IEC 61508/IEC 61511 Checklist for use during SIS design and implemenation

The objective of this checklist is to provide guidance for those SIS related activities that normally are the scope and responsibility of the system integrators.

No.	Subject/	Requirement / control question	Deviation,	Result / recommendation / action
	requirement		finding or	
			Action	
			Y/N/NA	
		Management of functional safety (IEC 61508-1, ch. 6, IEC 6	1508-2, ch. 7.'	7, 7.9/ IEC 61511-1, ch.5)
	Roles and	Have an overall responsible been denoted for the SIS design,		
	responsibilities	implementation, and installation? If several responsibilities exist;		
		have means to ensure coordination and exchange from one phase to another been implemented?		
		Have the skills/competence been described for the various activities		
		that are being performed during SIS design, implementation, and installation?		
		Has it been verified that personnel involved in SIS design have the necessary competence?		
	Verification and	Have an overall verification and validation plan been established		
	validation planning	that include:		
	and executing	• All activities necessary to <i>verify</i> that each phase of the		
		design, implementation, and installation complies with what		
		was specified when entering the phase (e.g., that the		
		implemented hardware and software complies with the		
		specified design specification). Verification activities may		
		be unit tests, integration tests, design reviews,		
		documentation reviews and so on.		
		• All activities necessary to <i>validate</i> that the selected		
		nardware and software design is (1) suitable in terms of		
		terms of not introducing negative side offects on the SIS		
		ability to respond to process demands, or on other systems		
		The validation plan may include various reviews FSA		

		FATs and SAT.		
		Have any formal assessments of compliance to the IEC		
		requirements, like e.g., functional safety assessments (FSA), been		
		defined and included in the verification and validation plan?		
		Is there a clear traceability between the tests specified in the factory		
		acceptance test (FAT) and the site acceptance test (SAT) and the		
		detailed functional safety requirements of the SIS?		
		Has any reviews been planned and performed to check for		
		incompatibilities between the SRS, the detailed functional safety		
		requirements of the SIS, the specified SIS tests (particularly the FAT		
		and the SAT), and SIS related documentation?		
		Do the FAT and SAT include "response to failure and unexpected		
		inputs" as well as "correct operation"?		
	Implementing and	Are procedures and systems in place to ensure that the		
	monitoring	recommendations from the hazards and risk analysis are taken into		
		consideration during design, implementation, installation, and		
		preparation for operation and maintenance?		
		Have procedures and systems (tools) been established to follow-up		
		any deviations found during verification and validation activities?		
		Are assumptions made regarding environmental and operational		
		conditions taken into account in all phases of the SIS design and		
		development phases?		
	Management of	Have procedures and systems (tools) been established for handling		
	change	design and configuration changes of hardware and software,		
	C .	including necessary analysis and allocation of responsibilities.		
	Preparing for	Have a system been established for safe transfer of any outstanding		
	operation	deviations and findings from the design phases and to the operation		
		phase?		
		Have an overview of all SIS related documentation been established,		
		showing which phases they are prepared, which phases they are		
		being used, and how they are linked together?		
		Conceptual design (IEC 61511-1, ch. 6, IE	C 61508-2, ch.	7.2)
1	SIF specification	Does the SRS provide the following information for each SIF?		
		Alternatively, have a detailed safety requirement specification been		
		developed that describes:		

	Characteristics of demands:	
	• The sources of demands (why and how they arise,	
	"scenarios")	
	• The types of demands that the SIF shall respond to	
	• If human errors may create demands on the SIF	
	 Demand rates 	
	• The specified SIL of the SIF, and if relevant, the anticipated	
	reliability of the SIF (for example in case the maximum	
	PFD is specified to be less than 0.5E-3 for a SIL 3 SIF)	
	• The expected response to process demands	
	• Safe state in case of SIS failures (spurious operation, safe	
	detected failures and dangerous detected failures)	
	• Safe and dangerous failure modes of each SIF component	
	• Interface with other systems (other SIFs, the BPCS, or	
	outside	
	Expected operational conditions	
	Maintainability	
	• Human interaction necessary to restore, restart or intervene	
	with the SIF?	
	• Function test intervals	
	• Procedures that are necessary in order to start and restart the	
	SIS	
	• Means to set overrides, inhibits and bypasses, and how they	
	should suspended	
	• Means to provide operators and maintenance personnel with	
	status information on bypasses, inhibits, and overrides	
	Response to detected failures	
	• Mean time to repair, and necessary provisions to make this	
	repair time achievable	
	Protective means against environmental extremes	
	• Facilitation of safe access from remote locations (if this is	
	an option)	
	• Function testing, including:	
	• Test strategy (one test, or several subtests)	
	• Test coverage (to what extent the different failure	

