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Abstract

The paper presents a technique for Computer Aided Detection in
Virtual Colonography based on model fitting. Our approach tries to
model polyps using their shape. Locations which have a high probabil-
ity of being colonic polyps are labeled and presented in a user-friendly
way to the reading radiologist. The method was tested on a study
group of 50 data sets. Using normal colonoscopy as standard of ref-
erence, true positive and false positive findings were determined. The
detection rate for polyps larger than 6mm was above 85%. The main
advantage of the method is its speed, while preserving a high detection
rate for polyps. Initial results show that Computer Aided Detection is
feasible and that our method holds potential for screening purposes.
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1 Introduction

Colorectal cancer is amongst the leading causes of cancer related death in
the industrialized world, with a 4-6% lifetime risk in the general population
[1]. Its precursors are the colorectal neoplasms, which are benign, uncon-
trolled growths of tissue. Neoplasms can be classified into polypoid and non-
polypoid types. There is some reference in literature [2] that adenomatous
polyps are the primary cause of cancer, 95% of the cases. The nonpolypoid
neoplasms [3] are mainly classified into three groups: small flat adenomas,
laterally spreading and depressed. While the first two types are thought to
develop into protruded polyps, depressed lesions grow endophytically and
become advanced cancers.

Fortunately colorectal cancer is characterized by slow growth (5-10 years),
likely evolution including thus the appearance of adenomatous polyps. The
malignancy of these structures increases with increasing size. As a result early
detection and treatment of colonic neoplasms can prevent colonic cancer.
Studies [4] show that the survival rate after five years is 92% when early
treatment is received.

Many detection methods are available, including fecal occult blood test-
ing (FOBT), barium enema examinations, sigmoidoscopy, colonoscopy, vir-
tual colonography and lately genetic testing. When thinking of screening
some criteria should be fulfilled by a method to be considered as a valid can-
didate: cost-effectiveness, high sensitivity/specificity and patient compliance
(to ensure patient cooperation in screening studies).

From the above mentioned methods only FOBT was used in screening.
Although safe and inexpensive, it has a low sensitivity and thus effectiveness.
Colonoscopy on the other hand has the highest accuracy and it is widely
considered as a gold standard, but it is invasive and costly. Lately virtual
colonography has received increasing attention as a possible alternative for
screening. Introduced in 1994 by Vining et. al. [5], it is a method for explor-
ing the colonic area hinging on CT data. Using advanced graphical software
and/or hardware the acquired data is visualized. After the introduction of
virtual colonography, CT was the preferred imaging technique due to its high
spatial resolution. Today, after inherent technical innovations MR emerges
as a viable alternative for data acquisition thus eliminating the presence of
ionizing radiation and offering diagnostically valuable images.

Although many visualization techniques are available, including multi pla-
nar reformatted images, virtual double contrast imaging, sliding thin slabs,
virtual colonoscopy, 3D unfolded cube, flattened/unfolded colon, radiologists
prefer the axial images as primary support for diagnosis. The other tech-
niques are mostly seen as problem solving tools.
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With the appearance of the 16 slice multi-slice CT machines the num-
ber of acquired slices is well beyond 1000 per patient, especially if two scans
per patient (prone and supine) are acquired. It is not difficult to see that
perceptual errors due to human errors can affect the performance of CT
colonography. Additional pitfalls include reader inexperience (due to the
learning curve involved in the process), satisfaction of search [6] (failure to
detect multiple polyps in the same patient), lack of original color clues to
guide the detection and the different performances of the visualization tech-
niques. To overcome these problems, automated methods for polyp detection
were developed. Computer Aided Detection (CAD) is one possible approach
to improve reading efficiency and accuracy. It consists in automatic detection
of conspicuous masses that resemble polyps. Due to low sensitivity values of
CAD its results are considered as a “second opinion” and the human reader
makes the final diagnosis. Apart from reducing interpretation time, a positive
side effect of CAD is the increase of reader confidence.

The remaining of the paper is organized as follows: first our method
for CAD is presented followed by results on 50 colonoscopic data-sets. The
advantages and pitfalls of the method compared to other known techniques
are presented in the discussion section.

