in the water intercalation front is thus reflected
in the dynamics of the interference function. In other words the interference
function is the essential function we wish to extract.

Hence we divide the recorded data, now integrated, normalized and back-
ground subtracted, by the product of the layer structure factor and the Lorentz-
polarization factor (Figure 3.5). In 1.2.10 these factors were obtained as func-
tions of the scattering angle, 2θ (and energy, λ).

3.1.4 Peak fitting

The data processing up till this point has exclusively been in order to ’purify’ the
recorded signal from unwanted contributions (radial normalization, background
scattering and scattering factor contribtuions); the remaining data represent
the extracted interference function (1.2.8), a direct implication of the interlayer
spacing between the crystalline platelets. As the water intercalation proceeds,
this interlayer spacing will increase as water molecules drive the sheets apart.
Thus the diffraction rings will, by Bragg’s law, shift towards lower angles (in-
creasing basal distance d).

We observed that during hydration scattered intensity appeared between
the commensurate Bragg peak positions (see Figure 3.4a). This is a well-known
signature of disordered intercalation or mixed intercalation along the stacking
direction and will be closer investigated in 3.2.4. However, the preliminary main
goal is to fit a function to the hydration peaks, which represent diffraction signals

2Remember that the height of the core beam is 0.8mm (2.1.1). Thus in cases of poor
vertical alignment of the sample holder it is possible that a tiny fraction of the beam is
actually deflected from the sharp copper holder edge along which the sample is mounted,
although most of the beam hitting copper will be absorbed.

3These intervals are easily determined through a semi-log plot of the normalized curve plot.
4One could also do a linear fit around the baseline of the Bragg peaks. This is possible due

to the widths being narrow. However, improved accuracy is achieved by fitting to a power-law.
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(a) Background fit

(b) Background subtracted

Figure 3.4: The background noise is fitted to a power-law and subtracted from the
data. (a) Background fit of an arbitrary chosen scan frame. The fit is based on the
angular interval (blue curvature) assumed to only inhibit unessential (that is not due to
the interlayer spacing) scattering contributions, which means sufficiently far out from
the Bragg peaks as well as the interpeak hydration transition interval where scattering
from the clay is known to be considerable. (b) The fitted background subtracted from
the same scan frame. We observe that for low angles the noise is considerable, but
this angular interval is no longer important for the further analysis. Also observe a
slight change in symmetry of the peaks (more symmetric).
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Figure 3.5: Division of the background subtracted data by the layer structure and
Lorentz-polarization factors from an arbitrary scan frame displaying a pure 2WL state.
The graphs have been scaled in order to coincide. Note how the layer structure and
Lorentz-polarization factors slightly shift the symmetry of the peak. The layer struc-
ture factor differ from one hydration state to another, but only by a fraction for small
scattering angles (see also Figure 1.18).

from crystallites of pure hydration states. Thus we are able to estimate the area
of each peak, which we take to represent the amount of crystallites in pure
hydrations states. The crystallites of mixed intercalation we do not consider for
the time being.

The diffraction peaks are fitted with a pseudo-Voigtian peak shape function
(see 1.4). Under some restrictions, the fitted design variables are the shape
factor (η), peak position (xc), peak width (ω) and peak area (A) (Equation
(1.56)).

The degree of goodness of a fit to a large extent depends on the chosen
angular interval on which to do the function fit. For a scan frame displaying
mixed hydration states, thus implying both a 1WL and a 2WL peak (as well as a
disordered intercalation transition region between the peaks), it is necessary to
do the fitting on the ’pure’ peak side; for the case of a 1WL peak this corresponds
to doing the fit on the datavalues mainly to the right of the Bragg peak, and
conversely for the 2WL peak fit. This is because of the mixed hydration signals
between the peaks, mainly originating in Hendricks-Teller states, interfering the
recorded pure peaks by inflicting an asymmetrical peak shoulder on the same
side as the mixed intercalation region.5

On the other hand, for a pure hydration state and thus a symmetric, well-
defined peak, a fit over the entire angular interval would be preferred. Thus
the ideal situation would be to define each peak on basis of its shape; a fit over
only half of the interval for a biased peak, whereas over the entire interval for a

5The tails of the transition region coincide with the peaks thus adding to the signal.
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pure peak. However, this would demand for a visualization of each peak, which
would be too time-consuming given the number of frames to be integrated.
Instead fixed fitting intervals, one for each hydration state, were determined for
all frames on basis of a MatLab script especially designed for this purpose. The
1WL peaks were fitted for 2θ ∈ [0.075◦, 0.5◦] around the peak position, the 2WL
peaks for 2θ ∈ [0.3◦, 0.075◦].

Another MatLab script6 was made for fitting the data to a pseudo-Voigt
function. This script (see C) returned the values of the fitted design variables
along with the corresponding errorbars and residual of the fit.

Figure 3.6: Pseudo-Voigtian peak fit on the 1WL and 2WL peaks of Figure 3.4b. The
structure factors have been multiplied with the fitted peaks for comparison reasons
(remember the different structure factors for different hydrations states).

Every frame was thus automatically fitted and the parameters written to a
file.

6Originally designed by Yves Méheust, but a considerably modified and extended version
was programmed for this purpose.
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3.2 Data analysis

In this section the interference function extracted in 3.1 is subjected to closer ex-
amination. Basicly by representing the data in various perspectives and with dif-
ferent relations, a picture of the dynamic process of water intercalation through
the sample related to hydration vapor diffusion may be formed.

First some general observations will be investigated before concentrating on
the analysis of the diffusive process.

3.2.1 General observations

Characteristic Bragg angle and interlayer spacing

To measure the characteristic Wide-Angle X-ray Scattering (WAXS) peak,
better known as the Bragg angle, of the mono- and bi-hydrated states, pure
hydration peaks of complete equilibrium were considered. For the monohy-
drated states the initial reference scans (2.2.3) were utilized for the calculations,
whereas the first reference endscans (2.2.4) were used for the bi-hydrated case.

The mean characteristic 1WL peak was found at 2θ1WL
mean = (7.225± 0.006)◦.

Conversely, the mean 2WL peak was at 2θ2WL
mean = (5.869± 0.004)◦

d-spacing The interlayer spacing is directly related to the characteristic peak
value through Bragg’s law (1.2); the corresponding mean d-spacing is 2θ1WL

mean =
(12.23± 0.03)Å and 2θ2WL

mean = (15.06± 0.01)Å respectively.7

Thermal expansion coeffisient Initially a slight shift in center peak val-
ues was observed for the initial reference scans compared to the scans taken
during the experiment. Peak shifts of pure states may origin in thermal ex-
pansion; when the crystallites cool down, the thermal activity decreases, and
consequently so do the interatomic spacings, thereby reducing the size of the
crystallite.

The thermal expansion coeffisient, α, can be defined as

α =
∆d
d

(3.2)

and by Bragg’s law (Equation (1.2)) we deduct an expression for this particular
case

dhkl sin θ =
nλ

2
= const

d
ddhkl

(dhkl sin θ) = sin θ + dhkl cos θ
dθ

ddhkl
= 0

α = − ∆θ
tan θ̄

= −
(θTroom − θTexperiment)

tan
{

1
2 (θTroom + θTexperiment)

}
However, the thermal expansion coeffisient for similar specimens are of order

10−6 K−1, corresponding to an angular shift in 2θ ∼ 10−6 ◦ K−1. Thus thermal
expansion in this temperature and angular range as the cause of visual peak
displacement can be rejected.

7This is within 0.1Å or less than 0.1◦ of the corresponding values found in [7].
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Peak displacement A more thorough investigation of the peak displacement
was carried out.

For sufficiently pure monohydrated peaks, where the function fit is assumed
to be very good, a small displacement of the fitted characteristic angle system-
atically decreasing with positional distance, was observable (Figure 3.7a). As-
suming that the degree of intercalation is a function of the surrounding relative
humidity, this displacement shows the presence of humidity and subsequent ini-
tialization of the intercalation process, but only by a fraction not yet detectable
by the shape of the scattering curve.

The plot of the characteristic angle displacements of the reference end scans
and comparison to those of the initial reference scan (Figure 3.7a) reveales the
ingress of humidity practically through the entire sample by the end of the
experiment. The more interesting d-spacing counterpart of this plot (Figure
3.7b) shows this displacement to be of order (10−2 − 10−1)Å.

The humidity gradient is expected to evolve with time towards a linear func-
tion with humidity values at the capillary ends equal to that of the corresponding
humidity ’reservoars’ (one humid and one dry). However, the elapsed time for
this humidity gradient to ’stabilize’ linearily is related to the water vapor diffu-
sion through the sample and therefore one of the subjects of this experiment.

In the same figure the curve of the end scan peaks approaches that of the
initial reference scan peaks at an almost evenly rate, and the two curves collapse
close to the far end (dry side). The point of collapse probably indicates the
humidity front, at least very close to this. This is approximately at x ∼ 35mm.
Knowing the sample capillary to be ∼ 42mm, this means that the humidity has
regressed almost through the entire sample, and that the gradient soon is linear.
At this point, however, it is not yet linear, but very close, which explains for
the extremely slow dynamics.

It is important to underline that the above reasoning assumes that the degree
or rate of intercalation is a function of the surrounding relative humidity, and
that a certain treshold relative humidity has to be reached in order for a certain
proportion of a representative sample volume to intercalate. One possible way of
explaining this is by assuming that the relative humidity determines the amount
of water molecules that intercalates into the interlayer spacing, but that for a
given interval of low relative humidities these molecules do not form a new layer.
Instead the lack of favourable molecule positions force the additional molecules
to position themselves in such a way that the interlayer spacing is slightly shifted
(increased), but not enough for a new hydration layer to be created.

For the formation of a new water layer, implying a reorganization of the layer
structure of water molecules, a certain treshold relativ humidity limit has to be
reached, beyond which the intercalation is ’fast’ as well as intense compared to
the slow percolation behaviour of the small displacements.