	modes may be detected)		
	Are the essential and secondary SIF functions described in a		
	separate functional safety requirement specification of the SIS?		
	Detail design/Implementation (IEC 61511-1, ch.	11, IEC 61508-	1, ch. 7.4)
General	Has it been clearly stated if the IEC 61508 or the IEC 61511		
requirements	requirements are used as basis for the design?		
	Have any deviations from regulations, codes and standard practice		
	been identified, e.g.,		
	Authority regulations		
	 Company internal requirements and guidelines 		
	• Standards like API RP14C		
	OLF070 guideline		
Hardware design	Have all safe and dangerous failure modes of each SIF component		
	been identified and described?		
	Have potential constraints associated with the SIF components been		
	identified? For example:		
	• Any limitations in how the SIF components may respond to		
	hazardous events?		
	• Potential negative effect from spurious activation, function		
	testing, and real process demands on the components		
	lifetime		
	• Any constraints to how long time the components may resist		
	an accidental or hazardous event		
	Have diagnostic features and their provisions been described?		
	For example; has an analysis been performed that identify which		
	dangerous failure modes that may be detected and what means that		
	must be in place to ensure that the these failure modes continue to be		
	detected during the components lifetime?		
	Have protective means against CCFs been evaluated and taken into		
	account:		
	• Through the design, implementation, and installation work		
	processes and procedures?		
	• In the hardware <i>architecture</i> ?		
	Have protective measures against CCFs between different protection		
	layers been evaluated and implemented, for example between a		

	NAS function and a PAS function?	
	Have superfluous functions, that are functions provided by a	
	component without having been specified, been identified and	
	analyzed with respect to the potential of affecting the SIF	
	performance?	
	For SIFs that are not designed fail-safe: Is the rationale of not	
	selecting a fail-safe design of the SIF documented?	
Software design	Have consideration been made to whether the IEC 61508 or IEC	
_	61511 requirements apply to the software development?	
	• IEC 61511 may be used if using limited variable language	
	or fixed programming language	
	• Else, the IEC 61508 must be used	
	Have a software specification been developed based on the detailed	
	functional requirement specification of the SIS? Is there a clear	
	traceability between the SIS functional requirements and the	
	software requirements?	
	If the IEC 61508 requirements apply and are used; Have the	
	software development tools been verified (for example by filling out	
	a checklist) against the SIL dependent requirements in requirements	
	of the IEC 61508-3, regarding:	
	• Software requirement specifications	
	• Software architecture design	
	• Support tools and programming language	
	• Software realization (detail design)	
	Software module testing and integration	
	 Integration of hardware and software 	
	 Software sofety verification and validation 	
	Software modifications	
	Software modifications	
	• Functional safety assessment of software	
	If the IEC 61511 requirements apply and are used	
	• Are the software development tools proven in use for safety	
	applications or certified for use up to the specified SI	
	level?	
	 Is fixed programming or limited variability language used 	
	for software implementation?	