2 Method

In this paper we present a new approach for polyp detection in CT colonog-
raphy. Although it is a new research field several approaches have been
already proposed [7] [8] [9] [10]. The problem remains the same for the com-
puter as for the radiologist, who is trying to find the needle (polyp location)
in the haystack (colonic wall), since it is well known that over 90% of the
colonic wall represents normal structures. What our method tries to achieve
is to eliminate as much of the colonic wall as possible, as quickly as possible
and without loosing interesting locations (polyps). It does that by simple
geometric analysis and then applies a more elaborated algorithm on the re-
maining structures to come up with the final candidates. Our primary goal
is to detect protruded, polypoid type neoplasms larger than 5 mm.

Most of the CAD algorithms contain two steps: a generation step (polyp
candidates are generated) and a testing step (final polyp candidates are se-
lected based on the previously determined set). In fact the testing step tries
to detect and eliminate the false positive findings generated by the first step.
Our method respects the same pattern.

The novelty of the method is twofold: first it introduces a fast method for
wall elimination and second it tries to model polyps based on their shape. The
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classification step of our method is therefore a comparison of the presented
candidate with a database of polypoid models learned from examples. The
top-level architecture of our method is presented in figure 1, and elaborated
in the following subsections.

2.1 Generation

The generation step has the following steps: segmentation and colonic wall
elimination.

2.1.1 Segmentation

In this step the colonic wall is determined. Since CTC images have a large
contrast between (insufflated) colonic air and colonic wall, classic region
growing algorithms [12] can be used successfully. CTC preparation may influ-
ence the segmentation technique. In our case wet preparation was used and
thus a substantial amount of fluid remained in the colon. Also in some pa-
tients collapsed colonic regions (due to inadequate distension) were present.
Therefore multiple seed points were used to initialize the region-growing al-
gorithm.

Previously [11] the threshold value for the region-growing algorithm was
established interactively. Now we use the method of Wiemker [13], to de-
termine it automatically. This method computes the cumulative Laplacian
histogram of the image volume and then assumes that important changes oc-
cur around its local maxima. Due to the large volumes, we are dealing with,
a computation of the cumulative Laplacian histogram on the whole volume
is not feasible that is why it was computed on slices situated around the seed
points. Also an initial guess Tguess for Tsegment (based on 18 sample data
sets) was computed. The final segmentation threshold Tsegment is considered
to be the local maxima around Tguess. The search interval is considered as
[Tguess− δ ∗ 2, Tguess + δ ∗ 2], where δ is the standard deviation of the Tsegment

values on the sample data sets.
Given this Tsegment, for all the seed voxels a region A of connected air

voxels (CT value smaller than Tsegment) is grown outwards in a breadth first
manner. The colonic wall is defined as the set W of voxels adjacent to A.
For each voxel of A 6 direct neighbors are taken into consideration.

The final result of the segmentation algorithm is thus the set W of disjunc-
tive regions representing voxels on the colonic wall. It has to be mentioned
that some voxels in W represent in fact colonic fluid and not actual colonic
wall.
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2.1.2 Colonic wall elimination

At first sight the colonic wall can be divided into two major regions: convex
and concave regions. By nature polyps are spherical thus convex, while the
colonic wall is mostly concave. The only exceptions to this rule are the
haustral folds, which have a convex but cylindrical appearance.

To estimate curvature properties one can use methods based on differen-
tial geometry, such as principal, mean and Gaussian curvatures or can derive
the local shape of the wall by looking at the intersection pattern of the sur-
face normals situated close to a region of interest. However we employ a
simple geometrical approach to estimate the local curvature.

The principle of our method is presented in figure 2. For each voxel
the colonic wall is intersected with the plane P perpendicular to the local
surface normal and situated at a distance d from the surface of the wall. The
resulting patterns of intersection can be seen in figure 3. As highlighted in
the figure the colonic wall gives completely filled planes while polyps and
folds give a smaller number of voxels in the reformatted plane. Thus to
eliminate the colonic wall we propose a thresholding method based on the
number of voxels in the reformatted plane (in fact in a squared region of n
pixels). The required number of pixels in the reformatted plane (expressed as
a percentage of n2) and the distance d were determined empirically in order
to ensure maximal response on polyps of 5 mm or larger.

