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We consider the representation and evaluation of team decision making under uncertainty using influence
diagrams. We assume that all team members agree on common beliefs and preferences, but complete

sharing of information is generally impossible. As a result, the team can be represented as a single rational
individual with imperfect recall, and the optimal solution with perfect recall might not be achievable, except
in special cases we can recognize. An alternative solution concept is a stable solution that integrates the notion
of optimality with that of equilibrium from game theory. We extend this concept from individual decisions to
sets of decisions, and introduce the Strategy Improvement and its variation, Uniform Strategy Improvement, as
the corresponding solution methods. We also provide a variety of simplifying transformations to the influence
diagram by exploiting its graphical structure. The result is a requisite influence diagram, one that requires
minimum assessment and creates additional opportunities for optimality.
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1. Introduction
Decision analysis provides a principled framework for
decision making under uncertainty for a rational indi-
vidual (Howard1966a,Raiffa 1968). Influencediagrams
(HowardandMatheson1984/2005) are compact graph-
ical representationsof thesedecisionsituations,andeffi-
cient algorithms have been developed to analyze them
(Olmsted 1983, Shachter 1986, Shachter and Peot 1992,
Shenoy 1992, Jensen et al. 1994, Zhang 1998). The dia-
grams allowus to represent thedecisionmaker’s beliefs
about uncertainties, preferences for prospects, alterna-
tives for decisions, and observations available at the
time of those decisions.
When there is a single decision maker, rationality

requires perfect recall, that any observations available
and choices made at the time of earlier decisions are
known when later decisions are made (Kuhn 1953).
This leads to a globally optimal solution for all of
the sequential decision situations through the solution
technique of backward induction (BI) (Bellman 1957).
BI is also applicable to team decision situations, those

in which team members agree on probabilities for the
uncertainties, preferences for the prospects, and alter-
natives for the decisions, as long as the observations
available at the time of those decisions satisfy certain
conditions, e.g., that of finite-stage Markov Decision
Process (MDP) (Bellman 1957).
We seek to improve the quality of team decision

making where the perfect recall condition does not
hold due to the incomplete sharing of information
among team members. This is usually because deci-
sions are decentralized throughout the team and com-
mitments are being made in parallel. It could also be
that the record keeping needed for the complete shar-
ing of information is impractical or because it is desir-
able to provide simple strategies to some members of
the team.
There are two perspectives to approach team deci-

sion making with incomplete sharing of information,
either as an individual making decisions with imper-
fect recall or as a game with imperfect information
where every player has identical payoffs (Marschak
and Radner 1972). We will take the former perspective
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because the latter perspective can be viewed as imper-
fect recall of a hypothetical decision maker who owns
every decision in the game. This avoids confusion
with another use of the term imperfect (perfect) infor-
mation, already defined as imperfect (perfect) obser-
vations in decision analysis (Howard 1966b). It also
allows the representation of team decision situations
to be independent of the identity of the team members
and facilitates the comparison of various information
structures based on the notion of value of information
gathering and sharing in team environment.
Example 1. Consider the following story adapted

from a classical team decision situation about a ship-
yard firm from Marschak and Radner (1972). The firm
has two docks (a new one and an old, less efficient
one) and two markets (West and East). Each manager
(West and East) is offered a price through a private
negotiation for a ship to be delivered in each respec-
tive market. The price is known to each, but not to
the other manager when each manager must decide
whether to accept or reject the offer. A dock supervi-
sor decides whether to move some infrastructure from
the new dock to the old dock in anticipation that both
docks might be used. This decision will be known to
each manager prior to the negotiation. Its effect is to
increase and decrease the costs of building a ship in
the new and old docks, respectively. �

To represent a decision situation with imperfect
recall, a standard decision tree is inadequate and must
be augmented with information sets as used in game
trees (Kuhn 1953). A set of decision nodes in the tree
are in the same information set if the decision maker
cannot distinguish which one of them applies. It fol-
lows semantically that each decision node belongs to
exactly one information set, possibly a singleton set,
and the available alternatives as well as the choice
for every decision node in the same information set
must be identical. We represent an information set by
a dashed line connecting the decision nodes in the
information set.
Example 2. Consider the decision tree shown in

Figure 1. If interpreted from the standard decision-
tree perspective (ignoring the dashed lines), the dock
supervisor’s decision DD consists of two alternatives,
i.e., “Stay” or “Move.” It is followed by the reso-
lution of the West price WP , i.e., “High” or “Low,”
as well as the West manager’s decision WD, i.e.,

“Accept” or “Reject.” Note that the West manager
knows the results of DD and WP before making her
decision. The resolution of the East price EP comes
next. It is not known to the dock supervisor and
the West manager, but to the East manager. The East
manager’s decision ED would then be made with
the knowledge of DD, WP , WD, and EP . This inter-
pretation corresponding to a decision situation with
perfect recall does not capture the story in Exam-
ple 1 unless the information sets are added. The
leftmost dashed line connecting four decision nodes
of the East manager implies that she cannot distin-
guish among the paths leading to such nodes. In
other words, she only knows for certain what all four
paths share in common, i.e., DD = “Stay” and EP =
“Low.” The other dashed lines are interpreted simi-
larly. This augmented decision tree does capture the
exact story in Example 1 along with the numerical
specifications. �

In addition to the fact that the augmented deci-
sion tree grows exponentially with the number of
decisions and uncertainties, the tree cannot neces-
sarily be evaluated with the BI algorithm unless it
corresponds to certain types of decision situations,
as noted earlier. Some possible alternative solution
approaches include those that could solve games in
general (McKelvey and McLennan 1996, McKelvey
et al. 2004), but they are, however, not specifically
developed for team decision situations with identi-
cal payoff structure. In other words, they do not take
advantage of the fact that the identity of the players
does not matter.
We propose to represent and evaluate the team

decision situation with an influence diagram. In fact,
the original influence diagram explicitly allowed
the representation of imperfect recall, although per-
fect recall was assumed for solution (Howard and
Matheson 1984/2005). Tatman and Shachter (1990)
study the influence diagram with imperfect recall that
corresponds to the finite-stage MDP and apply the
BI algorithm to solve it. Zhang and Poole (1992) and
later Zhang et al. (1994) study the influence diagram
with imperfect recall in the general case and find con-
ditions under which the BI algorithm is applicable.
Nilsson and Lauritzen (2000) also study a similar

diagram under the name LIMID (LImited Memory
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Figure 1 A Decision Tree Augmented with Information Sets for Example 1
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Influence Diagram) and show more general condi-
tions under which the diagram can be solved with
the BI algorithm. They later develop an algorithm
that guarantees a local optimal solution when the
diagram does not satisfy their established conditions
(Lauritzen and Nilsson 2001). Koller and Milch (2001,
2003) introduce MAID (Multi-Agent Influence Dia-
gram), which extends the semantic of the influence
diagram to represent and solve a game where every
player has perfect recall. Their proposed solution
method relies on the solution methods that solve
games in general (McKelvey and McLennan 1996).
Section 2 lays the necessary foundations in team

decision analysis and influence diagrams. These
include formalizing the solution concepts and devis-
ing solution methods that accommodate incomplete

sharing of information. Section 3 exploits the graphi-
cal structure of the influence diagram to develop more
insights for decision making in §4 and simplifying
the influence diagram in §5. Section 6 develops the
diagram-based solution method that uses all available
information to improve the decision quality. Finally,
§7 demonstrates our results with Example 1, while
§8 concludes the research and surveys some other
related developments.

2. Foundations
This section introduces our representation for a team
decision situation. Because we approach team deci-
sion making from an individual perspective, this rep-
resentation does not specify, and thus is invariant to,
the identities of the team members.
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2.1. Terminology
A distinction is a feature that defines a set of mutu-
ally exclusive and collectively exhaustive possibilities,
exactly one of which is resolved to be true. It is a
decision if its resolution is under the complete control
of the decision maker. Otherwise, it is an uncertainty
and we represent the decision maker’s belief about its
resolution with a conditional probability distribution.
A distinction is said to be observed if its resolution
is known. An observation available to a decision is a
set of distinctions observed at the time of making the
decision. A strategy for a decision is a contingent plan
of choices for the decision given its available observa-
tion, and we represent the decision maker’s possible
choices for the decision with the set of all possible
strategies.
Denote by Y a set of all distinctions in a decision

situation where the sets of decisions and uncertainties
are denoted by D⊆ Y and U = Y −D, respectively. A
distinction n1 ∈ Y is said to be irrelevant to a distinc-
tion n2 ∈ Y if the observation of n1 does not change
the decision maker’s belief about the resolution of n2
regardless of the strategies prescribed for every deci-
sion in D. It follows that n1 is irrelevant to n2 if and
only if n2 is also irrelevant to n1. A distinction n1 ∈ Y
is said to be irrelevant to a distinction n2 ∈ Y , given a
distinction n3 ∈ Y , if n1 is irrelevant to n2, given that
n3 has already been observed.
Each n ∈ Y is assumed to be finite, and thus we can

represent its possibility set by a finite set Xn with xn
as its generic element. Similarly, we represent a possi-
bility set of the subset of distinctions N ⊆ Y by XN =×n∈NXn with xN as its generic element. An element
in XY is called a scenario. A prospect is how the deci-
sion maker views the future given a scenario, and
we represent the decision maker’s preference among
prospects with a utility function (von Neumann and
Morgenstern 1947).
A decision d ∈D is said to have complete sharing of

information from (perfect recall on) the set of decisions
F ⊆ D if the observation available to d includes F as
well as the observation available to each decision in F .
A decision always has complete sharing of informa-
tion from itself by this definition. We refer to com-
plete sharing of information and perfect recall syn-
onymously. A set of decisions is said to have complete
sharing of information if there exists an ordering of
those decisions such that each decision has complete

sharing of information from all earlier decisions in the
set. A set of decisions is said to have incomplete shar-
ing of information otherwise. A decision situation is
said to have complete sharing of information if the
set of all decisions has complete sharing of informa-
tion. A decision situation is said to have incomplete
sharing of information otherwise.
Finally, a team is a set of decision makers, called

team members, who agree on common preferences
among prospects and beliefs about uncertainties, but
are, in general, responsible for making different deci-
sions in the decision situation. As a consequence, the
terminologies presented above are equally applicable
to individual decision makers and teams.

