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Abstract—  We present a system for Computer Aided Diagnosis in Virtual Colonography based on simple geometric
model fitting. Our approach extends surface normal analysis and sphere fitting methods. We label locations in the
volume data, which have a high probability of being colonic polyps, and present them in a user-friendly way. The
method was tested on a study group of 30 patients. Using normal colonoscopy as standard of reference, true positive and
false positive findings were determined. The detection rate for polyps larger than 9mm was 100% comparable to that of
human readers. We introduce sphere fitting and normal distribution analysis as additional steps to reduce the number
of false positive findings generally encountered with surface normal methods. Initial results show that Computer Aided
Diagnosis is feasible and that our method holds potential for screening purposes.

Index terms— CT Colonography, Computer Aided Diagnosis, Screening, Colonoscopy, Model Fitting

I. INTRODUCTION
Colorectal carcinoma is the fourth most common cancer and the second leading cause of cancer-related death in the
industrialized world [1], with a 4-6% lifetime risk in the general population [2]. Therefore early detection and
treatment of adenomatous colonic polyps is widely considered to be crucial to prevent colon cancer [3]. Fecal
occult blood testing, barium enema, sigmoidoscopy and colonoscopy are the classical ways of detecting colonic
lesions. However, when one considers widespread population screening, sub-optimal patient acceptance is a major
problem. E.g. conventional colonoscopy requires colonic cleansing, while colonic wall perforation may occur,
hence increasing colateral risks. Furthermore results obtained are heavily dependent on operator experience. For
such reasons the need for less invasive, faster and cheaper procedures for colonic screening has arisen.
Virtual colonography (VC), hinging on volumetric image data, can be less invasive. VC may be based on
ultrasound, on magnetic resonance imaging (MRI) or on Xray computed tomography (CT). Although the
diagnostic quality of MRI data and CT data is equal in this context,. CT still is the modality of choice, despite
ionizing radiation. Indeed with MRI, major patient discomfort results from the need to completely fill the colon by
a fluid contrast medium. In case of CT the colon is insufflated with air. VC applied to CT images is referred to as
CTC (CT colonography). The visualization component of CTC covers a range of techniques employed to generate
view2s of the colonic wall. Among them are common representations such as 2D axial slices, 3D multi-planar and
curvilinear reformatted images, but also more experimental techniques as virtual double contrast imaging [4], Axial
3D [5]. or 3D endoluminal images (generally known as virtual colonoscopy, e.g. [16]). In one way or another, CTC
visualization is about providing an expert human reader with optimal visual access to the CT image data.
However given the expected increase in image volume sizes (soon 1024 voxels in each dimension), access to
image contents might benefit from Computer Aided Diagnosis (CAD). The ultimate goal of CTC CAD is the
automatic detection and classification of polyps. A subgoal in the short run is the determination of locations, which
have a high probability of corresponding to colonic polyps. Such locations are then presented to the human reader,
still requiring discrimination between true and false positive findings. Research projects such as [6] already
demonstrated the potential of improving current diagnostic performance and speed in CTC by CAD.
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In contrast to CAD for mammography (e.g. [7]) or for the detection of lung nodules (e.g. [8]), CAD for CTC is a
relatively new research topic. As illustrated in Figure 1, the colon has a very complex spatial structure containing
patches of smooth colonic wall next to haustral folds, as well as occasional residual fluid or stool and polyps.
Unravelling the complexity of this structure does require time-consuming algorithms. Recent research (e.g.
[6][9][10][11][12] [13]) mainly draws from one of three approaches: surface curvature calculation, surface normal
analysis and sphere fitting methods. Figure 2 summarizes these methods. From a conceptual point of view, such
approaches belong to the object recognition strategy “Fitting Models to Photometry”, defined in [15]. Examples of
this strategy instantiate relatively simple geometric models to fairly complex image data in order to retrieve
particular objects. Here, the latter are polyps while the former describe their expected shape.