The process mentioned above is described analytically as follows (see fig-
ure 2 (right) for details). Given P0 = [x0, y0, z0]

T as the current point on
the surface of the colon, compute P1 = [x1, y1, z1]

T as P1 = P0 + d.G, where
G = [gx, gy, gz] is the local gradient in P0. To compute the local gradient
a Zucker-Hummel operator [12] is used and the voxel size is taken into ac-
count. The obtained gradient is perpendicular to the colonic surface and
oriented from air towards soft tissue. Next we define a local coordinate sys-
tem centered in P1, in order to be able to sample voxels around that point.
The coordinate system is situated in the plane α and fully determined by
the points P1, P2 and P3. The plane α is computed using the vector ~P0P1

as its normal and considering that P1 ∈ α. The point P2 is determined as
the intersection of the plane α with one of the axes of the global coordinate
system Oxyz. The vector ~P1P2 is one of the axes of the local coordinate
system. The next one is given by the vector ~P1P3, where P3 is a point along
the normal in P1 to the plane (P0P1P2). The vectors ~P1P2 and ~P1P3are nor-
malized and the local coordinate system O

′
ij with O

′ ≡ P1 is obtained. The
x, y, z coordinates of a point having the local coordinates u, v are obtained
as follows:

~OV = ~Ou + ~Ov − ~OO′
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2.2 Testing

After the concave colonic wall was eliminated the remaining regions are con-
sidered for further investigation. For that a shape based classification is used.
The actual statistical model building is described in the next section, here it
will be shown how polyps are modeled and how a set of existing models are
used for discriminating between normal and polypoid structures.

2.2.1 Slope density functions

We are modeling polyps based on their slope density function (SDF) [12].
Given a basis curve ψ − s the SDF is defined as the histogram or frequency
distribution of ψ collected over the boundary. The boundary is obtained
by region growing in the reformatted plane. The SDF can be seen as the
histogram of gradient orientations and while it is smooth for circular and
elliptic objects, it shows peaks for elongated structures. That is why it can
be used for discriminating between polyps and haustral folds.

At this point one has to remember that no interpolation was done when
extracting the reformatted planes, the closest image voxel to the computed
3D point was always chosen, the reason being speed. This however can
lead to irregularities of the extracted boundary, thus influencing the gradient
orientations when computed with classic filters. To compensate for this, the
gradients are computed using the recursive filtering method of R. Deriche [14].
The method uses the notion of separable filters and allows the estimation
of smoothed partial derivatives and has the additional advantage of being
computationally inexpensive.

Using this method an additional deficiency present in the reformatted
planes is eliminated. As visible in figure 4 apart from the cut through the
polyp or fold the plane contains information related to the colonic wall as well.
The colonic wall has a disturbing effect on the SDF’s shape, mostly smoothing
thus reducing the difference between folds and polyps. This however can be
eliminated computing the curvature of each point along the boundary and
eliminating voxels with negative curvature values.

The curvature is computed using the formula presented in [15]:

k =
−tT Ht

‖ ~g ‖
where t is the unit tangent vector to the boundary and H the Hessian of

the image in I(u, v). Their formulas are:

H =

[
Iuu Iuv

Iuv Ivv

]
and t = −

[
Iv

Iu

]
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The advantage of using recursive filtering is that it offers the majority
of the elements needed for the Hessian computation, and offers for free the
tangent orientation. After these steps a correct estimation of the slope den-
sity function is obtained and can be used for modeling and classification
respectively.

2.2.2 Sample modeling

In the training stage a set of SDF samples are presented to the classification
algorithm which will try to find similarities between them and group them
into different clusters. From each cluster of samples a representative model is
built, thus we will have model SDF’s for polyps, haustral folds and remaining
colonic wall. In the testing step the distances between the SDF of the current
point and the SDF’s of the models are computed and the type of the current
point is assigned to the type of the closest SDF.

The distance between SDF’s is the χ2 statistic defined as:

Dij =
1

2

K∑

k=1

(hi(k)− hj(k))2

hi(k) + hj(k)
(1)

where hi(k), hj(k) denote the k-th element in the SDF histogram of the
sample and the model respectively. Although SDF’s ensure invariance under
scaling and translation they do not ensure invariance with regards to rotation.
That is why the distance between two samples shown in figure 5 (according
to the formula 1) is large. In order to cope with this situation the χ2 statistic
is minimized over a range of possible orientations. Equation 1 is rewritten
as follows:

Dij = min
( K∑

k=1

[hi((k + l)%K)− hj(k)]2

hi((k + l)%K) + hj(k)

)
, l = 1..K (2)

the result being that Dij is minimized over the discretized orientations.

