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1 Introduction

Photonic crystals (PhCs) are a new class of materials that have the ability to manipulate
and control the propagation of light. Properly designed, PhCs can either prohibit the
propagation of electromagnetic waves, allow it only in certain frequency ranges or localize
light in specific areas. The concept of PhCs and the photonic band structure can be
seen as an analogy to the electric conduction process and the electron band structure.
The term Photonic Crystal is used for every periodically structured dielectric or metallic
material, whereas only particular materials show a photonic band gap (PBG) and are
referred to as Photonic Band Gap Materials.

The simplest form of a PhC, a 1D periodic structure, was already studied regarding
its interesting optical properties more than 100 years ago by Lord Rayleigh. Forty years
after E. Purcell sketched the possibility of prohibited spontaneous emission in some
materials [1], E. Yablonovitch came up with the idea of 2D- and 3D photonic crystals,
expecting a PBG [2]. In the last 20 years, such structures have seen an increasing
interest added by the simultaneous improvement of fabrication precision. They show
many interesting properties, like inhibited spontaneous emission, low-loss waveguiding, a
significant reduction of the group velocity and their particular properties can be changed
and controlled in the fabrication process.

Nowadays PhCs are used in a broad range of applications like LEDs, lasers and optical
fibres. There are even some examples of natural occurring PhCs, e.g. the opal which
optical appearence is due to Braggreflexion in its microstructure. Other examples are
the wings of some butterflies or the hair of the sea mouse.

We will start with the physical background of photonic crystals and certain calculation
methods. The third chapter presents the fabrication of PhCs, considering different ma-
terials and 3D-fabrication. Finally we specify several applications, illustrated by some
particular research projects.
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2 Theoretical Overview

The theory of electromagnetic waves in photonic crystals is similar in many aspects with
the theory of electron waves in an atomic lattice. Hence a lot of concepts for describing
electromagnetic waves are borrowed from solid state physics. The analogy of both phe-
nomena starts in the formal relation between Maxwell’s equations for electromagnetic
waves in a dielectric medium and the Schrödinger equation for massive particles in a
potential. A comparison will show that the dielectric permittivity for the photons is the
same as the potential for the electrons. And in the end it leads to the Bloch-Floquet

theorem for periodical structures i.e. for electrons to the Coulomb potential and for
photons to the periodicy of the dielectric permittivity in form of a lattice out of different
materials. The result in both cases will be dispersion relations and band structures with
band gaps. But the theory in solid state physics is not completely applicable to photonic
crystals. Differences are based e.g. in the vectorial character of the electromagnetic field
in contrast to the scalar field of electron waves or in the spin character of photons, which
are bosons, and electrons, which are fermions.

In this chapter we want to give an introduction into the main aspects of the theory of
photonic crystals. We will describe the calculation of the band structure of a photonic
crystal and the occurence of the photonic band gap for one and more dimensions. To
simplify the calculations we will use the “plane wave method” which, however, leeds to
some problems in numerical calculations but it is still an important model to describe
photonic crystals.

2.1 Wave Equation and Eigenvalue Problem

The electromagnetic field is discribed by Maxwell’s equations. We assume that there
are no free charges and no electric currents in our medium. In this case, Maxwell’s
equations have the following form.

∇ · D(r, t) = 0

∇ · B(r, t) = 0

∇ × E(r, t) = −
∂

∂t
B(r, t)

∇ × H(r, t) = −
∂

∂t
D(r, t)

(1)

Here E represents the electric field, H the magnetic field, D the electric displacement
and B the magnetic induction. To solve this equations we replace the magnetic induction
B by the magnetic field H and likewise E by D.

B(r, t) = µ0µ(r)H(r, t) (2)

D(r, t) = ǫ0ǫ(r)E(r, t) (3)

Generally the magnetic permeability µ(r) and the dielectric constant ǫ(r) are tensors.
In our homogenic case they can be treated as scalars. Furthermore we assumed that the
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magnetic permeability of the photonic crystal is the same as in free space, µ(r) = 1,
and that the dielectric constant ǫ(r) is not dependent on frequency. By inserting these
equations (2) and (3) in (1) we obtain the wave equations for E and H ,

1

ǫ(r)
∇ × {∇ × E(r, t)} = −

1

c2

∂2

∂t2
E(r, t)

∇ ×

{

1

ǫ(r)
∇ × H(r, t)

}

= −
1

c2

∂2

∂t2
H(r, t) ,

(4)

where c = (µ0ǫ0)
−1/2 is the velocity of light.

