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2 Basic Mathematical 
Concepts

2.1	I ntroduction

Although the origin of the word mathematics can be traced back to the ancient 
Greek word mathema, which essentially means “science, knowledge, or learning,” 
the history of our current number symbols goes back to around 250 BC to the stone 
columns erected by the Scythian emperor Asoka of India [1]. Over the centuries, 
mathematics has developed into various specialized areas, including probability 
and statistics, applied mathematics, and pure mathematics and is successfully being 
applied to solve various types of science- and engineering-related problems.

The application of the mathematical concepts in science and engineering ranges 
from solving interplanetary problems to designing and maintaining engineering 
equipment in the industrial sector. More specifically, over the past few decades vari-
ous mathematical concepts, particularly probability distributions and stochastic pro-
cesses (i.e., Markov modeling), have been used to study various types of problems 
concerning human reliability and error.

For example, in the late 1960s and early 1970s various statistical distributions 
were used to represent times to human error [2–4]. Furthermore, in the early 1980s 
the Markov method was employed to perform human reliability-related analysis of 
redundant systems [5–7].

This chapter presents various introductory mathematical concepts considered use-
ful for conducting human reliability and error analysis in engineering maintenance.

2.2	 Boolean Algebra Laws and Probability Properties

Boolean algebra is named after an English mathematician, George Boole (1813–
1864), who developed it in 1854 [8, 9]. As Boolean algebra plays an important role in 
human reliability and error-related studies, five of its laws are as follows [10–11]:

Associative Law:

	 ( ) ( )A B C A B C+ + = + + 	 (2.1)

where A is an arbitrary event or set, B is an arbitrary event or set, C is an arbitrary 
event or set, and + denotes the union of sets.

	 ( ) ( )A B C A B C• • = • • 	 (2.2)
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14	 Human Reliability, Error, and Human Factors in Engineering Maintenance

where the dot (•) denotes the intersections of sets. When Equation (2.2) is written 
without the dot, it still conveys the same meaning.

Commutative Law:

	 A B B A+ = + 	 (2.3)

	 A B B A= 	 (2.4)

Distributive Law:

	 A B C AB AC( )+ = + 	 (2.5)

	 ( ) ( )A B A C A BC+ + = + 	 (2.6)

Idempotent Law:

	 A A A+ = 	 (2.7)

	
AA A=

	 (2.8)

Absorption Law:

	
A A B A( )+ =

	 (2.9)

	
A AB A+ =( )

	 (2.10)

Probability is the study of random or nondeterministic experiments and it had its 
real beginnings in the early part of the seventeenth century as a result of investigations 
of various games of chance by people such as Pierre Fermat (1601–1665) and Blaise 
Pascal (1623–1662) [12]. The basic properties of probability are presented below 
[12–15].

The probability of occurrence of event, say •	 X, is

	 O P X≤ ≤( ) 1 	 (2.11)

The probability of the sample space •	 S is

	 P S( ) = 1	 (2.12)

The probability of the negation of the sample space •	 S (i.e., S ) is

	 P S( ) = 0 	 (2.13)
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Basic Mathematical Concepts	 15

The probability of occurrence and nonoccurrence of an event, say •	 X, is

	 P X P X( ) ( )+ =1 	 (2.14)

where P(X) is the occurrence probability of event X and P( X ) is the nonoccurrence 
probability of event X.

The probability of an intersection of •	 K independent events is

	
P Y Y Y Y P Y P Y P Y P YK K( ) ( ) ( ) ( ) ( )1 2 3 1 2 3 = 	 (2.15)

where Yj is the jth event for j = 1, 2, 3, …, K and P Yj( )  is the occurrence probability 
of event Yj for j = 1, 2, 3, …, K.

The probability of the union of •	 K independent events is

	

P X X X P XK j

j

K

( ) ( ( ))1 2

1

1 1+ + + = − −
=

∏

	

(2.16)

where Xj is the jth event; for j = 1, 2, …, K and P X j( )  is the occurrence probability 
of event Xj; for j = 1, 2, …, K.

