Abstract

This paper touches on several different aspects in the field of bioinformatics.
Some of the challenges facing the bioinformatics community will be discussed
along with why these challenges still need a lot of research. How has this
changed the last few years with the respect to the Next-Generation Sequencing
tools that have become available. There has been done a lot of research the last
few year on programs to handle the increase in amount of data generated with
the NGS tools. But has this been succesful or are the biggest breakthroughs
still a head? How can the relatively new programs be improved to deal with the
varying problems that occur when dealing with these types of data. The results
from the initial research will be used to describe how an automated system can
improve performance and user friendlyness of quite advanced programs. And
how this can help researcher when working on data that can not be proven
correct.



Contents

1 Introduction 4
1.1 Motivation . . . . . . . . . e e 4
1.2 Problem . . . . . . . .. 5

2 Background

2.1 Bioinformatics . . . . . .. .. ... 6
2.2 Sequence alignment . . . . . ... ... L 6

3 Tools and Methods 7
3.1 Next Generation Sequencing . . . . . . .. . ... ... ... ... 7
3.2 Algorithms . . . . .. ... 7
3.2.1 Needlman-Wunsch . . ... .. ... ... ... .... 9

3.2.2 Smith-Waterman . . . . . . .. .. ... . L. 9

3.2.3 Burrows-Wheeler Transformation . . . . . . . . ... ... 9

3.3 Programs . ... ... 9
3.4 Hashing the genome . . . . . . ... ... 0oL 10
341 SOAPv1 . . . .. 10

342 Others. . ... .. . 10

3.5 Hasingthequery . .. .. ... ... ... ... ... ... 10
351 MAQ .. . e 10

352 SHRIMP 1 . ... ... .. .. 11

3.5.3 Others. . ... .. ... . ... . 11

3.6 Compressing the genome with BWT . . .. ... ... ... ... 11
3.6.1 Burrows-Wheeler alignment (BWA) . ... ... ... .. 11

3.6.2 Bowtie. . . .. .. ... .. 11

3.7 Comparison . . . . . . . . ... 11

4 Experiments 13
4.1 Initial alignment . . . . . ... ... 0oL 13
4.2 Refined alignment . . . . . ... ... L oo 14

5 Implementation 15
5.1 Galaxy pipeline . . . . . . ... 15
5.1.1 Firststep . . . . . ..o Lo 16



CONTENTS

5.1.2 Secondstep . . . . . . .. ...
5.1.3 Thirdstep. . . . . . . . .. o

6 Discussion

6.1 Analysing theresults . . . . . . .. ... ... .. .........

6.2 Future work

7 Conclusion

16
17

18
18
19

20



Chapter 1

Introduction

This research project has several goals. First there shall be conduct an anal-
ysis of different technologies used in Next-Generation Sequencing (NGS) and
sequence alignment. This initial research is also ment to give the participant a
better understanding about the field of bioinformatics, molecular- and compu-
tational biology. Understanding the different challenges is important to under-
stand why this research is important. Without the basics in place, the second
part of this research project will be difficult to comprehend. The second part of
this project is to create an automated, efficient pipeline for analysing NGS data.
The pipeline should be constructed based one the results gathered in the first
part of this project, namely what is the most efficient way of doing this NGS
analysis, and what has to be done to fully automate the process. The finnished
product could potentially increase the productivity of biologist working with
these types of data.

1.1 Motivation

The motivation for this research project is the “Next-Generation Sequencing”
(NGS) technologies that have been developed the last few years. NGS are varius
methods for generating short DNA/RNA sequences from biological samples.
These technologies vastly increase the amount of data, per hour, produced with
respect to the older technologies. The increase in data has resulted in a bigger
need for computational power and algorithmic efficiancy simply to handle all
the information available. This has again resulted in a lot of research being
done on developing new methods for analysing all this data. With all the new
mapping/alignment tools developed the last few years, it’s a big challange for
researchers to know what tools to use for differents types of data. Another
problem is understanding the results produced by the different tools and what
results can be expected considering the different data being analysed.