Originating in a harmonic time dependence for E and H ,

E(r, t) = E(r)e−iωt

H(r, t) = H(r)e−iωt
(5)

the eigenfunctions E(r) and H(r) will satisfy the time independent wave equations

1

ǫ(r)
∇ × {∇ × E(r)} = −

ω2

c2
E(r)

∇ ×

{

1

ǫ(r)
∇ × H(r)

}

= −
ω2

c2
h(r) .

(6)

These equations have a high similarity to the Schrödinger equation for electronic
waves in a potential [3],

∇
2Ψ(r) = −

2m

h̄2 {E − V (r)}Ψ(r) , (7)

where Ψ(r) is the scalar wave function for an electron with the mass m and V (r) is
the the potential. Comparing equation (6) with (7) one can recognize the mentioned
analogy between the dielectric permittivity ǫ(r) and the potential V (r).

Like V (r) in a lattice ǫ(r) is a periodic function of r with

ǫ(r + ai) = ǫ(r) (i = 1, 2, 3) , (8)

where {ai} are the elementary lattice vectors of the photonic crystal.
Therefore we transfer Bloch-Floquet’s theorem from solid state physics to photonic

crystals and express the fields E(r) and H(r) with {ai}-periodic functions ukn and vkn

as [4]

E(r) = Ekn(r) = ukn(r)eikr

H(r) = Hkn(r) = vkn(r)eikr
(9)

Because of the periodicity of ukn, vkn and ǫ(r), they can be expended in Fourier

series, whereas in our case we will expend ǫ−1(r). This results in the following expres-
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sions.

1

ǫ(r)
=

∑

G

κGeiGr

Ekn(r) =
∑

G

Ekn(G)ei(k+G)r

Hkn(r) =
∑

G

Hkn(G)ei(k+G)r ,

(10)

where κ(G), Ekn(G) and Hkn(G) are the Fourier coefficients in reciprocal space.
Now inserting the expansions (10) into the wave equations (6) the eigenvalue equations
get the following form [4].

−
∑

G′

κG−G
′

(

k + G
′
)

×
{(

k + G
′
)

× Ekn(G′)
}

=
ω2

kn

c2
Ekn(G)

−
∑

G
′

κG−G′ (k + G) ×
{(

k + G
′
)

× Hkn(G′)
}

=
ω2

kn

c2
Hkn(G) ,

(11)

where ω2
kn denotes the eigenfrequency of the eigenvectors Ekn(G) and Hkn(G). Nor-

mally these sets of equations (11) can only be solved numerically and it leads to the
dispersion relations and the band structure of photonic crystals. That points to the field
of research for new methods of modelling systems of photonic crytsals. There are several
other methods despite the “plane wave method” to get an expression for the dispersion
relation or band structure which often deliver more exactly results but change nothing
in the general properties.

2.2 The Photonic Band Diagram

As for electrons in an atomic lattice the calculation of the dispersion relation for pho-
tonic crystals in form of ω(k) leads to the occurence of allowed and forbidden bands
which can be plotted in a band diagram. In what follows, we want to describe the oc-
curence of photonic bands in one-, two- and tree dimensional photonic crystals which
are schematically shown in Fig. 1.

Fig. 1: Schematic structure of one, two and tree dimensional photonic crystals where the peri-
odicy is constructed out of differences in the dielectric permittivity [5]
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2.2.1 One-Dimensional Photonic Crystals

To illustrate the results of the last chapter, we will have a closer look to one dimensional
(1D) photonic crystals. We will discuss a system shown in the left side of Fig. 1 which
consists of layers out of two materials A1 and A2 with the dielectric constants ǫ1 and ǫ2.
Assume a periodic condition for the layers like

ǫ(x + a) = ǫ(x) . (12)

In this 1D case the wave equations for the electric field E reduce to

1

ǫ(x)

∂2

∂x2
E(x, t) =

1

c2

∂2

∂t2
E(x, t) (13)

Fig. 2: Left. Schematic 1D band diagram (dispersion relation) for a uniform medium where
the dashed lines showing the “folded” dispersion relation. Right. Schematic 1D band
diagram for periodic dielectric medium with occuring bad gaps [5]

Consider now a system with an uniform ǫ = 1. This leads to a plane wave solution
for the electric field in equation (13) and the dispersion relation

ω(k) = ck , (14)

which is shown on the left side of Fig. 2. Because of the periodicy it is possible to
describe the states in form of Bloch functions like in the equations (9) and to reduce the
representation of the dispersion relation to the first Brillouin zone, here from k = −π/a
to k = +π/a, by “folding” the dispersion relation. Now, the k = −π/a mode has an
equivalent wave vector like the k = π/a mode and they have the same frequency. Here
at the border of the Brillouin zone the Bragg condition ∆k = G is valid and leads to
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Fig. 3: Schematic origin of the 1D band gap. The degenerated wave functions at k = ±π/a split
into two standing waves forming the lower and the upper edge of the gap [5]

a coherent back scattering. Therefore, instead of writing this wave solution with the
electric field E ∼ e±iπx/a we can split it into two standing waves [5],

E− ∼ sin πx/a (15)

E+ ∼ cos πx/a , (16)

which are shown in Fig. 3. Suppose now that the dielectric constant is sinusoidal per-
turbated with a period a.

