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Abstract 

In fault tree analysis, the uncertainties in the failure probability and/or failure rate of system components or basic 
events can be propagated to find the uncertainty in the overall system failure probability. The conventional approach is 
Monte-Carlo simulation by assuming a probability distribution for the failure probability. In addition, a new methodo- 
logy based on fuzzy set theory is also being used in the fault tree analysis for quantifying the basic event uncertainty and 
for propagating it. However, identification of the components which contribute maximum to the system failure 
probability is also important in fault tree analysis. Similarly, ranking the components based on their contribution of 
uncertainty to the uncertainty of the system failure probability is also very important. This paper presents a comparative 
study of probabilistic and fuzzy methodologies for top event uncertainty evaluation. Further, it explains a new approach 
to rank the system components or basic events depending on (1) their contribution to the top event failure probability 
and (2) their uncertainty contribution to the uncertainty of the top event based on fuzzy set theory. 
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1. Introduction 

Fault tree analysis (FTA) is a logical and dia- 
grammatic method to evaluate the probability of 
an accident resulting from sequences and combina- 
tions of faults and failure events. The conventional 
FTA based on probabilistic approach has been 
used extensively in the past. However, it is often 
very difficult to estimate precise failure rates or 
failure probabilities of individual components or 
failure events. This happens particularly in systems 
like nuclear power plants where available data are 
insufficient for statistical inferences or the data 
show a large variation [2]. Therefore, in the absence 
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of accurate data, it may be necessary to work with 
rough estimates of probabilities. However, to incor- 
porate the variation in the estimated values, the 
failure rates or the failure probabilities are treated 
as random variables with known probability distri- 
butions [7]. This requires, of course, that data be 
available from which these probability distribu- 
tions can reasonably be deduced. Fuzzy methods 
might be the only resort when little quantitative 
information is available regarding fluctuations in 
the parameters [4, 5]. 

In the conventional uncertainty analysis, the 
point estimates of the primary events are replaced 
by probability distributions. Hence, one could de- 
rive a probability distribution for the probability 
of occurrence of the top event in the fault tree. 
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However, an analytical method may be difficult 
and a simulation may require enormous computer 
time. In fuzzy approach the algebraic operations 
are easy and straightforward. 

Fuzzy set theory (FST) developed by Zadeh [11] 
way back in 1965 has been applied to realiability 
and fault tree analysis [8, 10]. In this paper, we 
have considered FST for the uncertainty analysis in 
FTA. Instead of assuming the input parameter as 
a random variable it is considered as a fuzzy num- 
ber and the uncertainty to the top event is 
propagated. In earlier works on the application of 
fuzzy set theory in fault tree analysis [4,8], the 
failure probabilities of components are assumed as 
fuzzy probabilities and the extension principle is 
used for algebraic operations. However, these ap- 
proaches cannot be applied to a fault tree with 
repeated events and they are computationally in- 
tensive too. Soman and Misra [9] provided 
a simple method for fuzzy fault tree analysis based 
on the a-cut method, also known as resolution 
identity. In this paper, the ~-cut method is used for 
the top event failure probability calculation, and 
the approach is elaborated in Section 3. The com- 
parison of the results of both the approaches is 
given in the concluding section. 

In FTA, the concept of importance is used to 
evaluate how far a basic event contributes to the 
top event. An importance analysis is useful for the 
design modifications of the system. Up to date, 
a number of applications of importance have been 
presented, most of which are based on probabilistic 
concepts. Pan and Tai [-6] developed a model for 
computing the importance measure of basic com- 
ponents using variance importance measure. The 
Monte-Carlo simulation, which is generally used in 
the determination of variance importance measure, 
introduces its own uncertainty into the model; also 
it takes more computer time. If the system compo- 
nents are large in number, the whole procedure 
has to be repeated that many times. Even though 
we expect the same measure of uncertainty for 
the components which have the same probability 
distribution parameters, the results are slightly 
different because of the use of Monte-Carlo 
simulation. 

However, these methods are not suitable for the 
fuzzy approach. Fuzzy importance which can be 

used in fuzzy fault tree analysis is introduced in [1] 
which is equivalent to structural importance. Liang 
and Wang [3] proposed another importance 
measure known as fuzzy importance index (FII) 
and the calculation of FII is based on a ranking 
method of triangular fuzzy numbers with maxi- 
mising and minimising sets. A simple method is 
proposed in this paper to evaluate an import- 
ance measure called fuzzy importance measure 
(FIM) and it is based on the Euclidean distance 
approach. 