2.2.3 Polyp extraction

After the previous step some positions on the colonic surface are labeled as
polyps. Of course multiple responses for the same polyp are obtained and
on the other hand some responses are generated by noise (false positives).
To eliminate these inconveniences a connected component extraction of final
polyp candidates is employed.

In this step clusters of polyp labeled positions are identified. The connect-
edness is not limited to the first order neighbors but to all neighbors situated
at a distance dneighbor < Tneighbor, where Tneighbor is a predefined constant.
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Finally the mean position of the elements present in a cluster, having a
number of components higher then Tcomponent is returned as a polyp candi-
date. The corresponding axial and 3D volume rendered positions are pre-
sented to the reading radiologist as shown in figure 6.

3 Polyp models

In this section the process of obtaining an SDF model is described. The
algorithm receives as input a set of training samples and gives as output a
set of SDF models. The user assigns a label to the output models, instead of
assigning a label to each training sample individually. The used classifier is
based on an unsupervised learning algorithm, and it is preferable in this case
due to the huge amounts of training data. Starting from the training data,
clusters containing elements of similar training samples are generated. Each
of these clusters will generate a particular model used in the testing step of
the algorithm.

An additional problem to be solved is the computational complexity of
the classifier. To handle this the classifier is modified to have a hierarchical
behavior. The next subsections will present first the way the models are built
given a cluster of training samples, and second the changes required by the
classifier in order to have a hierarchical behavior.

3.1 Model building

To achieve a clustering of the training SDF samples a technique that pro-
duces a partition of the input according to a given distance is needed. The
unsupervised learning algorithm proposed by Hutchinson in 1994 [16] can be
considered a viable choice. It can be seen as a statistical clustering since it
is based on numerical similarity within the object descriptions, in our case
the SDF’s. All one has to keep in mind at this moment is that the algo-
rithm provides clusters of similar SDF’s given a set of training samples. The
pseudo-code of the algorithm and some additional details are presented in
the appendix.

After clusters of training SDF’s are obtained, representative models have
to be built. In our case each of the output clusters will generate a model.
Inside a cluster each samples contributes to the final model in a gaussian
manner. By that centrally placed samples gain a higher weight than samples
situated at the extremities of the cluster.

Before presenting the formula for the gaussian weights and the one used
for the actual model computation, let’s consider n the number of samples in
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the current cluster. The following notations can be introduced:

avgDist(i) =
1

n

n∑

j=1

Dij; minDist = min(avgDist(i)), i = 1..n

totalDist =
n∑

i=1

avgDist(i); σ2 =
1

n

n∑

i=1

(avgDist(i)−minDist)2

where avgDist(i) is the average distance from the current sample to the
remaining samples in the current cluster, and Dij defined by 2.

The gaussian weight of each sample is given by:

G(i) =
1

σ.
√

2π
e−

(avgDist(i)−minDist)2

2σ2

The model is computed using the equation:

Mc(k) =
n∑

i=1

G(i)∑n
j=1 G(j)

∗ hi((k + li)%K), k = 1..K (3)

where li is a rotation coefficient used to minimize totalDist over the
current cluster c.

3.2 Hierarchical classifier

On our data-base of 22 significant polyps the mean number of training sam-
ples per polyp was 503.36 with a minimum of 219, and a maximum of 976.
When applying the classifier to the entire training data the total number of
pairs between the training samples can be evaluated as follows:

#pairs =
N.(N − 1)

2
=

(22 ∗ 503.36)(22 ∗ 503.36− 1)

2
≈ 60 ∗ 106

Having such a large number of components it is not feasible due to both
memory and computation limitations to handle this amount of data. Our
solution was to split up the training data in groups of sn samples apply the
clustering technique to each of them and then consider the resulting models
as input to the classification scheme. The previous sequence is repeated
until no changes occur. In our experience, if a cluster size of 500 elements is
used then a two-level hierarchical scheme is sufficient to obtain a consistent
clustering.

If the number of pairs is recomputed for the first level in the hierarchy
we have the following number of pairs, considering (for simplicity) that each
group has 503.36 elements and the total number of groups is #gr = 22:
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#pairs = #gr.
N.(N − 1)

2
= 22

503.36(503.36− 1)

2
≈ 22 ∗ 126000 ≈ 2.8 ∗ 106

thus a 23 times reduced pairs number. Also each sorting has to be done
on approximately 126.000 pairs instead of the original 60 million pairs.