II. METHOD

We have developed a geometric model fitting method for CTC CAD by combining and adapting the approaches of
surface normal analysis and sphere fitting. Our method contains four major steps (see Figure 3): A) segmentation,
B) polyp candidate generation, C) polyp center generation, and finally D) polyp extraction, normal distribution
analysis and polyp presentation. Throughout these steps the processing is dependent on a number of (threshold)
parameters, which are summarized in Table 1. Finally, a software phantom was used to determine initial values for
the threshold values. It consists of a perfect cylinder simulating a haustral fold and a perfect semi-sphere simulating
a polyp. The diameter of the semi-sphere was 10 mm similar to the targeted polyps. The phantom was also used to
validate the hypothesis beyond each of the steps of our method. Figure 7 clarifies these ideas.
A) Segmentation
In this step the colonic wall is determined. Since CTC images show a large contrast between (insufflated) colonic
air and the colonic wall, classic region-growing algorithms (e.g. see [14]) can be used successfully. Interactively, a
seed voxel is chosen and a connected region A of air voxels (determined by Tsegment) is grown outwards in a breadth
first manner. The colonic wall is then defined as the set C of voxels adjacent to A, and having an intensity value
higher than Tsegment. For each voxel of A all 26 neighbors are taken into consideration, this can lead to a wall
thickness of two voxels.
CTC patient preparation may influence this segmentation technique. Indeed wet preparation can lead to a
substantial amount of residual fluid left in the colon. Multiple seed points are needed then in order to deal with
fluid filled colonic segments and with collapsed regions (due to the inadequate distension). Therefore the final
result C of the segmentation may be a set of disjunctive regions. We have to mention that in such cases C does not
only contain voxels belonging to the colonic wall but also additional voxels belonging to colonic fluid.
Furthermore the submerged parts of the colonic wall are missing. A possible solution here is the use of digital
cleansing prior to CAD [5].
B) Polyp candidate generation
Only a small number of voxels of C will turn into actual polyp candidates. The spherical nature of the polyps
suggests to look for convex surfaces patches, as opposed to general colonic wall, which is mostly concave.
Estimating the curvature properties could be done by using tools from differential geometry such as calculating
principal, Mean and Gaussian curvatures. However we employ a simple analytic geometry approach to analyze
surface normals.
As illustrated in Figure 4 we compare normals in a current voxel of C (say p1) and in its neighboring voxels in C
(say p2). The normal to the colonic wall is calculated by a 3D-image gradient Zucker-Hummel operator [14]. It is
oriented from air towards tissue. Let g1 and g2 be the image gradients in p1 and p2 respectively. The equation of the
plane tangent to C at p1 is then given by p•g1 = p1•g1 where • is the dot product: The line through p2 along the
direction g2 has equation p = p2 + rg2 ; its intersection point p3 with the tangent plane corresponds to r = (p1-
p2)•g1/g2•g1 . Figure 4 explains how the relative location of voxels p2 and p3 is exploited to assess convexity or
concavity of the colon’s surface in p1. Furthermore in case of presumed convexity, a Tconvex threshold is applied to
||p2-p3||. For p1∈C, let B the bounding box around p1 defined by Tbox. For each p2∈  B ∩  C we repeat the plane
intersection procedure and compute the values Vc and Vt. Vc is the number of voxels situated in B ∩  C that satisfy
Tconvex, while Vt is the total number of voxels in B ∩  C. Finally those p1 for which Vc/Vt is higher than Thits are
declared polyp candidates.
This step will generate all the voxels belonging to convex surfaces. As a result it will return all the voxels situated
on polyps but also on haustral folds (and even on the colonic wall due to local wall irregularities) since they have
similar convexity properties. Therefore the next step is discrimination between voxels belonging to real polyps and
those belonging to haustral folds or colonic wall.
C) Polyp center generation
This step exploits the spherical nature of polyps versus the cylindrical nature of haustral folds. A 3D Hough
transform is applied to all previously detected polyp candidates to look for sphere centers in the CT image volume.



Given a fixed radius (Tradius) of a fitting sphere, each polyp candidate is assumed to be on the surface of such
sphere, while its image gradient is pointing towards the center of the sphere, see Figure 5.
In this way a center voting procedure generates a ‘center map’: for each center we store the number of its polyp
candidate ‘voters’ as well as their (normalized) image gradients, called ‘normals’ of the center, hereafter. In this
way each center in the map can be visualized as shown in Figure 6. Because folds have a cylindrical shape the
centers given by such structures will be dispersed along a line. For polyps however these centers will converge
towards a small area.(see Figure 7 also).
The value for Tradius needs to be selected in close correspondence with the size of the polyps to be detected. Of
course multiple passes for different Tradius values can be applied to the same set of polyp candidates.
D). Polyp extraction, normal distribution analysis and presentation
Given the center map from the previous step, we present polyp candidates on 2D slices to the reader. Therefore
local maxima are extracted from the center map, after non-maximum suppression. If none of these exceed Textract
the patient is declared negative.
However deciding solely on the number of polyp candidate voters may lead to too much false positive findings per
case. Therefore we also take into account the spatial distribution of the normals of each center. Normals generated
by haustral folds are almost coplanar, while for polyps a large variance in the normal distribution may be expected.
This idea is presented in Figure 6. We measure this spatial distribution by taking a reference plane defined by the
center point and two of its normals, randomly chosen. For every other normal we calculate the distance to this
reference plane. The thus obtained maximum distance Dmax gives a good measure of the distribution. An even more
accurate measure is the minimum of all Dmax distances, obtained by varying the pair of normals to span up
reference planes. A further thresholding (TDmax) is applied and the remaining centers are declared as polyps and are
presented to the reading radiologist for evaluation.

