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Chapter 1

Calculations Temp

We are to find the transfer function to

Vd = Kpp(pc − p)−Kpdṗ (1.1)

From previous derivations, we have that

p̈ = K1Vd ↔ Vd =
p̈

K1
(1.2)

Inserting (X.X) into (Y.Y) yields

p̈

K1
= Kpp(pc − p)−Kpdṗ (1.3)

Replacing derivatives with the appropriate Laplace transforms and then solving to find p
pc

(s)

s2p

K1
= Kpppc −Kppp−Kpdps (1.4)

p(
s2

K1
+Kpds+Kpp) = Kpppc (1.5)

p

pc
(s) =

K1Kpp

s2 +K1Kpds+K1Kpp
(1.6)

Deriving the transfer function r
rc

(s) is fairly simple. From previous derivations we have,
under the assumption p and r are small, the linear equation

ṙ = −K2p↔ p = − ṙ

K2
(1.7)

The simple P controller we will implement are given by this equation

pc = Krp(rc − r), Krp < 0 (1.8)

Inserting (X.X) into (Y.Y) and assuming perfect control (p = pc) yields

− ṙ

K2
= Krp(rc − r) (1.9)

Replacing the derivative with the appropriate Laplace transform and then solving to find
r
rc

(s)
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sr = −K2Krp(rc − r), ρ = K2Krp (1.10)

r(s− ρ) = −ρrc (1.11)

It should be emphasized that this transfer function are based on some rough approximations,
and great care should be taken when using it to analyze the system.

r

rc
(s) =

ρ

s− ρ
(1.12)
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Part III
The first thing we do is to initialize the constants derived earlier by executing the following code:

Kf = m_g*9.81/3.85

K1 = Kf*l_h/J_p

K2 = Kf*3.85*l_a/J_e

K3 = l_a*Kf/J_e

K4 = m_g*9.81*l_a/J_e

We then have three equations to include in the system:

ë = K3Vf +K3Vs −K4 (1.13)

ṗ = ṗ (1.14)

p̈ = K1Vf −K1Vb (1.15)

Which translates to the following system:

ẋ =

 0 0 0
0 0 1
0 0 0

x +

 K3 K3

0 0
K1 −K1

u (1.16)

where x =

 ė
p
ṗ

 and u =

[
Vf
Vb

]
The constant K4 is ignored since it doesn’t influence neither the states nor the inputs. We

are interested in checking the controllability of the system, and hence we use MATLAB to cal-
culate the controllability matrix with the following code (the calculated values for K1 and K3

will replace the variables when the script is executed):

A = [0,0,0;0,0,1;0,0,0]

B = [K_3, K_3;0,0;K_1,-K_1]

Co = ctrb(A,B)

us = length(A)-rank(Co)

The last variable, us (uncontrollable states), evaluates to 0. This means the system is
controllable.

We are now interested in using the LQR (Linear Quadratic Regulator) method. We set
u = Pr−Kx, where P and K er gain (weight) matrices for the reference and states respectively.

To find P we need to do som algebra. We start by defining y = Cx and ẋ = Ax+Bu. The
matrix C is:

C =

[
1 0 0
0 1 0

]
(1.17)

We replace u with Pr −Kx which gives us (after a little shuffling)

ẋ− (A−BK)x = BPr (1.18)

We now replace x with y by multiplying with the C matrix:

ẏ − (A−BK)y = CBPr (1.19)
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And then we Laplace transform the equation:

Y s− (A−BK)Y = CBPr (1.20)

Finally, we set up the transfer function, dividing with s since r is an impulse

Y

r
(s) =

CBP

s(s− (A−BK))
(1.21)

We now use the final value theorem to find the value when t→∞:

lim
s→0

s
Y

r
(s) = s

CBP

s(s− (A−BK))
=

CBP

BK −A
= 1 (1.22)

Where the expression evaluates to 1 because after an infinite amount of time, r = y. We
now use the result to solve for P:

CBP = BK −A↔ P = C−1B−1(BK −A) (1.23)

And this is the final answer. We used the following script to calculate these matrices:

A = [0,0,0;

0,0,1;

0,0,0]

B = [K3,K3;

0,0;

K1,-K1]

Q = [2.5*10,0,0;

0,6*10,0;

0,0,4*10]

R = [4*10,0;

0,4*10]

K = lqr(A,B,Q,R)

C = [1,0,0;

0,1,0]

P = inv(C*inv(-A+B*K)*B) %(inv(C)*inv(B))*(B*K-A)

We found some values of Q and R that gave an OK response in the system, which can be
seen in the above code.
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