2.2. Influence Diagram
A directed graph is defined as a set of nodes Z and a
set of directed arcs A between ordered pairs of nodes
such that there is at most one arc for each pair. A node
n1 ∈Z is a parent of a node n2 ∈Z (n2 is a child of n1)
if there is an arc directed from n1 toward n2. For any
n ∈ Z, denote by pa�n�, ch�n�, nb�n� = pa�n� ∪ ch�n�,
and fa�n�= pa�n�∪n the sets of nodes that are parents,
children, neighbors, and family of n, respectively. For
any N ⊆Z, denote by fa�N �=⋃

n∈N fa�n� and pa�N �=
fa�N �−N the sets of nodes that are family and strict
parents of N , respectively. A subgraph of Z induced
by N is a set of nodes N and those arcs in A that are
between pairs of nodes in N .
A path of length k between n0 and nk is a sequence

�ni�
k
0 of distinct nodes such that ni ∈ nb�ni−1�, i =

1� � � � � k. A node ni on the path between n0 and nk is
a head-to-head node if ni−1�ni+1 ∈ pa�ni�, i ∈ �1� � � � �
k−1�. A path is directed from n0 to nk if ni ∈ ch�ni−1�,
i = 1� � � � � k. A node n0 is an ancestor of a node nk
(nk is a descendant of n1) if there is a directed path
from n0 to nk. Denote by an�n� and de�n� the sets
of nodes that are ancestors and descendants of n,
respectively. A cycle is a path between n0 and nk with
n0 = nk. It is a directed cycle if the path comprising the
cycle is directed. A directed acyclic graph is a directed
graph with no directed cycle.
An influence diagram is a compact graphical repre-

sentation of a decision situation. It is a directed acyclic
graph with three types of nodes. A decision node cor-
responding to a decision distinction is drawn as a
rectangle. An uncertainty node corresponding to an
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uncertainty distinction is drawn as an oval. Finally,
a value node corresponding to a component of an
additively separable utility function is drawn as an
octagon. We refer to the distinction and its corre-
sponding node interchangeably. Hence, D is the set
of all decision nodes, U is the set of all uncertainty
nodes, and V is the set of all value nodes. The set
of all distinction (nonvalue) nodes is denoted by Y =
D ∪ U , and the set of all nodes is denoted by Z =
Y ∪V . Note that an influence diagram is also called a
Bayesian network or belief network if D=	 and V =	.
The arcs take on different meanings depending on

the types of node they are directed toward. For any
v ∈ V , the arcs directed from pa�v� into v are called
functional arcs, and pa�v� represents the domain of
some function v which is itself a component of the
additively separable utility function. For any u ∈ U ,
the arcs directed from pa�u� into u are called condi-
tional arcs and pa�u� represents the distinctions being
conditioned on when assessing the belief about u. In
other words, the probability distribution of u is con-
ditioned on the resolution of pa�u�. A special case is
when u ∈ U is a deterministic function of pa�u�, i.e.,
the distribution of u conditioned on the resolution of
pa�u� is degenerate. Such a u is also called determinis-
tic uncertainty, drawn as a double-oval node, and the
arcs directed from pa�u� into u are also called func-
tional arcs. Finally, for any d ∈ D, the arcs directed
from pa�d� into d are called informational arcs and
pa�d� represents the observation available to d. In
other words, the choice of d can be conditioned on
the resolution of pa�d�.
In addition to the acyclicity of the influence dia-

gram, it is generally assumed that value nodes have
no children (Shachter 1986). Tatman and Shachter
(1990) relax this assumption by introducing the notion
of supervalue nodes to represent sums and products
of other value and supervalue nodes. In fact, our
framework is equivalent to having a sum supervalue
node, although it is not shown explicitly. Together
with these restrictions, it follows semantically that
every distinction node is irrelevant to its nonde-
scendant distinction nodes given its parental nodes
whenever the nodes in the influence diagram are con-
nected, such that every arc takes on its appropriate
meaning (Howard and Matheson 1984/2005).
Example 3. Consider an influence diagram repre-

senting our team decision situation from Example 1

Figure 2 An Influence Diagram for Example 1
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shown in Figure 2. In our terminology, the functional
arcs directed to Profit indicate that it is a function of
every distinction. The informational arcs directed to
West Decision indicate that the West manager will only
observe West Price and Dock Decision before making
her choice. Similarly, the informational arcs directed
to East Decision indicate that the East manager will
only observe East Price and Dock Decision before mak-
ing her choice. The only conditional arc indicates the
team’s belief that both prices can be relevant and their
relevance is represented by the distribution of West
Price conditioned on East Price. The semantic of the
influence diagram also indicates, for example, that
East Price is irrelevant to West Decision given West
Price. �

Example 4. Consider a more complicated influence
diagram (shown in Figure 3) modified from Jensen
et al. (1994). It has four decision nodes, thirteen uncer-
tainty nodes (including two deterministic uncertainty

Figure 3 A Complicated Influence Diagram
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nodes), and four value nodes. It indicates, for exam-
ple, that the team can observe u6 and u7 at the
time of d3. The team’s belief about u11 is a probabil-
ity distribution conditioned on d4 and u9, while the
team’s belief about u9 is a deterministic function of
d3 and u8. The team’s preference under uncertainty is
an additively separable utility function of four com-
ponents, one of which is a function of u12 and u13. We
can also conclude, for example, that d4 is irrelevant
to Y − de�d4� = Y − �u11�v4�, given pa�d4� = u8; and
that u10 is irrelevant to Y −de�u10�= Y − �u12�u13�v3�,
given pa�u10�= u7. �

2.3. Completely Specified Influence Diagram
For any d ∈ D, a strategy �d�xfa�d�� is a conditional
probability distribution over Xd, representing the
choice made at d, given xpa�d� ∈ Xpa�d�, representing
the observation available to d. Two notable cases are
the pure strategy, which is a degenerate distribution
over Xd given xpa�d� ∈Xpa�d�; and the uniform strategy,
which is a uniform distribution over Xd given xpa�d� ∈
Xpa�d�. We represent the set of all possible pure strate-
gies by �Pd and the set of all possible strategies by �d.
For any F ⊆D, a strategy set �F is the set ��d� d ∈ F �,
and we represent the set of all possible pure-strategy
sets by �PF =×d∈F �Pd and the set of all possible strat-
egy sets by �F .
For any u ∈ U , a distribution �u�xfa�u�� is a condi-

tional probability distribution over Xu, representing
the team’s belief about u, given xpa�u� ∈ Xpa�u�, repre-
senting the distinctions being conditioned on when
assessing such belief. We represent the set of all possi-
ble distributions by �u. For any R⊆U , a distribution
set �R is the set ��u� u ∈R�, and we represent the set
of all possible distribution sets by �R.
For any v ∈ V , a utility  v�xpa�v�� is a function, rep-

resenting a single component of the additively sepa-
rable utility function, that assigns one real number to
each xpa�v� ∈ Xpa�v�. We represent the set of all possi-
ble utilities by !v. For any W ⊆ V , a utility set  W
is the set � v� v ∈W�, and we represent the set of all
possible utility sets by !W .
A completely specified influence diagram includes the

set of all possible strategy sets �D, the distribution
set �U such that

∏
d∈D �d�xfa�d��

∏
u∈U �u�xfa�u�� is a joint

probability distribution representing the team’s belief
over XY for every �D ∈ �D, and the utility set  V

such that
∑

v∈V  v�xpa�v�� is a utility function represent-
ing the team’s preference over XY under uncertainty.
These three elements (�D, �U , and  V ) are known
as the decision basis, a quantitative specification of a
decision situation in terms of the alternatives, the
information, and the preferences of the team (Howard
1984).

2.4. Algebra in an Influence Diagram
For any N ⊆ Z, a probability potential for the influence
diagram is defined as

�N �xfa�N∩Y ��=
∏

d∈N∩D
�d�xfa�d��

∏
u∈N∩U

�u�xfa�u��� (1)

and for any M ⊆ N , a uniformly extended probability
potential is defined as

�N∗M�xfa�N∩Y �� = �N−M�xfa��N−M�∩Y ��
∏

d∈M∩D
�̄d�xfa�d��

· ∏
u∈M∩U

��u�xfa�u��� (2)

where �̄d and ��u are the uniform strategy and the uni-
form distribution, respectively. A utility potential for
the influence diagram is defined as

�N �xpa�N∩V ��=
∑

v∈N∩V
 v�xpa�v��� (3)

A completely specified influence diagram includes �D,
�U , and  V .  V induces a utility function �Z�xpa�V ��,
while a particular �D ∈ �D and �U induce a joint
probability distribution �Z�xfa�Y ��. A joint probabil-
ity distribution over N ⊆ Y is defined as �Z�xN � =∑

xfa�Y �−N �Z�xfa�Y ��. For any N1�N2 ⊆ Y such that
�Z�xN1� > 0, a conditional probability distribution is
determined according to �Z�xN2 � xN1� = �Z�xN1∪N2�/
�Z�xN1�. Finally, the expected utility is written as
EU��D��U� V �=

∑
xfa�Z�

�Z�xfa�Y ���Z�xpa�V ��, or simply
EU��D�, whenever it is clear in the context. In our
framework, we do not need to marginalize over any
value nodes.

