
Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and

Electrical Engineering
Department of Computer and Information Science

TDT4590 Complex Computer Systems — Specialization Project

LINE DETECTION ON GPUS

USING CUDA

by

Åsmund Eldhuset

Supervisor: Dr. Anne C. Elster
In cooperation with Schlumberger

Kolbotn, January 6, 2009

iii

Abstract

Line detection is a highly useful tool for analysing seismic images. Al-
gorithms that were created for analysis of two-dimensional images can be
used on three-dimensional seismic data sets by slicing the data set, but this
requires significantly more computation than analysis of a single image.
Therefore, there is a need to parallelise such algorithms in order to improve
performance. NVIDIA’s platform for parallel computation, CUDA, is an
attractive choice due to being fairly simple to program and its ability to
leverage cheap, small-scale supercomputers in the form of graphics pro-
cessing units (GPUs).

This project investigates a line detection algorithm developed by Carsten
Steger. We port an implementation for single core CPU to run on a high-end
NVIDIA GPU, using the CUDA programming environment. For compari-
son, we also port the algorithm to OpenMP. The results that are obtained for
the two most time-consuming steps of the five-step algorithm are promis-
ing, but the design of some of the other steps poses challenges for the port-
ing to CUDA.

Acknowledgements

I would like to thank the following persons and companies:

• My supervisor, Dr. Anne C. Elster, for getting me in touch with Schlum-
berger, for coping with my work habits and for taking time off her vacation
to provide valuable feedback in the final stages of the project.

• Schlumberger and two of the employees at their Trondheim office, Rune
Fevang and Wolfgang Hochweller, for providing me with Steger’s code
and seismological data for testing.

• NVIDIA, who has donated GPUs for the HPC lab of our department through
Elster’s membership in their Professor Partnership Program.

v

Contents

Contents vii

List of Figures ix

List of Tables x

List of Symbols and Abbreviations xi

1 Introduction 1

2 Background 3
2.1 Mathematical background . 3

2.1.1 Convolution . 3
2.1.2 Fourier transform . 4
2.1.3 Gaussian kernels . 5

2.2 Line detection. Steger’s algorithm 6
2.2.1 Mathematical models of lines 6
2.2.2 Step 1 — Convolution . 7
2.2.3 Step 2 — Ridge detection 8
2.2.4 Step 3 — Line point joining 9
2.2.5 Step 4 — Line width determination 9
2.2.6 Step 5 — Bias removal . 10

2.3 CUDA . 10
2.3.1 Using GPUs for calculation 11
2.3.2 Programming model . 11
2.3.3 Tesla architecture . 13

2.4 OpenMP . 17
2.5 Amdahl’s law . 19

3 Methodology 21
3.1 Test images . 21

vii

viii CONTENTS

3.2 Porting the application . 22
3.2.1 Initial analysis . 22
3.2.2 General considerations . 24
3.2.3 Step 1 — Convolution . 25
3.2.4 Step 2 — Ridge detection 29
3.2.5 Step 3 — Line point joining 29
3.2.6 Steps 4 and 5 — Line width; bias removal 30

3.3 Performance measurement . 32
3.3.1 Timing . 32
3.3.2 Image sequences . 33

4 Results 35
4.1 General . 35

4.1.1 Floating point precision . 35
4.1.2 Memory limitations . 36

4.2 Testing environment . 36
4.3 Benchmarking. Discussion . 36

4.3.1 Step 1 — Convolution . 37
4.3.2 Step 2 — Ridge detection 39
4.3.3 Step 3 — Line point joining 40
4.3.4 Steps 4 and 5 — Line width; bias removal 40
4.3.5 Overall performance . 41

5 Conclusions and future work 43

Bibliography 45

A Code 49
A.1 CUDA implementation — steps 1 and 2 49

A.1.1 convol.cu . 49
A.1.2 position.cu . 58

A.2 CUDA implementation — steps 4 and 5 66
A.2.1 width.cu . 66
A.2.2 position.cu . 80

B CD-ROM 95

List of Figures

2.1 The Tesla architecture. Illustration from[9]. 15

3.1 The images used for testing. 22
3.2 Time spent by the original implementation on the different phases

for three different images; σ = 1.2. Results averaged over 100 runs. . 23
3.3 Memory access patterns for the convolution step. The mask width is

3. Three adjacent threads, labeled A, B, and C, are shown. The illus-
trations in each subfigure show, for successive time steps, which pix-
els are being accessed by which threads. In the first three time steps,
the threads read the pixels from the input image that are needed to
calculate one result pixel, and in the fourth time step, the result pixel
is written (to another image). 28

4.1 Timing results for analysis of the seismic image at two different sigma
values. Notice the scale; the lower diagram is compacted. Results
averaged over 100 runs; see Section 3.3.1 for notes on OpenMP timing. 38

ix

List of Tables

4.1 Floating point inaccuracies due to conversion from double precision
to single precision. Sigma values were chosen subjectively to make a
reasonable number of lines appear, given the image. 36

4.2 Time (in seconds) required for a single FFT followed by a multipli-
cation with a pretransformed mask and then an inverse transform.
Results averaged over 5 runs. 39

x

List of Symbols
and Abbreviations

Abbreviation Description Definition

CUDA Compute Unified Device Architecture page 10
FFT Fast Fourier Transform page 5
GPU Graphical Processing Unit page 2
SIMD Single Instruction Multiple Data page 11
SIMT Single Instruction Multiple Thread page 11
SM Streaming Multiprocessor page 14
SP Scalar Processor page 14

xi

Chapter 1

Introduction

An essential tool for analysing geological formations in the search for oil is re-
flection seismology, in which waves caused by explosions other kinds of shocks
are sent through the ground[14]. The time it takes for the waves to be reflected
back is used to estimate the nature of the underlying geology. Line detection
on such images can provide valuable information about faults, which are rifts in
rock layers. Some faults permit oil and gas to flow through them, while others
block oil and/or gas.

Schlumberger is a worldwide oil field service provider with which our de-
partment has cooperated on several student projects. They intend to use line
detection to discover and link faults, since reservoir simulations require infor-
mation about the fault structures. In addition, they hope that line detection may
aid the detection of salt formations, which lack a clearly defined structure in the
three-dimensional seismic results.

Although seismic measurements usually produce three-dimensional data sets,
algorithms for two-dimensional line detection may still be used by slicing a 3D
data set (describing a volume) into many 2D data sets (describing surfaces, or
cross-cuts through the volume). This additional dimension causes a large in-
crease in computational requirements. Ordinary images typically contain a few
millions of pixels, while 3D data sets may contain billions of points. Thus, al-
gorithms that are adequate for single image analysis may not suffice for seismic
analysis.

One such algorithm was developed by Carsten Steger and is described in his
report entitled “An Unbiased Detector of Curvilinear Structures”[12]. Among
other advantages, the algorithm handles noisy images well, and it corrects the
bias in line position that is often introduced by other algorithms when the two
sides of a line have different contrast. He did not give the algorithm a name,
so for the purposes of this project, we have named it Steger’s algorithm. The use

1

2 CHAPTER 1. INTRODUCTION

of this algorithm was suggested by Schlumberger, who hope that this project
will provide useful information to them if they want to parallelise their own,
proprietary edge detection algorithms.

NVIDIA is a world leadning developer and manufacturer of graphical pro-
cessing units (GPUs). Their most recent GPU architecture is called Tesla, for
which they have created an application development platform called CUDA.
CUDA allows developers to write programs in C with a small set of extensions.
It has gained popularity due to being a fairly simple and cheap way to develop
parallel applications.

The purpose of this project is to investigate how Steger’s implementation
of his line detection algorithm might be ported to CUDA in order to leverage
the parallelisation opportunities offered by CUDA. We will also port the imple-
mentation to OpenMP (an API for writing multithreaded programs in C) and
compare the performance gains to that of CUDA.

Outline

In Chapter 2, we give a brief walkthrough of the mathematics that is required to
understand Steger’s algorithm, before presenting the algorithm itself. We also
explain the CUDA programming model and the hardware organisation of the
Tesla architecture.

In Chapter 3, we describe our initial analysis of Steger’s implementation,
how we ported four of the five algorithm steps, and why we did not succeed in
porting one of the steps. We also describe our timing approach.

In Chapter 4, we provide a timing analysis of the three implementations (Ste-
ger’s original one, and our CUDA and OpenMP ports). We compare the results,
discuss the advantages and disadvantages of the two parallelisation approaches,
and discuss how well Steger’s algorithm is suited for parallelisation.

Finally, in Chapter 5, we present our conclusions and suggestions for future
work.

Chapter 2

Background

In this chapter, we provide a quick review of the mathematics that are required
to understand the line detection algorithm, and then present the algorithm itself.
We then present the CUDA programming model and the Tesla hardware archi-
tecture. We give a short introduction to OpenMP, and give a brief description
of Amdahl’s law, an important formula related to the performance of parallel
applications.

2.1 Mathematical background

2.1.1 Convolution

Convolution is a mathematical operation that takes as input two functions and
produces a new function which can be interpreted as telling to what extent the
original functions “match” if their graphs are aligned with each other. It is de-
fined as

(f ∗ g)(t) =
∫ ∞
−∞

f(a)g(t− a) da. (2.1)

Convolution in two dimensions is defined similarly:

(f ∗ g)(s, t) =
∫ ∞
−∞

∫ ∞
−∞

f(a, b)g(s− a, t− b) da db. (2.2)

Differentiation A highly useful property of convolution is that differentiation
of one of the functions corresponds to differentiation of the result[5, p. 188]:

d

dx
(f ∗ g) =

df

dx
∗ g = f ∗ dg

dx
(2.3)

3

4 CHAPTER 2. BACKGROUND

Discrete convolution If both functions to be convolved are discrete, the inte-
grals can be replaced by summations, and if they are finite in extent, the limits
can be narrowed. If the range of f is [−n, n]× [−m,m], then we have:

(f ∗ g)(s, t) =
n∑

a=−n

m∑
b=−m

f(a, b)g(s− a, t− b). (2.4)

Typically, we are interested in applying this only to values of s, t that are within
a certain “interesting” range of g (g might represent an image). Then we must
choose what happens if s − a and t − b end up outside of this range. Typical
choices is to define g to be zero outside of that range, or that g is periodic, or that
values outside of the range mirror the values inside the range (so that g(s, t) =
g(s,−t) and g(s, t) = g(−s, t)).

Kernels In this context, f is often referred to as a convolution mask or convolu-
tion kernel. When f has a small range and g represents an image, convolution is
usually interpreted as applying some effect defined by f (e.g., blurring or sharp-
ening) to each point (i.e., pixel) of g, where the effect on each point depends on
the value of the point itself and of the neighbouring points.

Integrated kernels Even if the kernel f is continuous, we can perform discrete
convolution by creating a discrete version fd of f like this:

fd(s, t) =
∫ s+1/2

s−1/2

∫ t+1/2

t−1/2
f(a, b) da db, (2.5)

and calculating fd∗g with the discrete formula. This is called an integrated kernel.

Separability Discrete two-dimensional functions with a rectangular range (such
as images and convolution kernels) can be expressed as matrices. If it is possible
to express such a function as a product of a column vector and a row vector,
the function is called separable. If a convolution kernel f is separable, so that
f = c× r, convolution can be performed by first convolving each row of g with
r, and then convolving each of columns of the results with c. This is simpler and
more efficient than using 2.4 directly (the time complexity is Θ(wh(w + h)) as
opposed to Θ(w2h2), but it should be noted that not all kernels are separable.

2.1.2 Fourier transform

The Fourier transform takes as input one function (normally interpreted as a
function from time to wave amplitude, and thus often referred to as a signal) and
produces a function that describes what frequencies are present in the original
signal. The Fourier transform does not appear in Steger’s paper, but it is often

2.1. MATHEMATICAL BACKGROUND 5

used to calculate discrete convolutions. This is due to the convolution theorem,
which states that the Fourier transform of the convolution of two functions is
equal to the product of the transforms of the original functions:

F {f ∗ g} = kF {f} · F {g} (2.6)

where k is a constant factor that depends on how the Fourier transform is de-
fined (different scientific branches use different scaling factors for convenience
in their Fourier transform definitions). For a proof, see [6]. Taking the inverse
transform on both sides yields

f ∗ g = F−1 {kF {f} · F {g}} , (2.7)

which provides us with an even more efficient way to calculate convolutions,
due to the existence of the Fast Fourier Transform algorithm (FFT). The FFT
requires Θ(n lg n) time for a discrete function of n elements, as opposed to di-
rectly evaluating the summations that define discrete convolution, which re-
quires Θ(n2) operations.

In higher dimensions, we can utilise the fact that the Fourier transform is sep-
arable, and perform a series of one-dimensional transforms. For two-dimensional
images of width w and height h, this means that the direct calculation requires
Θ(w2h2) operations (or Θ(wh(w + h)) if the mask is separable), while the FFT
approach only requires Θ(wh lgw lg h) operations independently of whether or
not the mask is separable.

2.1.3 Gaussian kernels

A commonly used convolution kernel in image analysis, due to its ability to
“smooth out” the function (or image) it is being convolved with, is the Gaus-
sian kernel, which we present here together with its first and second derivatives,
which will be used later on:

gσ(x) =
1√
2πσ

e−
x2

2σ2 (2.8)

g′σ(x) =
−x√
2πσ3

e−
x2

2σ2 (2.9)

g′′σ(x) =
x2 − σ2

√
2πσ5

e−
x2

2σ2 (2.10)

The two-dimensional Gaussian kernel is defined as follows, and it has the
desirable property of being separable:

gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 = gσ(x)gσ(y) (2.11)

6 CHAPTER 2. BACKGROUND

The results of convolving the line functions with the Gaussian kernels and
its derivatives involve the integral of the kernel:

φσ(x) =
∫ x

−∞
e−

t2

2σ2 dt (2.12)

Since this integral cannot be analytically solved, it is normally convenient to
precalculate some of its values (using numerical integration), store them in a
lookup table and use interpolation when a function value is needed.

2.2 Line detection. Steger’s algorithm

In this section, we outline the algorithm presented in [12]. The goal of this algo-
rithm is to analyse two-dimensional grey value images and detect the locations
and widths of the lines in the image. A scale-space1 parameter σ is used to deter-
mine the range of widths one is interested in.

2.2.1 Mathematical models of lines

[12] begins with discussions of models of lines in one dimension — in essence,
what you would see if you took a two-dimensional surface containing ridges
and made a cross cut perpendicular to one of the ridges. Three types of lines are
discussed (2w and h are the width and height of the lines, respectively): Parabolic
lines, described by h(1 − (x/w)2) for |x| ≤ w; bar-shaped lines, having a constant
height h for |x| ≤ w; and finally asymmetric bar-shaped lines, whose surroundings
have different heights:

fa(x,w, a) =


0, x < −w
1, |x| ≤ w
a, x > w

, (2.13)

where a is the height of the surroundings on the right-hand side. Arbitrary line
heights h could have been considered, but h will drop out of all calculations of
interest[12, pp. 6–7]. This kind of profile is regarded as the most likely one in
real images.

Parabolic lines can obviously be detected by looking for points where the
first derivative is zero. However, since an image typically will contain noise,
looking at differences between neighbouring pixels will not yield much useful
information for estimating the derivatives. According to [13], the solution to
the noise problem is to perform convolution with a Gaussian kernel, which in
essence will smooth out the image. The σ parameter defines the extent of the

1Scale-space is a strategy for representing an image as a collection of images at different levels
of detail — see [13]

2.2. LINE DETECTION. STEGER’S ALGORITHM 7

smoothing — the higher the value is, the less detail will be left in the image, and
only thicker lines will remain. Thus, we can use σ to place a lower threshold on
how thick lines we want to detect.

If we apply the Gaussian kernel to a bar-shaped line (be it asymmetrical
or not), the profile becomes curved so that its derivatives are nonzero in most
places — then, we can use the zero point of the first derivative to detect the
centre of the curve and the zero point of the second derivative to detect the
edges. The responses, (that is, the convolution results) we get for a line of width
2w and surrounding height a when we use the scale parameter σ, are:

r(x, σ, w, a) = gσ(x) ∗ fa(x,w, a) = φσ(x+ w) + (a− 1)φσ(x− w)

r′(x, σ, w, a) = g′σ(x) ∗ fa(x,w, a) = gσ(x+ w) + (a− 1)gσ(x− w)

r′′(x, σ, w, a) = g′′σ(x) ∗ fa(x,w, a) = g′σ(x+ w) + (a− 1)g′σ(x− w)

Since the line position l is the point where r′(l, σ, w, a) = 0, we get:

l = − σ
2

2w
ln(1− a) (2.14)

which shows that the line will be detected in the wrong position if the line is
asymmetric. We cannot directly compensate for this since we do not know the
true values of w and a, but step 5 of the algorithm provides a way of correcting
the bias.

The magnitude of r′′ can be used to determine whether a line is salient (that
is, strong enough). If this approach is to make sense, r′′ should have a minimum
at the line location. However, it turns out that the line must not be too wide for
this to be the case:

σ ≥ w√
3

(2.15)

This means that σ not only imposes a lower limit on the line widths that are
detected (due to the smoothing of the Gaussian kernel), but also an upper limit.

2.2.2 Step 1 — Convolution

The code related to this step is located in convol.cu (original) and convol.cu

(new).
Given the line model just discussed, there is a need to calculate the con-

volution of the image with the Gaussian kernel in order to smooth the image,
and the later steps require the first and second derivatives of the convolution2.
Due to Equation 2.3, we see that instead of calculating those derivatives directly,

2The result of the first convolution will actually turn out not to be needed — it is shown here
for completeness, but the application never computes it.

8 CHAPTER 2. BACKGROUND

we can perform convolutions with the derivatives of the Gaussian kernel in-
stead3. When performing discrete convolution, one must choose what to do at
the boundaries of the image; since our goal is to detect lines, the image is mir-
rored off the boundaries (rather than letting the image be zero outside of its
actual boundary) so that we avoid huge derivatives at the boundary.

2.2.3 Step 2 — Ridge detection

The code related to this step is located in position.c (original) and position.cu
(new).