	Have potential constraints of the software implemented functions	
	been identified and analyzed, including the impact of configuration	
	and parameter set-up, timing, software task sequences?	
	Have the consequences of wrong task sequences, overstress, lack of	
	communication, wrong input parameters, or unexpected input	
	combinations been analyzed?	
	Have the causes of dangerous software failures been identified and	
	analyzed?	
	Have means to avoid or detect dangerous software been accounted	
	for in the hardware and software design?	
Development of	Has a functional or system model been established showing how all	
reliability model	SIS components of interact in order to perform the SIF? Does the	
	model also include interface with other components and systems	
	(e.g., with the process control system, to operator stations, and so	
	on).	
	Has an analysis, like e.g., an FMEA, been performed to identify all	
	components that upon failure may impede the SIS from performing	
	the SIF?	
	Has it been assessed if utility supplies (power, hydraulic, pneumatic)	
	must be included in the reliability model?	
Development of	Has the source and assumptions made for the reliability data been	
 data dossier	clearly stated?	
	If components are based on new design; Has (1) an assessment been	
	performed to evaluate the reliability of the new design compared to	
	historical performance (safe and dangerous failure rates), or (2) a	
	qualification testing been performed to assess and document the	
	reliability of the new design?	
	Has the assumptions behind the diagnostic coverage (DC) been	
	explained?	
	Has the assumptions behind the safe failure rate been explained, for	
	example:	
	• What type of safe failures that have been included in the	
	failure rate estimate?	
	• Whether or not the contribution from non-critical	
	components has been omitted. Non-critical components are	
	components that are not included in the SIF, but which have	

	been included for other purposes, for example to provide	
	status information (e.g., valve position sensors).	
	If the selected reliability data deviate from previous operational	
	experience on similar equipment (e.g., in OREDA); Has the	
	rationale for selecting reliability data that differs from previous	
	operation experience been explained?	
	Has the selected CCF fraction (β) been explained, by e.g., using	
	checklists? Does the selected CCF take into account operational as	
	well as design related issues?	
Determination of	Is the safe failure fraction (SFF) well documented in terms of e.g.,:	
architectural	• Clearly showing that the SFF is calculated for the	
constraints	component as a whole, and not only for electrical/electronic/	
	programmable electronic part parts of the component. For	
	example if the SFF comprises the solenoid part as well as	
	the mechanical part of a solenoid valve	
	• Clearly showing the factors that contribute to a low or high	
	SFF For example by showing if a high SFF is due to a high	
	spurious trip rate or a DC?	
	Have the rationale for classifying SIF components as either type A	
	or B been clearly stated?	
	Alternatively, if using the IEC 61511 approach; Has the rationale for	
	selecting HFT-SIL relationship for sensors, final elements and non-	
	PE logic solvers been explained (there are three options available in	
	the IEC 61511, part 1, chapter 11.4.3 and 11.4.4)?	
Calculating the	Has it been evaluated if the SIS is operating in the high/continuous	
probability of SIF	or low demand mode?	
failing dangerous		
	Has the mathematical approach to reliability modeling been	
	explained?	
	Have the main assumptions of the selected mathematical approach	
	clearly stated, for example regarding handling of CCFs and	
	redundant configurations with different types of component?	
	Has it been evaluated how the probability of failure on demand	
	(PFD) target should be placed within the specified SIL?	
	Have sensitivity analysis been performed for the estimated PFD (or	

		rate of dangerous failures for high/continuous mode), to assess the	
		implications of uncertainty in reliability data (e.g., failure rates, β -	
		factor)?	
	Avoidance and	Has a software requirement specification been established and based	
	control with	on the detailed functional requirement specification of the SIS?	
	systematic failures		
	during software		
	development		
		Has a software development and verification plan been established,	
		for example by using the principles of the V-model?	
		Does the software development and verification plan comprise	
		review of software safety requirements with respect to potential	
		ambiguity, review of software requirement implementation, review	
		of ability to capture software failures during implementation and	
		testing, and a list of tests necessary to ensure the software integrity	
		(unit tests, integration tests)?	
		Have procedures been established for analyzing the impact of	
		software corrections and modifications?	
		Have procedures been established for avoidance of introducing	
		software failures during implementation and testing?	
	Avoidance and	Have means to avoid, reveal and correct systematic failures during	
	control with	the design, implementation and installation been implemented, for	
	systematic failures	example design reviews, documentation reviews, loop checks and so	
	during design	on?	
	processes		
		Are the personnel involved in SIS design, development and	
		installation/commissioning familiar with how systematic failures are	
		introduced, how they may be avoided, and how they may be	
		revealed?	
	Preparing for	Have means to avoid and reveal systematic during operation and	
	avoidance and	maintenance related activities been analyzed and accounted for in	
	control with	the hardware and software design? One example is to perform	
	systematic failures	human HAZOP or task analysis to identify assess human error	
	in operation	vulnerabilities, and use this knowledge to improve the SIS design.	
		Have means to avoid introducing (CCFs) during operation and	
		maintenance been evaluated and accounted for in the hardware and	