III PATIENT SCANNING AND RESULTS

Thirty patients, 15 normal and 15 with 35 polyps of various sizes (Table 2) underwent CT colonography prior to
conventional colonoscopy. Informed consent was obtained from all patients. The patient preparation consisted in
the oral administration of 3 to 5 liter of precolon, an in-house developed tagging agent. In some cases the use of
polyethylene glycol electrolyte solution was preferred. Immediately before CT colonography a bowel relaxant was
injected intravenously. CO2 was insufflated using a bag system.
CT colonography was performed on a multi-detector CT (Volume Zoom Multi Slice Helical CT from Siemens)
using 4x1 mm detector configuration, 7 mm table feet per 0.5 s tube rotation, 0.8 mm reconstruction increment as
well as 60 effective mAs and 120 keV. Patients were scanned in both supine and prone positions, in breadth holds
of 20 to 30 seconds.
On average the size of the acquired data sets was 252.9 MB. The image processing was done on an Intel Pentium
III system running at 533 MHz and having 512 MB of RAM.
We used the described CAD method on all the patients with the same parameter settings. Using conventional
colonoscopy as standard of reference true positive (TP) and false positive (FP) findings were determined for each
patient.  These values were then compared with the results obtained by a radiologist (MT, the third author) using
the CTC method of Axial 3D [5].
The total number of polyps was 35. The detection rate differentiated on polyp size is presented in Table 2. The
average computation time on our system was 24.26 minutes and it was mostly made up of the polyp candidate
generation. The total number of false positives was 122, which gives us a mean value of 4.06 false positive
findings per case. For the first 18 patients a comparison between the number of false positives with and without the
use of normal distribution analysis was also estimated (Table 3). Results show a reduction from 147 to 64 false
positives in this way. Overall the causes of false positives were colonic wall (38.52%), haustral folds (41.8%),
colonic stool or fluid (12.29%), the insuflation tube (4.9%) and the ileocecal valve (2.49%).

IV DISCUSSION AND CONCLUSIONS

Although the size of significant polyp is a debate subject between different radiologists and also between
radiologists and gastroenterologists, our primary goal was the detection of polyps bigger than 10 mm. A secondary
goal was a reasonable number of false positives per case. Using the polyp presentation application the radiologist
can quickly go through the polyp candidate list and discriminate between real and false positive findings.

From literature, we can deduce that there is a strong correlation between sensitivity and the number of false
positives generated. For example Tomasi et al. [10] are using a graph method optimized for the detection of polyps
larger than 10mm. They achieve a sensitivity of 100% with a number of false positives (FP) as high as 50 per data
set. Yoshida et al. [11] reported a sensitivity of 90% for polyps between 7-12mm and 1 FP per case. To achieve a



sensitivity of 100% they reported an increase towards 1.5 FP per case. Beaulieu et al. [9] developed three different
methods for polyp detection. Their contour normal method has a sensitivity of 96.4% for polyps larger than 5 mm
at the cost of 25 FP per data set. The sphere fit method returns a number of 47 FP, while the surface curvature
method has a low number of FP of only 4, but a decreased sensitivity as well (3 out of 7 polyps detected).
We have to stress that we are looking at CAD as a prospective tool and not as a retrospective one. We used the
same parameter settings for all of our patients, positives or negatives. However if we would count only the number
of false positives until all the polyps bigger than 10mm have been identified, then we would only have 20 FP
findings in 15 cases, so an average of 1.33 FP per case comparable with results given by other authors. Of course
cut off values can be determined only for retrospective studies and thus, they are not useful in the case of large
scale-screenings.
By combining the surface normal and sphere fitting methods we tried to extract and use the advantages of both
methods. In fact using the sphere fitting as an additional step we are able to make a better differentiation between
polyps and haustral folds. The novelty of our method consists in using a Hough transform based method for sphere
fitting and the introduction of the normal distribution analysis, which causes an important reduction of more than
50% of the number of detected FP.  Previously methods based on sphere fitting and graph based clustering were
applied by Tomasi [10]. While the sphere fitting is a linear problem, the graph searching is a complex method
proportional in time to the number of edges in the graph. By incorporating gradient information Hough based
methods are reducing the sphere patch detection to a linear problem.
Further improvements to our method are possible. First, the segmentation step can be improved by applying digital
cleansing prior to CAD, in order to remove the colonic stool and fluid, and thus reducing the number of false
positive findings given by these structures. Also a better colonic distension could eliminate many collapsed colonic
regions and the need of multiple seed points. Alternatively a fully automatic segmentation of the colonic lumen as
proposed by Chen [16] could be a viable solution to solve the segmentation problem.
The preliminary results of our experiments are at least encouraging. What they show is that our method is feasible,
and it may become useful for clinical studies if the number of false positive findings will be further reduced and the
detection rate for polyps between 5 and 9 mm will increase. We can conclude that CAD will probably become the
most common way of doing CTC, improving on current accuracy, efficiency and costs.
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Threshold
parameters