The idea behind this step is most easily illustrated in one dimension. Rather
than simply checking where the values of the derivative is zero or goes from
positive to negative between neighboring pixels, they use a second-order Tay-
lor polynomial to estimate the value of the “image function”. If r, r′ and r′′ are
the functions that are obtained when convolving with the Gauss kernel and its
derivatives, the Taylor polynomial is p(x) = r + r′x + 1

2r
′′x2. Since we are in-

terested in the point where p′(x) = 0, we get p′(x) = r′ + r′′x = 0, and thus
p(x) = − r′

r′′ . Conveniently, r disappears, so step 1 does not have to calculate it.
The advantage of this approach is that we can get a subpixel location for each
line point.

In two dimensions, the same idea can be applied, but now we have a prob-
lem in that we do not know the direction of the line in each pixel. We need this
information because the derivative can only be required to be zero in the direc-
tion perpendicular to the line (in case the height of the line changes along the
direction of the line). It turns out that the direction perpendicular to the line
can be determined by finding the eigenvectors and eigenvalues of the so-called
Hessian matrix, which contains all of the second derivatives of r with respect to
the image coordinates x and y. Given the longest eigenvector ~n = (nx, ny), the
point where the directional derivative along n is zero is given by ~p = (px, py) =
t~n = (tnx, tny), where

t = − rxnx + ryny
rxxn2

x + 2rxynxny + ryyn2
y

. (2.16)

For each pixel where both px and py fall inside the range
[
−1

2 ,
1
2

]
, the following

is done:

• ~n is stored and associated with the pixel.

• The “global coordinates” of the point where the derivative along n was
determined to be zero, namely (c + tnx, r + tny), where r and c are the

3This is obviously more computationally expensive, but I assume that it gives higher accuracy,
since we can get precise values for the derivatives of the kernel, while the derivatives of the
convolution would have to be computed by comparing neighbouring pixels.

2.2. LINE DETECTION. STEGER’S ALGORITHM 9

row and column numbers, respectively, are stored and associated with the
pixel.

• If the eigenvalue associated with the eigenvector ~n is higher than a cer-
tain lower threshold (called hysterisis threshold), the pixel will be marked
as being a line point. If the eigenvalue is also higher than another given
hysterisis threshold, the pixel is also marked as a possible starting point
for a line.

2.2.4 Step 3 — Line point joining

The code related to this step is located in link.c.
The possible starting points from step 2 are examined from top left to bottom

right. If we assume that lines will not make “too sharp” turns, it is sufficient to
look at three of the eight neighbouring pixels (the choice of neighbours depends
on the angle of the normal). For instance, if the normal indicates that the line
itself has an angle between −22.5◦ and 22.5◦, we can consider the three pixels to
the (upper, middle and lower) right. For each of the three neighbour pixels that
contain a line point, the distance d and angle difference β between the current
point and the neighbour point are measured, and the point that minimises d+cβ
is chosen (c = 1 is used in this implementation) as the next point of the line. This
is repeated so that successive points of the line are detected, until the end of the
line or a point that is already part of another line is reached. In the latter case,
that point is marked as a junction, and the line that was encountered is split into
two lines (so that in total, there are three lines that end in the junction).

Each line has a normal, but it might point to either side of the line. While
traversing the line points, the normals are oriented so that they always point to
the right (relative to the traversal direction). This is to ensure that the later steps
will get a consistent idea of the left and right sides of a line.

While the high-level description of this step is fairly simple, the implemen-
tation is rather long and tricky, as it contains a lot of trigonometry, searching,
sorting, and array reallocations. This is expected to cause problems for the GPU
implementation.

2.2.5 Step 4 — Line width determination

The code related to this step is located in width.c, primarily in the function
compute_line_width.

In order to determine the line width, we must look for edges on both sides
of each line point, in the directions perpendicular to the line. Due to Equation
2.15, it is sufficient to go a distance of σ

√
3 on each side, but the existing imple-

mentation uses a slightly larger value to be on the safe side. The Bresenham line
drawing algorithm[11] is used in a slightly modified form to determine which

10 CHAPTER 2. BACKGROUND

pixels should be examined. We are looking for the point where the absolute
value of the gradient (a vector whose elements are the first derivatives in the
x and the y directions) has the greatest value. An approach similar to the one
in step 2 (finding eigenvectors of a Hessian matrix) is used to determine, for
each pixel, the subpixel location of the maximum gradient. This corresponds to
locating the zero point of r′′.

Missing edge points For some line points, edge points (and thereby line width)
might not be detected. This will happen if the edge of the line is wide and
the grey values change slowly, and in junctions, where the line might grow too
wide. For such points, the width will be linearly interpolated from the closest
surrounding line points that have a width. If the point at the start (or end) of a
line does not have a width, the width of that point will be set to the width of the
first (or last) point that has a width.

2.2.6 Step 5 — Bias removal

The code related to this step is located in width.c, primarily in the function
fix_locations. The bias function to be discussed is implemented in correct.c.

In step 4, we detected the points el and er where r′′(el, σ, w, a) = r′′(er, σ, w, a) =
0. These expressions can be interpreted as a function from w and a to el and er
(given a fixed σ — in this step, we can arbitrarily set σ = 1 because it will drop
out from the results we are interested in). We would like to invert this function
in order to determine w and a (the true line width and asymmetry) from el and
er (the observed edge locations), but we need more information. It turns out
that the ratio of the gradient at the detected edges, |r′(el, σ, w, a)|/|r′(er, σ, w, a)|,
which can be observed in the image, provides the extra information about the
relationship between these variables. By using a root finding algorithm (since
the equations cannot be solved analytically), it is possible to create an inverse
function that will tell us w and a given the edge locations and the gradient ratio.
Selected values of this function are precomputed, and interpolation is used to
obtain other values during the bias removal step.

2.3 CUDA

CUDA, short for Compute Unified Device Architecture, is a programming model
and software environment for developing applications for GPUs. NVIDIA, the
corporation that developed CUDA, has also created the Tesla architecture, which
extends their traditional GPU architecture to provide a hardware environment
for running CUDA applications. Most of the information in this section is based
on NVIDIA’s programming guide[9].

2.3. CUDA 11

2.3.1 Using GPUs for calculation

Traditionally, GPUs have been built around a fixed pipeline[3]:

Input Vertices (grouped into triangles) describing the geometry of the scene,
along with textures to be applied to the geometry, are input to the GPU.

Vertex processing The scene coordinates of the vertices are transformed to screen
coordinates.

Rasterisation For each triangle, the screen coordinates that are covered by the
triangle are determined.

Fragment processing Each such screen coordinate is referred to as a fragment. If
the triangle was textured, an appropriate colour for the fragment will be
determined from the texture.

Framebuffer processing Fragments that map to the same pixel are being com-
bined in specified ways. For instance, an opaque fragment will hide a
fragment that is behind it, while colours for transparent fragments must
be blended together.

Originally, the operations in each step were hardwired in the GPU, but in the
last decade, the vertex and fragment stages have been programmable. Such pro-
grams are referred to as vertex shaders and pixel shaders. Although the original
intent was to allow for customisable graphics effects, people soon started util-
ising shaders for general-purpose computation. This, however, is quite hard,
since it requires that the problem domain be represented as a texture and that
the calculations be represented as vertex and pixel shader operations. The most
recent GPUs, both from NVIDIA and AMD, take a unified processor approach in
which the hardware consists of a number of (fairly) general-purpose processing
cores, and the cores are dynamically assigned to different stages of the pipeline.
This also means that it is much easier to write general-purpose computations for
GPUs. See [10, 3] for more information.

2.3.2 Programming model

NVIDIA call their approach to parallelism SIMT — Single Instruction Multiple
Thread. The idea is that each instruction is being executed by several threads
in parallel. The difference from a standard SIMD (Single Instruction Multiple
Data) architecture is that the programmer is not required to be aware of the
width of the parallelism (when programming vector machines or e.g. using SSE
instructions, one must know how many elements will be processed in parallel).
Also, the number of threads can be varied, as opposed to many SIMD archi-
tectures, where the number of parallel elements is fixed. Since parallelism is

12 CHAPTER 2. BACKGROUND

implemented with threads, it is also possible for the threads to take different
branches through the code. The threads allow for fine-grained data parallelism,
and threads can be grouped into sets called blocks and grids that can be used to
implement coarse-grained data parallelism and task parallelism, respecively.

CUDA programs are divided into host code, which will execute on a regular
CPU, and kernel code, which will execute on a CUDA-enabled device in the same
computer (typically a GPU). Both parts are written in C with a few extensions.
The most prevalent one is the keyword __global__, which among other things
can be used to declare a function to be a kernel. The host code and the kernel
code can be written in the same source files. The compiler front end moves the
host code to normal C files that are compiled separately, and generates GPU
assembly code. The latter is assembled into object files that can be transferred to
and executed on a CUDA device.

The host program controls the CUDA device and decides when to launch
kernels to be executed by multiple threads on the device. Threads that are
launched together are referred to as a grid, and they all execute the same kernel.
Several grids may run simultaneously. The threads in a grid are grouped into
blocks of equal size. A kernel is launched by specifying its name and parameters
together with a launch configuration: kernelName<<<blocks, threadsPerBlock,

sharedMemory, stream>>>(parameterList);. parameterList is a reg-
ular C function parameter list; the parameters are automatically copied to the
device (for pointers, only the pointer itself is copied; it must point to device
memory in order to be valid in the kernel). The meaning of the launch configu-
ration parameters are as follows:

blocks The number of blocks in the grid.

threadsPerBlock The number of threads in each block. The total number of
threads is thus blocks · threadsPerBlock.

sharedMemory (optional) Threads within the same block have access to a shared
memory (discussed later). This parameter specifies how much shared mem-
ory should be available to each block. If omitted, the block gets no shared
memory.

stream (optional) Streams can be used to control concurrency. A sequence of
kernel launches and memory operations on the same stream will run se-
quentially, while actions on different streams may run concurrently. If
omitted, a default stream is used.

Threads within a block may be indexed in one, two, or three dimensions, de-
pending on what maps best to the problem domain (this is specified in the
launch configuration). Blocks may be indexed in one or two dimensions. In-
side a kernel, the variables blockDim, blockIdx, and threadIdx can be used

2.3. CUDA 13

to obtain the thread’s indices (from which a unique thread number from 0 to
(blocks · threadsPerBlock − 1) can be easily computed).

Synchronisation Kernel launches are asynchronous, which means that the host
code continues to run immediately after the kernel has been launched. This al-
lows (independent) computations to be performed on the GPU and the CPU in
parallel. If the host needs to wait for the GPU to complete a task, it can call
cudaThreadSynchronize(). This is not necessary if cudaMemcpy() is used to
get results back from the GPU; that function is synchronous and will only be-
gin after the kernel has completed and will not return until the memory transfer
is complete. However, it may be beneficial to utilise the asynchronous facili-
ties that are available (the stream concept mentioned above, and asynchronous
memory transfer operations) — this allows interleaving of communication and
computation, which in some situations can save a considerable amount of time.

Barrier synchronisation of all threads within the same block can be per-
formed by calling __syncthreads() from the kernel. It can be called from
within a conditional, but then it is the programmer’s responsibility to ensure
that all threads in the block actually will reach the call. There is no mechanism
for directly synchronising blocks with each other, but on newer cards, atomic
integer operations are available, which means that global locks can be imple-
mented manually if it is really necessary (but this will be terribly slow due to
the low speed of the global memory).

Logical memory model The following memory regions are available to a thread:

Local memory Private to each thread. Disappears when the thread completes.

Shared memory Accessible by all threads in the same block, but not by any
other threads. Disappears when the threads in the block complete.

Global memory Accessible by all threads in all blocks in all grids. Data remains
in global memory until overwritten or deallocated, and does not disappear
when a grid completes.

Texture memory Read-only memory that efficiently supports a number of dif-
ferent addressing modes.

Constant memory Read-only memory that is optimised for the case where many
threads access the same value

2.3.3 Tesla architecture

Tesla is NVIDIA’s most recent GPU architecture, which supports the CUDA
programming model. The core processing element in a Tesla device is called

14 CHAPTER 2. BACKGROUND

a Streaming Multiprocessor (SM). A GPU contains several SMs — for instance, the
NVIDIA Tesla C870 card contains 16 of them. Each SM contains the following
(see Figure 2.1):

• Eight Scalar Processors (SP)

• One instruction decoder

• Two special function units (SFU) for functions such as sine, cosine, square
root and exponential

• Eight register files, one per SP

• Shared memory common to all eight SPs

When a grid is launched, each block is mapped onto an SM. Each SM may con-
tain several blocks, and blocks never move between SMs. The SM is responsible
for scheduling and executing all threads within its blocks.

Note that the first generation CUDA devices did not support double preci-
sion floating point operations at all. More recent devices do support doubles,
but they only have one double precision unit per SM, which means that use of
double precision will incur a drastic performance hit.

Warps There is only one instruction decoder per SM, since all threads execut-
ing on the SPs will ideally execute the same operations. It decodes one instruc-
tion per four SP cycles, so threads are grouped into groups of 32 threads called
warps. After an instruction has been decoded, the first eight threads in the cur-
rent warp are executed, then the next eight threads, and so on. The first 16 and
last 16 threads of a warp are called half-warps.

Physical memory model The logical memory model is implemented with the
help of the following physical memories (see Figure 2.1):

Registers Similar to the registers of ordinary processors. Data in the local mem-
ory is preferrably put here. Each register is assigned to one thread, so the
register file on an SM must be divided between all threads in all blocks
on that SM. If the threads require more registers than what is available
in the SM, registers may be spilled to global memory. Register access time is
normally zero cycles.

Shared memory There is one physical shared memory per SM; this is divided
between all blocks on the SM. Shared memory is never spilled, and threads
in one block may not touch the shared memory of other blocks on the same
SM. Accessing shared memory is almost as fast as accessing registers, de-
pending on how the threads in the block access it (see bank conflicts below).

2.3. CUDA 15

Figure 2.1: The Tesla architecture. Illustration from[9].

Global memory Two orders of magnitude slower than registers[4, Table 1]. Data
can be transferred between global memory and the computer’s system
memory with DMA. Not cached, except for the constant caches mentioned
below.

Texture memory Implemented as a global memory cache on each SM.

Constant memory Implemented as a global memory cache on each SM.

The most important thing to realise here is that local memory is an abstraction;
there is no physical local memory, and if a kernel has too many local variables,
some of them will get spilled to global memory. It should also be noted that
concurrent writes to the same location in shared or global memory are resolved
by letting one of the threads win (which one is undefined, but one of the writes
is guaranteed to succeed).

16 CHAPTER 2. BACKGROUND

Banks The shared memory is organised into 16 banks, each with a width of 32
bits. Successive 32-bit words belong to successive banks, so a memory address
m will map to bank number bm/4c mod 16. All threads in a half-warp may
access the shared memory simultaneously if no bank is being accessed by more
than one thread. As opposed to global memory, the threads are not required to
access adjacent addresses that are aligned to a certain multiple of bytes. If any of
the banks is being accessed by two or more threads, a penalty is incurred since
the memory accesses must be serialised. Shared memory accesses in the two
half-warps that make up a warp will never conflict with each other. Note that
there is also a broadcast mechanism that allows the contents of a word in one
of the banks to be provided to all threads, so that the scenario where all threads
read from the same address is conflict-free.

Divergent warps While older GPUs required all threads to follow the same
path, the CUDA programming model allows the use of if/else constructs that
will take different branches in different threads and loops where the loop count
varies between threads. However, since the SM is structured to make all threads
in the same warp execute the same instructions, the following must be done with
divergent warps, that is, warps where threads take different branches: all chosen
execution paths are executed in serial until the paths converge again. Mask-
ing is used to make sure that each thread only sees the result of the branches
the thread actually chose. Thus, divergent warps may be highly expensive, in
particular if all threads follow different parts[4]. Note that threads in different
warps do not affect each other. The fairly small warp size allows more liberal
use of branches, as opposed to earlier architectures where the SIMD width was
greater and branches were more expensive[8].

Coalesced reads and writes Global memory can deliver data at its peak band-
width only when it is being accessed in a certain manner. Requests to global
memory are serviced in transactions, whose size can be 32, 64, or 128 bytes. If all
threads in a half-warp access data of certain word sizes (see [9, sec. 5.1.2.1] for
details) from the same memory segment, and all threads access the segment in
sequence, the requests can be serviced in a single transaction (the sequence re-
striction has been lifted on more recent devices) — this is called coalesced memory
access. Otherwise, the request must be broken down into several transactions,
which is slower.

Occupancy The number of blocks on each SM is limited by the following fac-
tors. The numbers in parentheses indicate the limits for the C870.

• Each SM supports a maximum number of threads (768):
blocksPerSM · threadsPerBlock ≤ threadLimit

2.4. OPENMP 17

• The shared memory (16384 B) on an SM must be divided between all
blocks on the SM (there is no mechanism to swap out shared memory to
global memory, and blocks never move between SMs — so two blocks can-
not use the same shared memory region): blocksPerSM ·sharedMemory ≤
memoryLimit

• Each SM supports a maximum number of warps (24):
blocksPerSM · bthreadsPerBlock/32c ≤ warpLimit

If none of these equations allow blocksPerSM to be at least 1, the launch con-
figuration is obviously invalid. However, simply being valid is not necessarily
enough — typically, one is interested in maximising the occupancy, that is, the
amount of available threads, warps, and shared memory that is actually being
used (of course, there has to be an integral number of blocks on each SM, and
any remaining SM resources that are not used by these blocks are wasted). There
is also a limit on the number of threads per block (512 on the C870).

In addition to these hard limits, one will normally also want to consider the
limit on registers. The available registers on an SM (8192 on the C870) must
be divided between all threads on the SM. Only local variables can be placed in
registers, but local variables can also be spilled to global memory, and hence this
is not a hard limit. However, for performance reasons, it is obviously desirable
not to use more local memory than the registers can hold.

The “CUDA occupancy calculator”, provided by NVIDIA and available at
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_

calculator.xls, is a handy tool to calculate occupancy given the GPU model,
the number of threads per block, numbers of registers per thread (this must be
calculated manually by the programmer from the kernel source code) and the
amount of shared memory per block.

2.4 OpenMP

OpenMP is an API for writing multithreaded programs in C and a number of
other languages. One of its most important features is its support for declarative
programming — rather than using data structures and function calls to spawn
and handle threads, it is possible to use compiler directives to simply state the
desired form of parallelisation. The compiler, together with a runtime system
that will be linked into the program, will handle the actual thread management.