For K = 2, Equation (2.16) reduces to

	 P X X P X P X P X P X( ) ( ) ( ) ( ) ( )1 2 1 2 1 2+ = + − 	 (2.17)

The probability of the union of •	 K mutually exclusive events is

	

P X X X P XK j

j

K

( ) ( )1 2

1

+ + + =
=

∑

	

(2.18)

Example 2.1

A maintenance worker is performing a maintenance task composed of two indepen-
dent steps: X and Y. The task will be accomplished correctly only if both the steps 
are performed correctly. The probabilities of performing steps X and Y correctly by 
the maintenance worker are 0.9 and 0.8, respectively. Calculate the probability of 
accomplishing the task correctly by the maintenance worker.

By substituting the specified data into Equation (2.15), we get

	

P XY P X P Y( ) ( ) ( )

( . ) ( . )

.

=
=
=

0 9 0 8

0 72
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16	 Human Reliability, Error, and Human Factors in Engineering Maintenance

where X = Y1 and Y = Y2. Thus, the probability of accomplishing the task correctly by 
the maintenance worker is 0.72.

Example 2.2

In Example 2.1, by using Equations (2.14) and (2.17) calculate the probability that the 
task will not be accomplished successfully by the maintenance worker.

Thus, by using Equation (2.14) and the specified data values, we obtain

	

P X P X( ) ( )

.

.

= −
= −
=

1

1 0 9

0 1

and

	

P Y P Y( ) ( )

.

.

= −
= −
=

1

1 0 8

0 2

where P X( )  is the probability of not accomplishing step X correctly by the mainte-
nance worker and P Y( )  is the probability of not accomplishing step Y correctly by 
the maintenance worker.

Using Equation (2.17) and the above calculated values, we get

	

P X Y P X P Y P X P Y( ) ( ) ( ) ( ) ( )

. . ( . )( .

+ = + −
= + −0 1 0 2 0 1 0 2))

.= 0 28

where X X Y X= =1 2and , and P X Y( )+  is the probability of not performing steps 
X or Y correctly. Thus, the probability that the task will not be accomplished success-
fully by the maintenance worker is 0.28.

2.3	U seful Definitions

This section presents mathematical definitions that are considered useful for per-
forming human reliability and error analysis in engineering maintenance.

2.3.1	 Probability

This is expressed as [14]

	
P Y

M
mm( ) lim=





→∞

	
(2.19)

where P (Y) is the probability of occurrence of event Y and M is the total number of 
times that Y occurs in the m repeated experiments.
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Basic Mathematical Concepts	 17

2.3.2	C umulative Distribution Function Type I

For continuous random variables, this is defined by [14]

	

F t f x dx

t

( ) ( )=
− ∞
∫

	

(2.20)

where f(t) is the probability density function (in human reliability work it is also 
known as the human error density function), t is the time-continuous random vari-
able, and F(t) is the cumulative distribution function.

2.3.3	 Probability Density Function Type I

For continuous random variables, using Equation (2.20) this is expressed as follows:

	

d F t
dt

d f x dx

dt
f t

t

( )
( )

( )

=















=

−∞
∫

	

(2.21)

2.3.4	 Probability Density Function Type II

For a single-dimension discrete random variable, say X, the discrete probability den-
sity function of the random variable X is represented by f (xj) if the following condi-
tions apply [12]:

	
f x for all x R range spacej j x( ) , ( ),≥ ∈0

	
(2.22)

and

	

f x j

all

x j

( ) =∑ 1

	

(2.23)

2.3.5	C umulative Distribution Function Type II

For discrete random variables, the cumulative distribution function is expressed 
by [12]

	

F x f x j

x xj

( ) ( )=
≤

∑
	

(2.24)

where F(x) is the cumulative distribution function and its value is always 0 ≤ F 
(x) ≤ 1.
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18	 Human Reliability, Error, and Human Factors in Engineering Maintenance

2.3.6	R eliability Function

For continuous random variables, this is expressed by

	

R t F t

f x dx

t

( ) ( )

( )

= −

= −
− ∞
∫

1

1

	

(2.25)

where f(x) is the failure/human error density function and R(t) is the reliability function.