ǫ(x) = 1 + ∆ cos 2πx/a (17)

In the presence of this oscillating dielectric constant the degenaracy of the two fields
E− and E+ is broken and we get two different frequencies for the two wave functions.
Assuming ∆ > 0 then the field E− is more concentrated in lower-ǫ region while E+ is
more concentrated in higher-ǫ regions as shown in Fig. 3. In analogy to elcetronic waves
[6] the energy of the “air” band E− is higher than the energy of the “dielectric” band
E+. Consequently the frequency is lower for E− and higher for E+. The result is a band
gap, which is shown on the right side of Fig. 2, where a propagation of electromagnetic
waves is prohibited. From pertubation therory one can show that for ∆ ≪ 1 the band
gap is ∆ω/ω ∼= ∆/2 [5].

2.2.2 Two-Dimensional Photonic Crystals

The analysis of one-dimensional structures in the former chapter revealed fundamental
properties of photonic crysals, but it was in principle nothing more than a transfer of
the theory for electronic waves in a atomic lattice to electromagnetic waves and offers
less new aspects. This will change for higher dimensional systems where not only the
propagation direction of the waves has to be considered but also the polarisation of
the wave has a significant influence for the band diagrams. For this reason it is hard
to recieve a omnidirectional and complete band gap for higher dimensional photonic
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z

Fig. 4: 2D crystal out of cylindrical rods

crystals. In what follows, we want to discribe band diagrams of 2D crystals and figure
out which influence the polarization has on the origin of band gaps.

Imagine a two 2D lattice built out of rods as shown in Fig. 4. So we have two possible
polarisations: transverse electric (TE), where the magnetic field is along the z-direction
of the rods and the electric field perpendicular to it in the x-y plane, and transversal
magnetic (TM), where the electric field is along the rods and the magnetic perpendicular.

We will look at a hexagonal structure of rods which is shown in Fig. 5 together with
the (irriducible) Brillouin zone. Now we fill the rods with a dielectric material with
ǫ > 1 and the surounding material is supposed to be air (Fig. 5 top). The calculated
band diagram shows the bands for TE (solid) and TM (dashed) polarisation. The same
is done for air rods in a dielectric medium in the lower part of the figure. The most
important result is the different behaviour of the two different polarized waves which
leads to different band gaps for these polarisations: In the first example occurs a band
gap only for the TM polarisation while in the second diagram a TE band gap is revealed.
Therefore in both cases it exists no complete band gap which would only occure when
both TE and TM polarisation provide a band gap in the same frequency region.

The reason for this different behaviour of TM and TE polarized light can be explained
by the boundary conditions of the electric and magnetic field for crossing dielectrical
interfaces. We will have a closer look to the first example with dielectric rods in air.
The electric field for TM modes, which is parallel to the rods, remains when crossing the
interface. Therefore the displacement D = ǫE is strongly localised within the cylinders
and minimizes the energy of the fundamental mode for the same reason as discribed for
the 1D crystal. For the first excited mode the filed is mostly localized in the air region
and therefore enhance the energy. This leeds to an enlarged separation of the two modes.
For the TE modes, where the electric field is perpendicular to the rods, the field lines
have to cross the air regions to enter the next rod. This enhance the energy in both
the fundamental and the excited mode. The result is a much smaller separation and a
generally higher energy of the TE modes. An analog explanation can be given for the
air rods in a dielectric substrat in the lower part of Fig. 5.
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Fig. 5: 2D hexagonal lattice with dielectric rods (ǫ = 12, r = 0.2a) in air (top) and air rods
(r = 0.3a) in a dielectric substrat (bottom) together with the Brillouin zone and the
calculated band diagrams around the irreducible Brillouin zone (shaded triangle) where
TE/TM polarisation are denoted by solid/dashed lines [5]