We will mostly employ the parallel for construct, which in its simplest
form looks like this:

#pragma omp parallel for
for (i = 0; i < limit; ++i) {

// Loop code here

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

18 CHAPTER 2. BACKGROUND

}

This indicates that the loop is suitable for data parallelism. The OpenMP run-
time environment will determine a suitable number of threads (based on the
hardware of the computer the program is being run on) and distribute the loop
iterations between those threads. If desired, the number of threads can be man-
ually set to a value n by appending num_threads(n) to the #pragma line.

Variables inside the directive scope can have different kinds of semantics:

• A shared variable exists in one location, common to all threads (which must
handle synchronisation properly themselves, if needed).

• A variable that is private is duplicated — each thread gets its own copy of
the (uninitialised) variable.

• If initialization of private variables is needed, the variable can be marked
as firstprivate, which will cause each thread to get its own copy that is ini-
tialised with the value the variable had prior to the directive.

This is controlled by listing the variables in the directive, and preferrably use
default(none) to demand that all variables be explicitly mentioned:

#pragma omp parallel for default(none) shared(a, b) \

private(i) firstprivate(limit)

for (i = 0; i < limit; ++i) {

a[i] = b[i];

}

A directive that is useful for task parallelism is parallel sections. If sev-
eral sections of code can be assigned to one thread each, one can do the follow-
ing:

#pragma omp parallel sections

{

#pragma omp section

{

// Code for first thread

}

#pragma omp section

{

// Code for second thread

}

}

The directive #pragma omp barrier can be used for barrier synchroniza-
tion among all threads. Each thread can obtain its own sequence number and
the total number of threads by calling omp_get_thread_num() and
omp_get_num_threads(), respectively.

2.5. AMDAHL’S LAW 19

2.5 Amdahl’s law

In 1967, Gene Amdahl argued[1] that parallel processing was not a good way to
improve performance, based on the following observation: If we have a com-
putation that consists of a sequence of serial steps that take a total time of ts,
and a certain percentage f of these steps can be performed in parallel using p

processors4, then the total time for the sequential part of the calculation will be
fts, and if we can distribute the remaining workload equally over the p proces-
sors, the parallel part will take the time (1 − f)ts/p. Since the sequential part
must presumably be completed before the parallel computations can begin (or
the other way around), these times must be added together for a total time of
tp = fts + (1− f)ts/p, and we arrive at Amdahl’s law5 for the speedup S(p):

S(p) =
ts
tp

=
ts

fts + (1− f)ts/p
=

1
f + (1− f)/p

=
p

1 + f(p− 1)
(2.17)

The most significant aspect of this formula is that it highlights the importance
of f as a severely limiting factor for the potential speedup of parallelising. Am-
dahl used this to claim that parallel programming was not a good idea. How-
ever, since parallelism is currently regarded as the primary way of improving
performance in HPC[2], the modern interpretation is that speedups can come
arbitrarily close to p if only we can make f small enough, and thus, one should
focus on reducing f when parallelising a calculation. On the other hand, since
f in most situations cannot (even approximately) become equal to zero6, Am-
dahl’s law provides an upper bound on performance gain for a specific problem
given the best nonzero f we can achieve: As p tends to infinity, the speedup
converges to 1/f . Again, it should be noted that these bounds are optimistic, as
they are based on very simplifying assumptions.

4These are quite optimistic calculations, since we assume that the calculation can be paral-
lelised without incurring communication penalties or extra computation steps, and that the par-
allel processors are as fast as the sequential one.

5Amdahl did not actually state this formula in his article, but it has been derived later (in
many different forms) from his article.

6Calculations in which f ≈ 0 and where the assumptions about independence between the
parallel parts hold are called embarrassingly parallel.

Chapter 3

Methodology

When using CUDA, it is fairly simple to express many kinds of parallel compu-
tations. However, due to the Tesla architecture, there are a lot of factors to take
into consideration in order to achieve good performance, in particular when it
comes to memory accesses and division of workload among threads. In this
chapter, we will describe how four of the five steps of the algorithm were trans-
formed from their sequential implementation to CUDA and OpenMP. We will
also explain why we did not succeed in porting one of the steps. In addition, we
describe our approach to timing the performance of our implementations.

3.1 Test images

We have used four different images for our testing, as shown in Figure 3.1. Fig-
ure 3.1(a) is one of the images used by Steger, which we used during develop-
ment for correctness testing (by comparing the output of our rewritten applica-
tion to that of the original one). Since it is somewhat small, we repeated it 16
times to get a larger image (but obviously with the same ratio of line points to
image area), as shown in Figure 3.1(b). Figure 3.1(c) consists of 293 diagonal
lines, and is meant to test the case where an image contains many long lines.
Finally, Figure 3.1(d) is a seismic image (a vertical cross cut through a data set
consisting of 201×301×1250 points) provided by Schlumberger, which gives the
best impression of what our application will be used for. Unfortunately, we did
not get this data set until fairly late in the project, so during most of the project,
only the first three images were available to us.

21

22 CHAPTER 3. METHODOLOGY

(a) MR scan (256× 256) (b) Repetitions of MR scan
(1024× 1024)

(c) Diagonal stripes (1024 ×
1024)

(d) Seismic image (1250× 301)

Figure 3.1: The images used for testing.

3.2 Porting the application

3.2.1 Initial analysis

Schlumberger provided us with Steger’s own implementation of the algorithm.
It is written in C and is quite well-structured; each main step of the algorithm
resides in its own set of functions in a separate file. This allowed us to take an
iterative approach where we could take one algorithm step at a time and port
it independently of the others. In order to determine which steps would yield
the biggest gains from parallelisation, we timed the performance of the original
implementation on three of the images. The results are shown in Figure 3.2.

Figure 3.2 shows that for images that only contain a moderate number of
lines, the convolution phase dominates the run time, but if there are a lot of
long lines, the last three phases begin to take a considerable amount of time too.
Since we expect that the normal scenario for Schlumberger will be a moderate
number of lines, we chose to first focus on the convolution step and convert the
remaining steps if time allowed.

Amdahl’s law (2.17) gives us an upper bound on what we can gain by this
approach. If we use the values from the experiment that yielded Figure 3.2(b),
the last three steps took 0.112 seconds out of the total time of 0.478 seconds,
which yields a “sequential fraction” of f = 0.112/0.478 = 0.234. If we insert

3.2. PORTING THE APPLICATION 23

5

4

3

2

1

Time (s)

S
te

p

0.000 0.005 0.010 0.015 0.020

(a) Input image: Figure 3.1(a).

5

4

3

2

1

Time (s)

S
te

p

0.00 0.05 0.10 0.15 0.20 0.25 0.30

(b) Input image: Figure 3.1(b).

5

4

3

2

1

Time (s)

S
te

p

0.00 0.05 0.10 0.15 0.20 0.25 0.30

(c) Input image: Figure 3.1(c).

Figure 3.2: Time spent by the original implementation on the different phases
for three different images; σ = 1.2. Results averaged over 100 runs.

24 CHAPTER 3. METHODOLOGY

this into Amdahl’s law and let the number of processors go to infinity, we get a
speedup of 1/f = 4.27. Keep in mind that this is a very optimistic bound, so in
practice, the speedups will be lower. Still, this should be a good place to start.

3.2.2 General considerations

Floating point precision The existing implementation used double precision
floating point values throughout the entire algorithm (except for representing
the original image, which is stored as a byte array). Since current CUDA de-
vices only have one ALU per SM that is capable of double precision calculations,
a penalty factor would be incurred by using doubles. In addition, Steger men-
tions that the numerical calculations of the convolution masks uses an approx-
imation error of 10−4, since “for images that contain grey values in the range
[0, 255] this precision is sufficient”[12]. Thus, we felt that the application could
safely be rewritten to exclusively use single precision. In order to verify this, we
compared the output of the program before and after rewriting it to use single
precision. Since the program is capable of outputting line point coordinates to
text files, such a comparison is straightforward. One can use tools like diff if
the resulting files are equal or differ only in a few lines, or write a simple pro-
gram that parses the files and compares the values. We have done the latter; see
Section 4.1.1.

Memory allocation Since the original program is intended to analyse a single
image each time it is launched, memory allocations are scattered around the
code — the memory required by one phase is typically allocated in the beginning
of the code for that phase and then freed at the end. This is not a problem as
long as all one wants to do is to sporadically analyse single images. However,
in seismic analysis, it is desirable to analyse a sequence of images that are slices
from a three-dimensional data set, and in that case, a bit of time is wasted on
memory allocations and deallocations. Assuming that all images are of the same
size, it would be better to allocate memory for all phases in the beginning of
the program and free everything at the end, unless the available memory is too
small. This is only possible for the first two phases, however, since the memory
requirement of the last three phases depends on the number of lines that are
detected. Also, the third phase (line point linking) uses dynamic reallocations.
Possible workarounds for this is to impose limits on the number of lines and
line points that can be detected, or to find an upper bound on the number of
line points and perform preallocation based on that bound. However, since the
allocations take a fairly small amount of time compared to the algorithm steps
themselves, we decided to be satisfied with preallocating memory for the first
two steps.

3.2. PORTING THE APPLICATION 25

Data transfer Data transfer between GPU and system memory often ends up
taking a considerable amount of a GPU-accelerated application’s time[7]. An
obvious optimisation is therefore to avoid unnecessary data transfers — data
that has been calculated by the GPU and is needed in a later stage should remain
there as long as it is needed.

If possible, communication and computation can be interleaved so that cal-
culations (both on the GPU and the CPU) take place during data transfer in
order to hide the transfer latency. This has proven difficult to do here, however,
since each step depends on the previous ones.

3.2.3 Step 1 — Convolution

This step lends itself well to parallelisation. The convolution problem is almost
embarrassingly parallel — the calculation of the result value of a pixel is in-
dependent of (and needs no information from) the calculation of all other pix-
els, but requires as input the values of many neighbouring pixels. Since there
are many memory accesses compared to the amount of computation that takes
place, the way the memory accesses are structured might have a big impact on
efficiency.

FFT

The existing implementation used a direct approach (nested loops) to calculate
the convolution. However, as mentioned in Section 2.1.2, using Fourier trans-
forms is normally a more efficient way. However, in this case (as long as σ
remains fairly small), we have a small convolution mask (because the Gaussian
kernels rapidly become approximately zero within a short distance from the ori-
gin). With small masks, the direct approach might still be faster. We wrote the
following code to measure the performance of the CUFFT library; the results are
presented in Table 4.2.

#include <cufft.h>

// In the following, we assume that ’image’ and ’mask’

// point to device memory that has already been filled

cufftComplex * imageTransform, * maskTransform;

cufftHandle plan, inversePlan;

cudaMalloc((void**)&imageTransform, width * height * sizeof(
cufftComplex));

cudaMalloc((void**)&maskTransform, width * height * sizeof(
cufftComplex));

cufftPlan2d(&plan, width, height, CUFFT_R2C);

cufftPlan2d(&inversePlan, width, height, CUFFT_C2R);

cufftExecR2C(plan, mask, maskTransform);

// All steps above this point can be performed once at program

// startup - only the next three lines need to pe performed

26 CHAPTER 3. METHODOLOGY

// for each convolution

cufftExecR2C(plan, image, imageTransform);

multiply<<<blocks, threads>>>(imageTransform, maskTransform);

cufftExecC2R(reversePlan, transform, imageDevice);

// These two steps can be performed once at program termination

cufftDestroy(plan);

cufftDestroy(inversePlan);

Here, we assume that blocks and threads have been set to suitable values
given the image size. Note that the mask can be transformed once (at program
startup) rather than once for each image. The multiply() kernel for multiply-
ing two images with each other (pixelwise multiplication, not matrix multipli-
cation) looks like this:

__global__ static void multiply(float * a, float * b, long
width, long height) {

long r, c = blockIdx.x * blockDim.x + threadIdx.x;

if (c >= width) return;
for (r = 0; r < height; ++r)

a[c] *= b[c];

}

Direct convolution

Given the results from the FFT tests and our belief that the mask will normally
be small, we should be better off by porting the old code. The simplest possible
way of porting existing code to CUDA is to let one thread to all of the work, so
this was selected as the first step (at a point where the author had just started
learning CUDA). The following must be done:

• Prefix the functions convolve_rows_gauss() and
convolve_cols_gauss() with __global__ to make them kernels.

• Rewrite convolve_gauss() to:

– Allocate memory for the image and the convolution on the GPU

– Copy the image to the GPU

– Launch a single block with a single thread that executes
convolve_rows_gauss()

– Copy the convolution result back to main memory

– Free the GPU memory

This is the basic way of structuring CPU/GPU cooperation.
Having only one thread obviously undermines the entire point of using GPUs.

The work should be divided between many threads, but we are free to choose

3.2. PORTING THE APPLICATION 27

the granularity ourselves. At the other extreme end of the granularity scale, we
can assign a single pixel to each thread (which may work well, since CUDA
devices typically have very low thread overhead), but it is also possible to as-
sign some other number of pixels to each thread. Ideally, different granularity
choices should have been explored, but we ran out of time and ended up with
assigning one column to each thread.

Coalesced memory accesses Since the Gaussian convolution kernel is separa-
ble, the convolution can be performed in two passes: first convolving each row
independently of the others, and then each column. After the initial porting, the
performances of these two steps differed drastically. The reason for this is the
memory access patterns. In convolve_rows_gauss()1, a column was assigned
to each thread, and each thread traversed its column from top to bottom. In
the inner loop, each thread reads the pixels in a small neighbourhood around
the current pixel, from top to bottom — see Figure 3.3(a). This gives coalesced
memory accesses. Since convolve_cols_gauss essentially performs the same
calculation, just rotated ninety degrees, we first attempted to assign a row to
each thread. However, as can be seen from Figure 3.3(b), each thread will then
access values from different rows, which is very suboptimal — one memory
transaction will be issued for each thread. A better solution is to assign a col-
umn to each thread again, as shown in Figure 3.3(c). This is much better, since
threads access successive values in the same row, but in most iterations, the ad-
dress accessed by the first thread is not aligned properly, which will degrade
performance. Thus, the column step is still slower than the row step. There may
be better ways of structuring the column step that will ensure completely coa-
lesced accesses — perhaps by making the threads preload values in a coalesced
manner, or by caching values since each input value is used several times.

On a related note: when the input image is loaded, it is represented as a byte
array. The original code used those byte values during the first convolution,
but this caused a performance hit in the kernel due to the fact that in order to
obtain coalesced reads, each thread must access at values at least 32 bits wide.
Therefore, we convert it to floating point immediately after reading it2.

Constant memory The mask is being precalculated by the CPU, and it could
in principle be put in the constant memory, which is optimised for the case
where many threads access the same memory location simultaneously. How-
ever, we did not succeed in dynamically allocating constant memory (we might

1The convolution functions seemed to be named oddly in the original implementation, since
the inner loop in convolve_rows_gauss() iterates over pixels in the same column, but we
stuck to those names.

2To conserve memory, one might as well do the conversion while reading the image, but we
tried not to modify more files than necessary.

28 CHAPTER 3. METHODOLOGY

(a) The CUDA version of convolve rows gauss() — each thread is
given one column.

(b) The first attempt of converting convolve cols gauss() to CUDA
— each thread is given one row.

(c) The final
CUDA version of
convolve cols gauss()
— each thread calculates
values for one given
column, but needs to
access neighbouring
columns.

Figure 3.3: Memory access patterns for the convolution step. The mask width is
3. Three adjacent threads, labeled A, B, and C, are shown. The illustrations in
each subfigure show, for successive time steps, which pixels are being accessed
by which threads. In the first three time steps, the threads read the pixels from
the input image that are needed to calculate one result pixel, and in the fourth
time step, the result pixel is written (to another image).

3.2. PORTING THE APPLICATION 29

have done something wrong, of course). We could use a predefined maximum
size, but this would limit the possible sigma values. Therefore, we decided to
put the masks in shared memory (to which the threads have very fast access)
instead. The mask must be loaded from gloabl memory into shared memory
at each kernel launch, and this is done by the first threads in each block. As a
consequence, it is required that the block size is at least as big as the mask width
in order for the entire mask to be loaded.

OpenMP The original implementation uses three different for loops: one for
the interior part of the image, and one for each of the two border regions on each
side, since the calculation of pixels close to the border might require pixels that
fall outside of the image. As long as the mask size is small, the border regions
are so small that attempting to parallelise them will be difficult due to thread
management overhead. They can either be left unparallelised so that the master
thread will handle them (which will be slow for large sigma values), or the loops
can be combined (with a small cost due to the if statements that must be put
inside the loop). We opted for the latter solution.

3.2.4 Step 2 — Ridge detection

This step is embarrassingly parallel. The results for each pixel are based only
on the corresponding pixel values from the convolutions. In order to benefit
from coalesced memory accesses, it is obviously desirable to assign neighbour-
ing pixels in the same row to successive threads. The only question that remains
is how many pixels within a column each thread should handle. However, since
our initial (and easy to implement) choice of assigning an entire column to each
thread yielded good results (see Figure 4.1) and further optimisations would
only yield negligible overall improvements, we chose not to spend more time
on this step.

The OpenMP implementation was even simpler; only a parallel for di-
rective was added to the outermost loop. However, since the number of CPU
threads is very limited compared to the number of GPU threads, we cannot ex-
pect to see the same speedup factors.

3.2.5 Step 3 — Line point joining

Unfortunately, this step involves dynamic arrays (which must be implemented
by reallocating arrays that need to grow beyond their allocated size), but kernels
cannot request memory (re)allocations. One can probably get around this by
either setting limits on the sizes of the arrays3, or by allocating a huge amount

3This should only be done after careful study of the problem domain (seismic imaging in
this case) to make sure that the limits are reasonable and will not reduce the usefulness of the

30 CHAPTER 3. METHODOLOGY

of memory and implementing a memory allocator manually — however, due to
the low speed of global memory, the author fears that this will be inefficient.An
approach that might yield higher performance is to use shared memory, but one
must keep in mind that the amount of shared memory is very limited (and that
the more shared memory each block uses, the less is the number of blocks each
SM can hold, so that parallelism decreases).