1.2. PROBLEM )

1.2 Problem

The goal of this project is to study existing methods for mapping short sequences
to an existing genome and design, implement and test a pipeline for identifying
small non-coding RNA genes from large scal sequencing experiments.



Chapter 2

Background

2.1 Bioinformatics

Bioinformatics in general is to apply statistics and computer science to molecular
biology. Traditionally this has focused on management and analysis of biological
data. Using computer science to manage biological data is a extremely impor-
tant part of molecular biology today. The research in molecular biology being
done today would not be possible if not for the increased computational power
and storage ability of computers. Still, computers are one of the bottlenecks of
computational biology.

2.2 Sequence alignment

Sequence alignment is a computational method of aligning sequences to one
another for comparion, aligning unknow sequences to know references to retrive
information about them or aligning short sequences to a reference genome to
learn more about their functions. The latter part is the most relevant for the
project at hand. The reference genome is huge data set containing the DNA
sequence of all chromosomes in the human body. The short sequences we want to
align to this reference genome is, in this case, a huge amount of 35bp long DNA
sequences. There are several different methods for computing this alignment,
some more realistic than others. For instance, with the amount of data we
are processing in these experiments, using a naive method by checking every
position in the short sequence against every position in the reference genom,
will not complete in reasonable time. So there is a great need for faster methods
for doing this alignment.



Chapter 3

Tools and Methods

This chapter will describe some of the popular tools used in the analysis of
sequence data, and what methods or algorithms these tools use. This analysis
will be done by atempting a complete mapping with the respective tools. The
data that will be used in these experiments are 10 different, but similar, data
sets of about 28 million short DNA sequences. Figure 3.1 shows a small sample
from a sequence file. These data sets have been made available on the server
the experiments will be executed on. The mapping of these sequences will be
done to the human genome, which also is available on the same server.

3.1 Next Generation Sequencing

It is important to mention that there are several different methods for produc-
ing the sequence data. The different methods also produce different types of
data. For instance the illumina [12] platform produces “nucleotide space” se-
quences. This means it uses the alphabet A, C, G, T to represent the respective
nucleotides. The SOLID [1] platform from Applied Biosystems is not quite as
straight forward as it produces sequences in “color space”. This means it repre-
sents the nucleotides as numbers in the sequence, and each number represents
a transition between nucleotides, not just a single nucleotide. Figure 3.2 is an
illustration from [10] that shows the transitions between nucleotides in color
space. In [3] there is done an thorough analysis of some of the more popular
NGS platforms.

3.2 Algorithms

As mentioned earlier, the need for higher computanional efficiancy is a key
factor in the development of new bioinformatic tools the last few years. But
increasing the speed of computers is not a very economic way of increasing
the computational power. Doubling the computers speed will only half the
computation time, and if you need a speedup of x10 or even x1000, bying this in



8 CHAPTER 3. TOOLS AND METHODS

|=1_33 17 F3
T22232123310210201130311132312001111
»>1_33 42_F3
T02111301301200232200133020123032111
=1_33 539 F3
T23102010303101020120011112210101110
=1_33 _666_F3
T032320032132121231101210302201 00031
=1_33 730_F3
T11373323003132200311111110111102110
=1_34 131_F3
T31212001332230123322031303131121120
>1_34_1069_F3
T23202030203122322103030012212211013
=1_34 1114 F3
T03232033200112123110111001220110011
=1_34 1156_F3
T31120311201033020133333311223200211
»>1_35_216_F3
T22022211231231113302010303111123120
=1_35 467_F3
T32373237123321231103330311201131313
=1_35_891_F3

Figure 3.1: Example of sequence data

Figure 3.2: Illustration from [10]



3.3. PROGRAMS 9

purely computer power is not feasable. So developing new and faster algorithms
is the best way to cope with the growing demand for efficiancy. In fact, there
has been introduced several new tools the last years that directly approach this
problem.