2.2.3 Tree-Dimensional Photonic Crystals

A complete photonic bandgap for all polarisations and propagation directions of the
waves can only be realised for tree dimensional (3D) photonic crystals. The first 3D
crystal with a full photonic band gap was fabricated by Yablonovitch et al. [7] in 1991 and
consists of a fcc structure. This structure in real space leads to the “roundest” structure
in reciprocal space which provides the highest prospects for a complete photonic band
gap. The “atoms” have a shape of spherical voids in a dielectric background. This
structure is now called Yablonovite. Fig. 6.
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(a) Construction (b) Brillouin zone

(c) Wiegner-Seitz real space unit cell (d) Band diagram with band gap

Fig. 6: The Yablonovite with its fcc structure as the first produced photonic crystal with a
omnidirectional band gap [7].

2.3 Defects

There exist two main types of defects: point defects, which are very local disruptions and
cause electromagnetic modes at discrete frequencies like the isolated electric states, and
extended defects which are analog to dislocations of a crystal and result in transmission
bands in the region of the PBG. Thus, defects in PhCs can be compered with the doping
of a semiconductor.

The existence of defects may lead to singularities in the density of states (Chap. 2.4)
e.g. for single point defect it occures a Delta function in a complete PBG as can be seen
in Fig. 10.
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2.3.1 Point Defects

For a 1D photonic crystals point defects can be obtained by two different manipulations:
changing of the size of one “atom” in the crystal or modifying the refractive index of this
one. Thus, such point defects is nothing more than a Fabry-Perot cavity [3] which is
shown in Fig. 7. Electromagnetic modes will be therefore occure at discrete frequencies.

Fig. 7: Point defect in a 1D crystal (Fabry-Perot cavity) with one of the possible electromag-
netic mode [3]

For higher dimensions point defects can be created by locally modifying the refractive
index, displacing one of the periodic patterns or changing the size. Two possibilities are
shown in Fig. 8 together with the band diagram. Thus, a point defect can either push up
a single mode from the band edge or pull it down. In the case where the band gap is not
omnidirectional the point defect leads to a leaking of a fraction of the electromagnetic
field from the point defect away into the direction in which the propagation is allowed.
Is the band gap complete the electromagnetic field is concentrated at the defect.

If two point defects are introduced in a crystal with a large distance everything will
remain as described above with the difference that it behaves as if the single mode is
degenerated. However, when the distance is small enough it occures a second mode.
The two modes represent a symmetric and a antisymmetric distribution of the electric
field in analogy to the quantum mechanical situation when a particle is released in a
potential well [9]. This phenomenon is called coupling of point defects.

2.3.2 Extended Defects

Extended defects can only occure in higher dimensional systems. The most studied is
the 1D case which can be recieved by aligning indentical point defects. If the distances
are small enough a coupling appears and leads to numerous modes appearing in the
band gap. For an infinit number of defects might this result in a transmission band.
The Fig. 9 shows a one dimensional defect in a two dimensional crystal where one line
of rods is substituted by rods with a different reflective index. The band diagram for
that can be seen on the right side of the figure.
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Fig. 8: Left. Smaller/Bigger pattern as point defect in a lattice. Right. Band Diagram with
singel modes in the band gap [8]

Fig. 9: Left. 1D defect in a 2D crystal out of rods [10]. Right. Band Diagram with transmission
mode in the band gap for a removed row of rods [11]
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2.4 Density of States

The photonic density of states (DOS) is analog to the electric density of states defined
as the number of electromagnetic modes allowed per frequency unit. In the same way
as the electronic DOS in a semiconductor underlies a modification from free electrons
to electrons in a lattice, the density of photonic states changes when the material is
structured at the scale of optical wavelengths.

Fig. 10: Density of states in free space (left) and in a photonic crystal with a defect mode
whithin the band gap (right) [12]

Generally the DOS is defined by

D(ω) =
∂N(ω)

∂ω
, (18)

where N(ω) is the number of eigenmodes in a volume V of eigenfrequencies less than ω.
Taking into account that there are two polarizations for each vektor k the DOS in free
space with the dispersion relation ω = ck is [4]

D(ω) =
ω2V

π2c3
, (19)

where c is the velocity of light in the material. For photonic crystals this equation is no
longer valid as a consequence of a different dispersion relation ω(k). The DOS in this
case is calculated by counting all allowed states with a given frequency [4] which leads
to an integral over the first Brillouin zone depending on the dispersion relation. Both
solutions are shown in Fig. 10.