In addition, we face dependency problems because we do not know in ad-
vance which points belong to which lines. If we let two threads start on two
different points, it might turn out that these are actually part of the same line.
Then, one of the threads will have to yield to the other and let the other thread
complete the traversal of the line, or perhaps the results that the two threads
have accumulated so far (the points they have encountered on the line) can be
combined. Still, one might get synchronisation issues.

While reallocations will not be a problem when using OpenMP, the other
aforementioned problems will still be present, and so we have chosen not to
implement this step, neither in CUDA nor in OpenMP.

3.2.6 Steps 4 and 5 — Line width; bias removal

Step 4 begins with a calculation of the gradient of the image. This calcula-
tion is embarrassingly parallel, and we wrote a separate CUDA kernel for it
(compute_gradient() in position.cu in the width folder on the CD-ROM
(see Appendix B)). Unfortunately, the remaining code is not as simple.

Since the line points were linked in step 3, we do not have the same kinds of
dependencies in the final two steps — each line is independent of the other lines.
However, there are dependencies within each line: there may be line points
where the width could not be detected, and the width of those points will have
to be interpolated from the surrounding pixels. It therefore seems that, at least as
a first step, we should assign one thread to each line. We are doubtful about the
efficiency of this approach, however. Lines may go in arbitrary directions, and
for each line point, several surrounding pixels perpendicular to the line must
be examined in order to locate the maximum gradient. Thus, we cannot expect
to achieve coalesced memory accesses, and we believe this to be detrimental to
performance (in particular in the absence of a cache — but it might be possible
to use the shared memory to emulate a cache). In order to avoid penalties for
divergent branches, we let the block size be 1 and assign one block to each line.

We started porting width.c to CUDA along the lines described above, but
did not get the time to make any further improvements4. It was not entirely

application.
4the author admits that he spent too much time working on the first two steps, and also failed

to take into account the amount of time that would have to be spent on producing this report

3.2. PORTING THE APPLICATION 31

trivial, due to the fact that the input to these steps does not consist of simple
arrays. The data structure for a detected line looks like this:

typedef struct {

long num; /* number of points */

float *row; /* row coordinates of the line points */

float *col; /* column coordinates of the line points */

float *angle; /* angle of normal (measured from the row

axis) */

float *response; /* response of line point (second

derivative) */

float *width_l; /* width to the left of the line */

float *width_r; /* width to the right of the line */

float *asymmetry; /* asymmetry of the line point */

float *contrast; /* contrast of the line point */

contour_class

cont_class; /* contour class (e.g., closed, no_junc) */

} contour;

Step 3 generates a collection of lines that is represented as an array of pointers to
the individual contour instances. Since linked structures cannot be copied di-
rectly to the GPU5, and we believed we should avoid any overhead that might
be incurred by a large number of calls to cudaMemcpy, we decided that, for
each field of contour, the value(s) of that field for all lines should be packed
into one common array. Thus, we we made arrays called cont_row, cont_col,
cont_angle and so on, each of length equal to the total number of line points.
Then, for each line, the entires of row are copied into cont_row, and similarly
for the other fields. These arrays are given as parameters to the kernels for step
4 and 5.

Since it is not possible to pass different parameter values to the different
threads, all threads will receive the same array base addresses, and need to find
out where the data for that thread’s line resides. We accomplish this through the
array offsets. Thread number i must skip all line points from all of the i − 1
preceding threads, so offsets will be filled with cumulative sums of the num-
ber of line points. For instance, assume that four lines have been detected, and
that they contain 3, 7, 6, and 8 points, respectively. Then, offsets will contain
{0, 3, 10, 16}. The first action by thread number i is to advance the pointers
to the arrays by offset[i]. The same strategy is used for a number of sup-
porting arrays, such as grad_l and grad_r, which are required for temporary
storage during the computation (so for these arrays, no data needs to be copied
from CPU to GPU).

Step 5 mostly employs the same strategies as described above, and since it
uses the same input data as step 4, as well as some of the results produced by

5They can be represented in the GPU, but will have to be rebuilt from scratch.

32 CHAPTER 3. METHODOLOGY

that step, we do not need to perform any CPU-GPU data transfers between steps
4 and 5. In addition, step 5 involves a large lookup table for the precalculated
values of the inverse bias function; this table is placed in constant memory in
order to speed up access to it.

The conversion to OpenMP was simpler since we did not need to convert the
data structures. Again, we used the parallel for directive. The only problem
was that the original implementation preallocates a number of arrays that are
used to hold intermediate values for the line that is currently being processed;
the sizes of these arrays are equal to the length of the longest line. We structured
the OpenMP code the same way, but since the threads work on different lines,
they need separate arrays6.

3.3 Performance measurement

3.3.1 Timing

CUDA provides a clock() function that can be called from within a kernel.
The difference between the returned values of two calls to clock() in the same
kernel (within the execution of the same grid) tells the number of cycles the
SM has spent between the two calls[9, sec. 4.3.3]. This is not the same as the
time spent on that particular thread, since several blocks may be mapped onto
the same SM, and there may be several warps in each block. Even if there was
only one block with one warp, each thread would at most execute once every
four cycles. This does, however, provide a more realistic picture of the time
consumption, since it will also take into account stalls due to waiting for data
from global memory.

In the host part of the code, a clock() function is also available, but its
precision depends on the hardware and on the operating system, and on our
test machines, the precision was too low, on the order of a few hundredths of
a second. Therefore, at the expense of portability, we opted for a much more
high-precision timer that is available on Intel processors and PowerPC, called
the Time Stamp Counter. This counter is incremented on each clock cycle (on
PowerPC, it might be controlled by a separate clock[15]), and it may be read
by using the rdtsc instruction. Timing utilities have been implemented in
timer.c, and they employ the function rdtsc(), taken from [15], that uses
the aforementioned instruction. The function is located in timer.h, and if the
application must be ported to an architecture without rdtsc, it is sufficient to
change that file. Note that the processor frequency must be defined in CPU_HZ

in timer.c.

6We implemented this by having the master thread allocate larger arrays and let each thread
locate its appropriate array segment in its first loop iteration.

3.3. PERFORMANCE MEASUREMENT 33

The advantage of this approach is that it can be used on all three implemen-
tations (the original one, CUDA, and OpenMP), as long as one takes care to call
cudaThreadSynchronize() after the CUDA kernel launches one wants to
time. The drawback of this approach is that it measures wall time (the amount
of time that has passed), not the actual time spent by the CPU and GPU on this
process (after all, the process may be preempted by the operating system), but
averaged over many runs, this should impact all three implementations equally.
If one is unfortunate, the process (or the OpenMP threads) will be moved be-
tween different CPUs (having different timer values) by the operating system,
but this should be detectable as anomalies in the measurements, which can then
be discarded. An alternative approach would be to use functionality provided
by CUDA for directly timing kernel launches ([9, Sec. 4.5.3.8]), but this would
only work for the CUDA implementation.

OpenMP The timing of the OpenMP code was problematic, since there was a
large variance in the run times (in particular for the convolution step), probably
caused by thread preemption. We believe that the best times provide the best
picture of how fast the code may potentially run, and we chose to exclude the
poorest results. This was done by sorting the timing results by the time spent
on convolution and excluding the slowest 25% of the results. Since the code
for the last two steps is intertwined, we obtained the timings for Figure 4.1 by
measuring the total time for those steps, and measuring the time spent by the
master thread (which takes more time than the other threads) on the code related
to step 5. This time is then subtracted from the total time. While the individual
results acquired this way are not entirely accurate, the sum of the times reported
for steps 4 and 5 is correct.

3.3.2 Image sequences

The first kernel launch or memory operation is quite expensive due to setup
overhead caused by the driver (around 0.12 seconds). In our measurements,
we have launched the application several times in a row in order to get aver-
aged results, which means that this cost has been incurred repeatedly. When a
sequence of images is to be analysed, it would be more efficient to rewrite the
application to process all of the images in a single run. We have taken care to
make this a fairly simple job. As a proof of concept, we have integrated the line
detector with a simple video player, located in video.c. This is almost entirely
transparent to the line detector code7; the video player code receives a pointer

7Currently, the video player is a part of the same application as the single image analyser (a
command line switch determines whether a video or an image will be processed), but it should be
simple to separate them — or even better, to separate the core code into a dynamically loadable
library.

34 CHAPTER 3. METHODOLOGY

to a callback function that it calls in order to process a video frame. The code for
the algorithm itself is completely unaware of the video player.

Since the application is intended to be used for analysing image sequences
and we have structured our memory allocations as mentioned in Section 3.2.2,
we have chosen to omit the initial memory allocations and the final deallocations
from the timings.

Chapter 4

Results

We have succeeded in porting four of the five steps of Steger’s algorithm to
CUDA. Unfortunately, due to time constraints, the design of the algorithm, and
the author’s lack of experience with CUDA, we have been able to obtain speedups
only for the first two steps. In this chapter, we review timing results and discuss
what might be done with the remaining steps. We also compare the performance
of the CUDA implementation to that of the OpenMP implementation.

4.1 General

Licence Steger’s implementation was released under the GNU General Pub-
lic Licence (GPL) version 2, and therefore our modified application is released
under the same licence.

4.1.1 Floating point precision

The original code, which uses double precision during several calculations, was
run on some of the images from Figure 3.1 and was asked to output a text file
describing the lines that were found. The same was done with our CUDA pro-
gram. We wrote a small python program that compared the resulting files and
calculated the deviations. The results are shown in Table 4.1. We regard these
errors as highly acceptable (keep in mind that the locations are given in terms
of pixel coordinates, so even the greatest deviation we found here only corre-
sponds to around one hundredth of a pixel). This test has been run on the code
version that can be found in the cuda folder on the CD-ROM (see Appendix
B), which includes the CUDA code for only the first two steps, but uses floating
point in all steps. We seem to have a small bug in our CUDA version of the
last two steps, because one of the line points ends up with a high deviation in

35

36 CHAPTER 4. RESULTS

Image Size σ # of # of line Maximum
lines points relative

error
Figure 3.1(a) 256× 256 1.2 142 2516 3.324 · 10−4

Figure 3.1(d) 1250× 301 1.4 372 16503 1.197 · 10−2

Table 4.1: Floating point inaccuracies due to conversion from double precision
to single precision. Sigma values were chosen subjectively to make a reasonable
number of lines appear, given the image.

the value for the detected line contrast; apart from this single error, the results
produced by the CUDA code are correct.

4.1.2 Memory limitations

One should be aware that Steger’s algorithm requires a lot of memory if the im-
age is large — this may be particularily problematic on the GPU, where memory
cannot easily be added. The ridge detection step is the most demanding one; it
requires five float arrays as input, each of size equal to the original image
(these are produced by the convolution step), and produces five float arrays
and one byte array to be sent to the linking phase. Thus, the memory require-
ment for this phase is at least 41 · width · height bytes. This is not a problem for
the images that we use in this project, but it will prevent analysis of images that
contain tens of millions of pixels. The requirements for the last three phases are
not as severe, as they depend on the total number of detected line points, which
is usually quite a bit smaller than the number of pixels.

4.2 Testing environment

The experiments were run on a machine containing an Intel Core2 Quad Q9550
with four cores at 2.83 GHz, with 4 GB of system memory. Note that neither
Steger’s implementation nor our CUDA rewrite uses CPU threads or more than
one process. The compilers are gcc version 4.2.4 and nvcc version 0.2.1221. We
are running Ubuntu with Linux kernel version 2.6.24-21.

The GPU is a Tesla C870, which contains 16 SMs with a total of 128 SPs, and
1.5 GB of global memory. The frequency of each SP is 1.35 GHz.

4.3 Benchmarking. Discussion

The timing results for the seismic image (Figure 3.1(d)) for two different sigma
values that seemed appropriate for the image (depending on whether one would
like to detect the thin lines in the rightmost part of the image or only the thicker

4.3. BENCHMARKING. DISCUSSION 37

ones) are shown in Figure 4.1. Note that for the CUDA version, the time required
for the initial memory allocation (the first of which is very slow due to driver
overhead) has been omitted, since this is a cost that will only be incurred once
even if a sequence of images is analysed.

For reference, we repeat the titles of the steps, since the graphs are only la-
beled with the step numbers:

1. Convolution

2. Ridge detection

3. Line point joining

4. Line width determination

5. Bias removal

We will now discuss the results for each step and how they may be im-
proved.

4.3.1 Step 1 — Convolution

Direct convolution vs. FFT Since we are using a separable convolution mask,
it should be expected that the run time increases linearly in the mask width (not
in the total mask size). For large σ values, the convolution mask may grow
large enough that the FFT approach (whose runtime is independent of σ since
it requires that the mask is of the same size as the image) may become worth-
wile. However, a large sigma value means that only very thick lines should
be detected, and in that case, one might be better off by downscaling the im-
age before feeding it to the line detector. Still, should some situation warrant
such large sigma values, we recommend that our convolution implementation
be discarded in favor of the FFT approach presented in Section 3.2.3. The time
required by the three central lines of that code is presented in Table 4.2. In order
to be comparable to the other convolution timings, they must be multiplied by
five (since five convolutions are performed in the algorithm). The reason that
the 1250 × 301 transform is slower than the 1024 × 1024 one is probably that
FFT is most efficient when the image size is a power of two (which it probably
cannot be expected to be in real world situations).

Row convolution vs. column convolution Since the memory access patterns of
the two convolution substeps are different (the accesses of the column step are
not properly aligned), their performance differ — the column step is around 2.3
times slower than the row step. It should be possible to further restructure the
column step so that perfectly coalesced accesses are achieved.

38 CHAPTER 4. RESULTS

5

4

3

memcpy

2

1

Time (s)

S
te

p

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Original

CUDA (steps 1 and 2)

OpenMP (except step 3)

(a) Input image: Figure 3.1(d), σ = 1.4

5

4

3

memcpy

2

1

Time (s)

S
te

p

0.00 0.04 0.08 0.12

Original
CUDA (steps 1 and 2)
OpenMP (except step 3)

(b) Input image: Figure 3.1(d), σ = 1.8

Figure 4.1: Timing results for analysis of the seismic image at two different sigma
values. Notice the scale; the lower diagram is compacted. Results averaged over
100 runs; see Section 3.3.1 for notes on OpenMP timing.

4.3. BENCHMARKING. DISCUSSION 39

Image size FFT time
256× 256 0.000731
1024× 1024 0.00695
1250× 301 0.00929

Table 4.2: Time (in seconds) required for a single FFT followed by a multiplica-
tion with a pretransformed mask and then an inverse transform. Results aver-
aged over 5 runs.

Thread granularity Regrettably, we did not get the time to explore the conse-
quences of different thread granularities; rather, we simply assign an entire col-
umn to each thread (both in the row phase and in the column phase). This might
not be optimal. Another consequence of this is that if the width of the image is
too low (less than 512 in our case, since we have 16 SPs and we use 32 threads
in each block) we do not utilise all available SPs, and performance will degrade.
This ought to be improved.

OpenMP The OpenMP version required fairly little effort, and gave speedups
of between 1.96 and 2.08 for the seismic image.

4.3.2 Step 2 — Ridge detection

Not surprisingly, this step is the one that benefited the most from parallellisa-
tion. This is probably due to the fact that there is quite a bit of calculation in-
volved per pixel, and that the calculation of each pixel does not depend on any
neighbouring pixels (as opposed to the convolution, where the calculation of
each pixel requires the values for several of the neighbouring pixels). Therefore,
there are no memory access patterns that can cause trouble as long as we let suc-
cessive threads operate on successive pixels in the same row, so that we achieve
coalesced global memory access. The speedup for the seismic image is around
13.1, independently of the sigma value. Unfortunately, this speedup does not
impact the overall run time much, as long as some of the other steps remain
unimproved.

It is particularily interesting to see how little work was required to achieve
this speedup — one of the for loops in compute_line_points() was re-
moved and replaced by an index calculation to determine which column to op-
erate on. Thus, this is a great example of how easy it can be to use CUDA in
certain situations.

The OpenMP version was also very simple to write, and it showed speedups
of around 2.4 for the seismic image.

40 CHAPTER 4. RESULTS

4.3.3 Step 3 — Line point joining

As discussed in 3.2.5, we expect this step to be difficult to parallelise well on any
platform, due to the dependencies between the points. A CUDA implementa-
tion will be particularily difficult since this step also relies on dynamic memory
reallocation. Fortunately, as long as the number of lines remains moderate, this
step is fairly fast. However, as long as this step needs to be executed on the CPU,
we are forced to copy a lot of intermediate results from step 2 from GPU to main
memory, which is an extra performance penalty. In the graphs, there is a bar
entitled “memcpy” to represent the time required for this copy operation. We
felt that this should be presented separately from the time for the calculations
themselves, in particular because potential future improvements may result in
all steps being performed on the GPU, thereby eliminating this copy operation.

4.3.4 Steps 4 and 5 — Line width; bias removal

While we did manage to port these steps to CUDA, it regrettably resulted in
severely degraded performance. When the CUDA version is run on the seismic
image, the time required for the width step is between 4.7 and 4.9 times more
than for the sequential implementation, and the bias step is between 3.3 and
3.5 times slower. The gradient calculation in the beginning of step 4 is by itself
faster than the sequential version (after all, it is embarrassingly parallel). We
did, however, not use the CUDA gradient calculation in our timings for Figure
4.1, since it is responsible for a fairly negligible fraction of the total time (and
the gains are diminished by the time it takes to copy the result back to main
memory).

In our implementation, the amount of parallelism is limited to the number
of detected lines. We believe it will be hard to increase parallelism beyond that,
since there are dependencies within each line (sequences of missing values may
need to be interpolated from neighbouring points). Also, the arithmetic inten-
sity is fairly low (meaning that there is not much computation per value that
is read from memory), which may result in threads stalling while waiting for
data from memory. The greatest problem is most likely related to the memory
access pattern — in each iteration, a thread needs to load several values (line
point position, gradient values etc.) that are located in different places in the
global memory, and in the next iteration, it will move to any one of the eight
neighbouring pixels. Other threads will work in different areas of the image.
In such situations, coalesced memory accesses are hard to achieve. It will be
challenging to overcome this, but it might possibly be done by issuing several
threads per block and letting one thread act as a master thread and the others as
slaves — for each iteration in the loop that walks through the points on the line,
the threads can cooperate on loading neighbouring values from global memory

4.3. BENCHMARKING. DISCUSSION 41

into shared memory (thus achieving coalesced reads). After the loading step, the
slaves wait for the master to complete the calculation of that line point. On the
next few iterations, the master thread might find the values it needs in shared
memory. This approach essentially amounts to using shared memory to emu-
late a cache. The drawback is that this will give good results only for horizontal
lines. A better option might be to arrange the data differently in memory. If all
the values that describe a line point are located successively in memory (rather
than being stored in separate arrays), threads could cooperate on loading all re-
quired values for a point in a coalesced manner (rather than loading values for
neighbouring points).