One problem that arises is that initial clusters and thus generated models
have a different number of elements. This has to be accounted for when build-
ing models at higher levels. Considering Ell(i) as the number of pairs from
which a certain model was attained, the modified model building equation
can be rewritten as:

Mc(k) =
n∑

i=1

G(i).Ell(i)∑n
j=1 G(j).

∑n
j=1 Ell(j)

∗ hi((k + li)%K), k = 1..K (4)

Also the algorithm presented in the appendix was slightly modified, not
to allow the merging of models which are situated at a large distance one
from the other. If the original algorithm would have been used the obtained
result would have been a single cluster.

We are aware of the fact that when using a hierarchical scheme some
of the coarse details are lost, however this approach can be seen as a good
compromise between accuracy and computational efficiency.

4 Results

Fifty data-sets, 25 normal and 25 with 40 polyps of various sizes (Table 1)
underwent CT colonography prior to conventional colonoscopy. Informed
consent was obtained from all patients. The patient preparation consisted
in the oral administration of 3 to 5 liter of precolon, an in-house developed
tagging agent. In some cases the use of polyethylene glycol electrolyte solu-
tion was preferred. Immediately before CT colonography a bowel relaxant
was injected intravenously. CO2 was insufflated using a bag system.

CT colonography was performed on a multi-detector CT (Multi Slice Heli-
cal CT; Volume Zoom, Siemens, Erlangen, Germany) using 4x1 mm detector
configuration, 7 mm table feed per 0.5 s tube rotation, 0.8 mm reconstruction
increment as well as 60 effective mAs and 120 keV. Patients were scanned in
both supine and prone positions, in breadth holds of 20 to 30 seconds. This
resulted in 50 data-sets which were considered as input for our CAD system.
On average the size of the acquired data sets was 246.47 MB. The image pro-
cessing was done on a dual processor, Intel Pentium 2.4 GHz system, having
2GB of RAM.
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Table 1: Polyp distribution and detection results. (No = total number of
polyps, TP = true positives)

Type No Submerged Detectable TP Sensitivity
Flat 6 1 5 1 16.67%

< 5 mm 8 2 6 2 33.33%
6-9 mm 10 3 7 6 85.7%
> 9 mm 12 1 11 10 90.90%
Tumor 4 0 4 4 100%
Total 40 7 33 23 69.69%

As a first step seed points were defined manually and then the whole CAD
process was completed automatically. The mean segmentation threshold was
582 (CT number) and had a standard deviation of 31 units. The typical shape
of the cumulative Laplacian histogram for abdominal images is shown in
Figure 7. The polyp models were generated using the leave one out technique.

Using conventional colonoscopy as standard of reference true positive
(TP) and false positive (FP) findings were determined for each patient. The
total number of polyps was 40, from these 7 were submerged under residual
fluid and were not considered as false negative cases, since our method was
not designed to detect them. The detection rate differentiated on polyp size
is presented in Table 1. The average computation time for the whole CAD
process as well as for different steps is shown in Table 2.

Table 2: Average computation times, expressed in minutes.

Segmentation 0:11
Generation + Testing 4:07

Polyp extraction 0:7
Overall 4:25

The total number of false positives was 124, which gives us a mean value
of 2.49 false positive findings per data-set. The main causes for false positives
are presented in Table 3.
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Table 3: False positives causes.

Cause Procent
Haustral fold 60.68 %
Colonic wall 18.80 %
Stool or fluid 11.97 %

Insuflation tube 5.13 %
Ileocecal valve 3.42 %

5 Discussion

In this paper a fast method for CAD in CT colonography was presented. The
fastness of the method comes from reducing the shape based analysis from
a 3D space into a 2D space while preserving 3D clues. Its main purpose is
the detection of polypoid lesions larger than 5mm. On the relatively small
data-base of patients it was proven that it has a high accuracy in detecting
sessile and pedunculated polyps that protrude inwards into the lumen. It
also can detect tumors, but has a low sensitivity for small polyps and for flat
lesions.