The DOS in a photonic crystal becomes zero within the band gap i.e. there are no
allowed states in this region as it is expected in a band gap. This plays an important
role for the inhibition of spontaneous emission: if the photonic band gap overlaps the
electronic band edge electron-hole radiative recombination will be inhibited [2]. Near
the edges of the gap the DOS has maxima which also occur at every other point where
the group velocity

vg =
dω

dk
(20)
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is zero. Since the group velocity is the slope of the function ω(k), it is easy to find areas
of small vg out of the band diagram. This points are very interesting for applications
like superprism, where the light propagation is extraodinary angle-sensitive [13], or gas
detectors (Chap. 4.2), where the cross section for the stimulation with light plays a
decisive role. As it is implied in the Fig. 10, defects cause singularities in the DOS
within the photonic band gap and forming single electromagnetic modes as described in
Chap. 2.3.
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3 Fabrication

Most of the fabrication techniques for 2D photonic crystals, like electron beam lithog-
raphy and selective etching, are adopted from the semiconductor industry. We will give
a short summary about the most common materials, the fabrication process and the
properties of the material. Since 2D PhCs do not possess a complete PBG it limits
the set of applications, as spontaneous emission isn’t suppressed in all directions and
the structures show scattering losses in the third dimension. Therefore we will point
out transfer possibilities to 3D PhCs, where its possible. Additionally, we present two
independent techniques, the self-assembly of sub-micrometer spheres in artificial opals
and holographic lithography.

3.1 Standard Fabrication

Because ordered porous dielectric materials like porous silicon or porous alumina are
intrinsically 2D photonic crystals, several groups worked on ways to produce regular,
ordered structures with good reproducibility. The most studied materials are porous
alumina Al2O3 and macroporous silicon, and—more recently—porous III-V compounds.
In this paragraph we refer to the summary given by R. B. Wehrspohn et al. [14].

Porous p-Type Silicon

Porous p-type silicon is formed by anodization of p-type silicon in hydrofluoric acid.
Three different pore formations as a function of the dopant concentration have been
observed.

For degenerately doped silicon, a special type of mesopores has been observed exper-
imentally and explained by tunneling of holes through the space charge region. Their
size is typically in the range of 5 − 50 nm. For moderately doped silicon, micropore
formation is observed. The poresize shows typical values between 2 − 5 nm. For highly
resistive silicon, macropore formation with poresizes between 0, 4 − 10µm is observed
below a thin layer of micropores. In the macroporous regime, these pores can grow ei-
ther in a current-limited order (low current density) or in a crystallographic order (high
current density). These two regimes can be distinguished easily by the shape of the
pores. If the pores have a pyramidial tip and no micropores inside of the macropores,
they grew in the crystallographic regime. Typically, the crystallographic regime is used
to obtain ordered arrangements of pores. In the production process, a silicon wafer with
(100)-orientation is patterned by standard photolithography first. Afterwards initial
seed-pores are produced by alkaline etching. The hydrofluoric etching starts selectively
at these etch pitches.

Porous n-Type Silicon

Porous n-type silicon can be used as well. Since holes, which are necessary for the
dissolution reaction in hydrofluoric acid, are minority carriers in n-type silicon, they
have to be generated by backside illumination of the wafer. Then, they diffuse to the
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etch front, where they dissolute, mainly at the pore-tips. Because of the fact, that in
this technique the holes move by diffusion (and not by drift, as in the p-type case), the
boundary condition of a fully depleted pore-wall is vanished and thicker walls can be
optained. The process steps principally are the same as above. The arrangement of the
pores can be controlled by the lithographic mask, the pore diameter by the backside
illumination intensity. Hence, the pore diameter can even be modulated during the
growth, which can be used for the production of 3D photonic crystals.

Fig. 11: Left. Ordered porus n-type silicon (a = 500 nm). Right. Selfordered mesoporus silicium
(d = 500 nm) self-organised in a hexagonal array [14].

Porous Alumina

Aluminium is electrochemically oxidized to alumina. An absorbing relationship between
the anodization voltage U and the interpore distance a was found: a = d+2αU , where d
is the pore-diameter and α ≈ 1.2 nm/V. After a long anodization time, hexagonal close-
packed patterns of pores can be obtained by self-organisation. The size of the ordered
pore domains increases with time and can reach micron size.

Since electron beam lithography is a planar technique, it is not straightforward to
transfer this method to the fabrication of 3D PhCs. A possible way to overcome this
problem is the production of layer-by-layer-samples. The size of these crystals is limited
by the complexity of the production process, e.g. high mechanical precision, to a few
periods.