The OpenMP version was quite a bit simpler to write, and it shows speedups
of around 2 for the width step and around 2.4 for the bias step. A cache con-
scious approach might be able to improve the run time.

4.3.5 Overall performance

With only two of the five steps having been speeded up by CUDA, the over-
all gains will clearly be limited. The total speedup of the implementation that
uses CUDA for the first two steps and the original code (rewritten to use single
precision) for the last three steps is 2.06 and 2.45 for the seismic images with
sigma values 1.4 and 1.8, respectively. Images with many lines will cause the
last three steps to dominate the overall run time, and any advantage from using
the GPU is lost — however, we expect the number of lines to generally be mod-
erate when doing seismic analysis. Still, a speedup factor of only a little more
than two leaves something to be desired, given the hardware we are using. We
have discussed a number of possible improvements, so with more time avail-
able and a larger degree of CUDA proficiency, it should be possible to improve
the performance.

It is interesting to note that the OpenMP implementation (where all steps
except the third have been ported) shows speedups of 1.87 and 2.03 for the same
images, with far less coding effort.

Chapter 5

Conclusions and future work

The purpose of this project was to port an edge detection algorithm to CUDA in
order to make it run on GPUs. Speedups for such algorithms would be useful
for the oil field service provider Schlumberger, who intend to employ edge de-
tection in the analysis of seismic images. By their suggestion, we chose an algo-
rithm developed by Carsten Steger, which consists of five steps to be performed
in sequence. We ported four of the steps to CUDA (the third step proved to be
too challenging), but only achieved speedups on the two most time-consuming
steps. The resulting speedup factors were 3.13 on the first step (convolution) and
13.1 on the second step (ridge detection). However, the unparallelised portion of
the code limited the total gains. The code that combined the CUDA implemen-
tation of the first two steps with the original implementation of the remaining
steps gave an overall speedup of between 2.06 and 2.45 on an image that is rep-
resentative for the kind of analysis that Schlumberger wants to perform, using
sigma values between 1.4 and 1.8. While this speedup certainly is not negligi-
ble, it is far from being impressive, and one must consider whether it is worth
the investment in graphics cards and development time. In particular, since the
OpenMP version we made yielded comparable overall speedups (between 1.87
and 2.03) while requiring less development time, the option of using multicore
processors instead should be considered.

Why did we fail to obtain higher speedups? While the author’s limited expe-
rience with CUDA certainly must take part of the blame (in particular for failing
to produce better results on the convolution step), we also believe that the last
three steps of Steger’s algorithm are not particularily well suited for implemen-
tation on the Tesla GPU architecture due to their memory access patterns. The
third step (line point joining) also seems to be difficult to parallelise in general.

43

44 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Future work

Clearly, the last two steps need major improvements if their CUDA versions are
to be of any use. The third step should be parallelised if possible — as long
as the number of lines is moderate, it is a fast step (so improvements here will
not greatly benefit the overall runtime, unless major speedups on all other steps
are achieved), but an added benefit of having the entire computation reside on
the GPU is that a lot of memory transfers between GPU to CPU will be avoided.
Possible actions that could be taken in order to achieve notable overall speedups
include:

• Changing the memory access pattern for the column convolution so that
its performance will approach that of the row convolution.

• Refining the thread granularity in the convolution step.

• Reducing the number of memory reads in the convolution step by per-
forming all calculations that involve a certain value once it has been loaded,
and possibly also perform all five of the required convolutions simultane-
ously.

• Making more thorough measurements of the relationship between image
size, sigma values and the performances of the direct convolution and
the FFT based convolution. Then, the code could dynamically determine
which method should be used.

• Porting step 3. If at all possible, it might require a major reworking of the
code or the adoption of an entirely new strategy. A naı̈ve parallelisation
strategy which simply lets different threads start out at different line points
will suffer from the fact that two line points may turn out to lie on the same
line. In addition, the random access patterns generated by this step and the
need for dynamic memory allocation cause major complications.

• In steps 4 and 5 (width determination and bias removal), one might try
to use “slave” threads to preload data from global memory into shared
memory in order to speed up memory access for the main threads, and to
organize data differently in memory so that coalesced memory reads can
be achieved.

As mentioned, the algorithm steps that caused problems for us are easier
to implement on a traditional multiprocessor computer than on a GPU, since
ordinary threads are allowed to perform memory allocations themselves and it
is easier to efficiently use caches on an ordinary processor than to obtain coa-
lesced memory accesses on a GPU. Examining the performance of the OpenMP
implementation on processors with more cores might be worthwile.

Bibliography

[1] G. AMDAHL, Validity of the Single Processor Approach to Achieving Large-Scale Com-
puting Capabilities, in Proceedings of the AFIPS spring joint computer conference,
1967, pp. 483–485. [cited at p. 19]

[2] K. ASANOVÍC, R. BODIK, B. CATANZARO, J. GEBIS, P. HUSBANDS, K. KEUTZER,
D. PATTERSON, W. PLISHKER, J. SHALF, S. WILLIAMS, AND K. YELICK, The Land-
scape of Parallel Computing Research: A View from Berkeley, Tech. Rep. UCB/EECS-
2006-183, Electrical Engineering and Computer Sciences — University of Califor-
nia at Berkeley, December 2006. [cited at p. 19]

[3] D. BLYTHE, Rise of the Graphics Processor, Proceedings of the IEEE, 96 (2008).
[cited at p. 11]

[4] S. CHE, M. BOYER, J. MENG, D. TARJAN, J. W. SHEAFFER, AND K. SKADRON, A
performance study of general-purpose applications on graphics processors using CUDA,
Journal of Parallel and Distributed Computing, 68 (2008). [cited at p. 15, 16]

[5] C. GASQUET, P. WITOMSKI, AND R. RYAN, Fourier Analysis and Applications,
Springer, 1998. [cited at p. 3]

[6] E. KREYSZIG, Advanced Engineering Mathematics, Wiley, 9 ed., 2006. [cited at p. 5]

[7] L. C. LARSEN, Utilizing GPUs on Cluster Computers, Master’s thesis, Norwegian
University of Science and Technology, 2006. [cited at p. 25]

[8] J. NICKOLLS, I. BUCK, M. GARLAND, AND K. SKADRON, Scalable Parallel Program-
ming with CUDA, ACM Queue, 6 (2008). [cited at p. 16]

[9] NVIDIA, CUDA programming guide 2.0, June 2008. http://developer.

download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_

Programming_Guide_2.0.pdf. [cited at p. ix, 10, 15, 16, 32, 33]

[10] J. D. OWENS, M. HOUSTON, D. LUEBKE, S. GREEN, J. E. STONE, AND J. C.
PHILLIPS, GPU Computing, Proceedings of the IEEE, 96 (2008). [cited at p. 11]

[11] D. F. ROGERS, Procedural Elements for Computer Graphics, McGraw-Hill Book Com-
pany, 1985. [cited at p. 9]

45

http://developer.download.nvidia.com/ compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/ compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/ compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

46 BIBLIOGRAPHY

[12] C. STEGER, An Unbiased Detector of Curvilinear Structures, Tech. Rep. FGBV-96-03,
Forschungsgruppe Bildverstehen (FG BV), Informatik IX — Technische Universität
München, July 1996. [cited at p. 1, 6, 24]

[13] B. M. TER HAAR ROMNEY, L. M. FLORACK, A. H. SALDEN, AND M. A.
VIERGEVER, Higher order differential structure of images, Image and Vision Comput-
ing, 12 (1994). [cited at p. 6]

[14] O. YILMAZ AND S. M. DOHERTY, Seismic Data Processing (Investigations in Geo-
physics, Vol 2), Society of Exploration, 1987. [cited at p. 1]

[15] K. YOSHII, Time-stamp counter. http://www.mcs.anl.gov/˜kazutomo/

rdtsc.html. [cited at p. 32]

http://www.mcs.anl.gov/~kazutomo/rdtsc.html
http://www.mcs.anl.gov/~kazutomo/rdtsc.html

Appendices

47

Appendix A

Code

In this appendix we have put the most important source files for our CUDA
implementations. The full source code for our CUDA and OpenMP implemen-
tations as well as Steger’s original code can be found on the accompanying CD-
ROM; see Appendix B for instructions.

A.1 CUDA implementation — steps 1 and 2

This is the CUDA code that actually produced speedups. The full code is in the
cuda folder on the CD-ROM.

A.1.1 convol.cu

/* Convolve an image with the derivatives of Gaussians; part

of detect-lines.

Copyright (C) 1996-1998 Carsten Steger

This program is free software; you can redistribute it and/

or modify

it under the terms of the GNU General Public License as

published by

the Free Software Foundation; either version 2, or (at your

option)

any later version.

This program is distributed in the hope that it will be

useful,

but WITHOUT ANY WARRANTY; without even the implied warranty

of

49

50 APPENDIX A. CODE

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the

GNU General Public License for more details.

You should have received a copy of the GNU General Public

License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#define CUDA_FILE

extern "C" {

#include "lines.h"

#include "timer.h"

}

#include <cuda.h>

/* Constants */

/* 1/sqrt(2*PI) */

#define SQRT_2_PI_INV 0.398942280401432677939946059935

/* Local function prototypes */

__global__ void convolve_rows_gauss __P((float * floatImage,

float *mask, long n,

float *h, long width, long
height));

__global__ void convolve_cols_gauss __P((float *h, float *mask,

long n, float *k,

long width, long height));

static float *compute_gauss_mask_0 __P((long *num, double sigma

));

static float *compute_gauss_mask_1 __P((long *num, double sigma

));

static float *compute_gauss_mask_2 __P((long *num, double sigma

));

void checkCUDAError(const char* msg);

void checkCUDAError(const char *msg)

{

A.1. CUDA IMPLEMENTATION — STEPS 1 AND 2 51

cudaError_t err = cudaGetLastError();

if(cudaSuccess != err)

{

fprintf(stderr, "Cuda error: %s: %s.\n", msg,

cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

}

extern "C" {

/* Functions to compute the integral, and the 0th and 1st

derivative of the

Gaussian function 1/(sqrt(2*PI)*sigma)*exp(-0.5*xˆ2/sigmaˆ2)

*/

/* Integral of the Gaussian function */

double phi0(double x, double sigma)

{

return normal(x/sigma);

}

/* The Gaussian function */

double phi1(double x, double sigma)

{

double t;

t = x/sigma;

return SQRT_2_PI_INV/sigma*exp(-0.5*t*t);

}

/* First derivative of the Gaussian function */

double phi2(double x, double sigma)

{

double t;

t = x/sigma;

return -x*SQRT_2_PI_INV/pow(sigma,3.0)*exp(-0.5*t*t);

}

52 APPENDIX A. CODE

/* Functions to compute the one-dimensional convolution masks

of the 0th, 1st,

and 2nd derivative of the Gaussian kernel for a certain

smoothing level

given by sigma. The mask is allocated by the function and

given as the

return value. The caller must ensure that this memory is

freed. The

output is intended to be used as an array with range [-num:

num]. Therefore,

the caller should add num to the return value. Examples for

the calling

sequence can be found in convolve_gauss. Examples for the

usage of the

masks are given in convolve_rows_gauss and

convolve_cols_gauss. */

/* Gaussian smoothing mask */

static float *compute_gauss_mask_0(long * num, double sigma)

{

long i, n;

float *h, *mask;

n = MASK_SIZE(MAX_SIZE_MASK_0,sigma); /* Error < 0.001 on

each side */

h = (float *) calloc(2*n+1,sizeof(float));
mask = h + n;

for (i=-n+1;i<=n-1;i++)

mask[i] = phi0(-i+0.5,sigma) - phi0(-i-0.5,sigma);

mask[-n] = 1.0 - phi0(n-0.5,sigma);

mask[n] = phi0(-n+0.5,sigma);

*num = n;

return h;

}

/* First derivative of Gaussian smoothing mask */

static float *compute_gauss_mask_1(long * num, double sigma)

{

long i, n;

float *h, *mask;

n = MASK_SIZE(MAX_SIZE_MASK_1,sigma); /* Error < 0.001 on

each side */

h = (float *) calloc(2*n+1,sizeof(float));
mask = h + n;

A.1. CUDA IMPLEMENTATION — STEPS 1 AND 2 53

for (i=-n+1;i<=n-1;i++)

mask[i] = phi1(-i+0.5,sigma) - phi1(-i-0.5,sigma);

mask[-n] = -phi1(n-0.5,sigma);

mask[n] = phi1(-n+0.5,sigma);

*num = n;

return h;

}

/* Second derivative of Gaussian smoothing mask */

static float *compute_gauss_mask_2(long * num, double sigma)

{

long i, n;

float *h, *mask;

n = MASK_SIZE(MAX_SIZE_MASK_2,sigma); /* Error < 0.001 on

each side */

h = (float *) calloc(2*n+1,sizeof(float));
mask = h + n;

for (i=-n+1;i<=n-1;i++)

mask[i] = phi2(-i+0.5,sigma) - phi2(-i-0.5,sigma);

mask[-n] = -phi2(n-0.5,sigma);

mask[n] = phi2(-n+0.5,sigma);

*num = n;

return h;

}

}

/* Convolve an image with the derivatives of a Gaussian

smoothing kernel.

Since all of the masks are separable, this is done in two

steps in the

function convolve_gauss. Firstly, the rows of the image are

convolved by

an appropriate one-dimensional mask in convolve_rows_gauss,

yielding an

intermediate float-image h. Then the columns of this image

are convolved

by another appropriate mask in convolve_cols_gauss to yield

the final

result k. At the border of the image the gray values are

mirrored. */

54 APPENDIX A. CODE

/* Convolve the rows of an image with the derivatives of a

Gaussian. */

__global__ void convolve_rows_gauss(float * image, float * mask

, long n, float * h, long width, long height)

{

long j, r, c, l;

float sum;

extern __shared__ float sharedData[];

float * sharedMask = sharedData + n;

c = blockIdx.x * blockDim.x + threadIdx.x;

if (threadIdx.x < 2 * n + 1)

sharedData[threadIdx.x] = mask[threadIdx.x]; // WARNING:

assumes that width and blockDim >= 2 * n + 1

__syncthreads();

if (c >= width) return;

// Inner region

for (r=n; r<height-n; r++) {

l = LINCOOR(r,c,width);

sum = 0.0;

for (j=-n;j<=n;j++)

sum += (image[l+j*width])*sharedMask[j];

h[l] = sum;

}

// Border regions

for (r=0; r<n; r++) {

l = LINCOOR(r,c,width);

sum = 0.0;

for (j=-n;j<=n;j++)

sum += (image[LINCOOR(BR(r+j),c,width)])*sharedMask[j];

h[l] = sum;

}

for (r=height-n; r<height; r++) {

l = LINCOOR(r,c,width);

sum = 0.0;

for (j=-n;j<=n;j++)

sum += (image[LINCOOR(BR(r+j),c,width)])*sharedMask[j];

h[l] = sum;

}

}

/* Convolve the columns of an image with the derivatives of a

Gaussian. */

A.1. CUDA IMPLEMENTATION — STEPS 1 AND 2 55

__global__ static void convolve_cols_gauss(float * h, float *
mask, long n, float * k, long width, long height)

{

long j, r, c, l;

float sum;

extern __shared__ float sharedData[];

float * sharedMask = sharedData + n;

c = blockIdx.x * blockDim.x + threadIdx.x;

if (threadIdx.x < 2 * n + 1)

sharedData[threadIdx.x] = mask[threadIdx.x]; // WARNING:

assumes that width and blockDim >= 2 * n + 1

__syncthreads();

if (c >= width) return;

/* Inner region */

if (c >= n && c < width - n) {

for (r=0; r<height; r++) {

l = LINCOOR(r,c,width);

sum = 0.0;

for (j=-n;j<=n;j++)

sum += h[l+j]*sharedMask[j];

k[l] = sum;

}

}

/* Border regions */

else if (c < n) {

for (r=0; r<height; r++) {

l = LINCOOR(r,c,width);

sum = 0.0;

for (j=-n;j<=n;j++)

sum += h[LINCOOR(r,BC(c+j),width)]*sharedMask[j];

k[l] = sum;

}

}

else {

for (r=0; r<height; r++) {

l = LINCOOR(r,c,width);

sum = 0.0;

for (j=-n;j<=n;j++)

sum += h[LINCOOR(r,BC(c+j),width)]*sharedMask[j];

k[l] = sum;

}

}

}

56 APPENDIX A. CODE

extern "C" {

static cputimer_t timer;

static float *h, *hDevice, *imageDevice, *maskDevice[3], *mask

[3];

static long imageMemSize, maskSize[3];

void initCuda(long width, long height, long cudaDeviceNumber) {

long i;

startTimer(&timer);

cudaSetDevice(cudaDeviceNumber);

imageMemSize = width * height * sizeof(float);
cudaMalloc((void **) &hDevice, imageMemSize);

printTimeAndReset(&timer, "first time alloc");

cudaMallocHost((void **)&h, imageMemSize);

cudaMalloc((void **) &imageDevice, imageMemSize);

mask[0] = compute_gauss_mask_0(&maskSize[0], opts.sigma);

mask[1] = compute_gauss_mask_1(&maskSize[1], opts.sigma);

mask[2] = compute_gauss_mask_2(&maskSize[2], opts.sigma);

for (i = 0; i < 3; ++i) {

cudaMalloc((void **) &maskDevice[i], (maskSize[i] * 2 + 1)

* sizeof(float));
cudaMemcpy(maskDevice[i], mask[i], (maskSize[i] * 2 + 1) *

sizeof(float), cudaMemcpyHostToDevice);

}

initCuda_position(width, height);

printTimeAndReset(&timer, "subsequent allocs");

}

void cleanupCuda() {

long i;

cleanupCuda_position();

for (i = 0; i < 3; ++i)

cudaFree(maskDevice[i]);

cudaFree(imageDevice);

cudaFree(hDevice);

cudaFreeHost(h);

}

/* Convolve an image with a derivative of the Gaussian. */

void convolve_gauss(float * floatImage, float * kDevice, long
width, long height, double sigma, long deriv_type)

{

float *hr, *hc;

long nr, nc, rowOp, colOp;

long numBlocks;

A.1. CUDA IMPLEMENTATION — STEPS 1 AND 2 57

if (deriv_type == DERIV_R) cudaMemcpy(imageDevice, floatImage

, imageMemSize, cudaMemcpyHostToDevice); // The image only

needs to be copied once per five convolutions

switch (deriv_type) {

case DERIV_R:

rowOp = 1;

colOp = 0;

break;
case DERIV_C:

rowOp = 0;

colOp = 1;

break;
case DERIV_RR:

rowOp = 2;

colOp = 0;

break;
case DERIV_RC:

rowOp = 1;

colOp = 1;

break;
case DERIV_CC:

rowOp = 0;

colOp = 2;

break;
}

hr = maskDevice[rowOp];

hc = maskDevice[colOp];

nr = maskSize[rowOp];

nc = maskSize[colOp];

cudaThreadSynchronize();

numBlocks = (long)ceil(width / 32.0f);

convolve_rows_gauss<<<numBlocks, 32, 2 * nr + 1>>>(

imageDevice,hr,nr,hDevice,width,height);

cudaThreadSynchronize();

checkCUDAError("convolve rows");

convolve_cols_gauss<<<numBlocks, 32, 2 * nc + 1>>>(hDevice,hc

,nc,kDevice,width,height);

cudaThreadSynchronize();

checkCUDAError("convolve columns");

}

58 APPENDIX A. CODE

}

A.1.2 position.cu

/* Extract line points from an image; part of detect-lines.