2.5. Complete Sharing of Information in
an Influence Diagram

For any d ∈D, denote by cs�d�= �n ∈D� fa�n�⊆ fa�d��
a set of decision nodes from which d has complete
sharing of information. A subset F ⊆D has complete
sharing of information when there exists an ordering
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Figure 4 Additional Influence Diagrams
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of �d1� � � � � dk� = F such that �d1� � � � � di� ⊆ cs�di�, i =
1� � � � � k. By this definition, every subset of decisions
that have complete sharing of information also has
complete sharing of information, and so does every
decision. An influence diagram in which D has com-
plete sharing of information (perfect recall) is called a
decision network (Howard and Matheson 1984/2005).
Example 5. Each decision in the influence diagram

shown in Figure 3 only has complete sharing of infor-
mation from itself. Note that additional observations
do not imply additional complete sharing of infor-
mation. The influence diagram shown in Figure 4a
illustrates that d4 only has complete sharing of infor-
mation from d2, but not d3, because fa�d2� = d2, but
not fa�d3�= �d3�u6�u7� are observed at the time of d4.
The influence diagram shown in Figure 4b illustrates

that d4 now has complete sharing of information from
d3 because fa�d3� is now observed at the time of d4.
Although the influence diagram shown in Figure 4c
illustrates that each decision has complete sharing of
information from itself and the preceding decision,
D does not have complete sharing of information
by definition. Finally, the influence diagram shown
in Figure 4d illustrates the influence diagram of a
decision situation with complete sharing of informa-
tion, i.e., every set of decisions has complete sharing
of information. �

2.6. General Solution Concepts
According to the standard criterion in decision mak-
ing under uncertainty, the team should commit to an
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optimal strategy set �D, one that maximizes the
expected utility.
Definition 1. A strategy set �D is optimal when

EU��D�≥ EU��̃D� for ∀ �̃D ∈�D�

The following proposition proves the existence of
an optimal strategy set that is pure.

Proposition 1. There exists an optimal strategy set �D
that is a pure-strategy set.

Proof. With the utility function over the finite set
Xpa�V �, the expected utility of any pure-strategy set is
an expected value of finitely many numbers, which is
finite. Thus, there exists at least one maximal expected
utility pure-strategy set �D ∈ �PD. As any strategy set
is defined as a set of conditional probability distribu-
tions, its expected utility cannot be greater than the
expected utility of �D, a set of degenerate conditional
probability distributions attaining maximum expected
utility. �

Analogous to the concepts of global and local opti-
mality in optimization, we introduce the notion of
stability that precisely characterizes the scope of any
local optimality.
Definition 2. A strategy set �F , F ⊆ D, is k-stable,

k ∈ �1� � � � � �F ��, with respect to strategy set �D, or �D is
k-stable at F when

�f = argmax
�̃f

EU��̃f � �D−f �

for ∀ f ⊆ F such that �f � = k. When k = �F �, �F is also
said to be maximally stable with respect to �D.
Because a maximally stable �F with respect to �D

can be viewed as the optimal �D with fixed �D−F ,
its existence also follows from the proof in Proposi-
tion 1. A special case of this definition is when F =D
in which optimality coincides with maximal stability
of �D. Another special case is when there are j team
members responsible for distinct sets of decisions in
a team decision situation. When each team member’s
strategy set �Di , i = 1� � � � � j , is maximally stable with
respect to �D, the team strategy set �D is said to be a
Person-by-Person Satisfactory (PBPS) team decision rule
in team theory (Marschak and Radner 1972). It is also
equivalent to a Nash Equilibrium (NE) obtained when
we approach team decision making as a game where
every player has identical payoffs (Nash 1951). There
are two properties of stability worth mentioning.

Proposition 2. If a strategy set �F , F ⊆D, is k-stable,
k ∈ �1� � � � � �F ��, with respect to strategy set �D, �F is also
m-stable, m ∈ �1� � � � � k�, with respect to �D.

Proof. Let �F = �f ∪ �F−f for any f ⊆ F such that
�f � = k. Let �f = �fi ∪�f−fi for any fi ∈ f . According to
the definition of k-stability, we have

EU��f−fi � �fi � �D−f � = max
�̃f−fi � �̃fi

EU��̃f−fi � �̃fi � �D−f �

≥ max
�̃f−fi
EU��̃f−fi � �fi � �D−f �

= EU��f−fi � �fi � �D−f ��

As this is true for ∀ fi ∈ f and ∀ f ⊆ F by the definition
of k-stability, �F is �k − 1�-stable with respect to �D.
The result follows by induction. �

Proposition 3. If a strategy set �F , F ⊆ D, is the
unique m-stable strategy set with respect to strategy set �D,
m ∈ �1� � � � � �F ��, �F is also maximally stable with respect
to �D.

Proof. There exists some �′F that is maximally sta-
ble that must also bem-stable by Proposition 2. If there
is a unique m-stable strategy set, then �F = �′F . �

2.7. General Solution Methods
Although an optimal strategy set can always be found
through the BI given any decision situation with com-
plete sharing of information (perfect recall), it might
not be applicable to a decision situation with incom-
plete sharing of information (imperfect recall). An
approach that always guarantees an optimal �D is the
Exhaustive Enumeration of all pure-strategy sets in the
enumeration set �PD based on the results of Proposi-
tion 1 and the finiteness of �PD. Unfortunately, it is
usually impractical because of the size of �PD, which
is equal to

∏
d∈D ��Pd �, where ��Pd � = �Xd�

∏
e∈pa�d� �Xe � such

that
∏

e∈pa�d� �Xe� = 1 if pa�d�=	.
To reduce the computation of exhaustive enu-

meration, we can generalize the above method by
enumerating the strategy sets in multiple smaller
enumeration sets associated with a partition of the
decisions. This results in an iterative process, called
Strategy Improvement (SI).

Algorithm 1. Strategy Improvement.
Input: A completely specified influence diagram

with a partition G of a subset F ⊆D.
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Output: A pure-strategy set �D that is maximally
stable at g, ∀g ∈G.
Initialization
1. Assign some initial strategy set �D.
Iteration
1. Assign �′F = �F .
2. For each enumeration set g ∈G, do:
(a) If �′g �= argmax�̃g EU��̃g� �D−g�, update �g =

argmax�̃g EU��̃g� �D−g�.
3. Repeat the iteration until �′F = �F .

The following proposition proves that the algorithm
converges to a �D that is maximally stable at every
subset of decisions that has an associated enumera-
tion set.

Proposition 4. A pure-strategy set �D obtained with
the SI algorithm is maximally stable at every subset of
decisions that has an associated enumeration set.

Proof. At each iteration of the algorithm, we al-
ways update �g to the one that is maximally stable
with respect to �D unless it is already so. If the
algorithm stops, �D must be maximally stable at g,
∀g ∈G. As the expected utility is either increasing or
unchanged during the algorithm, and there is only a
finite number of pure-strategy sets that will not be
repeated unless they have the same expected utility,
�′F = �F eventually holds and the algorithm stops suc-
cessfully. �

Exhaustive enumeration can be viewed as a spe-
cial case of this algorithm when there is a single enu-
meration set associated with D. Another special case
in which each enumeration set is associated with a
distinct decision is called Single Strategy Improvement
(SSI), and when F = D Single Policy Updating (SPU)
(Lauritzen and Nilsson 2001). By enumerating only
one decision at a time, Proposition 4 only guarantees
that the resulting strategy set from the SSI (or SPU)
algorithm is 1-stable. However, for a decision situ-
ation with complete sharing of information (perfect
recall), it is well known that the BI algorithm can find
the optimal strategy set by enumerating each decision
exactly once. In fact, it is even possible to have an
incomplete sharing of information (imperfect recall)
and yet ensures that BI will find an optimal strategy
set, also by enumerating each decision exactly once.

3. Exploitation of Influence
Diagram Structure

This section introduces some important semantic
implications of the influence diagram that can be
verified from its graphical structure and will lead to
simplifying transformations.

3.1. Irrelevant Sets and Requisite Sets
We have earlier defined the notion of irrelevance with
respect to a particular distribution set for the team.
We now enrich this notion by defining it with respect
to any distribution set representable by the graphical
structure of the influence diagram.
Definition 3. For any N1�N2�N3 ⊆ Y , N3 is said to

be an irrelevant set for N1 given N2, denoted by N1 ⊥
N3 �N2, if �Z�xN1 �xN2�=�Z�xN1 �xN2∪N3�, ∀�D ∈�D, and
∀�U ∈�U .
The following notions of requisite distinctions,

observations, and values build on the notion of irrel-
evance. For any N ⊆Z, denote by N ′ =Z−N a set of
nodes that are not in N .
Definition 4. For any N1�N2�N3 ⊆ Y , N3 is said to

be a requisite distinction set for N1 given N2 if it is a
minimal set, such that �Z�xN1 �xN2� = �Z∗N ′

3
�xN1 �xN2�,∀�D ∈�D, and ∀�U ∈�U .

In other words, a requisite distinction set N3 is a
minimal subset of Y such that its potential is required
in order to properly compute �Z�xN1 �xN2�, ∀�D ∈ �D,
and ∀�U ∈ �U . An immediate consequence of this
definition is that �Z�xN1 � xN2� is invariant to �N ′

3∩D
and �N ′

3∩U , and thus can also be determined with
�Z∗N ′

3
�xN2� > 0 in the case that �Z�xN2�= 0.