2.3.7	 Hazard Rate Function

It is also known as the time-dependent failure/error rate function and is defined by

	

λ ( )
( )

( )

( )
( )

t
f t
F t

f t
R t

=
−

=

1

	

(2.26)

where l (t) is the hazard rate function or the time-dependent failure/error rate function.

2.3.8	E xpected Value Type I

The expected value, E(t), of a continuous random variable is expressed by [12, 14]

	

E t t f t dt( ) ( )= =
− ∞

∞

∫µ

	

(2.27)

where m is the mean value. It is to be noted that in human reliability work, m is called 
mean time to human error, and f(t) human error density function.

2.3.9	E xpected Value Type II

The expected value, E(x), of a discrete random variable x is defined by [12, 14]

	

E x x f xj j

j

k

( ) ( )=
=

∑
1 	

(2.28)

where k is the number of discrete values of the random variable x.

2.3.10	L aplace Transform

The Laplace transform of the function f (t) is defined by

	

F s f t e dtSt( ) ( )= −

∞

∫
0 	

(2.29)
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Basic Mathematical Concepts	 19

where s is the Laplace transform variable, t is the time variable, and F(s) is the 
Laplace transform of f (t).

Example 2.3

Find the Laplace transform of the following function:

	 f t C( ) = 	 (2.30)

where C is a constant.
Using the above function in Equation (2.29) yields

	

F s C e dt

C e
s

C
s

St

St

( ) =

=
−

=

−

∞

−
∞

∫
0

0

	

(2.31)

Example 2.4

Find the Laplace transform of the following function:

	 f t e t( ) = − α
	 (2.32)

where a is a constant. In human reliability work, it is known as the human error 
rate.

By substituting Equation (2.32) into Equation (2.29) we get

	

F s e e dt

e
s

s

t St

S t

( )

( )

( )

=

=
− +

=
+

− −

∞

− +
∞

∫ α

α

α

α

0

0

1

	

(2.33)

Table  2.1 presents Laplace transforms of some commonly occurring functions in 
human reliability-related analysis [16, 17].

2.3.11	L aplace Transform: Final-Value Theorem

If the following limits exist, then the final-value theorem may be expressed as

	 t sf t sF s→∞ →=lim lim( ) [ ( )]0
	 (2.34)
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20	 Human Reliability, Error, and Human Factors in Engineering Maintenance

2.4	 Probability Distributions

In human reliability-related analysis various types of discrete and continuous random 
variable probability distributions are used. Some examples of these distributions are 
binomial, Poisson, exponential, and normal distribution. This section presents prob-
ability distributions that are considered useful for application in performing human 
reliability and error analysis in engineering maintenance [18].

2.4.1	 Poisson Distribution

The Poisson distribution is a discrete random variable distribution and is named 
after Simeon Poisson (1781–1840) [1]. The distribution is used in situations when 
one is concerned with the occurrence of a number of events that are of the same 
kind. The occurrence of an event is denoted as a point on a time scale, and in human 
reliability work an event denotes a human error. The distribution density function is 
expressed by

	
f K

t e
K

K
K t

( )
( )

!
, , , , ,= =

−α α
for 0 1 2 3 

	
(2.35)

where t is time and a is the constant arrival or error rate.
The cumulative distribution function, F, is

	
F t e jj t

j

K

= −

=
∑[( ) ]/ !α α

0 	
(2.36)

Table 2.1
Laplace Transforms of Some Frequently Occurring Functions in Human 
Reliability-Related Analysis

No. F(t) F(s)

1 C, a constant C/s

2 t mm , , , , ,for = 0 1 2 3  m sm!/ + 1

3 e t− α 1/(s+a)

4 te t− α 1/(s+a)2

5
df t

dt
( )

sF(s)-f(0)

6 tf (t) − dF s
ds

( )

7 f t dt

t

( )
0
∫ F(s)/s

8 α βf t f t1 2( ) ( )+ α βF s F s1 2( ) ( )+

9 t mm − −1 1/( )!
1

1 2 3
s

m
m

, , , ,= 
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Basic Mathematical Concepts	 21

The distribution mean is given by [15, 18]

	
µ αp t=

	 (2.37)

where mp is the mean of the Poisson distribution.

