Helicopter project TTK4115 Linear System Theory

Andreas Hystad & Thomas Stenersen Group 27

September 11, 2012

Contents

1	Matł 1.1	nematical modelling Part I	3 3
2	Арр	endix	5
Li	ist o	f Figures	
	1	Helicopter model	3
Li	ist o	f Tables	
	1	List of variables and constants	5

1 Mathematical modelling

1.1 Part I

The first part of the assignment was to develop the equations describing the helicopters motion – i.e. the differential equations for the pitch angle p, the travel angle λ and the elevation angle e.

(b) Helicopter front

Figure 1: Helicopter model

We use fig. 1a, 1b and Newtons 2. law for rotation to obtain the differential equations.

$$\Sigma \tau = J_p \ddot{p} = (F_f - F_b) l_h = K_f l_h V_d$$

$$\hat{p} = \frac{K_f l_h}{J_p} V_d = K_1 V_d$$
(1)

Where

$$K_1 = \frac{K_f l_h}{J_p} \tag{2}$$

$$\Sigma \tau = J_t \ddot{\lambda} = -K_f l_a \sin(p) - K_a l_a |\dot{\lambda}| \dot{\lambda}$$

$$\updownarrow$$

$$\ddot{\lambda} = -\frac{K_f l_a}{J_t} \sin(p) - \frac{K_a l_a}{J_t} |\dot{\lambda}| \dot{\lambda} = -K_2 \sin(p) - k_l |\dot{\lambda}| \dot{\lambda}$$
(3)

Where

$$K_2 = \frac{K_f l_h}{J_p},$$

$$k_l$$

$$\Sigma \tau = J_e \ddot{e} = (F_f + F_b) l_a \cos(p) = K_f l_a \cos(p) V_s$$

$$\updownarrow$$

$$\ddot{e} = \frac{K_f l_a}{J_e} \cos(p) V_s = K_3 \cos(p) V_s$$
(4)

Where

$$K_3 = \frac{K_f l_a}{J_e} \tag{5}$$

$$V_s = V_f + V_b \tag{6}$$

$$V_d = V_f - V_b \tag{7}$$

$$V_f = \frac{1}{2} \left(V_s + V_d \right) \tag{8}$$

$$V_b = \frac{1}{2} \left(V_s - V_d \right) \tag{9}$$

$$\ddot{p} = K_1 V_d \tag{10}$$
$$\ddot{\nu} = -K_r \sin(p) - k_r |\dot{\lambda}| \dot{\lambda} \tag{11}$$

$$\hat{\lambda} = -K_2 \sin(p) - k_l |\hat{\lambda}| \hat{\lambda} \tag{11}$$

$$\ddot{e} = K_3 V_s - K_4 \tag{12}$$

Where

$$K_1 = \frac{l_h K_f}{J_p} =$$

$$K_2 = \frac{l_a K_f}{J_t} =$$

$$K_3 = \frac{l_a K_f}{J_e} =$$

$$K_4 = \frac{l_a m_g g}{J_e} = 42$$

2 Part II – Mono-variable control

In this part of the assignment, we wanted to implement mono-variable control for the elevation e, pitch p, and travel rate λ .

2.1 Problem 1

We want to use a PD controller to control the pitch angle p.

$$V_d = K_{pp}(p_c - p) - K_{pd}\dot{p} \tag{13}$$

(14)

We apply the Laplace transform to (??) and (1) (with zero initial conditions):

$$\frac{s^2 p}{K_1} = K_{pp}(p_c - p) - sK_{pd}p$$

$$\uparrow$$

$$p(s^2 + sK_1K_{pd} + K_1K_{pp}) = p_cK_1K_{pp}$$

$$\uparrow$$

$$\frac{p}{p_c}(s) = \frac{K_1K_{pp}}{s^2 + sK_1K_{pd} + K_1K_{pp}}$$
(15)

As a starting point we set the regulator parameters such that the regulator is as fast as possible without oscillations – i.e. we choose the parameters such that $\zeta = 1$. We choose $K_{pp} = 1$ and find K_{pd} .

$$\zeta = \frac{\sqrt{K_1 K_{pd}}}{2\sqrt{K_{pp}}}$$

$$\downarrow$$

$$1 = \frac{\sqrt{K_1 K_{pd}}}{2\sqrt{1}}$$

$$\downarrow$$

$$K_{pd} = \frac{2}{\sqrt{K_1}}$$

lol

3 Appendix

$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
V_b – Voltage, rear motor V_d – Voltage difference, $V_f - V_b$ V_s – Voltage sum, $V_f + V_b$ K_{pp} – Controller gain K_{pd} – Controller gain K_{rp} – Controller gain p_c – Pitch reference
$\begin{array}{llllllllllllllllllllllllllllllllllll$
V_s – Voltage sum, $V_f + V_b$ K_{pp} – Controller gain K_{pd} – Controller gain K_{rp} – Controller gain p_c – Pitch reference
K_{pp} – Controller gain K_{pd} – Controller gain K_{rp} – Controller gain p_c – Pitch reference
K_{pd} – Controller gain K_{rp} – Controller gain p_c – Pitch reference
K_{rp} – Controller gain p_c – Pitch reference
p_c – Pitch reference
$\dot{\lambda}_c$ – Travel rate reference
e_c – Elevation reference
l_a – Distance from axis of elevation to helicopter body [m]
l_h – Distance from pitch axis to motor [m]
K_f – Motor force constant [N/V]
J_e – Moment of inertia about elevation axis [kg m ²]
J_t – Moment of inertia about travel axis [kg m ²]
J_p – Moment of inertia about pitch axis [kg m ²]
m_h – Helicopter body mass [kg]
m_w – Counterweight mass [kg]
m_g – Net mass of helicopter and counterweight [kg]
K_p – Force needed to lift the helicopter body from the table top (g·m _g) [N]

Table 1: List of variables and constants