Provided that this is true, peak displacement actually allows us to demon-
strate humidity ingress, at least to some extent. Furthermore, the slowing down
of the humidity ingress (described by the ’pure peak displacement’) can be ex-
plained by the humidity gradient approaching linearity, whereas the fading of
the intercalation front is due to a treshold limit. This matter will be discussed
further in subsection 3.3.
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(a) 2θ plot

(b) d-spacing plot

Figure 3.7: Monohydrated peak displacement. The plot shows a comparison of the
initial reference scan (green line) to the end reference scan (blue line) of the monohy-
drated case. The end reference 2WL peaks are also plotted in the same graph.

The fitted 1WL peak center is slightly displaced. Towards the intercalation front
(x ∼ 9mm) this displacement is considerable (dark blue) and is detectable in a log
plot of the Bragg scattering curve, whereas the shift decreases with increasing sample
position eventually to disappear as the two curves collapse for the remaining last part
of the sample. For these last scans (ligth blue) the shift is not observable in a log plot.

For the 2WL case a corresponding shift is seen for the peak center. The meaning
of the colour code (dark and light blue) is equal to above.

All the data points of each set respectively are assumed to be recorded under the
same conditions (see 2.2.4). (a) The angular discplacement is of order 10−2 ◦ (b) The
corresponding d-spacing discplacement is of order (10−2 − 10−1)Å

Moreover, a similar displacement, but towards higher angles, was shown for
the ’pure’ dihydrated peaks (lower part Figure 3.7a). By the same arguments
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this displacement may be caused by slow intercalation, sensitive to the rela-
tive humidity, not altering the hydration state, but only sligthly displacing the
interlayer distance.

Peak width

Instrumental contribution Let the distance from the Göbel mirrors (Figure
2.3) to the beam defining pinhole (2nd pinhole) be denoted s and the diameter
of the pinhole (Figure 2.4) be denoted D. Then by simple geometrical consider-
ations (Figure 3.8a) the maximum angular divergence ϕ caused by the property
of the X-ray mirror and/or property of the ’point’ focus X-ray source (see 2.1.1)
to the effective core beam is

ϕ = arctan
(
D/2
s

)
∈ ±[0.0098◦, 0.0112◦]

which corresponds to an angular divergence, ∆(2θ) = Ψ− 2θ, in the character-
istic Bragg peak (Figure 3.8b) where

Ψ = arctan
(
d1 + d2

l2

)
= arctan

(
l2 tan(2θ + ϕ) + l1 tanϕ

l2

)
For the pure monohydrated state the induced peak broadening due to this in-
strumental effect is ∆(2θ)1WL ∈ ±[0.0728◦, 0.0770◦], whereas for the bi-hydrated
state the corresponding peak broadening is ∆(2θ)2WL ∈ ±[0.0731◦, 0.0774◦].8

Additionally, a further broadening is caused by the non-monochromatization
of the beam (leading to other scattering angles by Bragg’s law) and by parasitic
edge scattering from the pinholes. However, these contributions are significantly
inferior to the above discussed instrumental peak broadening with respect to
intensity/and or size.

The intensity of the non-monochromatic and/or non-collimated parasitic
radiation is much lower than the effective core beam when a monochromatizer
and collimators (mirrors and 3-pinhole collimation system) are used. Thus, the
peak broadening deduced above is only suited for estimating the order rather
than the exact numerical value of this effect.

Sample contribution Let b define the width of the beam, c the diameter of
the sample capillary and l the distance from the capillary to the detector (Figure
(3.9)). Then the angular divergence, ∆(2θ) = Ψ− 2θ, in the Bragg peak due to
the beam and sample width is given

Ψ = arctan
(
d+ b

l

)
= arctan

(
(c+ l) tan(2θ) + b

l

)
leading to an angular divergence of ∆(2θ)1WL = ±0.1149◦ and ∆(2θ)2WL =
±0.1103◦ for the monohydrated and bi-hydrated states respectively.9. These

8Where it is assumed that 2θ1WL = 7.13◦ and 2θ2WL = 5.84◦
9Assuming that 2θ1WL = 7.225◦ and 2θ2WL = 5.869◦
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(a)

(b)

Figure 3.8: Instrumental peak broadening. (a) The upper schematics show radiation
divergence due to ’point’ source and finite pinhole size (leading to a non-collimated
beam) and non-monochromatized beam. The bottom right schematics illustrate that
because of the relatively large focus not only Kα radiation is Bragg reflected by the
mirror, but also a small ’parastitic’ wavelength interval from the generated X-ray
spectrum. (b) Geometrical considerations for evaluating the 2θ angular divergence,
∆(2θ).

results also indicate the order rather than the exact numerical value of the peak
broadening.

Calculated values The Gaussian and Lorentzian components of the peak
width, ωG and ωL, are deductable from the fitted design parameters peak
FWHM, ω, and shape parameter, η, (see 1.4.5, especially Equation (1.57)).
The linewidth of the Gaussian component is generally attributed to the intstru-
mental resolution [7].

A representative selection of the initial reference scan yields ω1WL
L = (0.11±

0.2)◦ and ω1WL
G = (0.13 ± 0.2)◦, whereas a selection of the reference end scans
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Figure 3.9: Sample peak broadening. The finite widths of both the beam as well
as the sample capillary lead to scattering from a representative sample volume rather
than from the ideal sample ’point’. Thus the recorded signal is a mixtured of diver-
gent contributions from several small scattering volumes leading to a peak broadening;
if one follows the extremes of the initially collimated beam (red lines) one observes
by simple geometrical considerations possible scattering alternatives of volume ele-
ments of identical state. Allowing for partial scattering volumes of different states, the
broadening may be even larger.

correspondingly gives ω2WL
L = (0.12± 0.1)◦ and ω2WL

G = (0.11± 0.1)◦.
The fitted values of both the instrumental and sample induced broaden-

ing are of the same order (and almost same value) as the theoretical roughly
estimated values. Consequently the agreement is good.

Average particle size

By knowing the FWHM related to particle contribution, the Scherrer equation
(Equation 1.36) can be used to give an estimate of the average particle size.
In our case, utilizing the data from the initial reference scan and taking the
Lorentzian peak width, ωL, to represent the sample width, the mean crystallite
dimension along a line normal to the reflecting plane is found to be (0.064 ±
0.029)µm. This is of the correct order, but still a bit too low compared to the
expected value of ∼ 0.1µm from other studies (for instance [7]).

This discreapancy can be due to the existence of microstrain. If so, the
Scherrer equation can be amended to include a strain description [47]. The
pure sample broadening includes both size and strain broadening and is easily
given as the sum of the two

ωsize+strain = ωsize + ωstrain

where ωstrain = ζ tan θ and ζ being the strain. Microstrain thus generally in-
creases the FWHM as a function of 2θ. Applying the strain value of 0.57%
for the bulk found in [7] and subtracting the strain contribution from the total
FWHM, the expected particle size is corrected to (0.077± 0.044)µm. This cor-
responds to about ∼ 63 fundamental silicate lamellae in an average crystallite.
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In [6] particles of 20− 100 layers are reported.
However, it is also probable that ωL includes other contributions thus leading

to a too low particle thickness estimate.

Anisotrophy

The powder sample is composed of originally randomly distributed particles
and therefore assumed to be isotropic. However, the sample may be influenced
to prefer directional alignment thus displaying a larger degree of anisotrophy.
This is mainly attributed the clay syntesis and packing effects.10 A check on
this matter was investigated for scans taken at equal positions. The results
revealed a sligth degree of anisotrophy varying with sample position. However,
no large changes in time signifying altering due to for example water vapor or
clay swelling may be demonstrated.11

Figure 3.10 shows a typical plot12 for an arbitrary chosen position known
to have been passed by the intercalation front in the last scans. Note how
the anisotropic distribution is consistent with time (represented by different
recorded series).

Figure 3.10: Sample anisotrophy at x = 6.6mm. Note that the sample volume is
slightly anisotrophic. However, the different scans (represented by the variations of
colour and symbol markers) demonstrate no significant change to this anisotrophy
with time.

10Anisotrophy can be caused by water intercalation into the sample crystallites. This in-
tercalation may also inflict changes in the mesoporosity.

11Any changes with time would probably only lead to subtile changes in the anisotrophy
not detectable in this experiment.

12As apposed to integrating radially for obtaining the intensity we integrate around the
Debye-Scherrer interference rings and plot the intensity as a function of the angular increment.
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3.2.2 Dynamics of water intercalation

In this part of the analysis the dynamics of the water intercalation front is ex-
amined. The intercalation front advances in space with time and thus changes
the diffraction profiles from a fully developed pure monohydrated Bragg peak
via mixed intercalation states to a fully developed pure bi-hydrated Bragg peak.
This evolution may be visualized by fixing either the time or the spatial coor-
dinate and varying the other.

Evolution in time of (001) Bragg peaks Figure 3.11a and 3.11b display
the evolution in time of the diffraction signals recorded over a limitited angular
interval. The signals are not processed beyond the simple integration of the raw
data (and the radial normalization implied therein).

We observe how the alternating d-spacing with time due to the intercalation
of water changes the peak form and position; the 1WL peak decreases on behalf
of the increasing 2WL peak. Also states of mixed order are observed between
the peaks. These will be discussed in 3.2.4.

Evolution in space of (001) Bragg peaks Another way of visualizing the
dynamics is by varying the spatial coordinate while ’fixing’ the time coordinate,
that is restricted to a small time interval. The slower the dynamics, the larger
the time interval can be. This is beacuse for a ’fixed’ time coordinate we assume
the scans to be referred to a single time coordinate, which is possible only where
there has been no significant change in the normalized hydration intensities
within this very interval.

Figure 3.12a and 3.12b display the evolution in space of the diffraction sig-
nals.

Normalization of the hydration peaks As noted in the figure text of Fig-
ure 3.12b, differences in the background contributions scale the intensitites of
the Bragg diffraction scattering unevenly from position to position. Thus a nor-
malization of the intensities is essential for a proper comparision of the dynamics
at different positions.