3.2 New Techniques of Fabrication

3.2.1 Holographic Lithography

Light fields from multiple beam interference can be used to fabricate PhCs since the light
distribution is spatially (quasi-)periodic with a period of the order of half the wavelenght
[15]. The interference pattern can be recorded as a volume hologram and converted into
correspondingly structured matter distribution. Photoresists are used as a recording
medium.
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Fig. 12: Left. Ordered porus alumina with a = 500 nm obtained by imprint lithography.
Right. By repeated imprint under an angle of 2.2 degrees, a 12-fold symetry can be
obtained [14].

3.2.2 Crystallization of Artificial Opals

This technique makes use of the self-assembly of preformed colloids or beads into a face
centered cubic (fcc) packing [16] as shown in Fig. 13. This material has basically the
same structure as natural occurring opals, however, the latter are locally heterogenous,
composed of various crystallites and differing in the size of the beads. The diameter
of these beads fixes the optical properties of the resulting photonic crystal. Beads of a
diameter in the range of several hundred nanometers, which corresponds to the wave-
length of visible light, have been produced. The most common material is SiO2, whereas
more recently polymer beads came up.

A precondition and the main challenge in the preparation of artificial opals is the
preparation of monodisperse beads or colloids. The use of different inorganic materials
offers a very broad variability of optical properties due to their variability of size, but
it is not yet possible for most materials, except SiO2, to achieve monodiserpsity at a
satisfactory level. Polymer or organic colloids offer the advantage that monodisperse
particles can be obtained more easily and that they can be functionalized easily e.g.
with fluorescent dyes.

Fig. 13: Natural occuring fcc opal structure [17]
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4 Application

Our theoretical introduction into the properties of photonic crystals (Chap. 2) shows
that they can be seen as an “optical semiconductors“ in many cases. Hence, the hope
raises that their special properties can be used in many applications and in what follows,
we want to introduce tree of them: optical fibres, gas sensors and lasers.

4.1 Fibres

The most popular application of photonic crystals surely are photonic crystal fibres
(PCF) which are allready since several years at the stage of commercial production and
have a huge field of usage.

4.1.1 Configuration

The standard optical fibre consists of a fibre core surrounded by a lower index cladding,
thus light is confined by total reflection. A new type of optical fibres makes use of
photonic crystals. One can distinguish two main versions which are shown in Fig. 14:
the Holey fibre (a) and the PBG-fibre (b). The guiding mechanism is provided either by
means of modified total internal reflection in Holey fibres or a photonic band gap effect
in PBG fibres. Although the same material is used for core and cladding for the Holey
fibre, the incorporation of air holes in the cladding area results in an effective lowering
of the refractive index. Holey fibres with large air filling fraction resulting in a high
effective index-difference are called High-Delta or Cobweb fibres. Field confinement in
an air-core fibre, based on the band gap effect, requires a periodic arrangement of air
holes on a wavelength scale with a sufficiently high air filling fraction in the cladding
[18].

(a) Holey Fibre (b) PBG Fibre

Fig. 14: Main versions of fibres out of photonic crystals [19]
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4.1.2 Preparation

The usual way to prepare optical fibres with a microstructured cross section is to stack
capillaries and solid rods to form a compound structure, which resembles the desired
fibre cross section. The final diameters are realized during the following draw down,
where the capillaries have to be combined with each other, but without closing the holes
completely. A new approach [20] is extrusion, in which molten glass is forced through a
die containing a suitably designed pattern of holes. Extrusion allows fibre to be drawn
directly from bulk glass, and almost any structure from crystalline to amorphous can be
produced. Functional defects could be precisely introduced during the stacking process,
allowing fabrication of a wide range of different sort of photonic crystal fibres.

4.1.3 Application

The first working photonic crystal fibre was produced in 1996 [21], which consisted of
an array of 300 nm-airholes, spaced 2.3µm apart, with a solid core in the middle. The
most remarkable property of this fibre was that the fibre did not become multimode in
the experiments, no matter how short the wavelength of the light was.

This interesting “endlessly single-mode” behavior can be understood by viewing the
array of holes as a modal filter or “sieve”. The fundamental mode fits into the core, filling
the diameter with one single lobe. However, for higher order modes, the dimensions of
the lobes are getting smaller and they can slip between the gaps. Correct choice of
geometry thus guarantees that only the fundamental mode is guided through the fibre.
Every other mode leaks out after a short distance which is pointed up in Fig. 15.

Fig. 15: “Endless single-mode”: Only one mode is localised in the core and its energy is con-
served (a), all other modes are leaking out (b), (c) [20]

Another advantage is, that traditional optical fibres suffer additional loss, if they are
bent more than a critical radius. This radius depends on wave-length, geometry and
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core/cladding-refractive index step. Because of the different guidance principle photonic
crystal fibres escape theses effects.