Definition 5. For any N1�N2�N3 ⊆ Y such that
N3 ⊆N2, N3 is said to be a requisite observation set for N1
given N2 if it is a minimal set such that �Z�xN1 �xN2�=
�Z�xN1 �xN3�, ∀�D ∈�D, and ∀�U ∈�U .
In other words, a requisite observation set N3 is a

minimal subset of N2 that is required to be observed
in order to properly compute �Z�xN1 �xN2�, ∀�D ∈ �D,
and ∀�U ∈�U . It follows that N2 is an irrelevant set
for N1 given N3. We establish the following proposi-
tion that relates the requisite distinction set with the
requisite observation set for later use.

Proposition 5. For any N1�N2�N3 ⊆ Y such that
N3 ⊆ N2 contains a requisite observation set for N1 given
N2, a requisite distinction set for N1 given N2 is equal to a
requisite distinction set for N1 given N3.
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Proof. Denote by N and N ′ = Z − N a requisite
distinction set for N1 given N2 and its complement,
respectively. We have that �Z�xN1 � xN2� = �Z∗N ′�xN1 �
xN2� = �Z∗N ′�xN1 � xN3� = �Z�xN1 � xN3�, ∀�D ∈ �D, and
∀�U ∈ �U , by Definitions 4 and 5. This implies that
N is also a requisite distinction set for N1 given N3.
The result follows, as the proof can also be established
in the other direction. �

We can further enrich the notion of requisiteness to
include the value nodes. This is accomplished by
defining it with respect to any strategy set, distribu-
tion set, as well as utility set the team might have as
long as they are representable by the graphical struc-
ture of the influence diagram. For any W ⊆ V , denote
by W ′ = V −W a set of value nodes that are not in W .

Definition 6. For any N1�N2 ⊆ Y and W ⊆ V , W is
said to be a requisite value set for N1 given N2 if it is a
minimal set such that �Z�xpa�W ′� �xN1∪N2��W ′�xpa�W ′��=
�Z�xpa�W ′� �xN2��W ′�xpa�W ′��, ∀�D ∈ �D, ∀�U ∈ �U , and
∀ V ∈!V .
As  V can be an arbitrary set of real numbers,

the above definition can also be stated as �Z�xpa�W ′� �
xN1∪N2� = �Z�xpa�W ′� � xN2�, ∀�D ∈ �D, and ∀�U ∈ �U .
This is equivalent to N1 being an irrelevant set for
pa�W ′� given N2. In other words, a nonrequisite value
set W ′ is a maximal subset of V such that its parental
set pa�W ′� is irrelevant to N1 given N2.

3.2. Bayes-Ball
Based on the semantic relationships among the nodes
in the influence diagram, the concept of d-separation
and its deterministic generalization, D-separation,
can express the existing irrelevance among any sets
of nodes (Pearl 1988, Geiger et al. 1990). For any
N1�N2�N3 ⊆ Y , an active path between N1 and N3 given
N2 is a path between n1 ∈ N1 and n3 ∈ N3 such that
every head-to-head node on the path is or has a
descendant in N2, and every other node on the path
is not functionally determined by N2. N2 is said to
D-separate N1 and N3 if there is no active path between
N1 and N3 given N2. We establish the following propo-
sition by Shachter (1998), which relates the notions of
D-separation and irrelevance for later use.

Proposition 6. For any N1�N2�N3 ⊆ Y , N2 D-sepa-
rates N1 and N3 if and only if N1 ⊥N3 �N2.
For any N1�N2 ⊆ Y , the Bayes-Ball algorithm

(Shachter 1998, 1999) applies the above concepts to

determine the irrelevant, requisite observation, and
requisite distinction sets for N1 given N2 (with respect
to �Z�xN1 � xN2�) in linear time in the size of the
influence diagram, treating decisions as uncertainties.
The irrelevant set is a set of nodes in Y that are not
marked on the bottom, the requisite observation set
is a set of nodes that are checked, and the requisite
distinction set is a set of nodes that are marked on the
top. See Figure 5 for illustration.

4. Implications on Decision Making
This section applies the semantic implications in the
previous section to develop the insights for decision
making at any individual decision in the influence
diagram.

4.1. Key Perspective
According to the SI algorithm, a strategy set �D that
is 1-stable is computed by iteratively finding a pure
strategy �d, ∀d ∈D, that is 1-stable with respect to �D.
In other words, each �d is a degenerate conditional
probability distribution that satisfies the following
lemma by Nilsson and Lauritzen (1999).

Lemma 1. A strategy �d, d ∈D, is 1-stable with respect
to strategy set �D if and only if for each xpa�d� ∈ Xpa�d�,
�d assigns positive mass only to xd ∈Xd that satisfies

xd = argmax
x̃d

�1�x̃d� xpa�d��

where �1�xfa�d��=
∑

xfa�Z�−fa�d� �Z∗d�xfa�Y ���Z�xpa�V ��.

We will state a set of related lemmas that build on
the above lemma. Each of them applies the results
from the earlier section to exploit the graphical struc-
ture of the influence diagram and yields additional
insights in the choice of �d that is 1-stable with respect
to �D. An example based on the influence diagram
shown in Figure 4b will be provided.

4.2. Requisite Values
The first insight comes from the fact that certain deci-
sions might have no influence on some aspects of
prospect valuation. In other words, some value nodes
might be nonrequisite to some decision nodes. For
any d ∈D, denote by rqv�d� a requisite value set for d
given pa�d� as defined in Definition 6.
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Lemma 2. A strategy �d, d ∈D, is 1-stable with respect
to strategy set �D if and only if for each xpa�d� ∈ Xpa�d�,
�d assigns positive mass only to xd ∈Xd that satisfies

xd = argmax
x̃d

�2�x̃d� xpa�d��

where

�2�xfa�d��=
∑

xfa�Z�−fa�d�

�Z∗d�xfa�Y ���N �xpa�N∩V ��

and N ⊇ rqv�d�.
Proof. See the appendix. �

Lemma 2 implies that the choice of �d that is
1-stable with respect to �D is invariant to the utility
set  V−rqv�d�. In other words, the team can properly
make the choice of �d by considering only value nodes
in rqv�d�. An immediate consequence of Lemma 2 is
that every �d ∈ �d is 1-stable with respect to �D if
rqv�d�=	. According to Proposition 6, the requisite
value set for d given pa�d� is equal to de�d�∩V .

4.3. Requisite Observations
The second insight comes from the fact that some
observations might be redundant for the purpose of
finding �d that is 1-stable with respect to �D. For any
d ∈D, denote by rqo�d� a requisite observation set for
pa�rqv�d�� given fa�d�, excluding d itself, as defined
in Definition 5. Because Lemma 2 implies that every
�d ∈�d is 1-stable with respect to �D if rqv�d�=	, we
only need to consider the case that rqv�d� �= 	 in the
following lemma.

Lemma 3. A strategy �d, d ∈D, is 1-stable with respect
to strategy set �D if for each xpa�d� ∈ Xpa�d�, �d assigns
positive mass only to xd ∈Xd that satisfies

xd = argmax
x̃d

�3�x̃d� xpa�d��

where

�3�xfa�d��=
∑

xpa�rqv�d��−fa�d�

�Z∗d�xpa�rqv�d�� �xN ��rqv�d��xpa�rqv�d���

and

fa�d�⊇N ⊇ rqo�d�∪ d�

Proof. See the appendix. �

Lemma 3 implies that the choice of �d that is
1-stable with respect to �D does not need to condition
on any nonrequisite observations in pa�d� − rqo�d�.
In other words, the informational arcs from pa�d�−
rqo�d� to d can be removed without changing the
team’s choice of �d. In the case that rqv�d� = 	, we
assign rqo�d�=	 without loss of generality.
4.4. Requisite Distinctions
The third insight comes from the fact that the strat-
egy set of some decisions, distribution set of some
uncertainties, and utility set of some values might
be redundant for the purpose of finding a �d that is
1-stable with respect to �D. For any d ∈D, denote by
rqd�d� a requisite distinction set for pa�rqv�d�� given
fa�d� as defined in Definition 4. Note that fa�d� can
be derived from the influence diagram before or after
the removal of the nonrequisite informational arcs
to d. This is because Proposition 5 implies that rqd�d�
is invariant to the given (observed) N , fa�d� ⊇ N ⊇
rqo�d�∪ d. Again, we only need to consider the case
that rqv�d� �= 	 in the following lemma.