Copyright (C) 1996-1998 Carsten Steger

This program is free software; you can redistribute it and/

or modify

it under the terms of the GNU General Public License as

published by

the Free Software Foundation; either version 2, or (at your

option)

any later version.

This program is distributed in the hope that it will be

useful,

but WITHOUT ANY WARRANTY; without even the implied warranty

of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the

GNU General Public License for more details.

You should have received a copy of the GNU General Public

License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#define CUDA_FILE

extern "C" {

#include "lines.h"

#include <time.h>

#include "timer.h"

/* Constants */

/* The pixel boundaries need to be enlarged slightly since in

practice it

frequently happens for neighboring pixels a and b that pixel

a says a

A.1. CUDA IMPLEMENTATION — STEPS 1 AND 2 59

maximum lies within pixel b and vice versa. This presents

no problem since

linking algoritm will take care of this. */

#define PIXEL_BOUNDARY 0.6

void checkCUDAError(const char* msg);

void checkCUDAError(const char *msg)

{

cudaError_t err = cudaGetLastError();

if(cudaSuccess != err)

{

fprintf(stderr, "Cuda error: %s: %s.\n", msg,

cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

}

/* Local function prototypes */

/*static void compute_line_points __P((float *ku[5], byte *
ismax, float *ev,

float *nx, float *ny,

float *px,

float *py, long width,

long height,

double low, double high,

long mode));*/

/* Solve the linear equation a*x+b=0 and return the result in t

and the number

of solutions in num. */

__device__ __host__ void solve_linear(float a, float b, float *
t, long * num)

{

if (a == 0.0f) {

*num = 0;

} else {

*num = 1;

*t = -b/a;

}

}

60 APPENDIX A. CODE

/* Compute the eigenvalues and eigenvectors of the Hessian

matrix given by

dfdrr, dfdrc, and dfdcc, and sort them in descending order

according to

their absolute values. */

__device__ __host__ void compute_eigenvals(float dfdrr, float
dfdrc, float dfdcc, float2 * eigval, float4 * eigvec)

{

float theta, t, c, s, e1, e2, n1, n2; //, phi;

/* Compute the eigenvalues and eigenvectors of the Hessian

matrix. */

if (dfdrc != 0.0f) {

theta = 0.5*(dfdcc-dfdrr)/dfdrc;

t = 1.0f/(fabs(theta)+sqrt(theta*theta+1.0f));

if (theta < 0.0f) t = -t;

c = 1.0f/sqrt(t*t+1.0f);

s = t*c;

e1 = dfdrr-t*dfdrc;

e2 = dfdcc+t*dfdrc;

} else {

c = 1.0f;

s = 0.0f;

e1 = dfdrr;

e2 = dfdcc;

}

n1 = c;

n2 = -s;

/* If the absolute value of an eigenvalue is larger than the

other, put that

eigenvalue into first position. If both are of equal

absolute value, put

the negative one first. */

if (fabs(e1) > fabs(e2)) {

eigval->x = e1;

eigval->y = e2;

eigvec->x = n1;

eigvec->y = n2;

eigvec->z = -n2;

eigvec->w = n1;

} else if (fabs(e1) < fabs(e2)) {

eigval->x = e2;

eigval->y = e1;

A.1. CUDA IMPLEMENTATION — STEPS 1 AND 2 61

eigvec->x = -n2;

eigvec->y = n1;

eigvec->z = n1;

eigvec->w = n2;

} else {

if (e1 < e2) {

eigval->x = e1;

eigval->y = e2;

eigvec->x = n1;

eigvec->y = n2;

eigvec->z = -n2;

eigvec->w = n1;

} else {

eigval->x = e2;

eigval->y = e1;

eigvec->x = -n2;

eigvec->y = n1;

eigvec->z = n1;

eigvec->w = n2;

}

}

}

}

/* For each point in the image determine whether there is a

local maximum of

the second directional derivative in the direction (nx[l],ny

[l]) within the

pixels’s boundaries. If so, set ismax[l] to 2 if the

eigenvalue ev[l] is

larger than high, to 1 if ev[l] is larger than low, and to 0

otherwise.

Furthermore, put the sub-pixel position of the maximum into

(px[l],py[l]).

The parameter mode determines whether maxima (dark lines

points) or minima

(bright line points) should be selected. The partial

derivatives of the

image are input as ku[]. */

__global__ static void compute_line_points(float * ku0, float *
ku1, float * ku2, float * ku3, float * ku4, byte * ismax,

float * ev, float * nx, float * ny, float * px, float * py,

long width, long height, float low, float high, long mode)

{

long r, c, l;

float k0, k1, k2, k3, k4;

62 APPENDIX A. CODE

float2 eigval;

float4 eigvec;

float a, b, t;

long num;

float n1, n2;

float p1, p2;

float val;

c = blockIdx.x * blockDim.x + threadIdx.x;

for (r=0; r<height; r++) {

l = LINCOOR(r,c,width);

k0 = ku0[l];

k1 = ku1[l];

k2 = ku2[l];

k3 = ku3[l];

k4 = ku4[l];

ev[l] = 0.0f;

nx[l] = 0.0f;

ny[l] = 0.0f;

compute_eigenvals(k2,k3,k4,&eigval,&eigvec);

if (mode == MODE_LIGHT)

val = -eigval.x;

else
val = eigval.x;

if (val > 0.0f) {

ev[l] = val;

n1 = eigvec.x;

n2 = eigvec.y;

a = k2*n1*n1+2.0f*k3*n1*n2+k4*n2*n2;

b = k0*n1+k1*n2;

solve_linear(a,b,&t,&num);

if (num != 0) {

p1 = t*n1;

p2 = t*n2;

if (fabs(p1) <= PIXEL_BOUNDARY && fabs(p2) <=

PIXEL_BOUNDARY) {

if (val >= low) {

if (val >= high)

ismax[l] = 2;

else
ismax[l] = 1;

}

nx[l] = n1;

ny[l] = n2;

px[l] = r+p1;

py[l] = c+p2;

}

}

A.1. CUDA IMPLEMENTATION — STEPS 1 AND 2 63

}

}

}

extern "C" {

static float * k[5], * kDevice[5];

static byte *ismax, *ismaxDevice;

static float *ev, *n1, *n2, *p1, *p2;

static float *evDevice, *n1Device, *n2Device, *p1Device, *
p2Device;

static int *num_resultDevice;

void initCuda_position(long width, long height) {

long i, size = width * height * sizeof(float);
for (i = 0; i < 5; ++i) {

k[i] = (float *) malloc(size);

cudaMalloc((void **) &kDevice[i], size);

}

cudaMalloc((void **) &num_resultDevice, sizeof(int));
ismax = (byte *) xcalloc(width*height,sizeof(*ismax));
ev = (float *) xcalloc(width*height,sizeof(*ev));
n1 = (float *) xcalloc(width*height,sizeof(*n1));
n2 = (float *) xcalloc(width*height,sizeof(*n2));
p1 = (float *) xcalloc(width*height,sizeof(*p1));
p2 = (float *) xcalloc(width*height,sizeof(*p2));
cudaMalloc((void **) &ismaxDevice, width*height*sizeof(*ismax

));

cudaMalloc((void **) &evDevice, width*height*sizeof(*evDevice
));

cudaMalloc((void **) &n1Device, width*height*sizeof(*n1Device
));

cudaMalloc((void **) &n2Device, width*height*sizeof(*n2Device
));

cudaMalloc((void **) &p1Device, width*height*sizeof(*p1Device
));

cudaMalloc((void **) &p2Device, width*height*sizeof(*p2Device
));

}

void cleanupCuda_position() {

long i;

cudaFree(p2Device);

cudaFree(p1Device);

cudaFree(n2Device);

cudaFree(n1Device);

64 APPENDIX A. CODE

cudaFree(evDevice);

cudaFree(ismaxDevice);

free(p2);

free(p1);

free(n2);

free(n1);

free(ev);

free(ismax);

cudaFree(num_resultDevice);

for (i = 0; i < 5; ++i)

cudaFree(kDevice[i]);

}

/* Main routine to detect lines in an image of dimension width

* height. The

extracted lines are returned in result, while num_result is

the number of

detected lines. The parameter sigma is the amount of

smoothing that the

Gaussian kernel performs, while low and high are the

hysteresis thresholds

used in the linking algorithm. With mode, either bright or

dark lines can

be selected. The parameter compute_width determines whether

the line width

should be extracted, while correct_pos determines whether

the line width

and position correction should be applied. */

void detect_lines (byte *image, long width, long height,

contour ***result, long *num_result, double sigma, double
low, double high, long mode, bool compute_width, bool

correct_pos, bool extend_lines)

{

long i;

float *floatImage;

long floatSize = width * height * sizeof(float);
cputimer_t timer;

long numBlocks;

// Convert image to float

floatImage = (float *) xcalloc(width * height, sizeof(float))
;

for (i = 0; i < width * height; ++i)

floatImage[i] = image[i];

A.1. CUDA IMPLEMENTATION — STEPS 1 AND 2 65

// Step 1 - Convolution

startTimer(&timer);

convolve_gauss(floatImage,kDevice[0],width,height,sigma,

DERIV_R);

convolve_gauss(floatImage,kDevice[1],width,height,sigma,

DERIV_C);

convolve_gauss(floatImage,kDevice[2],width,height,sigma,

DERIV_RR);

convolve_gauss(floatImage,kDevice[3],width,height,sigma,

DERIV_RC);

convolve_gauss(floatImage,kDevice[4],width,height,sigma,

DERIV_CC);

printTimeAndReset(&timer, "convolve");

// Step 2 - Ridge detection

cudaMemset(ismaxDevice, 0, width*height*sizeof(*ismaxDevice))
;

cudaMemset(evDevice, 0, floatSize);

numBlocks = (long)ceil(width / 32.0f);

compute_line_points<<<numBlocks, 32>>>(kDevice[0],kDevice[1],

kDevice[2],kDevice[3],kDevice[4],ismaxDevice,evDevice,

n1Device,n2Device,p1Device,p2Device,width,height,low,high,

mode);

cudaThreadSynchronize();

checkCUDAError("ridge detection");

printTimeAndReset(&timer, "ridge detection");

for (i = 0; i < 2; ++i) { // Note: only the first two are

used by cpu later

cudaMemcpy(k[i], kDevice[i], width * height * sizeof(float)
, cudaMemcpyDeviceToHost);

}

cudaMemcpy(num_result, num_resultDevice, sizeof(int),
cudaMemcpyDeviceToHost);

cudaMemcpy(ismax, ismaxDevice, width * height * sizeof(byte),
cudaMemcpyDeviceToHost);

cudaMemcpy(ev, evDevice, width * height * sizeof(float),
cudaMemcpyDeviceToHost);

cudaMemcpy(n1, n1Device, width * height * sizeof(float),
cudaMemcpyDeviceToHost);

cudaMemcpy(n2, n2Device, width * height * sizeof(float),
cudaMemcpyDeviceToHost);

cudaMemcpy(p1, p1Device, width * height * sizeof(float),
cudaMemcpyDeviceToHost);

cudaMemcpy(p2, p2Device, width * height * sizeof(float),
cudaMemcpyDeviceToHost);

66 APPENDIX A. CODE

printTimeAndReset(&timer, "memcpy from device");

// Step 3 - Line point joining

compute_contours(ismax,ev,n1,n2,p1,p2,k[0],k[1],result,

num_result,sigma,

extend_lines,mode,low,high,width,height);

printTimeAndReset(&timer, "contours");

// Steps 4 and 5 - Line width determination and bias removal

if (compute_width)

compute_line_width(k[0],k[1],width,height,sigma,mode,

correct_pos,*result,*num_result);

printTimeAndReset(&timer, "width and bias");

free(floatImage);

}

}

A.2 CUDA implementation — steps 4 and 5

This is the code for the last two steps (width.cu), and the required memory
allocation code (position.cu). The full code is in the width folder on the
CD-ROM. Note that not all of the files in that folder have been cleaned up, so
there may be some stray pieces of commented-out code and unnecessary output
statements. Also, as this code was written somewhat hastily, we forgot to call
the appropriate memory deallocation functions at the end of the algorithm — in
short, this is not production code.

A.2.1 width.cu

/* Extract the width of a line for each line point; part of

detect-lines.

Copyright (C) 1996-1998 Carsten Steger

This program is free software; you can redistribute it and/

or modify

it under the terms of the GNU General Public License as

published by

the Free Software Foundation; either version 2, or (at your

option)

any later version.

This program is distributed in the hope that it will be

useful,

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 67

but WITHOUT ANY WARRANTY; without even the implied warranty

of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the

GNU General Public License for more details.

You should have received a copy of the GNU General Public

License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#define CUDA_FILE

#include <cuda.h>

#include "correct.h"

extern "C" {

#include "lines.h"

}

/* Constants */

/* This constant is introduced because for very narrow lines

the facet model

width detection scheme sometimes extracts the line width too

narrow. Since

the correction function has a very steep slope in that area,

this will lead

to lines of almost zero width, especially since the bilinear

interpolation

in correct.c will tend to overcorrect. Therefore it is wise

to make the

extracted line width slightly larger before correction. */

#define LINE_WIDTH_COMPENSATION 1.05

/* Minimum line width allowed (used for outlier check in

fix_locations()) */

#define MIN_LINE_WIDTH 0.1

/* Maximum contrast allowed (used for outlier check in

fix_locations()) */

#define MAX_CONTRAST 275.0

68 APPENDIX A. CODE

#define NUM_THREADS 3

/* Compute the eigenvalues and eigenvectors of the Hessian

matrix given by

dfdrr, dfdrc, and dfdcc, and sort them in descending order

according to

their absolute values. */

__device__ void compute_eigenvals(float dfdrr, float dfdrc,

float dfdcc, float2 * eigval, float4 * eigvec)

{

float theta, t, c, s, e1, e2, n1, n2;

/* Compute the eigenvalues and eigenvectors of the Hessian

matrix. */

if (dfdrc != 0.0f) {

theta = 0.5f*(dfdcc-dfdrr)/dfdrc;

t = 1.0f/(fabs(theta)+sqrt(theta*theta+1.0f));

if (theta < 0.0f) t = -t;

c = 1.0f/sqrt(t*t+1.0f);

s = t*c;

e1 = dfdrr-t*dfdrc;

e2 = dfdcc+t*dfdrc;

} else {

c = 1.0f;

s = 0.0f;

e1 = dfdrr;

e2 = dfdcc;

}

n1 = c;

n2 = -s;

/* If the absolute value of an eigenvalue is larger than the

other, put that

eigenvalue into first position. If both are of equal

absolute value, put

the negative one first. */

if (fabs(e1) > fabs(e2)) {

eigval->x = e1;

eigval->y = e2;

eigvec->x = n1;

eigvec->y = n2;

eigvec->z = -n2;

eigvec->w = n1;

} else if (fabs(e1) < fabs(e2)) {

eigval->x = e2;

eigval->y = e1;

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 69

eigvec->x = -n2;

eigvec->y = n1;

eigvec->z = n1;

eigvec->w = n2;

} else {

if (e1 < e2) {

eigval->x = e1;

eigval->y = e2;

eigvec->x = n1;

eigvec->y = n2;

eigvec->z = -n2;

eigvec->w = n1;

} else {

eigval->x = e2;

eigval->y = e1;

eigvec->x = -n2;

eigvec->y = n1;

eigvec->z = n1;

eigvec->w = n2;

}

}

}

/* Solve the linear equation a*x+b=0 and return the result in t

and the number

of solutions in num. */

__device__ void solve_linear(float a, float b, float * t, long

* num)

{

if (a == 0.0f) {

*num = 0;

} else {

*num = 1;

*t = -b/a;

}

}

/* Modified Bresenham algorithm. It returns in line all pixels

that are

intersected by a half line less than length away from the

point (px,py)

along the direction (nx,ny). The point (px,py) must lie

within the pixel

of the origin, i.e., fabs(px) <= 0.5 and fabs(py) <= 0.5. */

70 APPENDIX A. CODE

__device__ void bresenham_width(float nx, float ny, float px,

float py, float length, offset * line, long * num_points)

{

int i, n, x, y, s1, s2, xchg, maxit;

float e, dx, dy, t;

x = 0;

y = 0;

dx = ABS(nx);

dy = ABS(ny);

s1 = SGN(nx);

s2 = SGN(ny);

px *= s1;

py *= s2;

if (dy > dx) {

t = dx;

dx = dy;

dy = t;

t = px;

px = py;

py = t;

xchg = 1;

} else {

xchg = 0;

}

maxit = ceil(length*dx);

e = (0.5f-px)*dy/dx-(0.5f-py);

n = 0;

for (i=0; i<=maxit; i++) {

line[n].x = x;

line[n].y = y;

n++;

while (e >= -1e-8) {

if (xchg) x += s1;

else y += s2;

e--;

if (e > -1) {

line[n].x = x;

line[n].y = y;

n++;

}

}

if (xchg) y += s2;

else x += s1;

e += dy/dx;

}

*num_points = n;

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 71

}

/* Fill gaps in the arrays master, slave1, and slave2, i.e.,

points where

master=0, by interpolation (interior points) or

extrapolation (end points).