Assuming that the area of the pure peaks (mixed hydration contribtutions
negelcted) reflects the ratio of the total scattering volume to exist in such a
purely hydrated state, we normalize the fitted areas of the hydrated peaks by
the area of a fully developed pure peak state meaning no random intercalation
present; for the monohydrated case the initial reference scans of fully developed
1WL peaks were taken as normalizing reference, whereas for the bi-hydrated
peaks the first of the end reference scans, known to be fully developed 2WL,
were used as normalization reference.

Only the first positions along the sample had undergone a complete tran-
sition from a fully developed pure 1WL state to a fully developed pure 2WL
state during the experiment. For these the ratio between the reference areas of
different hydration states are given in Figure 3.13, and the mean value, here-
after referred to as the ’peak factor ’, was found to be ∼ (0.696 ± 0.042). The
peak factor should equal unity as the calculation is carried out on basis of the
normalized interference function.13 This misfit may indicate that our calculated

13The area of the peaks of the interference function are all equal to unity (see Equation
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(a)

(b)

Figure 3.11: Time evolution of the (001) Bragg diffraction curves for fixed position
coordinate x = 7.1mm over the limited angular interval of 2θ ∈ [5.5◦, 7.5◦]. (a) A
traditional 2D representation of the diffraction curves. The time of the scans are
tabulated in the text box. (b) A 3D representation of the diffraction curves. The in-
troduction of the time dimension in the plot emphasizes the dynamics in the evolution
and consequently the rate of the transition.

squared layer structure factor (see 1.18),|G|2, is sligthly displaced to the left.
A correction shift to the right implies that the relative |G|2-factor decrease is
greater for the 2WL-peak compared to the 1WL-peak.14

(1.33)) independent of the d-spacing.
14Notice how much a tiny displacement in the |G|2-factor changes the relative normalization

factor of the 2WL-peak compared to the 1WL-peak. The reason is simply that the gradient
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(a)

(b)

Figure 3.12: Spatial evolution of the (001) Bragg diffraction curves for ’fixed’ time
coordinate t = (348.5±1.0)h over the same limited angular interval of 2θ ∈ [5.5◦, 7.5◦].
(a) In the experiment the intercalation front was followed closely. Thus the scans
include significant disordered contribution in the commensurate Bragg peak area. This
is evident by the 2D representation. (b) In the 3D representation there seems to be
an abnormalty in the incline of the 1WL peak height (this is also seen in the 2D
representation by close investigation). However, this is simply because the graphs
are not normalized, and as mentioned in 3.1.3 the scans inhibit different amounts of
background contributions, thus varying the intensity heights of the peaks. Conversely,
by studying the peak shape of the 1WL peak around the apparent deviation, the
’normality’ of the spatial evolution is restored.

is significantly larger for smaller 2θ angles in this range.



72 Data processing, analysis and results

Figure 3.13: Determination of the peak ratio of pure hydration states applied for
normalization.

However, this disagreement is not likely to concern the matters discussed
here in any considerable way as we are focusing on the dynamic behaviour in
preference to comparing the descriptive parameters of the different hydration
states

In the case of the remaining bi-hydrated scans, for which there exists no
fully developed pure bi-hydrated peaks as reference, the peak ratio was utilized
to calculate the expected reference areas for the 2WL peaks.

This hydration ratio thus represents the normalized (001) Bragg peak inten-
sities.

Unfortunately the initial reference scans recorded prior to the experiment
were not performed under the same humidity and temperature conditions as
those prevailing during the experiment.15 This mistake may account for at
least some of the deviation in the peak factor from unity; comparing the fully
developed pure peak area of the reference scans with scans at corresponding
sample positions taken during the experiment and besides assumed to be purely
monohydrated, the comparison reveales that the monohydrated peak area at
experimental conditions was on average 0.87 that of the corresponding area at
pre-experimental conditions.

Time and spatial evolution of hydration states

Now that the intensities are normalized a proper comparison of the spatial and
time evolution of the hydration states is possible.

15The initial reference scans were recorded under room temperature and ambient air hu-
midity.
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Time evolution of the normalized (001) Bragg peak intensities For
each position, the time evolution of the hydration states, represented by the
normalized peak areas, were plotted. Figure 3.14 shows this evolution in time
for an arbitrary chosen sample position. The large error bars for low normalized
intensities are due to relatively large uncertainty in the fits of small hydration
peaks. As the peaks grow, the fits become more accurate thereby decreasing
the error bars.

Figure 3.14: Time evolution of the normalized (001) Bragg peak intensities for fixed
position coordinate x = 7.1mm.

The intersection of the two hydration curves was estimated at a hydration
ratio of ∼ (0.35 ± 0.05), which means that about 35% of the crystallites are
monohydrated, 35% bi-hydrated and the remaining 30% disordered/mixed at
the intersection.

Spatial evolution of the normalized (001) Bragg peak intensitiess We
are also able to plot normalized hydration intensities for a ’fixed’ time (Figure
3.15). In this way we may determine additional intersection points of the two
hydration curves.

3D representation of the normalized hydration states A script was
made in order to give a 3D representation of the dynamics of the normalized
states. This can be very useful in observing the relation between the spatial
and time coordinate.

The data points were represented as a 3D matrix with the time coordinate,
spatial coordinate and normalized intensity as the three matrix parameters (cor-
responding to the Cartesian coordinates (x,y,z)). As only one intensity measure-
ment can be obtained for each time coordinate, the vacances in the matrix (that
is for the all the remainders of the spatial coordinates) had to be interpolated.
This was done linearily by the time weighed average of the two closests scans of
identical spatial coordinate.
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Figure 3.15: Spatial evolution of the normalized (001) Bragg peak intensities for
’fixed’ time coordinate t = (348.5± 1.0)h.

The results are plotted in Figure 3.16a and Figure 3.16b for the mono- and
bihydrated cases respectively. Figure 3.14 and Figure 3.15 may then be view as
vertical planar intersections of the 3D model.

Analysis From Figure 3.14, Figure 3.15 and Figures 3.16a and 3.16b the inter-
calation process is observed to be fast (large gradient of the curvatures) for small
ingress parameters x. However, for increasing ingress parameters the absolute
value of the curvature gradient decreases rapidly and seemingly approaches zero
asymptotically, indicating the slowing down of the intercalation front speed to
zero.

However, the dynamics of this gradient with spatial and time coordinate
only roughly indicates the behaviour of the intercalation front. A more precise
definition needs to be established.

Intercalation front

A natural choice for defining the center of the intercalation front is the inter-
section of the hydration curves, which implies that the proportion of crystallites
is equally large for the two pure hydration states. On page 73 this is experimen-
tally found to be (0.35 ± 0.05) for our data plots, which indicates a relatively
stable criteria.

The dynamics of the intercalation front (e.g.: center) can thus be readily
determined from the several intersections of time- and spatial evolution plots
of normalized Bragg intensities. In Figure 3.17 these intercalation front time
and spatial coordinates have been plotted with their two-dimensional errorbars
(although they are vanishingly small for the blue data set). The blue data
points are determined by varying the timecoordinate and maintaining the spatial
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(a) 1WL

(b) 2WL

Figure 3.16: 3D representation of the normalized hydration dynamics. Observe how
the absolute value of the gradient of the curvatures of fixed positions decreases with
increasing ingress parameter x.

coordinate fixed, whereas the pink data points are conversely determined varying
the spatial coordinate and holding the time coordinate significantly ’fixed’. The
two data sets almost perfectly collapse.

Function fit Several functions were attempted for functional fitting; simple
exponential (x = x0

(
1− e−

t
τ

)
; two degrees of freedom), stretched exponential

(x = x0

(
1− e−( t

τ )β )
; three degrees of freedom), multi-termed simple expo-

nential (x = x0

(
e−

t
τ1 − e−

t
τ2

)
; three degrees of freedom) and a power-law
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Figure 3.17: Function fit of the intercalation front. The intersection points of the
hydration curves result in two data series corresponding to holding one of the time
or spatial variables fixed while varying the other (blue and pink data points). We
define the collapse of these points to reflect the dynamics of the spatial evolution of
the intercalation front. A stretched exponential yielded an almost perfect fit (black
line) of the data points.

(x = x0

(
1−

(
t
τ

)β
)
; three degrees of freedom).16

The stretched exponential yielded the best fit by far

x = x0

(
1− e−( t

τ )β )
(3.3)

with fitted parameters x0 = (9.1087 ± 0.0305)mm, τ = (25.1912 ± 0.3461)s−1

and β = (0.7271 ± 0.0118). The function is plotted in Figure 3.17 and is seen
to be an excellent fit to the data points.

Speed and width of the intercalation front Defining the intercalation
head as the boundary of where there is a noticeable change in the hydration
state of the 2WL hydration state, and correspondingly defining the intercalation
tail to be where there is a formidable extinction of the 1WL hydration state, the
time evolution of the normalized hydration states provides some information on
the speed at which the intercalation front advances through the sample. For the
position x = 7.1mm in Figure 3.14 this can be roughly estimated to be (at least)
∼ 40h, but we are clearly suffering under the lack of data scans and successful fits
for small peaks sufficiently far from the center of the front. Similar estimates at

16The theorists allegedly ’prefer’ a combination of a stretched exponential with a power
law. However, the large degree of freedom thus implied would almost certainly result in a
successful fit. Meanwhile one here wishes to restrict the degree of freedom to a minimum.
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other positions are possible, but the great inaccuracies in these crude estimates
are so large that further investigation is meaningless. Nevertheless, the head as
well as the tail are also expected to behave as stretched exponentials with the
same τ and β parameters, but with respectively higher and lower asymptotic
constants xhead

0 and xtail
0 compared to the fitted center value xcenter

0 .