Lemma 4. A strategy �d, d ∈D, is 1-stable with respect
to strategy set �D if for each xpa�d� ∈ Xpa�d�, �d assigns
positive mass only to xd ∈Xd that satisfies

xd = argmax
x̃d

�4�x̃d� xpa�d��

where

�4�xfa�d��=
∑

xfa�N1∪N2�−fa�d�

�N1∗d�xfa�N1∩Y ���N2
�xpa�N2∩V ���

N1 ⊇ rqd�d�∪ d and N2 ⊇ rqv�d��
Proof. See the appendix. �

Lemma 4 implies that the choice of �d that is
1-stable with respect to �D can be found once at least
�rqd�d�∩D, �rqd�d�∩U , and  rqv�d� are given. In the case
that rqv�d�=	, we assign rqd�d�=	 without loss of
generality.
Note that Lemma 4 in no way implies that the �d

that is 1-stable with respect to �D is invariant
to �D−rqd�d� and �U−rqd�d�. A simple counterexample
is with distinct N1�N2 ⊇ rqd�d� ∪ d such that
�N1∗d�xfa�d�� = 0 but �N2∗d�xfa�d�� > 0, for some xpa�d� ∈
Xpa�d�. Lemma 4 implies that �N1∗d�xfa�d�� induces
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Figure 5 Irrelevant, Requisite Value, Requisite Observation, and Requisite Distinction Sets in Influence Diagrams
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�4�xfa�d�� = 0 and every xd ∈ Xd is equally preferred.
However, �N2∗d�xfa�d�� might induce �4�xfa�d�� �= 0 and
each xd ∈Xd might be valued differently.
Example 6. Consider the influence diagrams

shown in Figure 5. For the purpose of decision mak-
ing at di, i = 1� � � � �4, fa�di� are shaded (observed) to
signify the fact that di has complete sharing of infor-
mation from itself. From the Bayes-Ball algorithm and
Lemmas 2 to 4, we have that rqv�di� = de�di� ∩ V

is the set of value nodes that are shaded, rqo�di�
is the subset of nodes in pa�di� that are checked,
and rqd�di� is the set of nodes that are marked on
the top. The influence diagram shown in Figure 5a
illustrates that rqv�d1� = V − v2, rqo�d1� = pa�d1� =
u2, and rqd�d1� = Y − �d1�u2�u5�. The influence dia-
gram shown in Figure 5b illustrates that rqv�d2� =

V − v1, rqo�d2� = pa�d2� = 	, and rqd�d2� = Y −
�d2�u5�. The influence diagram shown in Figure 5c
illustrates that rqv�d3�= v4, rqo�d3�= pa�d3�= �u6�u7�,
and rqd�d3�= �d2�d4�u8�u9�u11�. Finally, the influence
diagram shown in Figure 5d illustrates that rqv�d4�=
v4, rqo�d4�= �d3�u8� �= pa�d4�, and rqd�d4�= �u9�u11�.
�

The notions of requisite value and requisite obser-
vation sets for decision making have been studied
earlier under different names for both the influence
diagram with a single value node (Shachter 1988,
Fagiuoli and Zaffalon 1998) and with multiple value
nodes (Shachter 1998, 1999; Zhang 1998; Nielsen and
Jensen 1999). However, their definitions are order
dependent, i.e., the requisite value and the requisite
observation sets for a decision are derived after the
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graphical structure of the influence diagram has been
modified to reflect the requisite value and the requi-
site observation sets of later decisions. Our notions
are similar to those used in LIMID (Nilsson and
Lauritzen 2000, Lauritzen and Nilsson 2001), which
generalizes those used in Zhang and Poole (1992) as
well as Zhang et al. (1994). We further generalize
their notions by recognizing the distinction between
an uncertainty and a deterministic uncertainty, and
thus treating them differently. The notion of requisite
distinction set is related to that of barren nodes, a set
of distinction nodes that either have no children or
whose children are all barren (Shachter 1986).

5. Simplification of Influence
Diagram Structure

This section applies the insights developed in the pre-
vious section to simplify the graphical structure of
the influence diagram while maintaining the decision
quality supported by the original influence diagram.

5.1. Requisite Influence Diagram and Requisite
Decision Basis

One recommended structural change prior to the
evaluation is based on the result of Lemma 3, i.e., the
removal of the nonrequisite informational arcs from
pa�d�− rqo�d� to d, ∀d ∈D. At any d ∈D, the immedi-
ate benefit is an increase in the efficiency of the solu-
tion methods once �d is conditioned on fewer nodes.
Additional benefits are the consequences of the fol-
lowing lemma.

Lemma 5. For any d ∈ D, the requisite value set
rqv�d�, the requisite observation set rqo�d�, and the req-
uisite distinction set rqd�d� cannot get bigger with the
removal of the nonrequisite informational arcs.

Proof. There are two distinct cases to consider:
(1) The informational arcs are directed to d:

Because pa�d� ∩ de�d� = 	, we have that rqv�d� =
de�d� ∩ V remains unchanged. We also have that
rqo�d� remains unchanged by Lemma 3. Finally, we
have that rqd�d�, which are marked on the top,
remain unchanged because the Bayes-Ball algorithm
does not visit the nonrequisite observations when
determining rqd�d� in the first place.

(2) The informational arcs are directed to D−d: We
have that rqv�d�= de�d�∩V cannot get bigger because
the removal of arcs can never increase de�d�. We also
have that rqo�d� and rqd�d� cannot get bigger because
the removal of arcs reduces the number of possible
paths among the nodes and the Bayes-Ball algorithm
marks the node only if it can be visited from its neigh-
boring nodes.
Note that the result does not necessarily hold with

the removal of arbitrary arcs, e.g., the informational
arcs from requisite observation nodes. This is because
such a node will be marked on the top if it were not
marked in the first place according to the Bayes-Ball
algorithm. �

Lemma 5 implies that by removing the nonrequisite
informational arcs to d, there is a higher efficiency if
the strategy �′d, d

′ ∈ D − d, also conditions on fewer
nodes. The highest efficiency is achieved when the
influence diagram does not contain any nonrequisite
informational arcs, i.e., every d ∈ D conditions only
on rqo�d�.
Given the influence diagram without any nonreq-

uisite informational arcs, there is also another rec-
ommended structural change based on the result of
Lemma 4, i.e., the choice of �d that is 1-stable with
respect to �D requires the following information.
• �d, the set of all possible strategies at d.
• �rqd�d�∩D, the strategy set associated with the req-

uisite distinction set rqd�d�.
• �rqd�d�∩U , the distribution set associated with the

requisite distinction set rqd�d�.
•  rqv�d�, the utility set associated with the requisite

value set rqv�d�.
The rest of the information provided in the influ-
ence diagram is redundant for the purpose of decision
making at d. Denote by rqn�d� = d ∪ rqd�d� ∪ rqv�d�
a requisite node set for d. A requisite influence diagram
for d is a subdiagram of Z induced by fa�rqn�d��. It is
said to be completely specified if it includes the above
information, i.e., �d, �rqd�d�∩D, �rqd�d�∩U , and  rqv�d�, also
called the requisite decision basis for d. Because neither
�pa�rqn�d��∩D nor �pa�rqn�d��∩U is part of the requisite deci-
sion basis for d, the nodes in pa�rqn�d�� are shaded
and have dotted borders to distinguish them from the
observed nodes in the standard influence diagram.
For any F ⊆ D, denote by rqd�F � = ⋃

d∈F rqd�d� −
F , rqv�F � = ⋃

d∈F rqv�d�, and rqn�F � = F ∪ rqd�F � ∪
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rqv�F � the requisite distinction, the requisite value,
and the requisite node sets for F , respectively. A req-
uisite influence diagram for F is a subdiagram of Z
induced by fa�rqn�F ��. It is said to be completely spec-
ified if it includes the requisite decision basis for F ,
i.e., �F , �rqd�F �∩D, �rqd�F �∩U , and  rqv�F �. Again, the nodes
in pa�rqn�F �� are shaded and have dotted borders
because neither �pa�rqn�F ��∩D nor �pa�rqn�F ��∩U is part of
the requisite decision basis for F . The requisite influ-
ence diagram of any given influence diagram is the
requisite influence diagram for D of the given influ-
ence diagram.

5.2. Influence Diagram Reduction
We now present the algorithm, called Influence Dia-
gram Reduction (IDR). For any F ⊆D, it determines the
requisite influence diagram for F of any given influ-
ence diagram.

Algorithm 2. Influence Diagram Reduction.
Input: An influence diagram with a subset F ⊆D.
Output: A set of requisite influence diagrams for d,

∀d ∈D, and for F .
Iteration
1. For each decision d ∈D, do:
(a) Determine pa�d� and rqv�d�.
(b) Assign pa′�d�= pa�d�.
(c) If rqv�d�=	, assign rqo�d�=	 and rqd�d�=

	; else, find rqo�d� and rqd�d� with the Bayes-Ball
algorithm.

(d) Update pa�d�= rqo�d� by removing the infor-
mational arcs from pa�d�− rqo�d� to d.
2. Repeat the iteration until pa′�d�= pa�d�, ∀d ∈D.
3. The requisite influence diagram for each d ∈D is

the subdiagram of Z induced by fa�rqn�d��, rqn�d�=
d∪ rqd�d�∪ rqv�d�.
4. The requisite influence diagram for F is the

subdiagram of Z induced by fa�rqn�F ��, rqn�F � =⋃
d∈F rqn�d�.

The following proposition proves that the algorithm
converges to a set of requisite influence diagrams
for d, ∀d ∈D, and for F .
Proposition 7. A set of influence diagrams obtained

with the IDR algorithm are requisite for d, ∀d ∈ D, and
for F .