2.4.2	B inomial Distribution

This is another discrete random variable distribution. The distribution is also known 
as the Bernoulli distribution, after Jakob Bernoulli (1654–1705), its originator [1]. 
The distribution is used in situations when one is interested in the probability of out-
come such as the total number of errors/failures in a sequence of, say K, trials. The 
distribution is based on the condition that each trial has two possible outcomes (e.g., 
success and failure), and each trial’s probability remains constant.

The distribution probability density function, f(x), is defined by

	
f x p q x Kj

K x K x( ) , , , , ,..., .= ( ) =− for 0 1 2 3
	

(2.38)

where

	
j
K K

j K j
( ) =

−
!

!( )!

x is the total number of failures/errors in K trials, q is the probability of failure of a 
single trial, and p is the probability of success of a single trial.

The cumulative distribution function is given by

	

F x p qj
K j K j

j

x

( ) = ( ) −

=
∑

0 	

(2.39)

where F(x) is the probability of x or less failures (errors) in K trials.
The distribution mean is given by [18]

	
µb Kp=

	 (2.40)

where mb is the mean of the binomial distribution.

2.4.3	G eometric Distribution

This discrete random variable distribution is based on the same assumptions as the 
binomial distribution, except that the number of trials is not fixed. More specifically, 
all trials are independent and identical and each can result in one of the two possible 
outcomes (i.e., a success or a failure (error)). The distribution probability density 
function, f (x), is defined by [13, 19]

	 f x pq xx( ) , , , ,= =− 1 1 2 3for  	 (2.41)
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22	 Human Reliability, Error, and Human Factors in Engineering Maintenance

The cumulative distribution function is given by

	

F x

x

pq xx

x x

j

j

( )

,

,
[ ]

=
〈

≥









−

≤
∑
0 1

11

 	

(2.42)

The distribution mean is given by

	
µg p

= 1

 	
(2.43)

where mg is the mean of the geometric distribution.

2.4.4	E xponential Distribution

This is probably the most widely used continuous random variable probability dis-
tribution in performing reliability studies, because many engineering parts exhibit 
constant failure rate during their useful life period [20].

The distribution probability density function is defined by

	 f t e tt( ) ,= ≥ 〉−λ λλ 0 0 	 (2.44)

where f(t) is the probability density function (in reliability work, it is also called 
failure density function or error density function), l is the distribution parameter 
(in human reliability work, it is known as the constant human error rate), and t 
is time.

Using Equations (2.20) and (2.44), we obtain the following expression for the 
cumulative distribution function:

	

F t e dt

e

t

t

t

( ) =

= −

−

−

∫ λ λ

λ
0

1 	

(2.45)

By substituting Equation (2.44) into Equation (2.27), we get the following expression 
for the distribution expected or mean value:

	

E t t e dtt( ) = =

=

−

∞

∫µ λ

λ

λ

0

1

	

(2.46)

Example 2.5

Assume that the constant error rate of maintenance personnel in performing a cer-
tain maintenance task is 0.009 errors/hour. Calculate the probability that the main-
tenance personnel will make an error during an 8-hour mission.
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By substituting the specified data values into Equation (2.45), we get

	

F e( )

.

( . ) ( )8 1

0 0695

0 009 8= −
=

−

	

Thus, the probability that the maintenance personnel will make an error during the 
specified time period is 0.0695.