On the other hand the spatial data present a similar representation (see for
instance Figure 3.14), but the width of the plot is instead related to the width of
the front. In this experiment the recorded data frames were taken at positions
mainly in the the neighbourhood of the intercalation front. Positions sufficiently
far from this ’action pot’ were not scanned. Thus we were once again not able
to monitor the dynamics sufficiently far from the intercalation front. However,
at the end of the experiment a reference end scan was recorded (see 2.2.4) that
included all sample positions. As the intercalation front was nearly halted at
this point, at least significantly slow compared to the duration of the scans,
we were able to consider this scan series to be a reflection of the simultanoeus
picture of the entire sample.

Figure 3.18 shows the normalized intensitites for this ending reference scan.
This is the best spatial plot there is in this experiment where the scanned

Figure 3.18: Normalized intensities at the end of the experiment.

positions strech far beyond the ’action pot’ of the the vicinity of the intercalation
front. However, here we encounter another problem in obtaining a good fit for
small peaks and the great errorbars they inflict. Thus only a crude estimate
of the front width may be deducted; from Figure 3.18 the transition from the
monohydrated to the bi-hydrated state is observed to occur within ∼ (6.5 ±
2.0)mm. Taking the width of the beam (∼ 0.4mm for the core beam) into
account and assuming that the apparent width of the intercalation front results
from the convolution of the beam width the front profile, we estimate the width
of the intercalation front to be ∼ 6mm at x ∼ 9.1mm into the sample. This
is a far greater value than obtained in [15] not taking into consideration the
significant inaccuracy. However this clearly suggest a very wide front compared
to the ingress (approximately 2 : 3 ratio).
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It would be worth trying to plot the evolution in time and space of the hy-
dration states as a function of the measured normalized amplitude of the peaks.
This would result in values for every scan, also the scans with small peaks
not passing the pseudo-Vogitian fit procedure. Conversely the amplitude does
not necessarily relate to the area and the proportion of the scattering elements
in the correct manner. But an estimate on both the width and speed of the
intercalation front should be easily obtained.

Time-fractional variable

In the discussion of duffusion, normal and anormal, in 1.3 a method of in-
troducing a fractional scaling parameter was proposed as a mean to check for
anomality in the transport process. This could be done assuming some limiting
conditions on the system setup.

In our case these conditions were met,17 and consequently an attempt was
made on plotting the hydration states as a function of a spatio-temporal scaling
variable η = x

tγ/2 where γ is the time-fractional parameter. According to 1.3
one should then obtain a universal curve signifying a data collapse. For nor-
mal diffusion γ = 1 is to be expected, whereas 0 < γ < 1 signifies a case of
subdiffusive behaviour.

It proved difficult to obtain a data collapse for the full time and/or spatial
data range here presented. As mentioned earlier the focus during the experiment
had all been on the ’activity pot’ of the intercalation front thereby ’neglecting’
the far environment of this front not knowing the implication of this for the
later analysis. As the dynamics of the intercalation front after a short while
was relatively slow compared to the rate of scanned frames, we obtained several
recorded frames for only a limited range of positions for a given time interval. In
short this measuring method implied that there was only a small considerable
overlap of the different data sets of various non-neighbouring positions. This
complicated a comparison of data collapses of different γ-values because the
series representing time evolution of each position was seemingly aligned after
one another rather than on top of each other when varying the time-fractional.

However, a crude estimate was nevertheless possible from Figures 3.19a,
3.19b and 3.19c. These seemed to indicate that γ varies with time and/or
position (these are, as argumented for above, very much related and almost
inseparable in this context) from initially close to that of normal diffusion and
approaching very low values for the final scans and/or positions.

It is also important to reflect on what is the underlying diffusing media re-
lated to the estimation of γ from the hydration states: The hydration states
reflect the amount of a sample volume that is in a pure hydrated state. This is
again likely to reflect some degree of relative humidity in the surrounding porous
environments. However, it is this threshold limit that initiates the fast interca-
lation process (’fast’ is used here as opposed to the ’slow’ intercalation process

17These conditions are reflected in the assumption of a semi-infinite media and may be
explicitly expressed in the boundary conditions of the given case (see for example Equation
(1.44) in 1.3.1).
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(a) x ∈ (2.6, 5.1)mm, entire t-range

(b) x ∈ (5.6, 7.6)mm, entire t-range

(c) x ∈ (7.6, 12.1)mm, t ∈ (67.5, 267.0)h

Figure 3.19: Data collapse with a spatio-temporal scaling variable. (a) For the first
data set, representing the first sample positions, γ = 1 yields the best fit implying
normal diffusion behaviour. γ = 0.8 is also plotted for reference. (b) For the second
data set, representing positions further into the sample, γ ∼ 0.75 gives the best data
collapse implying a anomal behaviour. (c) Finally for the last positions far into the
sample γ ∼ 0.2 implies a strong anomal behaviour. Notice the limitation in the time
range for this last series.
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possibly described by the previously discussed detection of peak displacement).
Whether or not this ’threshold transport’, represented by the center of the in-
tercalation front, through the sample can be described as diffusive remains to
be said. Provided that this is true, the results thus seem to imply a decreasing
γ-parameter with time/spatial ingress.

3.2.3 Hydrophilic character of glass capillaries

The glass capillary is known to be quite hydrophilic and therefore attracts wa-
ter. Hydrophilic refers to the physical property of a molecule that can bond
with water (H2O) through a hydrogen bonding. According to thermodynamics
all matter seek to be in a low-energy state, and hydrogen bonding of a polar
molecule to water thus lowers the energy state [43].

Silica surfaces are known to exhibit up to about 8µmol/m2 of hydroxyl
groups, which corresponds to about 4.6 free hydroxyl groups per 10nm2 of glass
[48]. This high density causes a strong attraction of water.

In order to avoid disturbance due to this phenomenon, a silanization process
was carried out. Here the free hydroxyl groups are made to react with sili-
con compounds to yield a hydrophobe glass surface. Hydrophobes, also called
lipophobes, are not electrically polarized, and because they do not form hydro-
gen bonds, water is repelled in favor of bonding internally [43]. The hydrophobes
instead prefer other neutral and nonpolar solvents or molecular environments.

Method There was no known procedure to be found in literature describing
the silanization of glass capillaries, hence the entire process had to be done by
trial and error. However, other literature (for example [48]) describing other
silanization procedures suggested silanization by vapor treatment as the best
method. The applied method in this context was adapted as best possible.

A small amount of silanization reagent18 was injected at the open ends of
the glass capillaries, which were next turned up-side down and put in a beaker.
A glass lid was used to create a sealed off environment. The beaker with the
samples was heated at 200◦C for about one hour. During this time, the silicon
compound evaporates and is expected to bind covalently to the free hydroxyl
groups of glass (Figure 3.20).

Check A check on the result was done by examining the contact angle in a
silanized capillary and compare this to that of a non-treated capillary. The
result can clearly be seen in Figure 3.21, confirming a successful silanization
treatment.

Analysis Eight samples of Na-fluorohectorite was prepared in similar glass
capillaries, four being treated with silanization solution and the other four re-
maining non-treated. The temperature was lowered and an equal humidity
gradient was imposed on all the samples.

The idea is to investigate whether or not the hydrophilic properties of the
capillaries affect the speed of the water transport in any significant manner.

18Silanization solution 1 from Sigma-Aldrich. Chemical facts: ∼ 5% dimethyldichlorosilane
(C2H6Cl2Si) in heptane.
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Figure 3.20: Silanization of hydrophilic glass surface with reactive chlorosilane.

Figure 3.21: Microscope photograph of a silanized and a non-treated glass capillary.
The capillary to the left was treated with a silanization solution, whereas that to the
right was non-treated. Note the differenc in contac angle; the water is clearly attracted
along the glass walls of the non-treated capillary. Conversely, the water surface in the
treated capillary is almost ’flat’ and sharp.

Unfortunately it is still too early for any results of this presently ongoing exper-
iment to be presented in this report.

3.2.4 Disordered/mixed intercalation

Refering to Figure 3.11a states of mixed intercalation is clearly visible between
the Bragg peaks. A representative transition via mixed states is plotted in Fig-
ures 3.22a to 3.22f. The fitted data for the pure peaks have been subtracted
from the recorded data, thus revealing the recordings intermediate of the Bragg
peaks believed to be the signature of mixed/disordered intercalation. For these
intermediate points, very broad line shapes are observed including two or more
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(a) t = 0.0h (b) t = 12.7h

(c) t = 19.1h (d) t = 21.8h

(e) t = 26.1h (f) t = 407.2

Figure 3.22: Disordered intercalation. The figure series shows the evolution of the
disordered intercalation at a fixed position x = 5.6mm. The black curve is the recorded
data, while the blue and green curves represent the pseudo-Voigtian fits of the mono-
and bi-hydrated cases respectively. The red curve is the peak fits subtracted from the
recorded data thus yielding the contribution of mixed states.

peaks. This series, naturally being a very crude estimate, is pretty much con-
sistent with the transient Hendricks-Teller mixed-intercalation formalism (de-
scribed in 1.2.12) and thus clearly illustrates the considerable contribution from
this two-state coexistence.

This transition region of Hendricks-Teller state is what complicates peak
fitting procedures during hydration dynamics. The peak width and height of
the Hendricks-Teller state, originating in the combination of different states of
different possibilites, is determined by the closeness of the respective interference
maxima of the two conditions, but as the series clearly reveales the tails of the
Hendricks-Teller state and the pure Bragg peaks overlap considerably. Thereby
the shoulder often seen apperaring on the left side of the monohydrated peaks
and on the right side of the bi-hydrated peaks is the sign of Hendricks-Teller
mixed intercalation indicating a small proportion of respectively two and one
water-layer-spacings existing in the scattering volume.
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We leave the discussion at this point. The purpose was only to illustrate the
observable interpeak signals and relate them to the Hendricks-Teller formalism
as well as throw light on the asymemtrical effects this cause on the peak shape,
thus complicating the peak fitting procedures.

3.3 Discussion

In this experiment some aspects regarding the underlying physics of water trans-
port were considered. First a slight displacement of the Bragg peaks was ob-
served for positions far from the intercalation front. This point will be discussed
in 3.3.1. Then the intercalation front was defined, plotted and function fitted
to a stretched exponential. The relation between this streched exponential and
the time-fractional parameter is discussed in 3.3.2.