The array master will usually be the width of the line,

while slave1 and

slave2 will be values that depend on master[i] being 0, e.g

., the gradient

at each line point. The arrays slave1 and slave2 can be

NULL. */

__device__ void fill_gaps(float * master, float * slave1, float

* slave2, long num_points, float * row, float * col)

{

long i, j, k, s, e;

float m_s, m_e, s1_s, s1_e, s2_s, s2_e, d_r, d_c, arc_len,

len;

for (i=0; i<num_points; i++) {

if (master[i] == 0) {

for (j=i+1; j<num_points; j++) {

if (master[j] > 0)

break;
}

m_s = 0;

m_e = 0;

s1_s = 0;

s1_e = 0;

s2_s = 0;

s2_e = 0;

if (i > 0 && j < num_points-1) {

s = i;

e = j-1;

m_s = master[s-1];

m_e = master[e+1];

if (slave1 != NULL) {

s1_s = slave1[s-1];

s1_e = slave1[e+1];

}

if (slave2 != NULL) {

s2_s = slave2[s-1];

s2_e = slave2[e+1];

}

} else if (i > 0) {

72 APPENDIX A. CODE

s = i;

e = num_points-2;

m_s = master[s-1];

m_e = master[s-1];

master[e+1] = m_e;

if (slave1 != NULL) {

s1_s = slave1[s-1];

s1_e = slave1[s-1];

slave1[e+1] = s1_e;

}

if (slave2 != NULL) {

s2_s = slave2[s-1];

s2_e = slave2[s-1];

slave2[e+1] = s2_e;

}

} else if (j < num_points-1) {

s = 1;

e = j-1;

m_s = master[e+1];

m_e = master[e+1];

master[s-1] = m_s;

if (slave1 != NULL) {

s1_s = slave1[e+1];

s1_e = slave1[e+1];

slave1[s-1] = s1_s;

}

if (slave2 != NULL) {

s2_s = slave2[e+1];

s2_e = slave2[e+1];

slave2[s-1] = s2_s;

}

} else {

s = 1;

e = num_points-2;

m_s = master[s-1];

m_e = master[e+1];

if (slave1 != NULL) {

s1_s = slave1[s-1];

s1_e = slave1[e+1];

}

if (slave2 != NULL) {

s2_s = slave2[s-1];

s2_e = slave2[e+1];

}

}

arc_len = 0;

for (k=s; k<=e+1; k++) {

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 73

d_r = row[k]-row[k-1];

d_c = col[k]-col[k-1];

arc_len += sqrt(d_r*d_r+d_c*d_c);

}

len = 0;

for (k=s; k<=e; k++) {

d_r = row[k]-row[k-1];

d_c = col[k]-col[k-1];

len += sqrt(d_r*d_r+d_c*d_c);

master[k] = (arc_len-len)/arc_len*m_s+len/arc_len*m_e;

if (slave1 != NULL)

slave1[k] = (arc_len-len)/arc_len*s1_s+len/arc_len*
s1_e;

if (slave2 != NULL)

slave2[k] = (arc_len-len)/arc_len*s2_s+len/arc_len*
s2_e;

}

i = j;

}

}

}

/* First derivative of the Gaussian function */

__device__ double phi2(double x, double sigma)

{

double t;

t = x/sigma;

return -x*SQRT_2_PI_INV/powf(sigma,3.0f)*exp(-0.5f*t*t);

}

/* Return the correct line width w and asymmetry h, and a line

position

correction correct for a line with extracted width w_est and

extracted

gradient ratio r_est for a given sigma. Furthermore, return

the line width

on the weak and strong side of the line. These values are

obtained by

bilinear interpolation from the table ctable. */

__device__ bool line_corrections(float sigma, float w_est,

float r_est, float *w, float *h, float *correct, float *
w_strong, float *w_weak)

{

74 APPENDIX A. CODE

long i_we,i_re;

bool is_valid;

float a,b;

w_est = w_est/sigma;

if (w_est < 2 || w_est > 6 || r_est < 0 || r_est > 1) {

*w = 0;

*h = 0;

*correct = 0;

*w_strong = 0;

*w_weak = 0;

return 1;

}

i_we = floor((w_est-2)*10);

i_re = floor(r_est*20);

if (i_we == 40)

i_we = 39;

if (i_re == 20)

i_re = 19;

is_valid = ctable[i_re][i_we].is_valid && ctable[i_re][i_we

+1].is_valid &&

ctable[i_re+1][i_we].is_valid && ctable[i_re+1][

i_we+1].is_valid;

a = (w_est-2)*10-i_we;

b = r_est*20-i_re;

*w = BILINEAR(a,b,w)*sigma;

*h = BILINEAR(a,b,h);

*correct = BILINEAR(a,b,correction)*sigma;//TODO

*w_strong = BILINEAR(a,b,w_strong)*sigma;

*w_weak = BILINEAR(a,b,w_weak)*sigma;

return !is_valid;

}

/* Correct the extracted line positions and widths. The

algorithm first closes

gaps in the extracted data width_l, width_r, grad_l, and

grad_r to provide

meaningful input over the whole line. Then the correction

is calculated.

After this, gaps that have been introduced by the width

correction are again

closed. Finally, the position correction is applied if

correct_pos is set.

The results are returned in width_l, width_r, and cont. */

__global__ void fix_locations(long * offsets,

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 75

float *width_l, float *width_r, float *grad_l, float *grad_r,

float *correction, float *contr, float *asymm,

float sigma, long mode, bool correct_pos, long * cont_num,

contour_class * cont_classes, float * cont_angle, float *
cont_response, float * cont_row, float * cont_col)

{

long i, l;

float px, py;

float nx, ny;

float w_est, r_est, w_real, h_real, corr, w_strong, w_weak;

float correct, asymmetry, response, width, contrast;

bool weak_is_r;

bool correct_start, correct_end;

long cont_class, num_points;

l = blockDim.x * blockIdx.x + threadIdx.x;

num_points = cont_num[l];

cont_class = cont_classes[l];

cont_angle += offsets[l];

cont_response += offsets[l];

cont_row += offsets[l];

cont_col += offsets[l];

width_r += offsets[l];

width_l += offsets[l];

grad_r += offsets[l];

grad_l += offsets[l];

correction += offsets[l];

asymm += offsets[l];

contr += offsets[l];

fill_gaps(width_l,grad_l,NULL,num_points, cont_row, cont_col)

;

fill_gaps(width_r,grad_r,NULL,num_points, cont_row, cont_col)

;

/* Calculate true line width, asymmetry, and position

correction. */

if (correct_pos) {

/* Do not correct the position of a junction point if its

width is found

by interpolation, i.e., if the position could be

corrected differently

for each junction point, thereby destroying the junction

. */

correct_start = ((cont_class == cont_no_junc ||

cont_class == cont_end_junc ||

76 APPENDIX A. CODE

cont_class == cont_closed) &&

(width_r[0] > 0 && width_l[0] > 0));

correct_end = ((cont_class == cont_no_junc ||

cont_class == cont_start_junc ||

cont_class == cont_closed) &&

(width_r[num_points-1] > 0 && width_l[

num_points-1] > 0));

/* Calculate the true width and assymetry, and its

corresponding

correction for each line point. */

for (i=0; i<num_points; i++) {

if (width_r[i] > 0 && width_l[i] > 0) {

w_est = (width_r[i]+width_l[i])*LINE_WIDTH_COMPENSATION

;

if (grad_r[i] <= grad_l[i]) {

r_est = grad_r[i]/grad_l[i];

weak_is_r = TRUE;

} else {

r_est = grad_l[i]/grad_r[i];

weak_is_r = FALSE;

}

line_corrections(sigma,w_est,r_est,&w_real,&h_real,&

corr,&w_strong,&w_weak);

w_real /= LINE_WIDTH_COMPENSATION;

corr /= LINE_WIDTH_COMPENSATION;

width_r[i] = w_real;

width_l[i] = w_real;

if (weak_is_r) {

asymm[i] = h_real;

correction[i] = -corr;

} else {

asymm[i] = -h_real;

correction[i] = corr;

}

}

}

fill_gaps(width_l,correction,asymm,num_points, cont_row,

cont_col);

for (i=0; i<num_points; i++)

width_r[i] = width_l[i];

/* Adapt the correction for junction points if necessary.

*/

if (!correct_start)

correction[0] = 0.0f;

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 77

if (!correct_end)

correction[num_points-1] = 0.0f;

for (i=0; i<num_points; i++) {

px = cont_row[i];

py = cont_col[i];

nx = cos(cont_angle[i]);

ny = sin(cont_angle[i]);

px = px+correction[i]*nx;

py = py+correction[i]*ny;

cont_row[i] = px;

cont_col[i] = py;

}

// Calculate the true contrast.

for (i=0; i<num_points; i++) {

response = cont_response[i];

asymmetry = fabs(asymm[i]);

correct = fabs(correction[i]);

width = width_l[i];

if (width < MIN_LINE_WIDTH)

contrast = 0;

else
contrast =

(response/fabs(phi2(correct+width,sigma)+

(asymmetry-1)*phi2(correct-width,sigma

)));

if (contrast > MAX_CONTRAST)

contrast = 0;

contr[i] = contrast;

}

fill_gaps(contr,NULL,NULL,num_points, cont_row, cont_col);

//todo

}

}

/* Extract the line width by using a facet model line detector

on an image of

the absolute value of the gradient. */

__global__ void compute_line_width(float *grad, long width,

long height, float sigma, long mode, bool correct_pos,

long * offsets, long * cont_num, float * cont_row, float *
cont_col, float * cont_angle,

float * width_r, float * width_l, float * grad_r, float *
grad_l)

78 APPENDIX A. CODE

{

long i, j, k;

long r, c;

long x, y, dir;

long num_line;

long num_points;

float d, dr, dc, drr, drc, dcc;

float i1, i2, i3, i4, i5, i6, i7, i8, i9;

float t1, t2, t3, t4, t5, t6;

float2 eigval;

float4 eigvec;

float a, b, t;

long num;

float tf;

float nx, ny;

float n1, n2;

float p1, p2;

float val;

float px, py;

extern __shared__ offset sharedData[];

offset * line = sharedData;

i = blockDim.x * blockIdx.x + threadIdx.x;

num_points = cont_num[i];

cont_row += offsets[i];

cont_col += offsets[i];

cont_angle += offsets[i];

width_r += offsets[i];

width_l += offsets[i];

grad_r += offsets[i];

grad_l += offsets[i];

for (j=0; j<num_points; j++) {

px = cont_row[j];

py = cont_col[j];

r = floor(px+0.5f);

c = floor(py+0.5f);

nx = cos(cont_angle[j]);

ny = sin(cont_angle[j]);

// Compute the search line.

bresenham_width(nx,ny,0.0f,0.0f,MAX_LINE_WIDTH,line,&

num_line);

width_r[j] = width_l[j] = 0;

// Look on both sides of the line.

for (dir=-1; dir<=1; dir+=2) {

for (k=0; k<num_line; k++) {

x = BR(r+dir*line[k].x);

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 79

y = BC(c+dir*line[k].y);

i1 = grad[LINCOOR(BR(x-1),BC(y-1),width)];

i2 = grad[LINCOOR(BR(x-1),y,width)];

i3 = grad[LINCOOR(BR(x-1),BC(y+1),width)];

i4 = grad[LINCOOR(x,BC(y-1),width)];

i5 = grad[LINCOOR(x,y,width)];

i6 = grad[LINCOOR(x,BC(y+1),width)];

i7 = grad[LINCOOR(BR(x+1),BC(y-1),width)];

i8 = grad[LINCOOR(BR(x+1),y,width)];

i9 = grad[LINCOOR(BR(x+1),BC(y+1),width)];

t1 = i1+i2+i3;

t2 = i4+i5+i6;

t3 = i7+i8+i9;

t4 = i1+i4+i7;

t5 = i2+i5+i8;

t6 = i3+i6+i9;

dr = (t3-t1)/6;

dc = (t6-t4)/6;

drr = (t1-2*t2+t3)/6;

dcc = (t4-2*t5+t6)/6;

drc = (i1-i3-i7+i9)/4;

compute_eigenvals(2*drr,drc,2*dcc,&eigval,&eigvec);

val = -eigval.x;

if (val > 0.0f) {

n1 = eigvec.x;

n2 = eigvec.y;

a = 2.0f*(drr*n1*n1+drc*n1*n2+dcc*n2*n2);

b = dr*n1+dc*n2;

solve_linear(a,b,&tf,&num);

t = tf;

if (num != 0) {

p1 = t*n1;

p2 = t*n2;

if (fabs(p1) <= 0.5f && fabs(p2) <= 0.5f) {

// Project the maximum point position

perpendicularly onto the search line.

a = 1;

b = nx*(px-(r+dir*line[k].x+p1))+ny*(py-(c+dir*
line[k].y+p2));

solve_linear(a,b,&tf,&num);

t = tf;

d = (-i1+2*i2-i3+2*i4+5*i5+2*i6-i7+2*i8-i9)/9;

if (dir == 1) {

grad_r[j] = d+p1*dr+p2*dc+p1*p1*drr+p1*p2*drc

+p2*p2*dcc;

width_r[j] = fabs(t);

} else {

80 APPENDIX A. CODE

grad_l[j] = d+p1*dr+p2*dc+p1*p1*drr+p1*p2*drc

+p2*p2*dcc;

width_l[j] = fabs(t);

}

break;
}

}

}

}

}

}

}

A.2.2 position.cu

/* Extract line points from an image; part of detect-lines.

Copyright (C) 1996-1998 Carsten Steger

This program is free software; you can redistribute it and/

or modify

it under the terms of the GNU General Public License as

published by

the Free Software Foundation; either version 2, or (at your

option)

any later version.

This program is distributed in the hope that it will be

useful,

but WITHOUT ANY WARRANTY; without even the implied warranty

of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the

GNU General Public License for more details.

You should have received a copy of the GNU General Public

License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#define CUDA_FILE

extern "C" {

#include "lines.h"

#include <time.h>

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 81

#include "timer.h"

#include <cuda.h>

/* Constants */

/* The pixel boundaries need to be enlarged slightly since in

practice it

frequently happens for neighboring pixels a and b that pixel

a says a

maximum lies within pixel b and vice versa. This presents

no problem since

linking algoritm will take care of this. */

#define PIXEL_BOUNDARY 0.6

void checkCUDAError(const char* msg);

void checkCUDAError(const char *msg)

{

cudaError_t err = cudaGetLastError();

if(cudaSuccess != err)

{

fprintf(stderr, "Cuda error: %s: %s.\n", msg,

cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

}

/* Local function prototypes */

/*static void compute_line_points __P((float *ku[5], byte *
ismax, float *ev,

float *nx, float *ny,

float *px,

float *py, long width,

long height,

double low, double high,

long mode));*/

}

/* Solve the linear equation a*x+b=0 and return the result in t

and the number

of solutions in num. */

82 APPENDIX A. CODE

__device__ void solve_linear(float a, float b, float * t, long

* num)

{

if (a == 0.0f) {

*num = 0;

} else {

*num = 1;

*t = -b/a;

}

}

/* Compute the eigenvalues and eigenvectors of the Hessian

matrix given by

dfdrr, dfdrc, and dfdcc, and sort them in descending order

according to

their absolute values. */

__device__ void compute_eigenvals(float dfdrr, float dfdrc,

float dfdcc, float2 * eigval, float4 * eigvec)

{

float theta, t, c, s, e1, e2, n1, n2; //, phi;

/* Compute the eigenvalues and eigenvectors of the Hessian

matrix. */

if (dfdrc != 0.0f) {

theta = 0.5*(dfdcc-dfdrr)/dfdrc;

t = 1.0f/(fabs(theta)+sqrt(theta*theta+1.0f));

if (theta < 0.0f) t = -t;

c = 1.0f/sqrt(t*t+1.0f);

s = t*c;

e1 = dfdrr-t*dfdrc;

e2 = dfdcc+t*dfdrc;

} else {

c = 1.0f;

s = 0.0f;

e1 = dfdrr;

e2 = dfdcc;

}

n1 = c;

n2 = -s;

/* If the absolute value of an eigenvalue is larger than the

other, put that

eigenvalue into first position. If both are of equal

absolute value, put

the negative one first. */

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 83

if (fabs(e1) > fabs(e2)) {

eigval->x = e1;

eigval->y = e2;

eigvec->x = n1;

eigvec->y = n2;

eigvec->z = -n2;

eigvec->w = n1;

} else if (fabs(e1) < fabs(e2)) {

eigval->x = e2;

eigval->y = e1;

eigvec->x = -n2;

eigvec->y = n1;

eigvec->z = n1;

eigvec->w = n2;

} else {

if (e1 < e2) {

eigval->x = e1;

eigval->y = e2;

eigvec->x = n1;

eigvec->y = n2;

eigvec->z = -n2;

eigvec->w = n1;

} else {

eigval->x = e2;

eigval->y = e1;

eigvec->x = -n2;

eigvec->y = n1;

eigvec->z = n1;

eigvec->w = n2;

}

}

}

/* For each point in the image determine whether there is a

local maximum of

the second directional derivative in the direction (nx[l],ny

[l]) within the

pixels’s boundaries. If so, set ismax[l] to 2 if the

eigenvalue ev[l] is

larger than high, to 1 if ev[l] is larger than low, and to 0

otherwise.

Furthermore, put the sub-pixel position of the maximum into

(px[l],py[l]).

