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Abstract

We present a system for Computer Aided Diagnosis
in Virtual Colonography based on geometric model
fitting. Our approach extends surface normal anal-
ysis and sphere fitting methods. We label locations
in the volume data, which have a high probability
of being colonic polyps, and present them in a user-
friendly way. The method was tested on a study
group of 52 data sets. Using normal colonoscopy
as standard of reference, true positive and false pos-
itive findings were determined. The detection rate
for polyps larger than 6mm was above 90%. We in-
troduce a classification scheme based on neural net-
works to be able to reduce the number of false posi-
tive cases. Initial results show that Computer Aided
Diagnosis is feasible and that our method holds po-
tential for screening purposes.

1 Introduction

Colorectal neoplasms can be defined as a sponta-
neous growth of tissue forming an abnormal mass.
The colorectal neoplasm is the precursor of colorec-
tal cancer, one of the most common types of can-
cer and the second leading cause of cancer-related
deaths in the industrialized world [1]. Fortunately
early detection and treatment of colonic neoplasms
can prevent colonic cancer. For patients who re-
ceive early treatment the survival rate after five
years is 92%, when adjacent organs or lymph nodes
are affected it drops to 64% and when distal organs
are reached only 7% of patients are alive after five
years [2]. These figures show that early detection of
neoplasms is an effective way of reducing the inci-

dence of colonic cancer.
Many detection methods are available, these

include occult blood testing, barium enema ex-
aminations, sigmoidoscopy, colonoscopy, virtual
colonography and lately genetic testing. From all
these methods colonoscopy has the highest accu-
racy and it is widely considered as a gold standard
but it is invasive and costly, properties not suitable
for a screening method. So far only occult blood
testing (testing for blood in the stool) was used as a
screening method but it suffers from a low sensitiv-
ity and specificity.

Virtual colonography was introduced in 1994 by
Vining et. al. [3] and is a method for exploring
the colonic area hinging on volumetric image data
(data acquired using CT or MR). CT Colonography
(CTC) uses CT data to evaluate the colonic wall and
it is still the method of preference despite of the ion-
izing radiation. The reason for this lies in the fact
that patient preparation for CTC is less invasive as
for MR Colonography. CTC can be still considered
a new method due to ongoing technical innovations
(spiral, multi-slice CT). As a matter of fact there
is no consensus on issues like patient preparation,
scanning protocols and data analysis [4].

Early data analysis has concentrated only on data
visualization. The goal was to find the “best” visu-
alization technique, which offers the most of clin-
ical information in the shortest time. The visu-
alization component for CTC covers now a range
of components ranging from well established tech-
niques like 2D axial slices and 3D multi-planar
and reformatted images towards more experimen-
tal ones like virtual double contrast imaging, sliding
thin slabs, virtual colonoscopy, 3D unfolded cube,
flattened/unfolded colon.
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However CTC suffers from perceptual errors, the
accuracy depends on the visualization method and
there is a learning curve involved. Moreover the ex-
pected increase in image volume size (soon 1024
voxels in each dimension), makes it clear that au-
tomated methods are needed for polyp detection.
Computer Aided Diagnosis (CAD) is one possible
approach to improve reading efficiency and accu-
racy and consists in automatic detection of conspic-
uous masses that resemble polyps. Due to rather
low specificity of CAD, its results are presented to
the reading radiologist who makes the final diagno-
sis.

2 Method

The purpose of this paper is to present a possible
CAD approach for CTC. This method is based on
our previous developments [5] and as opposed to
the previous one concentrates on finding not only
polyps larger than 10mm, but smaller polyps as
well. Most of the CAD algorithms contain two steps
a generation step (polyp candidates are generated)
and a testing step (final polyp candidates are se-
lected based on the previously determined set). In
fact the testing step tries to detect and eliminate the
false positive findings generated by the first step.

Our previous method finds polyp candidates
based on their geometric features, followed by a
non-maximum suppression algorithm to extract the
final candidates. While this approach gives accept-
able results for large polyps it fails for smaller ones.
Thus the need for a more elaborated testing (classi-
fication) step was obvious. Also the generation step
was improved to include smaller polyps in the ini-
tial candidates set.