3.2.1 Needlman-Wunsch

The Needleman-Wunsch [9] algorithm (NW) was published in 1970, and it was
one of the first major breaktroughs in computational biology. It was developed
by Saul B. Needlman and Christian D. Wunsch. The NW algorithm is a clas-
sical example of dynamic programing, and was the first dynamic programing
algorithm used in computational biology. This algorithm is designed to do a
so called global alignment between two (or more) given strings, meaning that
it will find the best possible alignment from start to end of all strings. In fact,
there may be more then one “best” alignment. In the most naive sence, the
best alignment is the number of exact matches between the given strings.

3.2.2 Smith-Waterman

The Smith-Waterman [11] algorithm (SW) is a variation of the NW algorithm.
If we say NW is designed to do global alignment, the SW algorithm is designed
to do local alignment. It differts fro NW by ignoring the parts of the strings
that do not match or reduce the score of the best alignment.

3.2.3 Burrows-Wheeler Transformation

The Burrows-Wheeler Transformation [2] algorithm (BWT), also called block-
sorting compression, is a data compression algorithm. It was invented by
Michael Burrows and David Wheeler in 1994. It works by taking in a tar-
get string, and changing the permutation of the string so that the output string
has more streches of equal characters, whitch again makes the compression eas-
ier. The rearangement is done by “rotating” the string n times, n being the
length of the string. If the original string had several substrings that occur
often, then the output string will have several places where a single character is
repeated multiple times in a row which enhaces the compression. This makes
the BWT technique very usefull in bioinformatics because of the relative small
alphabet and large sequences. Figure 3.3 shows the input and output of the
BWT algorithm, the transformation itself is not very interesting.

3.3 Programs

The programs ment for testing are MAQ [7], bwa [5], bowtie [4], SHRIMP [10]
and soapvl [8]. All these programs will be presented in more detail later.



10 CHAPTER 3. TOOLS AND METHODS

$acaacg

aacg$ac

acaacg$
acaacg$—>acg$aca—+>gc$aaac

caacg$a

cg$acaa

g$acaac

Figure 3.3: BWT I/0O

3.4 Hashing the genome
3.4.1 SOAPv1

SOAP [8] uses Illumina-Solexa reads for alignment. The program loads the
reference sequence into the memory and creates a hash table for seed indexing.
The index requires 2 bit per bp, so it can store 4 bp’s per byte. This gives a quite
big, but predictable memory footprint (depending on the size of the reference
genome). It uses a look up table to keep track of the number of mismatches
between the reference and the reads. The program searches for identical hits
first, then with 1 mismatch, then 2 mismatches before it searches for gapped
alignments. This allows for both gapped and ungapped alignments. SOAPv1
appears to only align nucleotide space sequences, so it can not be used to map
the SOLiD reads for this project.

3.4.2 Others

There are several other tools the use the method of hashing the genome, in-

cluding PASS (Campagna et al., 2009), MOM (Eaves and Gao, 2009), Probe-

Match (Jung Kim et al., 2009), NovoAlign (htto://www.novocraft.com), ReSEQ
(http://code.google.com/p/re-seq), Mosaik (http://bioinformatics.bc.edu/marthlab/Mosaik)
and BFAST (http://genome.ucla.edu/bfast).

3.5 Hasing the query

3.5.1 MAQ

MAQ [7] is designed to handle Illumina-Solexa data, but it can also handle
SOLiD data. Like SOAPv1, MAQ uses a two-seed pigeonhole filtering tech-
nique. It also uses the hamming distance in the filtering step. Flexible memory

footprint. It is however clear after some research, that MAQ is very slow com-
pared to BWA, Bowtie and SHRiIMP, so it will not be tested.