3.3.1 Peak displacement

In subsection 3.2.2, examening the terminating reference scan, the Bragg peak
of pure monohydrated states was observed to be sligthly displaced towards lower
angles, almost linearily, for positions close to the end of the sample and thus far
from the intercalation front.19 Especially interesting was the seemingly linear
approach and subsequent collapse of the two curves respectively describing the
intial reference peak values and the terminating reference peak values (Figures
3.7a and 3.7b).

The displacement can not be due to thermal expansion; for that the order
is too large, and such a contribution would decrease the d-spacing, not increase
as observed, due to the lowering of temperature from the initial reference scan
series to the terminating reference series. The order of the displacement was
found to be about 0.0043Å per centimeter of ingress in the apparent linear
region of the displacement (the light blue plots of the monohydrated cases in
Figures 3.7a and 3.7b).

Underlying causes Such a displacement would imply, given that there are
no instrumentally or experimentally inflicted causes, a change in the physcial
property of the d-interlayer spacing. There may be two reasons or a combi-
nation of the two; first the displacement is a signal of water intercalation into
the interlayer spacing thus slightly increasing the basal distance d. As pro-
posed in subsection 3.2.1 one can imagine this process of water diffusing into
the interlayer spacing where all the favourable positions are occupied in an at-
tempt to minimize the system energy. Thus the intercalating water molecules
are positioned in more unfavourable positions leading to a small expansion of
the interlayer spacing. The driving force of the water vapor diffusion into the
interlayer spacing (thus equalizing the chemical potential caused by unevenly
balanced particle concentrations) is possible balanced by the energy needed to
expand the layer distance. Hence the rate of this expansion would be propor-
tional to the dynamics of the relative humidity in the mesopores, thus directly

19The bi-hydrated peaks also displayed an equal and opposite displacement, however the
data for the monohydrated case were better suited for a closer investigation.
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relating the displacement to water vapor porous diffusion.20

Secondly a peak displacement may origin in the curve fitting procedure.
A peak shoulder will appear to the left due to water intercalation, and this
shoulder could bias the peak fitting. In any case, whether the first or the
second or possibly both factors contribute, the physical interpretation origins
in intercalation of water. Thus such a peak displacement is anyhow directly
related to the presence of water in the sample volume and can thus be utilized
for trac̈ıng the water vapor front directly once the displacement is known as a
function of the relative humidity.

Let us go back to the first argument. One can imagine this process to continue
until a limiting threshold value of the relative humidity is reached. At this
point the ’slow’ displacement inhibited up till now is overshadowed by a much
faster and larger contribution. After the domain of this ’fast’ intercalation a
’slow’ intercalation domain is once again reached thus slightly displacing the
bi-hydrated peaks in a similar manner depending on the relative humidity.

Assuming the relative distributions of these ’fast’ and ’slow’ humidity do-
mains to be temperature sensitive, an explanation is given for why different
humidities impose different speeds of the intercalation front. For instance for
the second scan series (2.2.5) the intercalation speed was found to be much faster
than compared to the third series, which has been the main focus of this report.
For the second series the temperature was significantly lower, T2 ∼ 10◦C, than
that of the third series, T3 ∼ 15◦C (see subsection 2.2.4). However, the rel-
ative humidity was also lower (constantly decreasing from about RH ∼ 85%
to RH ∼ 65% before terminating the series) than that of the third series
(RHhumid ∼ 99.9%). Then assuming that the treshold value for the second
series with lower temperature is much lower than in the case of the third se-
ries. Thus the lower relative humidity of the imposed humidity ’reservoar’ is
compensated for by a lower temperature-dependant threshold value.

Humidity gradient The humidity gradient is assumed to be linear at infinite
time. At one sample end we have an ’infinite’ humidity reservoar, while at the
opposite end the air is non-humid. By equilibrium conditions a linear gradient is
a plausible assumption. At t = 0 the humidity gradient is a delta function. With
time it evolves and approaches the equilibrium (linear) gradient. The closer the
real gradient is to the equilibrium gradient, the slower is the dynamics of the
water vapor front. Assuming that the initiation of the (’fast’) water intercala-
tion process from a mono- to a bi-hydrated state relies on a limiting releative
humidity treshold , this explains the corresponding decrease in the speed of the
intercalation front and subsequent complete halt. This development is outlined
in Figure 3.23. The coloured lines indicate different time plots of the suggested
water vapor gradient through the system. The intersection of the treshold value
with the humidity profile defines the intercalation front. These intersection
points are checked on the abscisse at x = 0, x′, x′′, x′′′ and xINF. The endpoint
of our experiment corresponds to the pink line where the water front has almost

20If so it is the slow dynamics of the water vapor front which enables the detection of this
systematical displacement with spatial position. In the case of faster dynamics these small
shifts would probably not appear as related because the dynamics of the water transport is
compareable in size to the scan rate. For slow dynamics, as in our reference end scans, the
picture on the other hand appear as close to static and therefore enables this detection.
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Figure 3.23: Suggested relation between the humidity gradient and intercalation
front.

reached the end of the sample. From the plot of peak displacements (Figure
3.7a and 3.7b) the collapse of data line was at about x ∼ 35mm (the length of
the sample capillary is about ∼ 42mm). Thus the water front is expected to
move slowly towards equilibrium as the gradients of the two states are already
very close. From the intersects of the treshold defining line in the figure and
the humidity gradient we observe that at this state an advance in the humidity
front results in a significantly smaller advance in the lagging intercalation front.

Finalizing comment The ideas presented in this subsection are just exactly
ideas and must not be interpreted otherwise. However they give rise to aspects
worth investigating closer in future experiments. In order to examine the ef-
fect of the fitting procedure on seemingly pure peaks and whether or not the
fitting itself could inflict this regular peak displacement, various fittings were
performed for representative peaks. Although the uncertainty imposed by differ-
ent fitting criterias were not found to be of the same order as the displacement,
experimental errors as a cause to the systematical displacement can still not be
completely excluded and needs closer investigation.

3.3.2 Anomalous transport

The data collapse obtained by introducing a spatio-temporal scaling variable
suggests a γ-value varying with time and/or positions. This preliminary indi-
cates a varying anomalous behaviour of the water intercalation front. Not being
able to scale the time dependancy of the hydration states at different positions
is normally an indication of different underlying physics.

A semi-log plot of the hydration states (Figure 3.24) seem to separate the
spatial region into two realms; one for x < 8.1mm (the steep plots) and the other
for x > 9, 1mm (the almost horizontal series). Notice how this corresponds to
the seemingly final ingress of the water intercalation front. Also with time
there seems to be a sharp distinction around t ∼ 100h. From Figure 3.17 this
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Figure 3.24: Semi-log plot of the evolution of normalized hydration states.

corresponds to the time at where the intercalation front practically comes to a
halt (100h is approximately four times the characteristic time constant of the
fitted stretched exponential in Figure 3.17).

From the analysis of the spatio-temporal scaling variable and especially the
cruedly estimated results connected to the Figures 3.19a, 3.19b and 3.19c, it is
tempting to view these results in connection with the information drawn out
of the semi-log plot of Figure 3.24. Doing so the diffusion of the intercalation
front seem to be anomalous with γ ∼ (0.75 − 1) before it practically halts at
x ∼ 9mm.

The stretched exponential of the fitted intercalation front function given by
Equation (3.3) returned a characteristic time parameter of β ∼ 0.7271. This
value is supposedly related to the time-fractional parameter γ under some con-
ditions allowing related integrals to be solved. However, the proper relation has
not yet been found in any literature.

Once again I would like to underline the fact that at this point the ideas
are pure speculations. Further investigation needs to be performed in order to
establish anything on this matter. Also notice that we are now treating the
diffusion character of the intercalation front. However, its relation to the water
vapor front is not yet fully known beyond plausible assumptions of a threshold
value.

Comment Imagine hydrophilic walls in a porous media. In the pore structure
there will exist a front intersecting the dry and humid regions. How this water
behaves in the pores, as vapor or condensated as small dropplets, is not yet
known. Anyhow the water will be attracted along the pores with a constant
force due to the hydrophilic characteristics. But the same characteristics also
induce friction proportional to the area of the humid walls. As the ’pulling
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force’ is constant and the friction force increases, a logical assumption would be
to expect that the diffusion will not behave linearily.

Note that this mind play only is based on the fact of diffusion in a porous
material of hydrophilic character.

A similar experiment has been performed on a sample of zeolite [40], which was
determined experimentally to be anomalous with a time-fractional parameter of
γ ∼ 0.36. However, there are some major differences in these two experiments;
zeolite does not swell, and the nanopores are of another character. Furthermore
the experiment on zeolite was performed with saturated water and not vapor
as in our case. Nevertheless, the experiment disclosed anormalous diffusion in
a nanoporous media.

Errors and improvements

As always corrections can and should be done in order to improve the validity
of the results. Here only the most important considerations will be discussed.

Several subjects in this experiment focused on the normalized hydration
states. These were, for the monohydrated case, referenced to the intital reference
scan. However, these were recorded under different temperatures and humidities
than those prevailing during the experiment. The error thereby imposed is
unknown.

Another obvious error source is the fitting procedure. This is a very critical
element. Not only does the script need to be correct, but the inputs must
also be optimalized. Dispite the huge effort put into minimizing and localizing
parametric error sources, the automation of the fitting procedure may have given
rise to some errors not known.

Some consecutive scans of the identical position clearly deviated in intensity,
but not in shape, in such a way that the only possible explanations are either
sudden fluctuations in the beam, which is not very likely, or that the goniometer
is not returning the sample to the exact same location as in the previous scan.
These intensity fluctuations are manifested as small ’jumps’ in several of the
plots.

Also the existence of a pressure gradient would influence the diffusion rate
in an unwanted manner.

Last, but not least, the hydrophilic property of the glass capillary may intro-
duce some effects on the speed of the observable water transport. This matter
will however likely be solved and presented in some future works.