In fact, colonic neoplasms can be classified into
protruded (polypoid) type and superficial (non-
polypoid) type. The polypoid types resemble struc-
tures of spherical (with stalk) or semi-spherical
(without stalk) appearance. The polypoid types
have a height of at least 3mm. The superficial neo-
plasms have a height smaller than 3mm and can
be classified into flat adenomas, laterally spread-
ing carcinomas and depressed type carcinomas.
With the current method we want to detect all
the protruded type polyps and from the superficial
polyps we can theoretically detect only flat adeno-
mas (which can be seen as small (5 mm) polyps).
The response on the laterally spreading neoplasms

resembles the response obtained on haustral folds,
while the depressed type is essentially concave and
it will be missed by the generation step already.

The novelty of the method is the computation of
features, which are based entirely on implicit prop-
erties resulting from the generation step. Using this
technique there is no need for explicit segmentation
of polyp candidates, a difficult task is some cases.
As compared to the previous approach the classifi-
cation step was elaborated, consisting now in a fea-
ture based classification using a probabilistic net-
work. One of the disadvantages of the previous
method was the large number of threshold param-
eters. This was improved either by automatically
determining threshold values or by fixing the values
of some parameters.

The next subsections will present the method as
follows: first the previous method (which can be
considered as a generation technique) is described,
followed by a presentation of the extraction of im-
plicit features. Finally the classification step is de-
tailed.

2.1 Generation

The generation step has the following steps: seg-
mentation, normal incidence analysis and 3D
Hough transform based sphere fitting.

2.1.1 Segmentation

In this step the colonic wall is determined. Since
CTC images have a large contrast between (insuf-
flated) colonic air and the colonic wall, classic re-
gion growing algorithms [8] can be used success-
fully. CTC preparation may influence the segmen-
tation technique. In our case wet preparation was
used and thus a substantial amount of fluid re-
mained in the colon. Also in some patients col-
lapsed colonic regions (due to inadequate disten-
sion) were present. Therefore multiple seed points
were used to initialize the region-growing algo-
rithm.

Previously the threshold value for the region-
growing algorithm was interactively established.
Now we use the method of Wiemker [9], to deter-
mine it automatically. This method computes the
cumulative Laplacian histogram of the image vol-
ume and then assumes that important changes oc-
cur around its local maxima. Due to the large vol-
umes, we are dealing with, a computation of the
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cumulative Laplacian histogram on the whole vol-
ume is not feasible that is why it was computed on
slices situated around the seed points. Also an ini-
tial guess Tguess for Tsegment (based on 18 sam-
ple data sets) was computed. The final segmenta-
tion threshold Tsegment is considered to be the local
maxima around Tguess. The search interval is con-
sidered as [Tguess − δ ∗ 2, Tguess + δ ∗ 2], where δ
is the standard deviation of the Tsegment values on
the sample data sets.

Given this Tsegment , for all the seed voxels a re-
gion A of connected air voxels (CT value smaller
than Tsegment) is grown outwards in a breadth first
manner. The colonic wall is defined as the set W of
voxels adjacent to A and having an intensity value
higher than Tsegment . For each voxel of A 6 direct
neighbors are taken into consideration.

The final result of the segmentation algorithm is
thus the set W of disjunctive regions representing
voxels on the colonic wall. It has to be mentioned
that some voxels in W represent in fact colonic fluid
and not actual colonic wall.

2.1.2 Normal incidence analysis

From the voxels of W only a small number will
turn into actual polyp candidates. The spherical na-
ture of the polyps suggests looking for convex sur-
face patches. Also the colonic wall is mostly con-
cave and will be eliminated at this step already. To
estimate curvature properties one can use methods
based on differential geometry, such as principal,
mean and Gaussian curvatures. However we em-
ploy a simple geometrical approach to estimate the
local curvature.