2.4.5	N ormal Distribution

This is a widely used continuous random variable probability distribution and 
sometimes it is also called the Gaussian distribution after Carl Friedrich Gauss 
(1777–1855), the German mathematician. The probability density function of the 
distribution is defined by

	

f t
t

t( ) exp
( )

,= − −







 − ∞〈 〈+ ∞1

2 2

2

2σ π
µ

σ
	

(2.47)

where m and s are the distribution parameters (i.e., mean and standard deviation, 
respectively).

Substituting Equation (2.47) into Equation (2.20), we obtain the following cumu-
lative distribution function:

	

F t
x

dx

t

( ) exp
( )= − −









−∞
∫1

2 2

2

2σ π
µ

σ
	

(2.48)

Using Equation (2.47) in Equation (2.27), we obtain the following expression for 
the distribution expected or mean value:

	 E t( ) = µ 	 (2.49)

2.4.6	G amma Distribution

This is another continuous random variable probability distribution and is quite flex-
ible in fitting a wide range of problems including human errors. The distribution 
probability density function is defined by

	
f t

t e
x

t
t

( )
( )

( )
, , ,= ≥ 〉

− −λ λ λ α
α λ1

0 0
Γ 	

(2.50)

where Γ (·) is the gamma function, l is the distribution scale parameter, and a is the 
distribution shape parameter.

Using Equation (2.50) in Equation (2.20), we get the following cumulative distri-
bution function:

	

F t
e t

j

t j

j

( )
( )
!

= −
−

=

−

∑1
0

1 λα λ

	

(2.51)
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24	 Human Reliability, Error, and Human Factors in Engineering Maintenance

Substituting Equation (2.50) into Equation (2.27), we get the following expression 
for the distribution expected or mean value:

	
E t( ) = α

λ 	
(2.52)

It is to be noted that at a = 1, the gamma distribution becomes the exponential 
distribution.

2.4.7	R ayleigh Distribution

This continuous random variable probability distribution is often used in the theory 
of sound and in reliability studies and is known after John Rayleigh (1842–1919), 
its originator [1]. The distribution probability density function is defined by

	
f t te t

t

( ) , ,= ≥ 〉
−





2

0 0
2

2

β
ββ

	
(2.53)

where b is the distribution parameter.
Substituting Equation (2.53) into Equation (2.20), we obtain the following cumu-

lative distribution function:

	 F t e
t

( ) = −
−





1

2

β
	

(2.54)

Using Equation (2.53) in Equation (2.27), we obtain the following equation for the 
distribution expected or mean value:

	
E t( ) =







β Γ 3
2 	

(2.55)

where Γ(·) is the gamma function and is defined by

	

Γ( ) ,y t e dt for yy t= 〉−

∞

−∫ 1

0

0

	

(2.56)

2.4.8	 Weibull Distribution

This continuous random variable probability distribution can be used to represent 
many different physical phenomena and it was developed by W. Weibull, a Swedish 
mechanical engineering professor, in the early 1950s [21]. The distribution probabil-
ity density function is expressed by

	
f t

t
e t

t

( ) , , ,= ≥ 〉
− −





θ

β
θ β

θ

θ
β

θ
1

0 0
	

(2.57)

where q is the distribution shape parameter and b is the distribution scale parameter.
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Using Equations (2.57) and (2.20), we get the following cumulative distribu-
tion function:

	 F t e
t

( ) = −
−





1 β

θ

	
(2.58)

Substituting Equation (2.57) into Equation (2.27), we get the following expression 
for the distribution expected or mean value:

	
E t( ) = +







β
θ

Γ 1
1

	
(2.59)

It is to be noted that for q = 1 and 2, the exponential and Rayleigh distributions are 
the special cases of the Weibull distribution, respectively.