Finally the biggest improvement given the same facilities would be to extend
the spatial scan interval and not only focus on the ’activity pot’ around the
intercalation front. Through this invaluable information can be gained making
feasible a more detailed estimate of certain physical parameters, especially the
width of the front and the speed at which it advances through a fixed sample
position.



Chapter 4

Conclusion

The Wide Angle X-ray Scattering (WAXS) measurements of water vapor trans-
port in general and the water intercalation front in particular were performed on
a powder sample of the synthetic clay mineral Na-fluorohectorite known to be
purely monohydrous at the initiation of the experiment. The (001) Bragg peak
gives an indication of the interlayer stacking distance of the fundamental layered
silica lamellae through the application of the scattering angle and Bragg’s law.
Lowering the temperature and imposing a humidity gradient the dynamics of
the interlayer spacing was monitored in the dynamics of the scattering signa-
ture as water intercalated through the sample. Through analyzing these data
different aspects of the water transport were enlightened and examined.

The intercalation process was known to be temperature and humidity de-
pendent. At the prevailing conditions, T ∼ 15◦C and RHhumid ∼ 99.9% and
RHdry ∼ 0.03%, the intercalation front was shown to yield a good fit with a
stretched exponential

x = x0

(
1− e−( t

τ )β )
with fitted parameters x0 = (9.1087±0.0305)mm, τ = (25.1912±0.3461)s−1 and
β = (0.7271± 0.0118). The asymptotic parameter x0 indicates the penetration
depth of the intercalation front, whereas the characteristic time constant τ says
something about the rate at which the intercalation front advances through
the sample. Finally the remaining β parameter is thought to be related to the
fractional time parameter γ under certain conditions and thereby says something
about the possible anomality of the diffusive character.

Furthermore the head and tail of the front is likely to follow the same
stretched exponential, but with respectively higher and lower asymptotic pa-
rameters x0, counting for the observed broadening of the front width.

An attempt was done on introducing a spatio-temporal scaling parameter
for the normalized hydration states. A universal curve of the entire data span
for various γ-parameters was not found, however data collapse was observed to
some degree when restricting the data to certain time intervals/positions. These
estimated γ values were shown to decrease with time and/or positional ingress.
Moreover the apparent inaccuracy did not seem to validate these observations.
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Nevertheless, by comparing the behaviour of the intercalation front to the de-
ducted knowledge on penetration depth and characteristic time constant, an
anomalous behaviour with γ ∼ [0.75, 1 > seems to be the best estimate if one
should be given.

The intercalation front was also shown to have a considerable width; almost
displaying a 2:3 ratio with the penetration depth as the asymptotic value x0 was
approached. This is in contrast with the narrow widths previously reported for
similar experiments. Futhermore at x = 7.1 into the sample the intercalation
front was estimated to use at least 40h on advancing through the sample position
head and tail.

Despite the lack of good estimates on the width of the front, both head and
tail are nevertheless expected to display the same streched exponential form;
probably with the same time constant τ and fractional time parameter γ, but
with a respectively higher and lower valued asymptotic parameters xhead

0 and
xtail

0 .

A small but seemingly ordered displacement of the monohydrous as well as
the bi-hydrated peak center values was observed at the end of the experiment.
For peaks being visually symmetrical, also in a semi-log plot, this displacement
appared to be linear with a gradient of roughly ∼ 0.04Å per centimeter of ingress
for the monohydrous case. ’

The displacement is suggested to be due to the presence of water vapor in
the surronding mesoporous space leading too subtle intercalation of water into
the interlayer spacing, but not inflicting a transition of water layer state. The
initiation of such a process is believed to be due to a treshold limit in the relative
humidity.

An estimate was given for the particle size utilizing the Scherrer equation
with the deducted Lorentzian peak widths from the peaks fitted by a pseudo-
Voigitan function. This mean thickness of the crystallites was found to be a bit
lower than expected, but none-size contributions to the Lorentzian peak width,
for instance strain, is assumed tom compensate for this discrepancy. Finally a
signature of random or mixed intercalation states attributable to the Hendricks-
Teller formalism was detectable at all sample positions.

Suggestions for future experiments

A study of the peak displacements as a function of relative humidity under fixed
temperature conditions would be very interesting. Furthermore a similar setup
like in this experiment, but rather scanning the sample back and forth in stead
of focusing on the ’action pot’ of the intercalation front, would probably also
give a useful insigth into the physics behind these effects if any at all.

Anyhow a study should be performed of the onset of the ’fast’ intercalation
process as a function of relative humidity and with fixed temperature; in other
words examine the existence of a threshold value and determine the numerical
values if such do exist.
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Appendix A

Lattice sum as Dirac’s delta
function

A brief proof of equation (1.16)

|SN (ξ)| −→ δ(ξ)

will be given.
For a geometrical series

SN =
N−1∑
n=0

kn = 1 + k + k2 + · · ·+ kN−1 =
1− kN

1− k

the sum is convergent in the limit N →∞ if and only if |k| < 1, for which

S∞ =
1

1− k

The multiplication of ~Q and ~R in equation (1.12) returns for one dimension
2π(hn+ ξn), setting k = i2πξ in the geometrical series (as the term ei2πhn ≡ 1
for h, n = integers). For ξ → 0 ⇒ |k| → 0, and

SN→∞ = 1

which shows that the lattice sum can be written in terms of a Dirac’s delta
function for N and ξ sufficiently large and small respectively.
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Appendix B

Calculations of atomic form
factor

B.1 Detailed expression for the atomic form fac-
tor

The atomic scattering factor is given in Equation (1.8)

f(~Q, ~ω) = f0(~Q) + f ′(~ω) + if ′′(~ω)

where quantum mechanical, relativistic and other effects are included in f ′ and
a phase lag is allowed for in f ′′.

However, a more elaborate expression will be discussed in this chapter. The
atomic scattering factor is composed of a real and an imaginary part

f = Re(f) + iIm(f)

The real part can be expressed as

Re(f) = f0 + f ′ = f0 + fcorr + fNT, fcorr = f1 + frel − Z (B.1)

where f0 is the ’normal’ coherent scattering factor (Equation (1.7)), fcorr the
correction term and fNT the nuclear Thomson scattering. The correction term
is composed of the non-relativistic anomal dispersion f1−Z and the relativistic
correction factor frel, where f1 is some tabulated value found in literature.

The imaginary part of the dispersion correction is simply linked to the pho-
toeffect cross-section at the photon energy E and is, like f1, found in literature.

Im(f) = f ′′ = f2 (B.2)

B.2 Calculations

The intensity is proportional to the atomic form factor squared (Equation
(1.27)), hence

I ∝ |f |2 = f∗f = [Re(f)]2 + [Im(f)]2 = (f0 + f1 + frel −Z + fNT)2 + f2
2 (B.3)
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Electronegativity

H 2.20
Li 0.98
O 3.44
F 3.98
Na 0.93
Mg 1.31
Si 1.90

Table B.1: Values for electronegativity of the composite elements of Na-FH [53]

Ionization The atomic form factor, f , varies with the state of ionization.
However, the scattering curves for neutral and fully ionized states differ signif-
icantly only at very low sin θ

λ values (< 0.3Å−1), and the effects of ionization
state are detectable only in that region [57]. sin θ

λ ∈ [0.0227Å−1, 0.1216Å−1] for
this experiment, thus a correction is appropriate. Different litterature propose
different approaches.

The electronegativity of an atom is the relative ability of the atom to draw
electrons in a bond towards itself. The electronegativities for the composite
atoms in Na-FH are displayed in Table B.1.

The general rule is that when the difference in electronegativity of two el-
ements is < 1.2, the bond between atoms of these elements is assumed to be
covalent. For differences > 1.8 we assume the bond to be ionic, while for inter-
mediate differences, the bond is said to be polar or polar covalent.

Electronegativites summarise the tendency of an element to gain, lose or share
electrons when it combines with another element. However, there are limits to
the success of this application. For instance, Si and F have electronegativity
differences (∆EN = 2.08) which lead us to expect the bond to behave as if it
was ionic, but the bond displays covalent character. This is due to that each
element is assigned only one electronegativity value, which is used for all bonds.
But fluorine is less electronegative when it bonds to semimetals, such as Si, or
nonmetals than when it bonds to metals.

If one consider bonds between elements of more than one oxidation state,
the ability to draw electrons in a bond towards itself becomes larger as the
oxidation state of the atom increases. As the oxidation state becomes larger,
the differences between the electronegativites for a metal and the nonmetal
with which it combines decreases, and the bonds between these two elements
therefore becomes less ionic (or more covalent). For instance, Si atoms in a +4
oxidation state is more electronegative than the same atoms in lower oxidations
states, and the bonding of a nonmetal to this state displays a more covalent
character than what is to be ’expected’ [53].

Based on the above reasoning and other litterature [5], the halfionized atomic
scattering factors are used for Si and silicate O, while fully ionized values are
used for the other cations and F. For water the scattering factor is the sum of
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the factors for H+ and O2−.1

’Normal’ (non-dispersive) coherent scattering The ’normal’ coherent
scattering factor (Equation (1.7)) is a function of the element and momentum
transfer, ~Q, which includes both a radiation energy dependence (λ) and angular
dependence (sin θ) (through the Laue condition (or Bragg’s law) for constructive
interference (see page 12)). The function is normalized in units of the amount
of scattering occuring from a single electron. The values are found in literature,
generally expressed as a function of discrete values of sin θ

λ or as coeffisients of
polynomial fits to curves of these values.

For our purpose the values were found in literature [55] for the O2− ion and
[46] for the remaining elements.2

As the coherent scattering factors are all given as discrete values as functions
of sin θ

λ , a polynomial fit of 10th order was carried out for each of the elements.
Thereby the factors are given as mathematical functions of θ (as λ is constant
(2.1.1)) and may be evaluated continuously over the proper angle interval for
this present study. See Figure B.2.