-	
-	

software design?	
Have operation and maintenance related activities been analyzed in	
order to identify necessary bypasses (in field), inhibits, and	
overrides (in software)?	
Have means to monitor status on bypasses, inhibits, and overrides	
been considered and taken into account in the hardware and	
software design?	
Have means to avoid improper setting and restoration after bypass,	
inhibits, and overrides been evaluated and taken into account in the	
hardware and software design?	
Have means to avoid human errors that may cause a demand on the	
SIF been evaluated and taken into account in the current hardware	
and software design?	
Have potential vulnerabilities of human interfaces (e.g., operator	
stations and displays) on the ability to detect and control hazardous	
events and process demands been considered?	
Does the current SIS design provide useful alarm descriptions, alarm	
prioritization, and guidance on the sequence of events during a	
response to a true or false process demand?	
Have assumptions like e.g., mean repair times, response to	
dangerous detected failures, constraints on operational and	
environmental exposure been captured in relevant operating and	
maintenance procedures?	
Have means to avoid unauthorized access to the SIS been evaluated	
and accounted for in the design?	
Have means to ensure safe access to information needed as part of	
integrated operation been considered, and taken into account in the	
design?	
Does the hardware and software design facilitate function testing?	
If condition monitoring is applied for components; Has the	
contribution from condition monitoring been considered when	
specifying the scope of function testing and inspections?	
Have the constraints of the function test compared to a real process	
demand been specified?	
Has other means to partially test the function been considered (e.g.,	
partial stroke testing of valves)?	

	In case the function test is split into two or more subtests, e.g.,	
	separate testing of input and final elements;	
	• Has the need for bypasses, inhibits, and overrides been	
	evaluated?	
	• Have the possibility for testing interfaces between different	
	SIS applications, for example emergency shutdown system	
	(ESD) and fire and gas detection system (F&G) been	
	considered?	
	Have a list of all documents from design, implementation and	
	installation that must be updated during the operation phase been	
	prepared?	
	Have assumptions and constraints that must be accounted for during	
	operation and maintenance (e.g., constraints on environmental	
	exposure) been clearly stated?	
	Have all the issues related to safety integrity verification of the SIF	
	been addressed in a safety analysis report (SAR)?	
Preparing for	Have means to analyze the effect of software modifications, verify	
software	the software changes prior to installation been identified, and	
modifications	document the software changes been accounted for in SIS	
	management of modification procedures?	
	Have procedures been established that show how SIS modifications	
	are to be initiated, approved and implemented during the operation	
	phase?	
Preparing for SIS	Are the performance targets established for the SIS unambiguously	
performance	lined to the SIL-requirements, for example the PFD??	
monitoring		
	Have the necessary facilities (tools, systems) for data collection	
	been identified?	
	Have procedures been established for data collection, classification,	
	and analysis?	
	Have means to conect data on CCF events been considered?	
	Have procedures been established that describe now the measured	
	SIS performance may be used to update e.g., the function test	
	interval, initiate root cause analysis, improve operation and	
	maintenance procedures?	

http://www.ntnu.no/ross/ross/safetycrit.php Version: 2007-09-26

Installation and commissioning (IEC 61511-1, vh. 14, IEC 61508-1, ch. 7.13				
Have measures against introducing systematic failures and CCFs				
been accounted for in the installation and commissioning procedure	ires			
Have means been implemented to ensure that any failure introduce	ed l			
during installation and commissioning, e.g., leaving detectors with	h			
cap on, are revealed before the SIS is put into operation?				