Proof. The correctness of the algorithm is based on
the correctness of the Bayes-Ball algorithm and the

results of Lemmas 1 to 5. The convergence follows
because there is a finite number of informational arcs
in the influence diagram, and at least one of them is
removed in each iteration (except the last). �

A special case of this algorithm that determines the
requisite influence diagram for each decision when
the given influence diagram has complete sharing
of information is called the Decomposition of Influence
Diagram (Nielsen 2001). In such a case, the IDR algo-
rithm can be completed in one cycle by applying it
in reverse order of decisions having complete shar-
ing of information. In the case of incomplete sharing
of information, the IDR algorithm should be applied
iteratively following the reverse order of subset of
decisions having complete sharing of information.
Example 7. Consider applying the IDR algorithm

to the influence diagrams shown in Figure 5, which
results in the influence diagrams shown in Figures 6
and 7. For each di, i = 1� � � � �4, the nodes in Z −
fa�rqn�di�� are masked for the purpose of compar-
ison between the original and the requisite influ-
ence diagrams. The requisite influence diagram for
d1 shown in Figure 6a is the subdiagram induced by
fa�rqn�d1��=Z−u5−v2 with pa�rqn�d1��= u2 shaded.
The requisite influence diagram for d2 shown in Fig-
ure 6b is the subdiagram induced by fa�rqn�d2�� =
�d1�d2�u2�u4�u7�u10�u12�u13�v2�v3�, none of which is
shaded because pa�rqn�d2�� = 	. The requisite influ-
ence diagram for d3 shown in Figure 6c is the sub-
diagram induced by fa�rqn�d3�� = �d3�d4�u6�u8�u9�

u11�v4� with pa�rqn�d3��= u6 shaded. Finally, the req-
uisite influence diagram for d4 shown in Figure 6d
is the subdiagram induced by fa�rqn�d4�� = �d3�d4�

u8�u9�u11�v4� with pa�rqn�d4��= �d3�u8� shaded. The
final step of the IDR algorithm concludes with the
requisite influence diagram (for D), the subdiagram
induced by fa�rqn�D�� = Z − u5, none of which is
shaded, as shown in Figure 7. �

There is a distinction between decision making
at D versus computing the expected utility for �D.
Although a completely specified requisite influence
diagram for D provides sufficient information to find
a 1-stable �D, the information can be insufficient for
the purpose of computing the expected utility of
that �D. To compute the expected utility, the informa-
tion must include the utility set  V , the distribution
set �N∩U , and the strategy set �N∩D, where N is the
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Figure 6 A Set of Requisite Influence Diagrams for d
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requisite distinction set for pa�V � derived from the
influence diagram without nonrequisite informational
arcs. Note that the nodes in Y − N are exactly the
barren nodes.

Figure 7 A Requisite Influence Diagram
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6. Diagram-Based Solution Concept
and Method

This section develops the diagram-based solution con-
cept and method based on the insights exploited in
the earlier sections.

6.1. Strategic Irrelevance in an Influence Diagram
A decision d ∈D is said to be strategically irrelevant to
the set of decisions F ⊆D if, with respect to any strat-
egy set �D−F , there exists a strategy �d that is 1-stable
with respect to every possible strategy set �F ∈ �F .
A decision is always strategically irrelevant to itself
by this definition. A set of decisions is said to have a
strategic irrelevance if there exists a complete order-
ing of those decisions such that each decision is strate-
gically irrelevant to all earlier decisions in the set.
A set of decisions is a strategically irrelevant set if it
has strategic irrelevance, and a strategically relevant
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set otherwise. A decision situation is said to have a
strategic irrelevance if there exists a strategically irrel-
evant set that includes all decisions in the decision
situation. A decision situation is said to have a strate-
gic relevance otherwise.
To search for strategically irrelevant sets, we recon-

sider the remark at the end of Lemma 4. Although the
choice of �d that is 1-stable with respect to �D can be
found once at least �rqd�d�∩D, �rqd�d�∩U , and  rqv�d� are
given, it does not imply that such a �d is invariant
to �D−rqd�d� and �U−rqd�d�. Fortunately, there exists a �d
that is both 1-stable with respect to �D and invariant
to �D−rqd�d� and �U−rqd�d�. For the purpose of determin-
ing the strategically irrelevant sets, we only prove the
existence of such �d that is invariant to �D−rqd�d�. For
notational convenience, denote si�d�=D− rqd�d�.

Theorem 1. A strategy �d, d ∈ D, is 1-stable with
respect to strategy set �si�d� ∪ �D−si�d�, ∀�si�d� ∈ �si�d�,
if and only if �d is 1-stable with respect to any strategy
set �′si�d� ∪ �D−si�d� that induces �Z∗d�xfa�d�� > 0 whenever
�Z∗si�d��xfa�d�� > 0.

Proof. For an arbitrary �si�d� ∪ �D−si�d�, there are
three distinct cases for each xfa�d� ∈Xfa�d�.
(1) �Z∗si�d��xfa�d��= 0: This implies that �Z∗d�xfa�d��=

0 when induced by either �si�d� ∪ �D−si�d� or �′si�d� ∪
�D−si�d�. Lemma 1 implies that every xd ∈ Xd is
equally preferred, and the proof for this case follows
immediately.
(2) �Z∗si�d��xfa�d�� �= 0, but �si�d� ∪ �D−si�d� induces

�Z∗d�xfa�d��= 0: Lemma 1 implies that every xd ∈Xd is
equally preferred with �si�d�∪�D−si�d�, but not necessar-
ily with �′si�d� ∪ �D−si�d�. Hence, �d that is 1-stable with
respect to the latter is always 1-stable with respect to
the former.
(3) �Z∗si�d��xfa�d�� �= 0 and �si�d� ∪ �D−si�d� induces

�Z∗d�xfa�d�� �= 0: �Z∗d�xfa�d�� �= 0 ensures that
�Z∗d�xpa�rqv�d�� � xfa�d�� is determinable and does not
vary with either �si�d� ∪ �D−si�d� or �′si�d� ∪ �D−si�d�
according to the definition of rqd�d� in Lemma 4.
Hence, Lemma 3 implies that �d that is 1-stable with
respect to the former is also 1-stable with respect to
the latter, and vice versa.
The “if” part follows because the above cases hold

for any �si�d� ∪ �D−si�d�, ∀�si�d� ∈ �si�d�. Note that the
“only if” part follows trivially because �′si�d� ∈�si�d�. �

For any d ∈ D, Theorem 1 implies that si�d� is a
set of decision nodes to which d is strategically irrel-
evant. A subset F ⊆D has strategic irrelevance when
there exists an ordering of �d1�d2� � � � � dk� = F such
that �d1� � � � � di�⊆ si�di�, i= 1� � � � � k. Note that the sets
si�d�, ∀d ∈D, can and should be derived from the req-
uisite influence diagram. This is because si�d� (defined
through rqd�d�) is never smaller in the requisite influ-
ence diagram than in the original influence diagram
according to Lemma 5.
Example 8. Consider the requisite influence dia-

grams shown in Figure 8. For each di, i = 1� � � � �4,
si�di� is the set of nodes inD that are not marked on the
top. The influence diagram shown in Figure 8a illus-
trates that d1 is strategically irrelevant only to itself
because si�d1� = d1. The influence diagram shown in
Figure 8b illustrates that d2 is strategically irrelevant to
D− d1 because si�d2�=D− d1. The influence diagram
shown in Figure 8c illustrates that d3 is strategically
irrelevant to D−d4 because si�d3�=D−d4. Finally, the
influence diagram shown in Figure 8d illustrates the
best situation, i.e., d4 is strategically irrelevant to all
decisions because si�d4�=D. �

The notion of strategic irrelevance is similar to that
defined in Koller and Milch (2001, 2003), when we
approach team decision making as a game where
every player has identical payoffs. The strategically
irrelevant sets are, however, never smaller in our
case because we work with the requisite influence
diagram. Note that although the notions of stepwise-
decomposability candidate node (Zhang and Poole 1992,
Zhang et al. 1994) and extremal decision (Nilsson and
Lauritzen 2000, Lauritzen and Nilsson 2001) have a
similar motivation, they are special cases of strategic
irrelevance because the formers are defined indirectly
through the irrelevant set while the latter is defined
through the requisite distinction set. As a result, a
decision that satisfies either of the former notions
always satisfies the latter notion, while the converse
is not true. Consider the requisite influence diagram
shown in Figure 7. If d1 were an uncertainty, we
would have that si�d2� = D, and d2 would be strate-
gically irrelevant to �d2�d3�d4�. Consequently, there
exists �d2 that is 1-stable with respect to every �d3∪d4 ∈
�d3∪d4 . Such a d2, however, is not an extremal decision
because neither rqv�d2� ⊥ fa�d3� � fa�d2� nor rqv�d2� ⊥
fa�d4� � fa�d2� holds. Note also that the former notions
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Figure 8 Irrelevant, Requisite Value, Requisite Observation, and Requisite Distinction Sets in Requisite Influence Diagrams

I I

I

I

I

I

I

(a) (b)

u1

I

I
u3

u2

d1

I

I
u6

I

I
u7

I

I
u8

I

I
d4

I

I

I

I

I

I

I

I

I

I

II

I

u11

I

I
u10

I

I
d3

I

I
u12

I

I
u13

I

I
d2

I

u3

u1

I

I
u2

I

I
d1

I

u6

I

I
u7

I

u8

I

d4

I

d3

I

I
u10

I

u11

I

I
u12

I

I
u13

u9

u4

u9

I
u4

d2

v4

v3

v4

v3

v2v2
v1v1

(c) (d)

u1

u3

u2

d1

u6

u7

u8

d4

u11

u10

u12

u13

d2

u3

u1

u2

d1

u6

u7

u8

d4

d3

u10

u11

u12

u13

u9

u4

u9

u4

d2

d3

v4

v3

v4

v3

v2v2
v1v1

are only defined with respect to all decisions (exclud-
ing those already converted to uncertainties), while
the latter notion is defined with respect to any subset
of decisions.

6.2. Strategic Stability in an Influence Diagram
The above property of the strategic irrelevance yields
a new perspective in finding a �d that is 1-stable to �D.
We first introduce the notion of uniform stability that
satisfies the condition given in Theorem 1.
Definition 7. A strategy set �F , F ⊆D, is uniformly

stable with respect to strategy set �D when

�d = argmax
�̃d

EU��̃d� �̄si�d�−d� �D−si�d��

for ∀d ∈ F where �̄si�d�−d is a uniform strategy set.
The following corollary restates Theorem 1 with the

above definition of uniform stability.