As it is important to identify the critical compo- 
nents, it is also very essential to identify the compo- 
nents which have the maximum contribution of 
uncertainty to the uncertainty of the top event. 
A new method is proposed in this paper for uncer- 
tainty importance, which is called fuzzy uncertainty 
importance measure (FUIM). FUIM plays an im- 
portant role in the reduction of uncertainty, for it is 
used to identify those sources of uncertainty having 
greatest impact on the uncertainty of the top event. 
These measures are further explained in Section 4. 
A numerical example is provided and the results are 
compared with Pan and Tai's variance importance 
measure. 

2. Probabilistic approach to uncertainty analysis 

In the case of a system comprising a large num- 
ber of components, failure may occur due to vari- 
ous failure combinations involving one or more 
components. This relationship between component 
and system failure is represented in a fault tree. The 
component data uncertainties are propagated in 
the fault tree to obtain the uncertainty in the system 
failure probability. The present probabilistic ap- 
proach to uncertainty analysis consists of treating 
the failure rates as a random variable represented 
by a specified probability distribution. A log- 
normal distribution is generally considered [-7], 
which is represented by a median and an error 
factor, when sufficient data are available for a com- 
ponent. The range propagation to the system level 
is carried out using Monte-Carlo simulation. Thus, 
apart from the uncertainty in data and models etc., 
further uncertainty is introduced by the simulation 
process. 
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In fault tree analysis, the system failure probabil- 
ity can be expressed using minimal cut-sets of the 
components. The unreliability function of a system 
can be written as the sum of partial products of the 
unreliability of the components. Thus the system 
failure probability is 

Q = f ( q l , q 2  . . . . .  qi . . . . .  q,,), (1) 

where ql is the unreliability or failure probability of 
component i and n is the total number of compo- 
nents. 

Fault tree analysis program (FTAP) module 
of the software PSAPACK has been used for 
generating the minimal cut-sets and top event 
failure probabili ty point estimate. Another soft- 
ware for uncertainty analysis, similar to SAMPLE 
[7], developed by us has been used to obtain 
the 90% confidence interval of the top event fail- 
ure probabili ty using Monte-Carlo simulation. 

fuzzy set is defined as 

,x(X)= 

i max [0, 1 - I(x - x ( X ) ) / ( x  ~2) - x(1))[3, 
l, 

max [0, 1 - I ( x  13) -- x ) / ( x  (3) - x(21)l ], 

10, 

X (1) ~ X ~ X (2), 

X = X 12), 

x (2)~<x <~x (3), 

otherwise, 

(2) 

with 

/tx(X ~2)) = 1, (3) 

~/x(X (1)) = ~/x(X (3)) = 0,  (4) 

and [x ~1), x ~3)] are [-lower, upper] bounds of tri- 
angular fuzzy sets. For  demonstration, the lower 
and upper bounds may be obtained from the point 
median value and the error factor (EF) of the failure 
probability [3]. The lower bound, middle value and 
the upper bound are defined as 

3. Fuzzy approach to uncertainty analysis 

The probabilistic approach to uncertainty anal- 
ysis basically depends upon the assumption of 
a probability distribution of failure probabili ty 
as explained earlier which can be obtained only 
when a sufficient amount  of failure data is avail- 
able. In addition, the distributions are propagated 
using simulation methods to obtain the top 
event failure probability distribution. To over- 
come some of the difficulties, the use of fuzzy 
set theory [3, 8] is being considered of late. In 
FST, the input parameter  is treated as a fuzzy 
number and the variability is characterised by the 
membership function which can be obtained 
based on available information or the expert's 
opinion. The membership function of each fuzzy 
set is usually assumed to be a triangular or tra- 
pezoidal function and is treated as a possibility 
distribution. 

When the unreliability of each component has 
a point estimate, the top event unreliability will also 
be a point estimate. In this paper, the component 
failure probabilities are considered as triangular 
fuzzy sets to incorporate the uncertainties in the 
parameter. The membership function of a triangular 

X ( t ) _  qp EF' (5) 

X (2) = qp ,  (6) 

X (3) = qp E F ,  (7) 

where qv is the point median value of the failure 
probability. The fuzzy evaluation of the failure 
probability of the top event in a fault tree (i.e. Eq. 
(1)) is carried out using the c~-cut method. The top 
event can be represented by an N x 2 array, where 
N is the number of c~-cuts. 