3.6. COMPRESSING THE GENOME WITH BWT 11

3.5.2 SHRIMP 1

The SHRiMP [10] algorithm draws upon three recent developments in the field
of sequence alignment: g-gram filter approaches, spaced seeds and specialized
vector computing hardware to speed up the Smith-Waterman Algorithm. is
another tool that uses a hashed queries instead of hashing the genome. Flexible
memory footprint.

3.5.3 Others

There are also many other tools that use hashed queries. Eland (Cox, 2007),
RMAP (Smith et al., 2008), ZOOM (Lin et al., 2008), SeqMap (Jiang and Wong,
2008) and CloudBurst (Schatz, 2009).

3.6 Compressing the genome with BWT

3.6.1 Burrows-Wheeler alignment (BWA)

BWA [5] is a alignment package base on the Burrows-Wheeler algorithm. BWA
uses the BWT compression technique to build a prefix trie of the reference
genome. It performs gapped alignment for single-end reads, supports pair-end
mapping, generates mapping quality and gives multiple hits if required. By
default the output is in the SAM format (http://samtools.sourceforge.net). It
uses backwards search for exact and inexact matching. BWA implements a BFS
search on a heap-like data structure. BWA can handle both Illumina-Solexa and
SOLiD data.

3.6.2 Bowtie

Bowtie [4] uses a method very similar to BWA, but by default it uses a DFS.
If there is no exact match, the search is not guarantee to find the best inexact
match. It can applay a BFS search to quarantee the best inexact match, but
that will slow it down slignificantly. Bowtie can also handle both Illumina-Solexa
and SOLiD data.

3.7 Comparison

There have been done ample atempts on comparing varius alignment programs,
and interpreting the results can be a bit tricky. The authors of different articles
don’t use the same criteria when comparing different tools. In this section some
of the results will be presented.



12

CHAPTER 3. TOOLS AND METHODS

Programs | Time (s) | Conf (%) | Err (%)
Bowtie-32 | 1271 79.0 0.76
BWA-32 823 80.6 0.30
MAQ-32 19797 81.0 0.14
SOAP2-32 | 256 78.6 1.16
Figure 3.4: Evaluation on simulated data, Li et. al
Programs CPU time | Wall clock time | Memory footprint | Reads Aligned
Bowtie -v 2 | 15m 15m 1,149 67.4
SOAP 91h 57m 91h 47m 13.619 67.3

Figure 3.5: Bowtie alignment performance versus SOAP, Langmead et. al

Programs | CPU time | Wall clock time | Memory footprint | Reads Aligned
Bowtie 17m 18m 1.353 71.9
MAQ 32h 56m 32h 58m 804 4.7

Figure 3.6: Bowtie alignment performance versus MAQ, Landmead et. al




Chapter 4

Experiments

First of all, by understanding the approaches the different tools use, it is clear
that there is a need for some preprocessing of the input data used in the exper-
iments. Both Bowtie and BWA use the Burrows-Wheeler Transformation and
FM-indexing technique to create an index over the reference genome. These
indices are also quite memory efficient, so they can easily fit in the memory of
the test server used in the experiments. This indexing is not done in real time
as the mapping is executed, but the indices have to be created manually before
the mapping is done. SHRiMP however uses another indexing technique, by
indexing the reference genome into spaced seeds. This results in an index that
is too big too fit in memory, so the SHRiMP package provides a tool to split
the index into smaller chuncks that fit in the memory at execution time.

An important factor in working with the given data set is that, it is real,
unprocessed data, so there is no accurate reference on what results can be
expected performance wise.

4.1 Initial alignment

The first alignment was performed with all three programs running on default
settings. As indicated by [5], [4] and [10] this was not the optimal configuration,
but it would hopefully give a pointer on their performance compared to each
other. The tests were done sequential on the same server. The results where
expected to be inferior to the results presented in 3, but other than that, there
were no expectations. When all the programs had performed the alignment, the
results were analysed, and this seemed very odd at first. All the tests had aligned
less then 5% of the sequences to the reference genome. It was indicated that an
adaptor sequence was added to all the 35bp sequences by the NGS technology
used. There were done several atempts to locate the adaptor sequences with no
luck. A new approach was needed to complete the alignment with more or less
valid results.