For each voxel belonging to W we compare the
normals to the colonic surface in the current point
and in its neighbors. The normal to the colonic wall
is computed using a Zucker-Hummel operator [8]
and is perpendicular to the wall and oriented from
air towards tissue. Let p1 be the current point, p2 a
neighboring point and g1, g2 the image gradients in
p1 and p2 respectively. The equation of the tangent
plane to W in p1 is given by p•g1 = p1 •g1, where
• is the dot product. The line through p2 along the
direction g2 has the equation p = p2 + r.g2; its
intersection point p3 with the tangent plane corre-
sponds to r = (p1 − p2) • g1/g1 • g2. The relative
position of voxels p2 and p3 along the direction g2

is exploited to asses the convexity or concavity of
the colon’s surface in p1, as shown in Figure 1 (left).

Furthermore for a presumed convexity a Tconvex

threshold is applied to the distance l =‖ p2 − p3 ‖.

Figure 1: 3D illustration of the normal incidence
analysis (left) and sphere center generation (right).

The value of Tconvex can be determined analyti-
cally as follows. Consider a perfect sphere of radius
rp = 3.5mm (similar to a 7mm polyp), assume that
a positive detection is wanted for an angle larger
then θ = π/4 then the value of Tconvex is:

cos θ =
rp

rp + Tconvex
⇒ Tconvex = rp∗1 − cos θ

cos θ

For the given values the obtained convexity
threshold is Tconvex = 1.45mm.

For p1 ∈ W , a bounding box B is defined. For
each p2 ∈ B∩W , the described process is repeated,
and the values Vc and Vt are computed. Vc is the
number of voxels situated in B ∩ W that satisfy
Tconvex, while Vt is the total number of voxels in
B ∩W . Finally those p1 for which Vc/Vt is higher
than Thits are included in the set T (voxels meeting
the convexity threshold criteria).

By computing the value of l we get for free all
the voxels situated on convex surfaces too (l > 0),
using a similar method as the one presented above.
We memorize all of these voxels as well, as the set
R (voxels meeting the relaxed convexity criteria).
Their usefulness will be shown at the end of this
subsection.

Previously, the bounding box was considered as
a cube around p1. But, from the definition of
Tconvex, it is obvious that voxels close to p1 will
not meet the convexity criteria. Furthermore we can
compute the distance from which the convexity cri-
teria is expected to be fulfilled. This is given by:

d = rp ∗ θ = rp ∗ π

4
⇒ d = 2.75 mm

Indeed experimentally we determined that vox-
els closer to p1 than d account on average only for
0.25% from the total number of voxels. The rea-
sons for those detections are some sharp edges we
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are not interested in anyhow. Given this, the bound-
ing box is considered as a cube with an empty core
(see Figure 2). If the size of the core is set to 2∗d the
computation time required by this step is reduced to
70% of its original value.

Figure 2: The considered neighborhood for the nor-
mal incidence analysis.

The last step of the normal incidence analysis
is to reduce positive detections generated by noise
(such as small blobs and sharp edges). To do this
we extract clusters of connected voxels from the set
T . The larger the size of the cluster, the higher the
probability of being an interesting location. That is
why we retain only clusters having at least Tcluster

elements. The other clusters are considered to be
generated by noise and are eliminated.

Of course, polyps are not exactly spherical struc-
tures and some voxels on them will not be included
in the set T . This is not wanted since our sphere-
fitting scheme requires as much of the polyp vox-
els as possible, in order to generate the expected
results. That is why each extracted cluster is “en-
hanced” (using a region growing algorithm) by in-
cluding all the neighboring voxels from R.

2.1.3 Hough transform based sphere fitting

This step is intended to exploit the spherical proper-
ties of polyps as opposed to the cylindrical proper-
ties of haustral folds. A 3D Hough transform is ap-
plied to the relaxed clusters, the goal being to gen-
erate a Hough accumulator. Given a radius Tradius

of an imaginary fitting sphere, each candidate is as-
sumed to be on the surface of the sphere, while the
local gradient in that point is perpendicular to the
surface of the sphere and pointing towards its cen-
ter. Figure 1 (right) presents the principle of the
sphere center generation step.

The resulting Hough accumulator contains for
each candidate, the number of ’voters’ and the nor-
malized image gradients (we will call normals). Be-

cause folds have a cylindrical shape the centers
given by such structures will be dispersed along a
line. For polyps however these centers will con-
verge towards a small area.