The parameter mode determines whether maxima (dark lines

points) or minima

84 APPENDIX A. CODE

(bright line points) should be selected. The partial

derivatives of the

image are input as ku[]. */

__global__ static void compute_line_points(float * ku0, float *
ku1, float * ku2, float * ku3, float * ku4, byte * ismax,

float * ev, float * nx, float * ny, float * px, float * py,

long width, long height, float low, float high, long mode)

{

long r, c, l;

float k0, k1, k2, k3, k4;

float2 eigval;

float4 eigvec;

float a, b, t;

long num;

float n1, n2;

float p1, p2;

float val;

c = blockIdx.x * blockDim.x + threadIdx.x;

if (c >= width) return;
for (r=0; r<height; r++) {

l = LINCOOR(r,c,width);

k0 = ku0[l];

k1 = ku1[l];

k2 = ku2[l];

k3 = ku3[l];

k4 = ku4[l];

ev[l] = 0.0f;

nx[l] = 0.0f;

ny[l] = 0.0f;

compute_eigenvals(k2,k3,k4,&eigval,&eigvec);

if (mode == MODE_LIGHT)

val = -eigval.x;

else
val = eigval.x;

if (val > 0.0f) {

ev[l] = val;

n1 = eigvec.x;

n2 = eigvec.y;

a = k2*n1*n1+2.0f*k3*n1*n2+k4*n2*n2;

b = k0*n1+k1*n2;

solve_linear(a,b,&t,&num);

if (num != 0) {

p1 = t*n1;

p2 = t*n2;

if (fabs(p1) <= PIXEL_BOUNDARY && fabs(p2) <=

PIXEL_BOUNDARY) {

if (val >= low) {

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 85

if (val >= high)

ismax[l] = 2;

else
ismax[l] = 1;

}

nx[l] = n1;

ny[l] = n2;

px[l] = r+p1;

py[l] = c+p2;

}

}

}

}

}

extern "C" {

static float * k[5], * kDevice[5];

static byte *ismax, *ismaxDevice;

static float *ev, *n1, *n2, *p1, *p2;

static float *evDevice, *n1Device, *n2Device, *p1Device, *
p2Device;

static int *num_resultDevice;

void initCuda_position(long width, long height) {

long i, size = width * height * sizeof(float);
for (i = 0; i < 5; ++i) {

k[i] = (float *) malloc(size);

cudaMalloc((void **) &kDevice[i], size);

}

cudaMalloc((void **) &num_resultDevice, sizeof(int));
ismax = (byte *) xcalloc(width*height,sizeof(*ismax));
ev = (float *) xcalloc(width*height,sizeof(*ev));
n1 = (float *) xcalloc(width*height,sizeof(*n1));
n2 = (float *) xcalloc(width*height,sizeof(*n2));
p1 = (float *) xcalloc(width*height,sizeof(*p1));
p2 = (float *) xcalloc(width*height,sizeof(*p2));
cudaMalloc((void **) &ismaxDevice, width*height*sizeof(*ismax

));

cudaMalloc((void **) &evDevice, width*height*sizeof(*evDevice
));

cudaMalloc((void **) &n1Device, width*height*sizeof(*n1Device
));

cudaMalloc((void **) &n2Device, width*height*sizeof(*n2Device
));

86 APPENDIX A. CODE

cudaMalloc((void **) &p1Device, width*height*sizeof(*p1Device
));

cudaMalloc((void **) &p2Device, width*height*sizeof(*p2Device
));

}

void cleanupCuda_position() {

long i;

cudaFree(p2Device);

cudaFree(p1Device);

cudaFree(n2Device);

cudaFree(n1Device);

cudaFree(evDevice);

cudaFree(ismaxDevice);

free(p2);

free(p1);

free(n2);

free(n1);

free(ev);

free(ismax);

cudaFree(num_resultDevice);

for (i = 0; i < 5; ++i)

cudaFree(kDevice[i]);

}

// Computes a gradient field based on the first derivatives.

The result overwrites the x derivatives.

__global__ void compute_gradient(float *dx, float *dy, long
width, long height) {

float x, y;

long l, r, c = blockDim.x * blockIdx.x + threadIdx.x;

if (c >= width)

return;
for (r=0; r<height; r++) {

l = LINCOOR(r,c,width);

x = dx[l];

y = dy[l];

dx[l] = sqrt(x*x+y*y);

}

}

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 87

/* Main routine to detect lines in an image of dimension width

* height. The

extracted lines are returned in result, while num_result is

the number of

detected lines. The parameter sigma is the amount of

smoothing that the

Gaussian kernel performs, while low and high are the

hysteresis thresholds

used in the linking algorithm. With mode, either bright or

dark lines can

be selected. The parameter compute_width determines whether

the line width

should be extracted, while correct_pos determines whether

the line width

and position correction should be applied. */

void detect_lines (byte *image, long width, long height,

contour ***result, long *num_result, double sigma, double
low, double high, long mode, bool compute_width, bool

correct_pos, bool extend_lines)

{

long j, i;

float *floatImage;

long floatSize = width * height * sizeof(float);
cputimer_t timer;

long numBlocks;

floatImage = (float *) xcalloc(width * height, sizeof(float))
;

for (i = 0; i < width * height; ++i)

floatImage[i] = image[i];

// printTimeAndReset(&timer, "alloc");

startTimer(&timer);

convolve_gauss(floatImage,kDevice[0],width,height,sigma,

DERIV_R);

convolve_gauss(floatImage,kDevice[1],width,height,sigma,

DERIV_C);

convolve_gauss(floatImage,kDevice[2],width,height,sigma,

DERIV_RR);

convolve_gauss(floatImage,kDevice[3],width,height,sigma,

DERIV_RC);

convolve_gauss(floatImage,kDevice[4],width,height,sigma,

DERIV_CC);

printTimeAndReset(&timer, "convolve");

88 APPENDIX A. CODE

cudaMemset(ismaxDevice, 0, width*height*sizeof(*ismaxDevice))
;

cudaMemset(p1Device, 0, floatSize);

cudaMemset(p2Device, 0, floatSize);

printTimeAndReset(&timer, "memcpy to");

cudaThreadSynchronize();

checkCUDAError("kernel invocation a");

numBlocks = (long)(ceil(width / 32.0f));

compute_line_points<<<numBlocks, 32>>>(kDevice[0],kDevice[1],

kDevice[2],kDevice[3],kDevice[4],ismaxDevice,evDevice,

n1Device,n2Device,p1Device,p2Device,width,height,low,high,

mode);

cudaThreadSynchronize();

checkCUDAError("kernel invocation b");

printTimeAndReset(&timer, "line points");

for (i = 0; i < 2; ++i) { // Note: only the first two are

used by cpu later

cudaMemcpy(k[i], kDevice[i], width * height * sizeof(float)
, cudaMemcpyDeviceToHost);

}

cudaMemcpy(num_result, num_resultDevice, sizeof(int),
cudaMemcpyDeviceToHost);

cudaMemcpy(ismax, ismaxDevice, width * height * sizeof(byte),
cudaMemcpyDeviceToHost);

cudaMemcpy(ev, evDevice, width * height * sizeof(float),
cudaMemcpyDeviceToHost);

cudaMemcpy(n1, n1Device, width * height * sizeof(float),
cudaMemcpyDeviceToHost);

cudaMemcpy(n2, n2Device, width * height * sizeof(float),
cudaMemcpyDeviceToHost);

cudaMemcpy(p1, p1Device, width * height * sizeof(float),
cudaMemcpyDeviceToHost);

cudaMemcpy(p2, p2Device, width * height * sizeof(float),
cudaMemcpyDeviceToHost);

cudaThreadSynchronize();

checkCUDAError("kernel invocation c");//todo

printTimeAndReset(&timer, "memcpy from");

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 89

compute_contours(ismax,ev,n1,n2,p1,p2,k[0],k[1],result,

num_result,sigma,

extend_lines,mode,low,high,width,height);

printTimeAndReset(&timer, "contours");

if (compute_width) {

long total_points = 0;

long * offsets, * offsets_device;

float * width_r, * width_l, * asymm, * contrast;

float * width_r_device, * width_l_device, * grad_r_device,

* grad_l_device, * correct_device, * asymm_device, *
contrast_device;

long * cont_num, * cont_num_device;

contour_class * cont_class, * cont_class_device;

float * cont_row, * cont_col, * cont_angle, * cont_response

;

float * cont_row_device, * cont_col_device, *
cont_angle_device, * cont_response_device;

contour * cont;

compute_gradient<<<numBlocks, 32>>>(kDevice[0], kDevice[1],

width, height); // The result goes into kDevice[0]; we

no longer need the derivatives

// Count the total number of points, and copy each contour’

s point count and contour class to common arrays

cont_num = (long*) xcalloc(*num_result,

sizeof(long));
cont_class = (contour_class*) xcalloc(*num_result,

sizeof(contour_class));
for (i = 0; i < *num_result; ++i) {

total_points += (*result)[i]->num;

cont_num[i] = (*result)[i]->num;

cont_class[i] = (*result)[i]->cont_class;

}

// Generate offsets into the common arrays

offsets = (long*)xcalloc(*num_result, sizeof(long));
offsets[0] = 0;

for (i = 1; i < *num_result; ++i) {

offsets[i] = offsets[i - 1] + (*result)[i - 1]->num;

}

// Copy the arrays for each contour

cont_row = (float*)xcalloc(total_points, sizeof(float)
);

90 APPENDIX A. CODE

cont_col = (float*)xcalloc(total_points, sizeof(float)
);

cont_angle = (float*)xcalloc(total_points, sizeof(float)
);

cont_response = (float*)xcalloc(total_points, sizeof(float)
);

for (i = 0; i < *num_result; ++i) {

cont = (*result)[i];

memcpy(cont_row + offsets[i], cont->row, cont->num *
sizeof(float));

memcpy(cont_col + offsets[i], cont->col, cont->num *
sizeof(float));

memcpy(cont_angle + offsets[i], cont->angle, cont->num *
sizeof(float));

memcpy(cont_response + offsets[i], cont->response, cont->

num * sizeof(float));
}

cudaThreadSynchronize();

checkCUDAError("gradient");

cudaMalloc((void**)&offsets_device, *num_result * sizeof(
long));

cudaMalloc((void**)&cont_num_device, *num_result *
sizeof(long));

cudaMalloc((void**)&cont_class_device, *num_result *
sizeof(contour_class));

cudaMalloc((void**)&cont_row_device, total_points *
sizeof(float));

cudaMalloc((void**)&cont_col_device, total_points *
sizeof(float));

cudaMalloc((void**)&cont_angle_device, total_points *
sizeof(float));

cudaMalloc((void**)&cont_response_device, total_points *
sizeof(float));

cudaMalloc((void**)&width_l_device, total_points *
sizeof(float));

cudaMalloc((void**)&width_r_device, total_points *
sizeof(float));

cudaMalloc((void**)&grad_l_device, total_points *
sizeof(float));

cudaMalloc((void**)&grad_r_device, total_points *
sizeof(float));

cudaMalloc((void**)&correct_device, total_points *
sizeof(float));

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 91

cudaMalloc((void**)&contrast_device, total_points *
sizeof(float));

cudaMalloc((void**)&asymm_device, total_points *
sizeof(float));

cudaMemset(width_l_device, 0, total_points * sizeof(float)
);

cudaMemset(width_r_device, 0, total_points * sizeof(float)
);

cudaMemset(grad_l_device, 0, total_points * sizeof(float)
);

cudaMemset(grad_r_device, 0, total_points * sizeof(float)
);

cudaMemset(correct_device, 0, total_points * sizeof(float)
);

cudaMemset(contrast_device, 0, total_points * sizeof(float)
);

cudaMemset(asymm_device, 0, total_points * sizeof(float)
);

cudaMemcpy(offsets_device, offsets, *num_result * sizeof(
long), cudaMemcpyHostToDevice);

cudaMemcpy(cont_num_device, cont_num, *num_result * sizeof(
long), cudaMemcpyHostToDevice);

cudaMemcpy(cont_class_device, cont_class, *num_result *
sizeof(contour_class), cudaMemcpyHostToDevice);

cudaMemcpy(cont_row_device, cont_row, total_points * sizeof
(float), cudaMemcpyHostToDevice);

cudaMemcpy(cont_col_device, cont_col, total_points * sizeof
(float), cudaMemcpyHostToDevice);

cudaMemcpy(cont_angle_device, cont_angle, total_points *
sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(cont_response_device, cont_response,

total_points * sizeof(float), cudaMemcpyHostToDevice);

printTimeAndReset(&timer, "memcpy etc");

compute_line_width<<<*num_result, 1, (long)ceil(
MAX_LINE_WIDTH*3) * sizeof(offset)>>>(kDevice[0], width,

height, sigma, mode, correct_pos,

offsets_device, cont_num_device, cont_row_device,

cont_col_device, cont_angle_device,

width_r_device, width_l_device, grad_r_device,

grad_l_device);

cudaThreadSynchronize();

printTimeAndReset(&timer, "width");

92 APPENDIX A. CODE

fix_locations<<<*num_result, 1>>>(offsets_device,

width_l_device,width_r_device,grad_l_device,

grad_r_device,correct_device,contrast_device,

asymm_device,

sigma,mode,correct_pos,cont_num_device,

cont_class_device,cont_angle_device,

cont_response_device, cont_row_device,

cont_col_device);

cudaThreadSynchronize();

printTimeAndReset(&timer, "bias");

width_l = (float*)xcalloc(total_points,sizeof(*width_l));
width_r = (float*)xcalloc(total_points,sizeof(*width_r));
contrast = (float*)xcalloc(total_points,sizeof(*contrast));
asymm = (float*)xcalloc(total_points,sizeof(*asymm));
cudaThreadSynchronize();

checkCUDAError("line width");

cudaMemcpy(width_l, width_l_device, total_points * sizeof(
float), cudaMemcpyDeviceToHost);

cudaMemcpy(width_r, width_r_device, total_points * sizeof(
float), cudaMemcpyDeviceToHost);

cudaMemcpy(cont_row, cont_row_device, total_points * sizeof
(float), cudaMemcpyDeviceToHost);

cudaMemcpy(cont_col, cont_col_device, total_points * sizeof
(float), cudaMemcpyDeviceToHost);

cudaMemcpy(asymm, asymm_device, total_points * sizeof(float
), cudaMemcpyDeviceToHost);

cudaMemcpy(contrast, contrast_device, total_points * sizeof
(float), cudaMemcpyDeviceToHost);

for (i = 0; i < *num_result; ++i) {

cont = (*result)[i];

cont->width_l = (float*)xcalloc(cont->num, sizeof(float))
;

cont->width_r = (float*)xcalloc(cont->num, sizeof(float))
;

memcpy(cont->width_l, width_l + offsets[i], cont->num *
sizeof(float));

memcpy(cont->width_r, width_r + offsets[i], cont->num *
sizeof(float));

memcpy(cont->row, cont_row + offsets[i], cont->num *
sizeof(float));

memcpy(cont->col, cont_col + offsets[i], cont->num *
sizeof(float));

if (correct_pos) {

A.2. CUDA IMPLEMENTATION — STEPS 4 AND 5 93

cont->asymmetry = (float*)xcalloc(cont->num, sizeof(
float));

cont->contrast = (float*)xcalloc(cont->num, sizeof(
float));

memcpy(cont->asymmetry, asymm + offsets[i], cont->num *
sizeof(float));

if (mode == MODE_LIGHT) {

memcpy(cont->contrast, contrast + offsets[i], cont->

num * sizeof(float));
}

else {

for (j = 0; j < cont->num; ++j) {

cont->contrast[j] = -contrast[offsets[i] + j];

}

}

}

}

}

}

}

Appendix B

CD-ROM

The attached CD-ROM contains the full source code of Steger’s original imple-
mentation (in the steger folder) and of our CUDA and OpenMP versions (in
the cuda and openmp folders, respectively). It also contains the not entirely
completed code for steps 4 and 5, in the folder width — this version works for
single images, but the code is untidy and lacks proper memory deallocation.
The cuda folder contains the “official” version of the code. The test images are
located in the images folder.

The contents of the CD-ROM can also be downloaded from http://folk.

ntnu.no/asmunde/cd.rar.
Our CUDA and OpenMP applications are built by invoking make (the con-

figure scripts should not be run; we have not had the time to adapt them to
our version — so the code might only run under systems similar to ours). The
ffmpeg library is required for the CUDA application because of the video player.
See large.sh for an example of how to run the application. If a CUDA device
other than device 0 is to be used, the switch --device 1 can be used when
invoking detect-lines. The large.sh script will use the values of the envi-
ronment variable $CUDA_DEVICE_PARAMETER as extra switches.

For instructions on running Steger’s implementation, see the README file.

95

http://folk.ntnu.no/asmunde/cd.rar
http://folk.ntnu.no/asmunde/cd.rar

	Contents
	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	1 Introduction
	2 Background
	2.1 Mathematical background
	2.1.1 Convolution
	2.1.2 Fourier transform
	2.1.3 Gaussian kernels

	2.2 Line detection. Steger's algorithm
	2.2.1 Mathematical models of lines
	2.2.2 Step 1 --- Convolution
	2.2.3 Step 2 --- Ridge detection
	2.2.4 Step 3 --- Line point joining
	2.2.5 Step 4 --- Line width determination
	2.2.6 Step 5 --- Bias removal

	2.3 CUDA
	2.3.1 Using GPUs for calculation
	2.3.2 Programming model
	2.3.3 Tesla architecture

	2.4 OpenMP
	2.5 Amdahl's law

	3 Methodology
	3.1 Test images
	3.2 Porting the application
	3.2.1 Initial analysis
	3.2.2 General considerations
	3.2.3 Step 1 --- Convolution
	3.2.4 Step 2 --- Ridge detection
	3.2.5 Step 3 --- Line point joining
	3.2.6 Steps 4 and 5 --- Line width; bias removal

	3.3 Performance measurement
	3.3.1 Timing
	3.3.2 Image sequences

	4 Results
	4.1 General
	4.1.1 Floating point precision
	4.1.2 Memory limitations

	4.2 Testing environment
	4.3 Benchmarking. Discussion
	4.3.1 Step 1 --- Convolution
	4.3.2 Step 2 --- Ridge detection
	4.3.3 Step 3 --- Line point joining
	4.3.4 Steps 4 and 5 --- Line width; bias removal
	4.3.5 Overall performance

	5 Conclusions and future work
	Bibliography
	A Code
	A.1 CUDA implementation --- steps 1 and 2
	A.1.1 convol.cu
	A.1.2 position.cu

	A.2 CUDA implementation --- steps 4 and 5
	A.2.1 width.cu
	A.2.2 position.cu

	B CD-ROM