Corollary 1. A strategy �d, d ∈ D, is 1-stable with
respect to strategy set �si�d�∪�D−si�d�, ∀�si�d� ∈�si�d�, if and
only if �d is uniformly stable with respect to strategy
set �D.

Proof. Note that “�d is uniformly stable with
respect to strategy set �D ”is equivalent to“ �d is
1-stable with respect to strategy set �̄si�d� ∪ �D−si�d�.”
The result follows immediately because �̄si�d� ∪ �D−si�d�
induces �Z∗d�xfa�d�� = �Z∗si�d��xfa�d��, the condition
given in Theorem 1. �

A consequence of Theorem 1 and Corollary 1 is that
with respect to �D, if �d does not vary with �si�d�, it
always constitutes a part of maximally stable strategy
set with �e, ∀ e ∈ si�d�− d.

Theorem 2. Given a strategy �d, d ∈ D, that is uni-
formly stable with respect to strategy set �D, ��d��e�, e ∈
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si�d� − d, is maximally stable with respect to �D if and
only if �e is 1-stable with respect to �D.

Proof. According to the definition of maximal sta-
bility and Theorem 1, we have

EU��e��d��D−�e∪d�� = max
�̃e� �̃d

EU��̃e� �̃d� �D−�e∪d��

= max
�̃e

EU��̃e� �d��D−�e∪d��

= EU��e��d��D−�e∪d���

With a uniformly stable �d with respect to �D, ��d��e�
is maximally stable with respect to �D if �e is 1-stable
with respect to �D. The reverse is always true by
Proposition 2. �

A corollary of Theorem 2 applies to any strategi-
cally irrelevant set.

Corollary 2. For any F ⊆D that has strategic irrel-
evance, a strategy set �F is maximally stable with respect
to strategy set �D if �F is uniformly stable with respect
to �D.

Proof. Without loss of generality, assume that F =
�d1�d2� � � � � dk� with the index representing an order-
ing of the decisions. According to the definition of
maximal stability and Theorem 2, we have

EU��F ��D−F � = max
�̃F

EU��̃F � �D−F �

= max
�̃F−dk ��̃dk

EU��̃F−dk � �̃dk � �D−F �

= max
�̃F−dk

EU��̃F−dk � �dk� �D−F ��

Hence, maximal stability of �F with respect to �D
requires maximal stability of �F−dk and uniform stabil-
ity of �dk with respect to �D. By induction, it requires
uniform stability of �F with respect to �D. �

We now introduce the algorithm, called Uniform
Strategy Improvement (USI), that combines the bene-
fits of the SSI algorithm with the uniform stability.
Although it can exploit any strategically irrelevant set
when present, it is applicable to any set of decisions.
Each enumeration set is still associated with a single
decision, yet the resulting strategy set is maximally
stable at every subset of decisions (within the union
of all enumeration sets) that has strategic irrelevance.
We call this Strategic Stability (within the union of all

enumeration sets) where the modifier is omitted in
the case that the union of all enumeration sets is the
set of decisions represented by the strategy set.

Algorithm 3. Uniform Strategy Improvement.
Input: A completely specified influence diagram

with a subset F ⊆D.
Output: A pure-strategy set �D that is strategically

stable within F .
Initialization
1. Assign some initial strategy set �D.
Iteration
1. Assign �′F = �F .
2. For each decision d ∈ F , do:
(a) If �′d �= argmax�̃d EU��̃d� �̄si�d�−d� �D−si�d��, up-

date �d based on Lemma 4 with respect to �̄si�d� ∪
�D−si�d�.
3. Repeat the iteration until �′F = �F .

Note that if we replace �̄si�d� in the above algorithm
with some �′si�d� that satisfies the condition given in
Theorem 1, we have another variation of the algo-
rithm even though it is not necessarily more efficient
due to the additional work required to verify such a
condition. The following proposition proves that the
algorithm converges to a �D that is strategically stable
within F , the union of all enumeration sets.

Proposition 8. A pure-strategy set �D obtained with
the USI algorithm is strategically stable within the union
of all enumeration sets.

Proof. Lemma 4 ensures that at each iteration, we
always update �d to the one that is uniformly sta-
ble with respect to �D unless it is already so. If the
algorithm converges, �D must be strategically stable
within F according to Corollary 2. The proof of con-
vergence then follows from that in Proposition 4. �

Example 9. Consider the influence diagrams
shown in Figure 8. Applying the above algorithm
yields a �D that is maximally stable at �d1�d3�d4� and
�d2�d3�d4�. This is because si�d4� = D and si�d3� =
D− d4, but d1 � si�d2� and d2 � si�d1� according to the
derivation in Example 8. �

The USI algorithm is identical to the SSI (or SPU)
algorithm if properly applied to a soluble influence
diagram, one with an exact solution ordering of
extremal decisions (Lauritzen and Nilsson 2001). Both
algorithms are initialized with the uniform strategy
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set �̄D and applied in reverse order of the solution
ordering, although any order is allowed with the
USI algorithm. The key difference between both algo-
rithms arises when applied to a nonsoluble influence
diagram. The USI algorithm always finds a strategi-
cally stable strategy set, while the SSI (or SPU) algo-
rithm only finds a 1-stable strategy set although it
might find a strategically stable one. An extreme case
is when the influence diagram is nonsoluble but has
strategic irrelevance, i.e., the USI algorithm guaran-
tees a maximally stable (optimal) strategy set, while
the SSI (or SPU) algorithm only guarantees a 1-stable
strategy set.

7. Solution Example
There are three decisions in Example 1. The super-
visor’s decision has two pure strategies, while each
manager’s decision has 22×2 = 16 pure strategies. This
brings the total number of pure-strategy sets to 2×
16× 16 = 512. Based on the numerical specifications
provided in the augmented decision tree as shown in
Figure 1, the exhaustive enumeration algorithm finds
16 different strategy sets to be maximally stable (opti-
mal) with the expected utility of 11.3.
Applying the IDR algorithm to the influence dia-

gram shown in Figure 2 results in the influence dia-
grams shown in Figure 9. The resulting influence
diagrams illustrate that they are already requisite
for their respective decisions, and no reduction is
possible. They also illustrate that the supervisor’s
decision is only strategically irrelevant to itself, while
each manager’s decision is strategically irrelevant to
itself and the supervisor’s decision. Applying the USI
algorithm guarantees that the resulting strategy set is
strategically stable, i.e., maximally stable at DD∪WD
and DD∪ED.
Note that the influence diagram shown in Figure 2

is nonsoluble, i.e., without exact solution ordering,
because there is no extremal decision. Table 1 thus
compares the results obtained from applying the SSI
(or SPU) algorithm and the USI algorithm follow-
ing all 3! = 6 possible solution orderings. By initial-
izing both algorithms with the uniform strategy set,
the strategically stable solutions guaranteed by the
USI algorithm happen to be optimal in every possible
solution ordering while the 1-stable solutions guar-
anteed by the SSI (or SPU) algorithm happen to be
optimal in two solution orderings.

Figure 9 Irrelevant, Requisite Value, Requisite Observation, and
Requisite Distinction Sets in Requisite Influence Diagrams
for Example 1

I

I I

I

I

I

I

I

Profit

East
price

West
price

East
decision

Dock
decision

West
decision

I

I I

II

I

Profit

East
price

West
price

East
decision

West
decision

Dock
decision

I

I

I

I

Profit

East
price

West
price

East
decision

West
decision

Dock
decision

(a)

(b)

(c)

8. Conclusions
We have shown how to represent and evaluate the
team decision situation with an influence diagram.
The solution concept of k-stability and the corre-
sponding solution method of strategy improvement
allow us to properly evaluate the team decision
situation having incomplete sharing of information.
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Table 1 Results of SSI (SPU) and USI Algorithms on
Example 1

Ordering SSI (SPU) USI

D�D�→W�D�→ E�D� 10.8 11.3
D�D�→ E�D�→W�D� 10.8 11.3
W�D�→ D�D�→ E�D� 10.8 11.3
W�D�→ E�D�→ D�D� 10.8 11.3
E�D�→ D�D�→W�D� 11.3 11.3
E�D�→W�D�→ D�D� 11.3 11.3

The notions of strategic irrelevance and requisite
influence diagram, resulting from exploiting and sim-
plifying the graphical structure of the influence dia-
gram, allow the use of all available information to
improve the decision quality. These in turn enable
us to find the joint strategy that is maximally stable
over the largest sets of decisions possible with the USI
algorithm.
The proofs of Theorem 2 and Corollary 2 imply

that no reevaluation is needed for a decision if the
remaining evaluations are on the set of the decisions
to which it is strategically irrelevant. This insight
suggests that some solution orderings can be more
efficient than others, although the USI algorithm is
applicable to any solution ordering. Koller and Milch
(2001, 2003) suggest a partial solution ordering based
on the notion of a relevance graph, which allows the
BI algorithm to be performed over a subset of deci-
sions instead of a single decision. Detwarasiti (2005)
further applies this insight to organize a collection
of the enumeration sets such that the SI algorithm
always converges to the optimal strategy set, and also
proposes an improved solution ordering for the USI
algorithm that includes an efficient ordering within
the subset of decisions not addressed by the relevance
graph.
Because most efficient evaluation techniques for an

influence diagram convert the diagram into an auxil-
iary graphical structure called a junction tree (Jensen
et al. 1994, Lauritzen and Nilsson 2001), the refine-
ment of the USI algorithm should not only improve
its efficiency, but also address its applicability within
the junction-tree propagation techniques (Detwarasiti
2005).
The information structure that supports the highest

decision quality is the one represented by an influence

diagram having complete sharing of information. This
opens the possibility of quantifying the value of an
information structure through the decision quality
supported by it. Additional exploitation of the graph-
ical structure of the influence diagram can determine
whether an information structure represents sufficient
sharing of information, one that yields the decision
quality equivalent to that representing complete shar-
ing of information but with reduced assessment and
computational effort (Detwarasiti 2005).
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Appendix
Proof of Lemma 2. We can expand �1�xfa�d��, defined in