4. Importance measures 

The identification of critical components is es- 
sential as far as the safety analysis of any system is 
concerned. Many measures are available in prob- 
abilistic approach like risk achievement worth, 
Birnbaum importance, Fussel-Vesely importance, 
etc. Pan and Tai [6] have developed a methodo- 
logy for variance importance measure using 
Monte-Carlo simulation. In fuzzy methodology, 
two different importance measures are introduced 
and they are (1) fuzzy importance measure and (2) 
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fuzzy uncer ta in ty  impor tance  measure,  which are 
further explained below. 

4.1. Fuzzy importance measure 

The  evaluat ion  of the cont r ibut ion  of different 
basic events is essential to identify the critical com-  
ponents  in the system. The  top event  failure 
probabi l i ty  by mak ing  the c o m p o n e n t  ' i '  fully un- 
avai lable (i.e. qi = 1) is 

Qq,-1 = . f ( q l , q 2  . . . . .  qi 1 , 1 , q i + l  . . . . .  q.). (8) 

Similarly when the c o m p o n e n t  ' i '  is fully available,  

Qq,:o=f(ql,q2 . . . . .  qi 1,0, qi+l ,  .- .  ,q,). (9) 

Thus  the total  cont r ibut ion  of c o m p o n e n t  ' i '  to the 
system failure probabi l i ty  is the difference between 
Qq,=l and Qq,=o and is called B i rnbaum impor t -  
ance in convent ional  approach .  Pan  and Tai  evalu- 
ated the var iance impor tance  measure  by averaging 
the square  of this impor tance  using Mon te -Ca r lo  
simulation.  

However ,  in fuzzy fault tree analysis both  
Qq,=l and Q<=o are fuzzy numbers  and neither 
point  es t imate nor  Mon te -Ca r lo  s imulat ion can be 
used. The  authors  p ropose  a simple me thod  to 
identify the critical componen t s  based on the fuzzy 
impor tance  measure  (FIM),  which is defined as 

F IMi  = E D [ Q q , = I ,  Qq~=O], (10) 

where E D  [A, B] is the Euclidean distance between 
two fuzzy sets A and B and is defined as 

ED[-A,B] = ~ ((a k -- be) 2 + (a U - bU)Z)°/5, 
~ i  1 2  . . . . .  

(11) 

where a L and a U are the lower and upper  values of 
fuzzy set A at each cMevel. 

4.2. Fuzzy uncertainty importance measure 

F I M  can be used to identify the critical compo-  
nents. However ,  it is also impor t an t  to know the 
componen t s  whose uncer ta in ty  of failure probabi l -  
ity cont r ibute  significantly to the uncer ta in ty  of the 
failure probabi l i ty  of the system. This helps in de- 
ciding the c o m p o n e n t s  for which more  informat ion  
should be collected so that  the uncer ta inty  in the 

calculated system failure probabi l i ty  can be 
lowered. An impor tance  measure  known as fuzzy 
uncer ta inty  impor tance  measure  is p roposed  to 
identify the componen t s  which contr ibute  max-  
imum uncer ta inty  to the uncer ta inty  of the top 
event and is defined as 

F U I M i  = E D [ Q ,  Qi], (12) 

where Q = top event failure probabi l i ty  (Eq. (1)), 
Qi = top event failure probabi l i ty  when error  factor 
for c o m p o n e n t  ' i '  is unity (i.e. EFi = 1), i.e. the 
pa rame te r  of the basic event  has a point  value or 
crisp value. 

5. Discussions and conclusions 

In order  to further illustrate the me thodo logy  of 
this paper ,  let us consider  a simplified fault tree for 
the reactor  protect ive system [7] as shown in Fig. 1. 
The  input  da ta  are given in Table  1 with the corres- 
ponding  error  factors. The  results of the Monte -  
Car lo  s imulat ion after 1200 trials are as follows: 

median  point  value = 3.426 x 10 s, 

median  value (50%) = 6.082 x 10-  s, 

low value (5%) = 1.321 x 10 s, 

high value (95%) -- 3.346 x 10 4. 