Dispersive scattering factors The dispersive scattering factors were de-
termined and extrapolated from tabulated values found in [29]. A graphical
presentation is given in Figure B.2.

f1 and f2 The values for f1 and f2 are found in proper literature as a discrete
function of the photon energy (E). Consequently a polynomial fit of 10th order
was appropriate in order to determine the best interpolated values. See Figure
B.2

The ionization state of an atom changes the position of the absorption edge
on the energy scale. However, the radiation energy for this experiment was
significantly beyond any absorbtion edges of the composite elements and thus
did not represent any difficulties.

Nuclear Thomson scattering The nuclear Thomson scattering, fNT, is small
and negative in phase relative to the electronic form factor (f0 + fcorr). In this
context this term may be neglected.

Relativistic corrections There are two different values (denoted f1
rel and f2

rel)
given for the relativistic correction of the scattering factor [29], but they may
both be neglected in this context as they are of much smaller order than the
other contributions. This goes for all the elements.

1This is generally also the case if there are any OH− present, as in normal hectorite.
2Coherent X-ray factors (f0) are available for atoms and some positive and negative ions.

However, free negative ions such as O2− are unstable and therefore the corresponding form
factors are not easily obtainable. Though, there are several methods for investigating these
values (for instance [56]). The extent to which they differ by method chosen is insignificant
in this context.



98 Calculations of atomic form factor

(a) Fluorine ion (F−)

(b) All elements

Figure B.1: Non-dispersive (’normal’) scattering factors. (a) Polynomial fit of 10th

order for the fluorine ion (F−) taken as the example. The region of interest for our
purpose is marked with a red line, corresponding to the angular interval of 2θ ∈
[2.0◦, 10.8◦]. (b) Non-dispersive scattering factor for 2θ ∈ [2.0◦, 10.8◦] for all the
composite elements in Na-Fluorohectorite.

Values for the composite elements in Na-FH The summing up is done
in Table B.2. Note that the non-dispersive term f0 is given as an interval
corresponding to 2θ ∈ [2.0◦, 10.8◦], the angular range studied in this experiment.

It is worth noting that the dependence of f upon the energy and angular
dependence may not be strictly separable as indicated by the separation of f0
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Figure B.2: Dispersive scattering factors (the fluorine ion (F−) taken as the example).
We observe that f1, Z and to some extent f2 are the main contributing terms, wheras
fNT and frel may be neglected in this context. The special behaviour around ∼ 18Å
corresponds to the K-shell edge limit. For higher elements, the higher order edge limits
(LI, LII, LIII etc.) may also be visible for higher wavelengths (lower energy).

and fdispersive.

B.3 Atomic scattering factor squared

Equation (B.3) is tabulated for the elements in Na-Fluorohectorite in Table B.3
and displayed in Figure B.3 for the angular interval [2.0◦, 10.8◦].
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Atomic form factors [e/atom]

Elements† f0 f1 frel Z fNT f2

H -‡ 1.0000 1.0519E-04, 0.0000E+00 1 -5.4423E-04 1.0724E-06
Li [1.9989,1.9751] 3.0014 -9.8613E-04, -6.0000E-04 3 -7.1131E-04 3.3350E-04

O [9.0035,8.5336]†† 8.0519 7.7133E-03, -4.2000E-03 8 -2.1944E-03 3.1984E-02

[10.0070,9.4731]‡‡

F [10.0027,9.6694] 9.0757 -9.9395E-03, -5.4000E-03 9 -2.3389E-03 5.2906E-02
Na [9.9942,9.8299] 11.1421 1.5378E-02, -8.4000E-03 11 -2.8873E-03 1.2311E-01
Mg [9.9962,9.8695] 12.1819 -1.8616E-02, -1.0800E-02 12 -3.2502E-03 1.7756E-01
Si [11.0013,10.8231] 14.2665 -2.6197E-02, -1.5600E-02 14 -3.8284E-03 3.2954E-01

Table B.2: Atomic scattering factors for the composite elements of Na-fluorohectorite.
† The non-dispersive contribution (f0) is calculated for the ionized composits, whereas
the dispersive contributions (the remaining factors) are calculated from the neutral
atom. The implied discrepancy is not significant in this context.
‡ This is a direct result from the above assumption as we regard the H+ ion, which
do not include any scattering electrons.
†† For the O− case (silicate oxygen).
‡‡ For the O2− case (water).

|f |2 for 2θ ∈ [2.0◦, 10.8◦]

H 3.4535E-07†
Li [3.9951,3.9006]
O [81.8530,73.5716]‡

[101.0170,90.5710]††
F [101.3753,94.7750]
Na [102.4551,99.1559]
Mg [103.2587,100.7009]
Si [126.5147,122.5386]

Table B.3: Atomic scattering factor squared for all of the composite elements of Na-
FH.
† Hydrogen appears as H+-ion (or proton). Thus there are no scattering electrons
present, and only the dispersive contributions are included, for which the order indi-
cates that they can be neglected.
‡ For the O− case.
†† For the O2− case.
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(a) f1

(b) f2

Figure B.3: Graphical representation of the non-despersive scattering factors f1 and
f2 for the fluorine ion (F−) and the corresponding polynomial fits. The interpolated
values valid for this experiment are marked with big pink dots.
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Figure B.4: Graphical representation of the atomic form factor squared for all of the
composite elements of Na-FH.