Beyond the features offered by conventional optical fibres, photonic crystal fibres are
finding an increasing number of further applications. We’ll sample a few of them referring
to [20]:

High harmonic generation. Another field where hollow-core fibre is likely to play a big
role is that of high harmonic generation. When gases such as argon are subjected to ul-
trashort high-energy in the range of fs and pulses in the range of mJ, the extremely high,
short duration electric field momentarily ionizes the atoms, and very high harmonics of
the laser frequency are generated during the recombination process. Ultraviolet and even
x-ray radiation can be produced in this way. It is of interest, that hollow-core PCF could
bring this process within the reach of compact diode-pumped laser systems, potentially
leading to table-top x-ray sources for medicine, lithography, and x-ray diagnostics.

Atom and particle guidance. First shown in the 1970s, small dielectric particles can be
trapped and levitated in a laser beam using the dipole forces exerted by light. Nowadays,
atoms, molecules, particles and biologic cells can be trapped and manipulated with very
high precision. A related area is that of atom and particle transport along hollow
capillaries, where the optical dipole forces of a laser beam prevent adhesion to the glass
surfaces and provide the acceleration needed to overcome viscosity.

Fig. 16: Schematic sketch of atomtransport via PCFs: Van der Waals bonds between plate and
atoms/molecules (c) are overcome by piezoelectrically generated vibrations (a) levitated
by the beem (b) and conducted into the PCF (d) [20]
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Here, the absence of a single guided mode in the capillary limits the effectiveness of
the technique. Large (∼ 200µm) and hence multi-mode bore capillaries must be used
to avoid leakage, which means that adequate trapping forces can be obtained only at
high laser powers. Hollow-core PCF provides a good solution to this problem, as shown
in recent experiments, where only 80mW of 514 nm argon laser light was sufficient to
levitate and guide 5µm polystyrene spheres along a 15 cm length of PCF with a hollow-
core diameter of 20µm. This technique is about to be extended to the guidance of atoms
and molecules which is illustrated in Fig. 16.

Ultrahigh nonlinearities. PCFs with extremely small solid glass cores and very high
air-filling fractions not only display unusual chromatic dispersion but also yield very
high optical intensities per unit power. Thus one of the most successful applications of
PCF is to nonlinear optics, where high effective nonlinearities, together with excellent
control of chromatic dispersion, are essential for efficient devices.

4.2 Gas Sensors

Gas sensors are widely used in medical and environmental applications. Optical gas
sensors make use of the characteristic absorption lines in the mid infrared wavelength
region of 3−20µm. Traditional sensors are based on spectroscopicy techniques but with
the big drawback of high production costs. The advantage of an optical gas sensor based
on photonic crystals could be the possibility of miniaturization, integration and thus
cost reduction. For this application, macroporous silicon is the material of choice, as
structures for optical detection in the mid-infrared region can be fabricated with good
reproducibility.

Fig. 17: Transmission of the 3D PhC filled with SF6 normalised to that filled with N2 (black)
and compared to 2D PhC with the same porosity (green) [22]

An optical sensor consists of three basic parts: the radiaton source, the absorption
section and the detector. For a traditional gas sensor, the length of the absorption
section is in the range of 10− 50 cm to achieve a good signal-to-noise-ratio. This results
in a large volume with several practical limitations. By using photonic crystals, these
typical length can be scaled down into the micrometer range [22].
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We will explain a short scheme of the principle: At the band edges of a photonic
crystal, we find very strong spectral dependence of the group velocity. Near the band
edges the bands are extremely flat. This gives rise to a very small group velocity, which
is defined as the slope of the dispersion relation. The group velocity goes to 0 as the
frequency approaches the band edge. The small group velocity extends the time the
photons need to travel through the structure. Thus, the propability of interactions
between the light field and the atoms is increased. On the other hand, the low group
velocity enhances the effective refractive index, which increases the reflection at the
interface PhC/surrounding material. Both effects lead to a higher absorption of light.

Wehrspohn et al. [14] tested this thought on a 3D macroporous silicon sample. They
adjusted the modulation period by electrochemical etching, so that the upper band edge
coincidences with the absorption line of SF6 at 948 cm1). The result is shown in Fig. 17.
The spectrum obtained is rather noisy, which results from the low coupling efficiency
due to the high effective refractive index. This can be improved by using an adiabatic
taper. The easiest approach would be a device, where the lattice constant is increased
towards the interfaces.