The value for Tradius needs to be selected in
close correspondence with the polyps to be de-
tected. Previously multiple passes for different
Tradius values were used. We modified this ap-
proach and construct a Hough accumulator, in
which for each voxel multiple sphere centers along
the local gradient are generated. By this we can
handle different polyp sizes and also the irregular-
ities of polyps which are not perfect spheres. At
the moment each center has the same weight, but
this could be changed allocating different weights
to different polyp sizes.

Figure 3: Figure presenting the generation step.
Starting from the original CT slice (left) candidate
voxels are generated (center), finally the Hough ac-
cumulator is computed (right). Candidate voxels
colored in white are belonging to the set T, while
the black ones are the voxels from R included dur-
ing the “enhancement” step.

The results of the normal incidence analysis and
sphere fitting steps are presented in Figure 3.

2.2 Feature extraction

Since the intention is to apply a feature classifier,
we need to compute features, which will be con-
sidered as input for the classifier. Some are im-
plicit features others will be computed based on in-
termediate results (like the sphere center map). Of
course we need “expressive” features to character-
ize each of the possible classes. The normal anal-
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ysis will generate positive results for the following
classes: polyps, convex colonic wall, haustral folds
and colonic stool or fluid.

The following features were computed: maxi-
mum value in Hough accumulator, weighted value
in Hough accumulator, normal distribution, the
three axis of the ellipsoid resulting after a greedy
region growing algorithm, the three axis of the el-
lipsoid resulting after a distance weighted region
growing algorithm.

We start by generating candidates based on the
value in the Hough accumulator. They are gener-
ated using a non-maximum suppression algorithm.
For each candidate the technique gives the maxi-
mum value in the accumulator, lets denote it Vmax.
To eliminate responses generated by noise we com-
pute the weighted value (Vweighted) in the sphere
centers map. This in computed as:

Vweighted = α∗Vmax+(1−α)∗mean(Vneighbors)

with α constant and controling the degree of
smoothing.

The difference between polyps and haustral folds
is made by exploiting their response to the Hough
method. Polyps give converging sphere centers,
while folds give dispersed centers along a curve,
which follows the shape of the haustra.

The local features are evaluated by using the lo-
cal normal information of each candidate. Normals
generated by folds are almost coplanar while those
generated by polyps have a large variance. We mea-
sure this spatial distribution by taking a reference
plane defined by the center point and two randomly
chosen normals. For the remaining normals we
compute the distance to the reference plane and take
the maximum. Finally the mean value of all max-
ima obtained by varying the reference plane is com-
puted. This will characterize the local properties of
a candidate.

The shape of the response is evaluated by com-
puting the best fitting ellipsoid given a cluster of
sphere centers. The cluster has to be extracted from
the Hough accumulator. For izolated polyps and
haustral folds this is a straightforward job. Prob-
lems appear for polyps situated on haustral folds.
A typical response for such a case is shown in Fig-
ure 4. It is observable that we have a small spheri-
cal structure corresponding to the polyp and the ex-
tended structure resembling the fold.

To be able to extract polyps correctly even in
this case we start from a maxima, given by the
non-maximum suppression algorithm and apply a
distance weighted region growing technique. This
technique takes at each step the neighbor with the
highest value in the accumulator, weighted with the
squared distance between the neighbor and the cen-
ter of the cluster. Additionally a greedy region-
growing algorithm, which at each step takes the
neighbor with the highest value from the cluster
is used. The two techniques give similar results
for polyps and folds but give opposite results for a
polyp on a haustral fold (see Figure 4), in this case
the first method extracts only the polyp, while the
second one extracts the main shape of the cluster.

Figure 4: Initial polyp situated on a haustral fold
(top left), the generated sphere centers (top right).
On the bottom row the difference between the two
region-growing algorithms is observable, while the
weighted algorithm (left) extracts only the polyp,
the greedy one (right) extracts the main shape of
the region (polyp + haustra). Zooming factors are
indicated by the two rectangles.