Appendix C

MatLab script for peak
fitting

0001 function [parameters,error bars] = peakfitwax(matrix,G2Lp,...
0002 order,xpos,biased,...
0003 x width lower,x width upper,...
0004 display graph,sensitivity,first,second,third)
0005
0006 % Pseudo-Voigtian fit to input data (matrix form)
0007 % PARAMETERS =
0008 % PEAKFITWAXS(MATRIX,G2LP,ORDER,XPOS,BIASED,X WIDTH LOWER,X WIDTH UPPER,...
0009 % DISPLAY GRAPH,SENSITIVITY,FIRST,SECOND,THIRD)
0010 %
0011 % MATRIX: normalized data input as a matrix
0012 % G2LP: layer structure and Lorentzpolarization vector
0013 % ORDER: order of G2Lp (this is due to avoid numerical
0014 % difficulties when operating with extremely small/large values)
0015 % XPOS: approximate peak position
0016 % BIASED: preferred direction of the weighing of the x-data
0017 % X WIDTH LOWER: lower width of x-data on which to do the fit
0018 % X WIDTH UPPER: upper width of x-data on which to do the fit
0019 % DISPLAY GRAPH: graphical comparison of the input and fitting (type
0020 % ’y’ for display, otherwise type ’n’)
0021 % SENSITIVY: Criteria for aborting the least square fitting loop
0022 % FIRST: lower limit of left zone of interest for baseline appropximation
0023 % SECOND: upper limit of left zone of interest for baseline appropximation
0024 % THIRD: lower limit of right zone of interest for baseline appropximation
0025 %
0026 % Returns PARAMETERS - a matrix [mu,xc,w,A,wL,wG,error max,error min,backgroundparameters]
0027 % with the parameters for the pseudo-Voigtian fit found by the method of least squares
0028 % approxmation, and the parameters for the background fit.
0029 % and ERROR BARS - a matrix [mu error,xc error,A error]
0030 % with the error bars for the design variables
0031 %
0032 % Made by: Yves Meheust
0033 % Modified by: Lars Ramstad Alme Trondheim 27/03/06
0034 % Last revision: 15/06/06
0035 %
0036 % Ex: fitwaxspeakbiasedbgsub(importplotsodata(’C:\Integratedframes\...
0037 % scan001.plt’),f2,10^8,5.88,’l’,0.3,0.3,’y’,...
0038 % 0.001,2,3.8,8.5)
0039
0040
0041
0042 % Loading of the data and reduction to the correct domain
0043 xdat=matrix(:,1);
0044 ydat=matrix(:,2);
0045 [xred,yred,imax]=Reducedata(xdat,ydat,xpos,x width lower,x width upper);
0046 [xred 2,G2Lpred,imax 2]=Reducedata(xdat,G2Lp./order,xpos,x width lower,x width upper);
0047
0048 %Determination of the baseline from normalized data
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0049 [backgroundparameters,maxerror,minerror] = powerbaseline(matrix,first,second,third,display graph);
0050
0051
0052 %Subtraction of baseline from normalized input data
0053 ysub = ydat-BackgroundFunction(backgroundparameters,xdat);
0054 xsub = xdat;
0055 yredsub = yred-BackgroundFunction(backgroundparameters,xred);
0056 xredsub = xred;
0057
0058 %Divide by Layer structure and Lorentzpolarizationfactors
0059 yredsubG2Lp = yredsub./G2Lpred;
0060
0061 % Initial values
0062 mu=0.5;
0063 xc=xredsub(imax);
0064 w=Getwidth(imax,xredsub,yredsubG2Lp,biased);
0065 A=0.5*yredsubG2Lp(imax)/((2*mu/(pi*w)) + (2*(1-mu)*nthroot((log(2)/pi)/w,2)));
0066
0067 par0(1)=mu;
0068 par0(2)=xc;
0069 par0(3)=w;
0070 par0(4)=A;
0071
0072 % Define set of lower and upper bounds on the design variables
0073 % (mu,xc,w,A,y0)
0074 LB = [0,0,0,0];
0075 UB = [1,Inf,Inf,Inf];
0076
0077 % Fitting of the data
0078 par=lsqcurvefit(@PseudoVoigt,par0,xredsub,yredsubG2Lp,LB,UB);
0079 mu=par(1);
0080 xc=par(2);
0081 w=par(3);
0082 A=par(4);
0083
0084 [parfit,squaredS,residual,exitflag,output,lambda,J]=...
0085 lsqcurvefit(@PseudoVoigt,par,xredsub,yredsubG2Lp,LB,UB);
0086
0087 counter = 1;
0088 abort = false;
0089 approvedfit = true;
0090 while abs(1-parfit(1)/par(1))>sensitivity | abs(1-parfit(2)/par(2))>sensitivity | ...
0091 abs(1-parfit(3)/par(3))>sensitivity | abs(1-parfit(4)/par(4))>sensitivity
0092 par = parfit;
0093 [parfit,squaredS,residual,exitflag,output,lambda,J] = ...
0094 lsqcurvefit(@PseudoVoigt,par,xredsub,yredsubG2Lp,LB,UB);
0095 if counter==1000 %aborts function if no satisfying approximation is reached
0096 parfit(:) = NaN;
0097 abort = true;
0098 break
0099 end
0100 counter = counter+1;
0101 end
0102 par = parfit;
0103
0104 % Estimation of the errors
0105 [dof,s,error bars]=DetermineErrorBars(xred,par,squaredS,J);
0106
0107 % Criterias for an approved fit
0108 %Find max in the zone of interest
0109 wideinterval width = 0.25;
0110 [xintervalsub,yintervalsub,iposmax]=Reducedata(xsub,ysub,xpos,wideinterval width,wideinterval width);
0111 [maxvalue zoneofinterest,maxpos zoneofinterest] = max(yintervalsub);
0112
0113 %Find max in a narrow interval around the expected peak
0114 narrowinterval width = 0.15;
0115 [xposred,yposred,iposmax]=Reducedata(xsub,ysub,xpos,narrowinterval width,narrowinterval width);
0116 [maxvalue zoneofpeak,maxpos zoneofpeak] = max(yposred);
0117
0118 amp = amplitude(par);
0119 error = yredsubG2Lp-PseudoVoigt(par,xredsub);
0120 [error max, error max pos] = max(error);
0121 [error min, error min pos] = min(error);
0122
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0123 ampfactor = 5; %for Criteria 3: the factor for which the fitted amplitude must exceed the
0124 %maximum deviation of the fit
0125 %Criteria 1: max value in zone of fit is within a narrow
0126 %interval around the expected peak
0127 if maxvalue zoneofinterest>maxvalue zoneofpeak
0128 message = [’Did not match criteria 1 - xmax = ’,num2str(xintervalsub(maxpos zoneofinterest))];
0129 par(:) = NaN;
0130 error bars(:) = NaN;
0131 approvedfit = false;
0132 %Criteria 2: the calculated xc-value must lie within the same interval
0133 elseif par(2) < xpos-narrowinterval width |xpos+narrowinterval width < par(2)
0134 message = [’Did not match criteria 2 - calculated xc = ’,num2str(par(2))];
0135 par(:) = NaN;
0136 error bars(:) = NaN;
0137 approvedfit = false;
0138 %Criteria 3: amplitude of the fit is minimum ’apmfactor’ times the maxiumum
0139 %deviation of the fit
0140 elseif amp < ampfactor*error max | amp < abs(ampfactor*error min)
0141 message = [’Did not match criteria 3 (amp=’,num2str(amp), ...
0142 ’, ’, num2str(ampfactor),’*errormax=’,num2str(ampfactor*error max), ...
0143 ’, ’, num2str(ampfactor),’*errormin=’,num2str(ampfactor*error min)];
0144 par(:) = NaN;
0145 error bars(:) = NaN;
0146 approvedfit = false;
0147 end
0148
0149
0150 % Visual comparison of the plot and data and return of the parameters
0151 if abort == false
0152 if display graph == ’y’
0153 graphs = figure;
0154 graphs = subplot(3,1,1);
0155 yfit=PseudoVoigt(par,xsub);
0156 plot(xsub,ysub,’.b’,xredsub,yredsubG2Lp.*G2Lpred,’.r’,...
0157 xsub,PseudoVoigt(par0,xsub).*(G2Lp’./order),’-g’,xsub,yfit.*(G2Lp’./order),’-k’);
0158 legend(’Data with background subtracted’,’Chosen data range for fitting’,...
0159 ’Initial guess’,’Pseudo-voigtian fit’,’Location’,’NorthEastOutside’);
0160 if approvedfit == true
0161 title(’Pseudo-Vogitian fit of experimental data’);
0162 else
0163 title([’Not approved fit (pseudo-vogitian) of the peak (’,message,’)’]);
0164 end
0165
0166 subplot(3,1,2);
0167 yfitredsub=PseudoVoigt(par,xredsub)./order;
0168 plot(xredsub,yredsubG2Lp./order,’.r’,xredsub,yfitredsub,’-k’);
0169 legend(’Data with background subtracted and corrected for |G|^2Lp’,...
0170 ’Pseudo-voigtian fit’,’Location’,’NorthEastOutside’);
0171
0172 if approvedfit == true
0173 subplot(3,1,3);
0174 plot(xredsub,error./order,’.b’,xredsub,0,’:k’,xredsub(error max pos), ...
0175 error max./order,’or’,xredsub(error min pos),error min./order,’or’);
0176 text(xredsub(error max pos),1.1*error max./order,...
0177 [’Max error’]); % = ’,num2str((error max./order)]);
0178 text(xredsub(error min pos),0.9*error min./order,...
0179 [’Min error’]); % = ’,num2str(error min./order)]);
0180 legend(’Error in pseudo-voigtian fit’, ’Location’,’NorthEastOutside’);
0181 end
0182 end
0183
0184 %Deduce the natural widths of the peak:
0185 if approvedfit == true;
0186 global omega;
0187 global eta;
0188 omega=w;
0189 eta=mu;
0190
0191 wL init=omega;
0192 wL = fsolve(@wL2eta,wL init);
0193
0194 global gammaL;
0195 gammaL=wL;
0196
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0197 wG init=omega/2;
0198 wG = fsolve(@wG2w,wG init);
0199
0200 parameters = [par,wL,wG,error max,error min,backgroundparameters];
0201 return
0202 else
0203 parameters = [par,NaN,NaN,NaN,NaN,backgroundparameters];
0204 end
0205 else
0206 parameters = [par,NaN,NaN,NaN,NaN,backgroundparameters];
0207 return
0208 end
0209
0210
0211
0212
0213
0214 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0215 %%%%%% Subroutines
0216 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0217
0218 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0219 %%%% Subroutine wG2w
0220 function y=wG2w(x)
0221 global omega;
0222 global gammaL;
0223 omega;
0224 gammaL;
0225 y=(x.^5+2.69269*gammaL*x.^4+2.42843*gammaL^2*x.^3+...
0226 4.47163*gammaL^3*x.^2+0.07842*gammaL^4*x+gammaL^5).^(1/5)-omega*ones(1,length(x));
0227 return
0228
0229
0230 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0231 %%%% Subroutine wL2eta
0232 function y=wL2eta(x)
0233 global omega;
0234 global eta;
0235 %omega
0236 %eta
0237 aux=x/omega;
0238 y= 1.36603*aux-0.47719*aux.*aux+0.11116*aux.^3-eta*ones(1,length(aux));
0239 return
0240
0241
0242 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0243 % Subroutine Reducedata
0244 function [x,y,imax]=Reducedata(xdat,ydat,xpos,x width lower,x width upper)
0245 j=0;
0246 for i=1:length(xdat)
0247 if ( xdat(i)<=xpos & (xpos-xdat(i)) <= x width lower ) |...
0248 ( xdat(i)>=xpos & (xdat(i)-xpos) <= x width upper )
0249 j=j+1;
0250 x(j)=xdat(i);
0251 y(j)=ydat(i);
0252 index(j)=i;
0253 end
0254 end
0255 [ypos,imax]=max(y);
0256 return
0257
0258
0259 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0260 %%%% Subroutine Getwidth
0261 function w=Getwidth(imax,xred,yred,biased)
0262 i=imax;
0263 [xred max, xred max pos] = max(xred);
0264 [xred min, xred min pos] = min(xred);
0265
0266 if biased == ’r’
0267 while yred(i)>yred(imax)/2
0268 if i==xred max pos %this if-sequence will be activated when the
0269 [ymin, imin] = min(yred); %peak is smaller than the surrounding background
0270 xredhalf = xred(imin);



107

0271 break
0272 end
0273 i=i+1;
0274 xredhalf = xred(i);
0275 end
0276 elseif biased == ’l’
0277 while yred(i)>yred(imax)/2
0278 if i==xred min pos %this if-sequence will be activated when the
0279 [ymin, imin] = min(yred); %peak is smaller than the surrounding background
0280 xredhalf = xred(imin);
0281 break
0282 end
0283 i=i-1;
0284 xredhalf = xred(i);
0285 end
0286 else
0287 ’Biased must be assigned (l/r)’
0288 return
0289 end
0290 w=abs(xredhalf-xred(imax));
0291
0292
0293 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0294 % Subroutine ’PseudoVoigt’
0295 function f=PseudoVoigt(par,xdata)
0296
0297 % Parameters
0298 mu=par(1);
0299 qc=par(2);
0300 w=par(3);
0301 A=par(4);
0302
0303 % Computation of the function at abscisse value q
0304 x=xdata-qc;
0305 hw1=w/2;
0306 fact1=sqrt(log(2)/pi)/hw1;
0307 intens1=(1-mu)*fact1*exp(-log(2)*(x.*x)/(hw1*hw1));
0308 hw2=w/2;
0309 fact2=1/(hw2*pi);
0310 intens2=(mu)*fact2./(1+(x.*x)/(hw2*hw2));
0311 f=A*(intens1+intens2);
0312 return
0313
0314
0315 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0316 % Subroutine BackgroundFunction
0317 function f = BackgroundFunction(param,xdata)
0318 f = param(3).*xdata.^param(2)+param(1);
0319 return
0320
0321
0322 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0323 % Subroutine DetermineErrorBars()
0324 function [dof,s,error bars vec]=DetermineErrorBars(xdata,par,squaredS,J)
0325 dof=length(xdata)-length(par); %degree of freedom
0326 s=sqrt(squaredS/dof);
0327 %fprintf(’Chi2 = %f\t dof = n - p = %d\t Chi2/(n-p) = %f\n’,squaredS,dof,s*s);
0328 C=inv(transpose(J)*J);
0329
0330 for i=1:length(par)
0331 error bars vec(i)=s*sqrt(C(i,i));
0332 end
0333 return
0334
0335
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