13



14 CHAPTER 4. EXPERIMENTS

4.2 Refined alignment

After some more research about the adaptor sequence that supposedly gave
the undesirable results, it was clear that one way to avoid this problem was to
use the “trim” function of Bowtie. This alows the user to specify a number of
nucleotides to trim away from all the sequences being mapped to the reference
genome. There were done several trials on small subsets of the sequences to
see if trimming the end presumed containing the adaptor would increase the
alignment. The test confirmed that this was the case, and that trimming 13
nucleotides off the end gave the most reliable results. This ment that the 35bp
sequences were reduced to 22bp, which is close to the expected length of an
mRNA.



Chapter 5

Implementation

This chapter will go more into detail on the process of creating a pipeline. When
the method of choice has been refined to give presumed accurate results it is
time to start automating the alignment and analysis process. The idea of a
pipeline comes as a result of the complexity and time consuming process of
manually doing this analysis. Having an automated pipeline is also a good way
to standardize the whole process. While manually performing 4-5 advanced
steps in a complex process easily can be error prone, an automated pipeline
configured with a predefined parameters always will performe the same task the
same way.

5.1 Galaxy pipeline

The “Galaxy framework”[13] has been used to create the pipeline for finding
explicitly expressed miRNA’s. “The Galaxy Framework is a set of reusable
software components that can be integrated into applications, encapsulating
functionality for describing generic interfaces to computational tools, building
concrete interfaces for users to interact with tools, invoking those tools in various
execution environments, dealing with general and tool specific dataset formats
and conversions, and working with metadata describing datasets, tools, and
their relationships. The GALAXY Application is an application built using
this framework that provides access to tools through an interface (e.g., a web-
based interface). A GALAXY Instance is a deployment of this application with
a specific set of tools.”

Creating a pipeline, for anything really, could seem like a very difficult and
time consuming job. But the design of the Galaxy framework makes this much
easier. What Galaxy does for you is to create all the conections and handle the
logistics so you can focus on the more interseting parts that go into the pipeline.
Figure 5.1 shows a screen shot from the Galaxy interface. This shows how the
modules are conected, what types of I/0O is going trough the pipeline and what
tools are performing each step. Creating this is just a matter of drag and drop.

15



16 CHAPTER 5. IMPLEMENTATION

Map with Bowtie for SOLID ®

Convert
# FASTQfile

Selectreads
output (sam)

Select qualities
- S output_suppressed_reads_|
)

out_filel ) Convert SAM 3

out_file2 (fastgcssanger) output_suppressed_reads_r
(fastgcssanger)

Selectdatasetto convert

output_unmapped_reads_| out filel (interval)
(fastessanger)

output_unmapped_reads_t
(fastgcssanger)

Figure 5.1: Screen shot from Galaxy workflow

All the tools included in Galaxy is found in a simple menu on the left side in the
interface and can be draged into the workflow window. Configuring the modules
is also done from this screen.

5.1.1 First step

The first step is a operation included in the Galaxy framework. It is simply
called “Convert” and can be found under “NGS: QC and manipulation” in the
web interface. It takes two files as input, “input.csfasta” and “input.qual”,
and converts these into a “output.fastq” file. This is neccesary because Galaxy
interfaces with bowtie a little more restrictive then you have to when performing
the mapping manually. This step could also have been done manually, but was
disregarded. With Galaxy, there is simply no option.