Once a cluster is extracted an ellipsoid is fitted
to evaluate its shape. Generally the equation of the
ellipsoid is:

(x − x0)
2

a2
+

(y − y0)
2

b2
+

(z − z0)
2

c2
= 1

To reduce the number of parameters it is prefer-
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able to translate the ellipsoid into the origin of the
coordinate system and align it with the axis of the
coordinate system, since we are only interested in
the main axis of the ellipsoid. Lets assume a cluster
C = (P, V ), with P a set of (xi, yi, zi) tuples rep-
resenting positions in the Hough accumulator and
V a set of values (vi), with vi being the value in the
accumulator at (xi, yi, zi). The cluster is translated
and centered around the origin, with factors given
by mean(P ).

Eigen analysis is carried out and C is rotated us-
ing: P

′
= Eigen vector ∗ P , with (P

′
, V ) the

rotated cluster and Eigen vector the eigen vector.
Finally we have to take into consideration that

most of the cluster is inside the ellipsoid. That is
why the Fel = mean(V )

vi
term is introduced. Taking

into account these assumptions the equation of the
ellipsoid becomes:

x2

a2
+

y2

b2
+

z2

c2
= Fel

This equation is solved for each cluster using a
least square approximation technique. The matrix
notation for the previous equation is:[

...
x2

i y2
i z2

i

...

]
.

[ 1
a2
1
b2
1
c2

]
=


 ...

mean(V )
vi

...




which can be seen as: A.X = B.
The values for a, b and c are given by:

X = (AT .A)−1.AT .B

Finally all the above features are fed into the
probabilistic classifier.

2.3 Classification

For the classification we used a probabilistic neu-
ral network (PNN), based on a radial basis archi-
tecture [10]. It consists of two layers, the first one
computes the distance from the input vector to the
training vectors. The second layer sums the contri-
butions for each class of inputs to produce a vec-
tor of probabilities. Finally the maximum of these
probabilities is chosen and the input is classified as
belonging to that class.

The PNN is easy to train, a useful property since
it will be trained after each new case, but it is some-
what slower when classifying since it has to com-
pute distances to all the training samples. That is

why we try to keep the training samples as low as
possible, thus we select only the most representa-
tive samples for each case (samples for which the
distance from the current samples is the highest).
By this we want to obtain a training field containing
representative examples for each class.

In our case only two classes were defined, polyps
and false positive findings. Thus, the false positives
were not divided into their representative classes
like: haustral folds, colonic wall, insuflation tube
and valve of Boyen. Also due to the low number
of examples no difference was made between the
different classes of polyps.

The output of the classier is considered as the fi-
nal result of our CAD scheme and the results are
presented to the reading radiologist.

3 Results

Twenty-six patients, 13 normal and 13 with 42
polyps of various sizes (Table 1) underwent CT
colonography prior to conventional colonoscopy.
Informed consent was obtained from all patients.
The patient preparation consisted in the oral admin-
istration of 3 to 5 liter of precolon, an in-house de-
veloped tagging agent. In some cases the use of
polyethylene glycol electrolyte solution was pre-
ferred. Immediately before CT colonography a
bowel relaxant was injected intravenously. CO2
was insufflated using a bag system.

Table 1: Polyp distribution and detection results.
(No = total number of polyps, TP = true positives)

Type No Submerged TP Sensitivity
Flat 4 1 1 33.33%

< 5 mm 8 2 1 16.67%
6-9 mm 12 3 8 88.89%
> 9 mm 14 1 12 92.30%
Tumor 4 0 4 100%
Total 42 7 26 74.29%

CT colonography was performed on a multi-
detector CT (Multi Slice Helical CT; Volume Zoom,
Siemens, Erlangen, Germany) using 4x1 mm de-
tector configuration, 7 mm table feed per 0.5 s
tube rotation, 0.8 mm reconstruction increment as
well as 60 effective mAs and 120 keV. Patients
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were scanned in both supine and prone positions, in
breadth holds of 20 to 30 seconds. This resulted in
52 data-sets which were considered as input for our
CAD system. On average the size of the acquired
data sets was 247.07 MB. The image processing
was done on an Intel Pentium III system running
at 533 MHz and having 512 MB of RAM.