All our experiments were done using data collected with the Volume Zoom
4 Siemens machine, it is expected that on the new generation scanners (e.g.
Somatom Sensation 16) the number of polypoid voxels will increase thus re-
sulting in a better detection rate implicitly. Other advantages of the new
scanner relate to the possibility of quicker scan times thus reducing motion
artifacts and to low-dose scanning, with or without the use of edge preserving
filters. When using a low-dose setup the mAs can be reduced from 60 mAs
to 10 mAs, obtaining an effective dose value acceptable in a screening envi-
ronment. Our method can be applied to this kind of data as well, without
further changes. The relation between dose and CAD sensitivity is the sub-
ject of on-going work. Also initial testing was carried out on MR data-sets.
Although the segmentation step has to be changed due to noise in the data,
the CAD algorithm can be used successfully.

Looking at the draw-backs of the method one can observe that the seg-
mentation process is not fully automatic and that the pixel values around
or inside the polyp are not taken into account. The reason for both is pa-
tient preparation and more explicitly fluid tagging. For the segmentation
we preferred a semi-interactive step to ensure that a correct segmentation
is achieved, and as much of the small bowel as possible is eliminated. The
reason for not using voxel intensity based features is that some of our polyps
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are close to tagged colonic fluid or even semi-submerged and thus missed by
such schemes.

Improvements of our scheme will include the generation of new polypoid
models, learning from mistakes and the extension of the distance presented
in equation 2, to include more 3D features. The easiest way to achieve this
is the inclusion of the distance to wall of each point laying on the extracted
plane. Also experiments with the use of a parabola instead of the cut plane
were carried out. Initial results show that no difference between polyps and
haustral folds is obtained. The main goal of our developments will be to
further reduce the number of false positive findings.

6 Conclusion

The results of our experiments show that CAD in CT colonography is feasible,
and a high sensitivity and specificity can be obtained. However to be relevant
the tests have to be confirmed on a larger number of cases. Once its efficacy
is proven, CAD can be integrated into clinical practice, improving on current
accuracy and cost values.
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8 Appendix

The unsupervised learning algorithm performs bottom-up clustering. The
algorithm starts with a few small clusters and enlarges them to create new
clusters. It is non-incremental and simple to implement. The third step has
the highest computational intensity, since it does a distance based sorting of
all the training samples presented as input.

Unsupervised learning algorithm:

1. Start with a list of unordered input samples, SDF’s:

[x, y, z, ... ]

2. Generate the list of ALL unordered pairs of distinct

input samples, and compute the distance between the

two members of the pair:
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[(x, y, d1), (x, z, d2), (y, z, d3), ....]

3. SORT this list of pairs, into increasing order of

distance between the pairs.

4. Do classification:

WHILE the list is not empty take the first pair {x,y}

from the remaining of the list and

IF neither x nor y is as yet in a cluster

THEN

form a new cluster C. to start with, C={x, y}.

IF one of the two points (x), is in some cluster C

AND the other point y is not yet in any cluster

THEN add y to C.

IF x and y are in different clusters C1 and C2

AND x is nearly central in C1

AND y is nearly central in C2

AND the distance from x to y is less than

the average diameter of C1and C2

THEN amalgamate C1 and C2 into a new combined cluster

(Otherwise, do nothing to the clusters)

The distance between samples is defined in equation 2. The algorithm
requires two additional measures: cluster diameter and nearly central sam-
ples. The cluster diameter is defined as the largest distance between any two
points in a given cluster, while a sample is considered “nearly” central if the
distance from it to every other point in the cluster is less than 2

3
of the cluster

diameter.
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Figure 1: Diagram showing the data flow inside the CAD algorithm, includes
the two main steps: generation and testing.
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Figure 2: Part of the surface of the colon intersected with the plane alpha,
on the right the coordinate system and main vectors used for extracting the
voxels of the cut plane.
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Figure 3: Patterns of intersection on the surface of the colon corresponding
to: wall (top), fold (middle) and polyp (bottom)
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Figure 4: Smoothed cut through a polyp and a haustral fold respectively. Sec-
ond row illustrates the boundary of the two structures. Third row shows the
eliminated parts of the boundary due to negative curvature values (marked
dark grey).
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Figure 5: Minimization of the SDF over all possible rotation values. Top row
presents two similar SDF functions, while the bottom row shows the rotated
SDF (left) and a superposition of the rotated SDF’s.
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Figure 6: Presentation software, polyp indicated with an arrow on the axial
slice, a 3D volume rendering around the structure of interest is present. On
the right a list of available patients and suspected polypoid positions.
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Figure 7: The cumulated Laplacian histogram for an abdominal image. The
vertical line indicates the value of the extraction threshold.
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