5.1.2 Second step

The second step is the mapping with bowtie. It is found under “NGS: Mapping”
in the interface and is called “Map with bowtie for SOLiD”. The bowtie tool
is not included in the Galaxy framework, so it has to be pre-installed on the
computer running the Galaxy server. There is also some configuration needed
to make Galaxy aware of the location and type of the pre-built bowtie index.
The Galaxy framework includes configurations for all the tools it supports, so
there are only small changes that is needed to make everything work together.
The configuration for the bowtie index is found under “tool-data” in the Galaxy
folder. In this case with a color-space index, it is the “bowtie_indices_color.loc”
that needs some altering. The file itself contains explenations and instructions
on how to configure it. When the index has been added to the Galaxy interface,
bowtie is ready to do the mapping. However, the default configuration of bowtie
in the Galaxy interface is not very useful for this pipeline. All the experiments
presented earlier shows a very specific configuration of the parameter needed to
get usefull results on these data sets. Similar to the input to bowtie, the output
is also restricted to only one format, namely Sequence Alignment/Map format

(SAM) [6].



5.1. GALAXY PIPELINE 17

5.1.3 Third step

The third step is just another convertion. The sam file contains a lot redundant
information for the intended purpose, so this step is just simplyfying the file by
removing several of the columns containing unnccesary information. The tool
that is used is a part of the “SAMtools” package mentioned breifly above. It
is called “Convert SAM” and is found under “NGS: SAM Tools” in the Galaxy
interface.

The first three steps are the only once that actually is implemented in the
pipeline so far. The next step uses the output from the pipeline, but also requires
another data set that can be accuired through the Galaxy interface, but it can
not automatically be inserted into the pipeline that is configured. All the input
data has to be specified before starting the operations in this pipeline, and data
that is required in the middle of the pipline simply can not be added at the
start. This is a major limitation of the Galaxy framework with no apparent
work-around at this point.



Chapter 6

Discussion

Here T will discuss some of the results gathered in this project. Most of what
has been accomplished is valueable insigth into the field of bioinformatics. How
different choices have a great impact on the results of your work. That there
are many possible solutions to almost any problem, and diving into a problem
with no expectations may effect the outcome of your research.

6.1 Analysing the results

As mentioned in 4 the results of the initial experiments where quite odd. But by
using the method of trimming the end of the sequences, some interesing results
were found. It was also mentioned in 4 that there is “no accurate reference on
what results can be expected performance wise”. So using information from
other similar test is the best way to verify that your results have some validity.

There were done several small scale test on the data sets with bowtie [4].
This was mainly to get a better understanding of the results. The small scale
tests aimed to find out what impact it would have to change the trim length
when mapping the sequences. Hopefully the same sequences would map to
the same region of the genome all the time. This was inconclusive, but another
comparison was done regarding what sequences was mapped when adjusting the
trim length. The overlapp in the results were far below what I expected. For
instance, the overlap between the 10 nucleotide trim and the 15 nucleotdei trim
is only about 1%. The overlapp between 12- and 13 nucleotide trim were better,
about 60+% of the sequences in “12” where also found in “13”. Though this is
better, it’s still less then I had expected. Even though the results where quite
surprising, it does not nessecarily mean it’s bad. It could mean that altering
the parameters will help find a lot more sequences then just using the “optimal”
parameters.

18



6.2. FUTURE WORK 19

6.2 Future work

The pipeline was not satisfactory completed, partly because of the limitations
in the Galaxy framework [13]. One possible solution is to create a whole new
module that can work around the current problems of Galaxy. Another possi-
bility is to create a seperate solution that can interact with Galaxy to eliminate
the problem in stead of working around it. A third option is to create a com-
pletely independant solution, which actually was the first idea for this project.
This however is a much bigger challange, and it will most likely be harder to
maintain and to operate than the interface of Galaxy.