2.5	S olving First-Order Differential 
Equations Using Laplace Transforms

Sometime in human reliability and error studies, the Markov method (described in 
Chapter 4), is used and it results in a system of linear first-order differential equa-
tions. The use of Laplace transforms is considered to be an effective approach to find 
solutions to these differential equations. The following example demonstrates the 
application of Laplace transforms in finding the solutions to a set of linear first-order 
differential equations.

Example 2.6

Assume that an engineering system can either be in three states: operating normally, 
failed due to hardware problems, or failed due to maintenance errors. The following 
set of differential equations describes the system:

	

dP t

dt
P tm

0
0 0

( )
( ) ( )+ + =λ λ

	
(2.60)

	

dP t

dt
P t1

0 0
( )

( )− =λ
	

(2.61)

	

dP t

dt
P tm

2
0 0

( )
( )− =λ

	
(2.62)

At t = 0, P0 (0) = 1, and P1 (0) = P2 (0) = 0, where Pi (t) is the probability that the engi-
neering system is in state i at time for i = 0 (operating normally), i = 1 (failed due to 
hardware problems), i = 2 (failed due to maintenance errors); l is the constant failure 
rate of the system due to hardware problems; and lm is the constant failure rate of the 
system due to maintenance errors.

Find solutions to differential Equations (2.60)–(2.62) by using Laplace transforms.

K10213.indb   25 3/7/09   2:07:40 PM

© 2009 by Taylor & Francis Group, LLC



26	 Human Reliability, Error, and Human Factors in Engineering Maintenance

Thus, taking Laplace transforms of Equations (2.60)–(2.62), using the given ini-
tial conditions, and then solving the resulting equations, we get

	
P s

s m
0

1
( )

( )
=

+ +λ λ 	
(2.63)

	
P s

s s m
1( )

( )
=

+ +
λ
λ λ 	

(2.64)

	
P s

s s
m

m
2( )

( )
=

+ +
λ
λ λ 	

(2.65)

where s is the Laplace transform variable, and Pi(s) is the Laplace transform of the 
probability that the engineering system is in state i at time t, for i = 0, 1, 2.

By taking the inverse Laplace transforms of Equations (2.63)–(2.65), we obtain

	
P t e m t

0( ) ( )= − +λ λ
	 (2.66)

	
P t e

m

tm
1 1( ) ( )( )=

+
− − +λ

λ λ
λ λ

	
(2.67)

	
P t em

m

tm
2 1( ) ( )( )=

+
− − +λ

λ λ
λ λ

	
(2.68)

Thus, Equations (2.66)–(2.68) represent solutions to differential Equations 
(2.60)–(2.62).

2.6	 Problems

	 1.	 Prove Equation (2.6).
	 2.	 Assume that a maintenance worker is performing a maintenance task 

composed of three independent steps: steps X, Y, and Z. The task will be 
accomplished correctly only if all the steps are performed correctly. The 
probabilities of performing steps X, Y, and Z correctly by the maintenance 
worker are 0.95, 0.75, and 0.99, respectively. Calculate the probability of 
accomplishing the task correctly by the maintenance worker.

	 3.	 In the above Problem No. 2, by using Equations (2.14) and (2.16) calculate 
the probability that the task will not be accomplished successfully by the 
maintenance worker.

	 4.	 Define probability mathematically.
	 5.	 Take the Laplace transform of the following function:

	 f t te t( ) = −λ
	 (2.69)

		  where l is a constant and t is a time variable.
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	 6.	 Obtain an expression for the hazard rate by using the following failure 
density function.

	 f t e tt( ) ,= ≥ 〉−λ λλ 0 0 	 (2.70)

		  where l is the distribution parameter and t is time.
	 7.	 Prove Equation (2.46).
	 8.	 What are the special case probability distributions of the Weibull distribution?
	 9.	 Assume that the constant error rate of maintenance personnel in perform-

ing a certain task is 0.001 errors/hour. Calculate the probability that the 
maintenance personnel will not make an error during a 6-hour mission.

	 10.	 Prove that the sum of Equations (2.62)–(2.65) is equal to 1/ .S Comment 
on the end result.
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