4.3 Lasers

Lasers like in Fig. 18, which makes use of photonic crystals as tunable mirrors have been
used for a while. One of the drawbacks of the combination of a ridge waveguide laser
with a PhC waveguide is their large modal mismatch. Although taper structures can
be used, they add unnecessary complexity to the devices. The coupling issue can be
avoided by using “all PhC lasers”, where the resonator is formed by a PhC waveguide
[23]. We’ll give a short presentation of these devices.

Fig. 18: Ridge waveguide laser setup using PhCs as high reflective mirrors [23]

A simple PhC waveguide would be sufficient but this laser would give a multi-mode
spectrum. In order to obtain single mode operation, one has to add a wavelength selective
element into the resonator. Kamp et al. [23] found, that one can use a design with a
chain of coupled hexagonal resonators as shown in Fig. 19(a). The coupling of the cavities
leads to a formation of minibands within the photonic bandgap. Due to the wide spacing
of the minibands (approximately 100 nm) only one miniband will be spectral region with
substantial gain, so the lasing operation will be restricted on this particular miniband.
Obtained spectra can be seen in Fig. 19(b).
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(a) SEM micrograph (b) Laser spectrum

Fig. 19: CROW patterned PhC with corresponding laser spectra for different lattice constants
a = 350, 375, 400 nm. In the spontaneous emission background one can see several
“stop-bands” separating the miniband regions [24]

(a) (b)

Fig. 20: Microcavity laser together with the laser spectrum [25]. (a) shows the top view of the
hexagonal 2D array of air holes with a missing central hole which forms the cavity. The
result of the two enlarged holes is a single mode cavity in which only the y-dipole mode
is well localised. (b) shows the spectrum just above the threshold. The inset shows the
spontaneous emission spectrum
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Another possible application of PhCs in the laser field are microcavity lasers. We
wil present an example, where the cavity is formed by a single defect in a 2D photonic
crystal [25]. The ability to fabricate compact microcavity light sources is essential for
the construction of future optical curcuits. One advantages of using PhCs is the broad
flexibility in geometry, which leads to fine-tuning of the emission spectrum. Additionally,
the high spontaneous emission coupling factor β and the compact size make it interesting,
to use microcavity lasers as a low-noise and low-threshold light source.

The light is confined into the cavity by two different mechanisms. First, a λ/2-slab
of high refractive index is used to limit vertical freedom of the photons by way of total
internal reflection. Second, the light is localized in the plane by a 2D photonic crystal.
By removing one (or more) of the holes in the photonic crystal pattern, a defect-cavity is
created such as the Fig. 20(a) it shows. The resonant mode is highly localized into this
defect region and can only escape by either tunneling through the photonic crystal or by
striking the slab at a sufficiently high angle to leak out in vertical direction. A spectrum
of the laser is shown in Fig. 20(b). The spontaneous emission below threshold results
from emissions from the surrounding, unprocessed area excited by the pump beam. The
linewidth is below 0.2 nm which represent the resolution limited. Until now, it is not
possible to use microcavity lasers at room temperature and continuous operating. The
reasons are that the threshold pump power is still too high due to the low quality factors
reached by standard fabrication, and that the heat regulation techniques aren’t sufficient
yet.
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5 Conclusion

More than 15 years after the first realisation of a full photonic band gap, photonic crystals
still remain a prosperous part of research and more and more of economic application.

From the theoretically point of view, PhCs provide the opportunity to combine the
existing knowledge of different fields especially solid state physics and optics together
with new mathematical modelling studies and nonlinear dynamics due to the fact that
the mathematical structure for PhCs is more complicated for example in the three-
dimensional case or when combining it with active materials like emitters.

But photonic crystals are on the way from an exclusively scientific topic to the origin
of economic applications which are using the unique properties of this materials for
inventing new products or advancing existing devices. Often it is not necessary to have a
full band gap for applications. The effect of the very low group velocity at the band edges,
for example, leads to a variety of capabilities especially in processes of small cross sections
like gas detectors. On the other hand photonic crystals as “optical semiconductors”
raise the hope to create optical devices and photonic circuits as the future of classical
semicoductor microtechnology. Fibres out of 2D photonic crystals, which are already
commercial produced, surely form a cornerstone in this field with the possibility of
lossless transport of light even through sharp bands. This offers together with the
research in 3D PhCs new options for the complete controlling of light, constructions of
optical devices in the micrometerscale and finally applications like optical computers.
Many problems like in the accurate production of higher dimensional photonic crystals
must sill be solved to reach this goal but with the continuous development in nano- and
microtechnology this comes into reach within the next decades.
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