Chapter 7

Conclusion

To summarize, this project has discovered alot when it comes to the process
of working with NGS data and alignment programs developed to handle this
type of data. The results were affected by the fact that two of the alignment
programs used, namely BWA [5] and SHRIMP [10] could not handle the data
sets used. This left only one option, which is better than no alternative, but
cut some of the research short because the programs could not be compared
satisfactory. There is also a chance that the data sets are not optimal, that
the quality/correctness of the sequence data is not very good. In that case
how could this have been avoided? Could I have aquired other sequence data
that is known be more “correct”? When it comes to the second part of the
project, the contruction of a pipeline for mapping next generation sequence
data. This could have been handled very different. The limitations of Galaxy
[13] could have been discovered a lot earlier, and another soultion could have
been constructed, or the problems could have been worked around. But in the
end, all the knowledge gained from this project is something I will take with me
and hopefully the results I have gathered can be usefull for future work.

20



Bibliography

[1]

Applied Biosystems. Solid. http://www.appliedbiosystems.
com/absite/us/en/home/applications-technologies/
solid-next-generation-sequencing/next-generation-systems.
html.

Michael Burrows and David Wheeler. A block sorting lossless data com-
pression algorithm. Digital Equipment Corporation, 1994.

Olivier Harismendy, Pauline C Ng, Robert L. Strausberg, XiaoyunWang,
Timothy B Stockwell, Karen Y Beeson, Nicholas J Schork, Sarah S Mur-
ray, Eric J Topol, Samuel Levy, and Kelly A Frazer. Evaluation of next
generation sequencing platforms for population targeted sequencing stud-
ies. Genome Biology, 10(3), 2009.

Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg. Ultra-
fast and memory-efficient alignment of short dna sequences to the human
genome. Genome Biology, 10(3), 2009.

Heng Li and Richard Durbin. Fast and accurate short read allignment with
burrows-wheeler transform. BIOINFORMATICS, 25(14):1754-1760, 20009.

Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils
Homer, Gabor Marth, Goncalo Abecasis, and Richard Durbin. The
sequence alignment/map format and samtools. BIOINFORMATICS,
25(16):2078-2079, 20009.

Heng Li, Jue Ruan, and Richard Durbin. Maq: Mapping and assembly
with qualities. Genome Research, 18(11):1851-1858, 2008.

Ruigiang Li, Yingrui Li, Karsten Kristiansen, and Jun Wang. Soap: short
oligonucleotide alignment program. BIOINFORMATICS, 24(5):713-714,
2008.

Saul B. Needlemana and Christian D. Wunscha. A general method applica-

ble to the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443-453, 1970.

21


http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems.html

22

[10]

[11]

BIBLIOGRAPHY

Stephen M. Rumble, Phil Lacroute, Adrian V. Dalca, Marc Fiume, Arend
Sidow, and Michael Brudno. Shrimp: Accurate mapping of short color-
space reads. PLoS Computational Biology, 2009.

Temple F. Smith and Michael S. Waterman. Identification of common
molecular subsequences. Journal of Molecular Biology, 147(1):195-197,
1981.

Solexa. illumina. http://www.illumina.com/technology/sequencing_
technology.ilmn.

Galaxy team. Galaxy-central. https://bitbucket.org/galaxy/
galaxy-central/overview.


http://www.illumina.com/technology/sequencing_technology.ilmn
http://www.illumina.com/technology/sequencing_technology.ilmn
https://bitbucket.org/galaxy/galaxy-central/overview
https://bitbucket.org/galaxy/galaxy-central/overview

	Introduction
	Motivation
	Problem

	Background
	Bioinformatics
	Sequence alignment

	Tools and Methods
	Next Generation Sequencing
	Algorithms
	Needlman-Wunsch
	Smith-Waterman
	Burrows-Wheeler Transformation

	Programs
	Hashing the genome
	SOAPv1
	Others

	Hasing the query
	MAQ
	SHRiMP 1
	Others

	Compressing the genome with BWT
	Burrows-Wheeler alignment (BWA)
	Bowtie

	Comparison

	Experiments
	Initial alignment
	Refined alignment

	Implementation
	Galaxy pipeline
	First step
	Second step
	Third step


	Discussion
	Analysing the results
	Future work

	Conclusion