Lemma 1 as

�1�xfa�d��

= ∑
xfa�Z�−fa�d�

�Z∗d�xfa�Y ���Z�xpa�V ��

= ∑
xfa�Z�−fa�d�

�Z∗d�xfa�Y ����N �xpa�N∩V ��+�Z−N �xpa�V−N����

We can premarginalize the second summation over fa�Z�−
�pa�V −N�∪ fa�d�� as
�1�xfa�d��

= ∑
xfa�Z�−fa�d�

�Z∗d�xfa�Y ���N �xpa�N∩V ��

+ ∑
xpa�V−N�−fa�d�

∑
xfa�Z�−�pa�V−N�∪fa�d��

�Z∗d�xfa�Y ���Z−N �xpa�V−N��

=�2�xfa�d��+
∑

xpa�V−N�−fa�d�
�Z∗d�xpa�V−N�∪fa�d���Z−N �xpa�V−N���

(A1)

Equation (A1) follows from substituting the first summation
with �2�xfa�d��. In the case that �Z∗d�xpa�V−N� �xfa�d�� can be
determined, we can rewrite the summation as

�1�xfa�d��

=�2�xfa�d��+
∑

xpa�V−N�−fa�d�
�Z∗d�xfa�d���Z∗d�xpa�V−N� �xfa�d��

·�Z−N �xpa�V−N�� (A2)

=�2�xfa�d��+�Z∗d�xfa�d��

· ∑
xpa�V−N�−fa�d�

�Z∗d�xpa�V−N� �xpa�d���Z−N �xpa�V−N�� (A3)

=�2�xfa�d��+�Z∗d�xfa�d���1�xfa�d��� (A4)
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Note that we can replace �Z∗d�xpa�V−N� � xfa�d�� in Equa-
tion (A2) with �Z∗d�xpa�V−N� �xpa�d�� in Equation (A3) because
pa�V −N�⊥ d � pa�d� by Definitions 3 and 6. Equation (A4)
follows from the fact that we can always substitute the
result of marginalization with some appropriate function
�1�xfa�d��. The next step is to replace�1�xfa�d��with�1�xpa�d��
because Equations (A2) and (A3) imply that �1�x′d� xpa�d��=
�1�x

′′
d� xpa�d��, x

′
d� x

′′
d ∈Xd . Finally, we can factor �Xd�−1 out of

�Z∗d�xfa�d�� as

�1�xfa�d��=�2�xfa�d��+ �Xd�−1�Z∗d�xpa�d���1�xpa�d���

The result follows because for each xpa�d� ∈ Xpa�d�, �2�xfa�d��
is simply a linear transformation of �1�xfa�d��. �

Proof of Lemma 3. We can define

�2�xfa�d��=
∑

xfa�Z�−fa�d�
�Z∗d�xfa�Y ���rqv�d��xpa�rqv�d���

according to Lemma 2 without loss of generality. This al-
lows us to premarginalize it over fa�Z�− �pa�rqv�d��∪ fa�d��
as

�2�xfa�d��

= ∑
xpa�rqv�d��−fa�d�

∑
xfa�Z�−�pa�rqv�d��∪fa�d��

�Z∗d�xfa�Y ���rqv�d��xpa�rqv�d���

= ∑
xpa�rqv�d��−fa�d�

�Z∗d�xpa�rqv�d��∪fa�d���rqv�d��xpa�rqv�d����

In the case that �Z∗d�xpa�rqv�d�� �xfa�d�� can be determined, we
can rewrite the summation as

�2�xfa�d��

= ∑
xpa�rqv�d��−fa�d�

�Z∗d�xfa�d���Z∗d�xpa�rqv�d�� �xfa�d���rqv�d��xpa�rqv�d���

=�Z∗d�xfa�d��
∑

xpa�rqv�d��−fa�d�
�Z∗d�xpa�rqv�d�� �xN ��rqv�d��xpa�rqv�d����

(A5)

Equation (A5) follows from the fact that fa�d�⊥ pa�rqv�d�� �
N by Definitions 3 and 5. As in Lemma 2, we can factor
�Xd�−1 out of �Z∗d�xfa�d��, and substitute the summation with
�3�xfa�d�� as

�2�xfa�d��= �Xd�−1�Z∗d�xpa�d���3�xfa�d���

The result follows because for each xpa�d� ∈ Xpa�d�, �3�xfa�d��
is simply a linear transformation of �2�xfa�d��. The impli-
cation is in one direction because �Z∗d�xpa�rqv�d�� � xN � and
�3�xfa�d�� might be determinable when �Z∗d�xfa�d�� = 0, and
thus �2�xfa�d��= 0. �

Proof of Lemma 4. Denote by N ′
1 =Z−N1 a set of nodes

that are not in N1. Lemma 3 implies that we can define

�2�xfa�d�� =
∑

xfa�Z�−fa�d�
�Z∗d�xfa�Y ���rqv�d��xpa�rqv�d���

= �Xd�−1�Z∗d�xpa�d��

· ∑
xpa�rqv�d��−fa�d�

�Z∗d�xpa�rqv�d�� �xN ��rqv�d��xpa�rqv�d���

= �Xd�−1�Z∗d�xpa�d���3�xfa�d�� (A6)

and

� ′
2 �xfa�d��

= ∑
xfa�Z�−fa�d�

�Z∗�N ′
1∪d��xfa�Y ���rqv�d��xpa�rqv�d���

= �Xd�−1�Z∗�N ′
1∪d��xpa�d��

· ∑
xpa�rqv�d��−fa�d�

�Z∗�N ′
1∪d��xpa�rqv�d�� �xN ��rqv�d��xpa�rqv�d���

= �Xd�−1�Z∗�N ′
1∪d��xpa�d���

′
3 �xfa�d��� (A7)

Definition 4 implies that

�Z∗d�xpa�rqv�d�� �xN �=�Z∗�N ′
1∪d��xpa�rqv�d�� �xN �

because they are both invariant to �N ′
1∩D and �N ′

1∩U . We thus
have �3�xfa�d�� = � ′

3 �xfa�d��, which implies that �2�xfa�d�� =
�2�xpa�d���

′
2 �xfa�d��, �2�xpa�d�� = �Z∗d�xpa�d��/�Z∗�N ′

1∪d��xpa�d��.
Because �Z∗�N ′

1∪d��xpa�d��= 0 implies �Z∗d�xpa�d��= 0, we have
that �2�xpa�d�� = 0 whenever �Z∗d�xpa�d�� = 0. This allows
us to expand �2�xfa�d�� in Equation (A6) with respect to
� ′
2 �xfa�d�� in Equation (A7) as

�2�xfa�d�� = �2�xpa�d��
∑

xfa�Z�−fa�d�
�Z∗�N ′

1∪d��xfa�Y ���rqv�d��xpa�rqv�d���

= �2�xpa�d��
∑

xfa�Z�−fa�d�
�N1∗d�xfa�N1∩Y ���N ′

1∗N ′
1
�xfa�N ′

1∩Y ��

·�rqv�d��xpa�rqv�d����

We can premarginalize the second probability potential over
fa�Z�− fa�N1 ∪N2� as

�2�xfa�d�� = �2�xpa�d��
∑

xfa�N1∪N2�−fa�d�
�N1∗d�xfa�N1∩Y ��

·�rqv�d��xpa�rqv�d���
∑

xfa�Z�−fa�N1∪N2�
�N ′

1∗N ′
1
�xfa�N ′

1∩Y ��

= �2�xpa�d��
∑

xfa�N1∪N2�−fa�d�
�N1∗d�xfa�N1∩Y ��

·�rqv�d��xpa�rqv�d����3�xfa�N1∪N2�∩fa�N ′
1∩Y ��

= K ·�2�xpa�d��
∑

xfa�N1∪N2�−fa�d�
�N1∗d�xfa�N1∩Y ��

·�rqv�d��xpa�rqv�d���� (A8)

Equation (A8) follows because �3�xfa�N1∪N2�∩fa�N ′
1∩Y �� is,

by construction, a strictly positive constant over
Xfa�N1∪N2�∩fa�N ′

1∩Y �, which allows us to factor it out as some
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constant K. Denote by N ′
2 =N2 − rqv�d� a set of nodes that

are in N2, but not rqv�d�. We can rewrite the summation as

�2�xfa�d�� = K ·�2�xpa�d��
{
�4�xfa�d��−

∑
xfa�N1∪N2�−fa�d�

�N1∗d�xfa�N1∩Y ��

·�N ′
2
�xpa�N ′

2∩V ��
}

= K ·�2�xpa�d����4�xfa�d��−�4�xpa�d���� (A9)

Equation (A9) follows because N ′
2 ∩ V ⊆ V − rqv�d�, a

nonrequisite value set for d given pa�d�, and Lemma 2
implies that we can substitute the summation with some
function �4�xpa�d��. The result follows because for each
xpa�d� ∈ Xpa�d�, �4�xfa�d�� is simply a linear transformation
of �2�xfa�d��. Finally, the implication is in one direction
because we might have �N1∗d�xfa�d�� ∝ �Z∗�N ′

1∪d��xfa�d�� > 0
when �Z∗d�xfa�d��= 0. �
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