25 + 
Fig. 1. Reduced fault tree for the reactor protective system 
[WASH-1400]. 
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Table 1 
Failure probability and ranking for different components 

Event Failure Error Lower Upper FIM (rank) 
no. probability factor bound bound 

(median) 

1 1.7E--5 10 1.7E--6 1.7E 4 4.69 (1) 
2 1.0E-3 3 3.3E--4 3.0E--3 2.97E--2 (3) 
3 3.6E-4 3 1.2E--4 1.1E--3 2.97E--2 (3) 
4 1.0E--3 3 3.3E--4 3.0E--3 2.97E-2 (3) 
5 3.6E-4 3 1.2E-4 1.1E--3 2.97E-2 (3) 
6 6.1E-3 4 1.5E-3 2AE-2 2.0E--2 (4) 
7 6.1E-3 4 1.5E-3 2.4E-2 2.0E--2 (4) 
8 9.7E--4 10 9.7E--5 9.7E--3 8.5E--2 (2) 
9 9.7E--4 10 9.7E--5 9.7E--3 8.5E--2 (2) 

FUIM (rank) 

3.01E-4 (2) 
4.53E-5 (4) 
1.63E-5 (5) 
4.53E-5 (4) 
1.63E-5 (5) 
2.88E-4 (3) 
2.88E-4 (3) 
5.54E-4 (1) 
5.54E-4 (I) 

15000.00 

5% value =1.320E 5 
12500.00 50% value = 6.082E-5 

95% value = 3.346E-4 
~, 10000.00 

7500.00 

~" 5000.00 

2500.00 

0.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.0E+0 1.0E-4 2.0E-4 3.0E-4 4.0E-4 

Probability 

Fig. 2. Frequency distribution for top event failure probability. 

Fig.  2 gives  the  f r e q u e n c y  d i s t r i b u t i o n  o f  the  t o p  

e v e n t  o b t a i n e d  by this  a p p r o a c h .  T a b l e  2 p r o v i d e s  

the  func t i on  va lues  for  the  d i f ferent  c o n f i d e n c e  

l imits .  

T h e  m e m b e r s h i p  f u n c t i o n  for  e a c h  bas ic  c o m -  

p o n e n t  is e v a l u a t e d  us ing  Eqs.  (5), (6), (7) a n d  (2) 

a n d  the  l o w e r  a n d  u p p e r  va lues  a re  g iven  in T a b l e  

1. T h e  m e m b e r s h i p  f u n c t i o n  for  the  t o p  even t  is 

e v a l u a t e d  us ing  the  e - cu t  m e t h o d  a n d  the  fuzzy t o p  

e v e n t  fa i lure  p r o b a b i l i t y  is g iven  be low:  

l o w e r  va lue  = 2.30 x 1 0 -  6, 

m i d d l e  va lue  = 3.43 x 10 5, 

u p p e r  va lue  = 8.33 x 10 4. 

Table 2 
Function values for different confi- 
dence limits (Monte-Carlo simulation) 

Confidence (%) Function value 

00.50 5.866E-06 
01.00 7.128E-06 
02.50 9.614E-06 
05.00 1.321E-05 
10.00 1.882E-05 
20.00 2.833E-05 
25.00 3.214E-05 
30.00 3.596E-05 
40.00 4.700E-05 
50.00 6.082E-05 
60.00 7.800E-05 
70.00 1.037E-04 
75.00 1.212E-04 
80.00 1.393E-04 
90.00 2.278E--04 
95.00 3.346E--04 
97.50 4.716E--04 
99.00 6.871E-04 
99.50 9.362E-04 

Fig.  3 gives  the  m e m b e r s h i p  f u n c t i o n  for  the  fuzzy 

t o p  even t  fa i lure  p r o b a b i l i t y  a n d  T a b l e  3 gives  the  

l o w e r  a n d  u p p e r  b o u n d  va lues  ( I N  x 2] ar ray)  of  
the  t o p  even t  fa i lure  p r o b a b i l i t y  for  the  d i f ferent  

values .  

F r o m  the  resul ts  of  the  p re sen t  analysis ,  based  on  

M o n t e - C a r l o  s imu la t i on ,  it is seen tha t  the  9 0 %  
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1.20 

1.00 

g 
=~ 0.80 

-~ 0.60 

0.40 

0.20 

Lower value - 2.300E-6 
Middle value = 3.430E 5 
Upper value = 8.330E-4 

0.00 . . . . . . .  
0.0E+0 2.0E-4 4.0E 4 6.0E 4 8.0E-4 1.0E 3 

Probability 

Fig. 3. Membership function for top event failure probability. 