As a first step seed points were defined manually
and then the whole CAD process was completed au-
tomatically. The mean segmentation threshold was
582 (CT number) and had a standard deviation of 31
units. The typical shape of the cumulative Lapla-
cian histogram for abdominal images is shown in
Figure 5.

Figure 5: The cumulated Laplacian histogram for
an abdominal image. The vertical line indicates the
value of the extraction threshold.

Using conventional colonoscopy as standard of
reference true positive (TP) and false positive (FP)
findings were determined for each patient. The to-
tal number of polyps was 42, from these 7 were
submerged under residual fluid and were not con-
sidered as false negative cases, since our method
was not designed to detect them. The detection rate
differentiated on polyp size is presented in Table 1.
The average computation time for the whole CAD
process as well as for different steps is shown in Ta-
ble 2.

The total number of false positives was 127,
which gives us a mean value of 2.82 false positive
findings per data-set. The main causes for false pos-
itives are presented in Table 3.

4 Discussion and conclusion

Previously we considered the size of significant
polyps as 10mm, but it became obvious that for

Table 2: Average computation times, expressed in
minutes.

Segmentation 1:47
Normal incidence 14:56

Sphere fitting 4:29
Feature extraction 0:16

Neural analysis 0:12
Overall 21:40

Table 3: False positives causes.

Cause Procent
Colonic wall 33.86 %
Stool or fluid 31.50 %
Haustral fold 20.47 %

Ileocecal valve 8.66 %
Insuflation tube 5.51 %

screening purposes the size of detectable polyps had
to be lowered. By establishing a lower value the ad-
vantages are twofold, on one hand polyps are de-
tected and removed at an early stage, while on the
other hand the screening interval can be increased.

Figure 6: Polyp extraction based on simple thresh-
olding. Only candidates in the dark region are se-
lected.

The previous approach generated candidates us-
ing a simple thresholding operation on two features
(value in the Hough accumulator and the normal
distribution), see Figure 6. This was enough to de-
tect large polyps but failed in other cases, in fact
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smaller polyps could be detected at the cost of a
large number of false positive findings. To limit
the number of false positives high threshold values
had to be established and thus smaller polyps were
missed. That is why the feature set was extended
and the classification method adapted accordingly.

By combining the surface normal and sphere fit-
ting methods we tried to extract and use the advan-
tages of both methods. In fact using the sphere fit-
ting as an additional step we are able to make a
better differentiation between polyps and haustral
folds. Also using a Hough transform based method
for sphere fitting the complexity of the classification
problem is reduced.

Our previous method suffered from low sensitiv-
ity and also low specificity when trying to detect
smaller polyps, that is why a better classification
step was added. This is able to extract, based solely
on implicit polyp properties, small polyps as well.
The main advantage of PNN network is that it is
easy to train and if the number of training samples
is kept low than it has quick classification times as
well.

Our results are comparable to those obtained by
other authors [6], [7]. They show that there is a
strong correlation between the size of the polyps
and the number of false positives generated. Also
it is obvious that for the time being this results (due
to their low specificity) have to be inspected by a
qualified radiologist. But using simple visualiza-
tion methods like axial slices or volume rendered
images he can quickly go through the list of candi-
dates and discriminate between real and false posi-
tive findings.

Further improvements to our method are possi-
ble. First, a preprocessing step of eliminating the
residual stool and fluid is needed, because these
residues generate a large number of false positive
findings and also 16.67% of polyps are submerged
and can not be detected by the current technique. It
has to be mentioned that further improvements can
be done when selecting the training data set in order
to end up with the most representative samples.

A fully automatic CAD technique is desired
when thinking of applying the method for screening
purposes. To achieve that a fully automatic segmen-
tation method is needed.

We have presented a CAD technique that was
evaluated on a significantly large number of CTC
cases. Our algorithm showed high sensitivity re-

sults for polyps of 6mm or larger and a low number
of 2.82 false positive findings per data set. These re-
sults show that our method is feasible, and it is use-
ful for clinical studies. We can conclude that CAD
will probably become the most common way of do-
ing CTC, improving on current accuracy, efficiency
and costs.
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