Threshold
symbol

Step Short description

Colonic wall Tsegment Segmentation Differentiate between air, colonic
wall and surrounding tissue

Bounding
box size

Tbox Polyp
candidate
generation

Defines the 3D volume of interest
we take into consideration for a
colonic wall voxel

Convexity Tconvex Polyp
candidate
generation

Distance between a neighbor point
and the intersection point of the
local gradient with the tangent plane

Hits/total
ratio

Thits Polyp
candidate
generation

Minimum number of neighbors
relative to the total number of
neighbors that have to satisfy the
convexity threshold

Sphere
radius

Tradius Polyp center
generation

Distance between the current point
and the center of an imaginary
sphere

Extraction Textract Polyp
extraction

Minimal value in the center map to
be considered as polyp candidate

Distribution TDmax Polyp
extraction

Threshold which measures the
distribution of the normals on a
sphere

Table 1.   Threshold parameters, their name, symbol, appearance and meaning.



Polyps Total TP TPcut off FP FPcut off

< 5mm 11 0 0
Flat lesions 4 0 0
5-9 mm 5 2 0
>= 10mm 15 15 15
Overall 35 17 15

122 20

Table 2. Results of the algorithm used for computer aided diagnosis in colorectal polyp detection in relation to polyp size and
cut off value. Cut off chosen retrospectively in such a manner that all polyps larger than 10 mm are identified.



False positives Wall Folds Stool Valve Tube Total
NO normal distrib.analysis 67 47 18 4 11 147
Normal distribution analysis 25 21 10 3 5 64
Table 3.  Comparison between CAD methods, when not using and then using normal distribution evaluation. False positives
are reduced to 43.54% of the original value.



Figure 1. Illustration of the colonic region obtained from a CTC acquisition in prone position. The complex and irregular
shape of the colon contains patches of smooth colonic wall next to haustral folds, as well as occasional residual fluid and
polyps.



Figure 2. Figure showing the basic principle of different CAD methods. First values for mean curvature are presented on a
smoothed surface extracted from a real colon. Polyps and haustral folds have different curvature values than normal colonic
wall, as a consequence curvature based methods are looking for regions with high differences in curvature and label them as
polyp candidates. Secondly the basic idea of surface normal methods is shown. Normals are computed for voxels belonging to
colonic wall and the intersection point between neighbors is inspected. Finally the principle of sphere fitting methods is
presented: a sphere is partially fitted to the polyp. Polyps are more complex structures than simple spheres, that is why sphere
fitting methods are looking for sphere patches in close vicinity.



Figure 3. The figure illustrates the four steps of our algorithm. Although our approach is truly 3D, we only show results on 2D
slices. On the left a 2D region of interest is presented first as an original slice, then the results of segmentation, polyp candidate
generation and polyp center generation are shown. On the right the result of the polyp presentation module is depicted. Each
polyp candidate is highlighted by an arrow when scrolling through the polyp list.



Figure 4. Difference between convex and concave surfaces. For convex surfaces (a) point 3 is situated in negative direction
relative to point 2, while for concave surfaces (b) point 3 is situated in positive direction relative to point 2 on the line given by
the local gradient. For convex surfaces Tconvex is applied.



Figure 5.  Sphere center computation.



Figure 6. The difference in normal distribution between a haustral fold (left) and a polyp (right).  To give spatial hints a sphere
of 6 mm diameter is plotted aroun the respective centers.



Figure 7. Original software phantom (left) and results from applying steps A, B and C on the phantom (right). The dispersion
of sphere centers for the simulated haustral folds is observable as opposed to the convergence on the polyp.