Table 3 
Lower and upper bound values for top 
event failure probability for different c~- 
levels 

e-level Lower bound Upper bound 

0.00 2.30E--06 8.33E--04 
0.10 4.49E--06 7.13E--04 
0.20 6.91E--06 6.01E-04 
0.30 9.55E--06 4.99E-04 
0.40 1.24E--05 4.06E-04 
0.50 1.55E--05 3.21E-04 
0.60 1.88E--05 2.46E-04 
0.70 2.23E--05 1.79E--04 
0.80 2.61E--05 1.22E 04 
0.90 3.01E--05 7.36E-05 
1 . 0 0  3.43E--05 3.43E-05 

confidence limit for the top event failure probabili ty 
is 1.32 x 10 -5 to 3.346 x 10 -4. However, the values 
can lie anywhere between 0 and oc with different 
probabilities. In the case of fuzzy representa- 
tion, the total possible range is 2.30x 10 - 6  to 
8.33 x 10 4, with a high possibility (0.9) range of 
3.01 x 10- 5 to 7.36 x 10 5. Thus, it can be seen that 
the range for the high possibility is small in fuzzy 
representation. The computer  time used for the 
probabilistic approach is very high compared to 
the fuzzy set approach.  By assuming a probabili ty 
distribution at system level for further propagat ion 
we are introducing uncertainty once more in the 

probabili ty method, and in the fuzzy approach un- 
certainty is introduced only at component  level and 
the analytical method is used to propagate  it fur- 
ther. However, the fuzzy set approach is still at 
research level while the probabili ty method has 
a well-established procedure in fault tree analysis. 

Both F I M  and F U I M  have been calculated 
based on Eqs. (10) and (12) for all basic compo- 
nents. The results are summarized in Table 1. The 
top event fuzzy failure probabilities, with com- 
ponent  6 fully available (i.e. q6 = 0) and fully un- 
available (i.e. q6 ~ -  1), are given in Fig. 4 for F I M  

1.00 T ¢.-:~z Top event Failure Prob. with qo = 1 
1.00 

0.90 

.~ 0.80 

0.70 

~" 0.60 

0.50 

"~ 0.40 

0.30 

0.20 

0,10 

0,00 
0.0E-0 2.0E-3 4.0E-3 6.0E-3 8.0E-3 1.0E-2 1.2E-2 

Probability 

Fig. 4. FIM for component 6 (with failure prob. 1 and 0). 

1.10 

1.00 

0.90 

0.80 
0.70 

0.60 ._~ 
0.50 

"~ 0.40 

0.30 

0.20 

0.10 

0.00 
0.0E+0 

-~.'----.~.'- Original Top Event (EF = 4) 
. . . . .  New "Ibp Event (EF = 1) 

2.0E 4 4.0E-4 6.0E 4 8.0E-4 1.0E-3 

Probability 

Fig. 5. FUIM for component 6 (with error factor 4 and 1). 
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calcula t ions .  S imi lar ly  F U I M  ca lcu la t ion  of com-  
ponen t  6 is shown in Fig. 5. 

The  r ank ing  based  on F I M  is 1. (1), 2. (8,9), 3. 
(2, 3, 4, 5) and  4. (6, 7) and  is the same as tha t  of  Pan  
and  Tai  [6]. Even though  M o n t e - C a r l o  s imula t ion  
[-6] gives s l ightly different var iance  i m p o r t a n t  
measures  for the events 2, 3, 4 and  5, the same rank  
was given for all these events. In  this app roach ,  the 
fuzzy impor t ance  measures  are  equal  for the same 
rank.  However ,  the r ank ing  for F U I M  is 1. (8, 9), 2. 
(1), 3. (6,7), 4. (2,4) and  5. (3,5), which is different 
f rom F I M  as expected.  F I M  can be used to find out  
the cri t ical  c o m p o n e n t  which m a y  be useful for 
design modi f ica t ions  of  the system. The  results  of 
F U I M  can be ut i l ised to p rov ide  insight  on the 
design of d a t a  and  in fo rmat ion  ga ther ing  strategies 
tha t  focus on the reduc t ion  of  the to ta l  uncer ta inty .  
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