
NTNU
Department of Computer and Information Science

TDT4290

Customer driven project

BoligApp

Group 6:
Nenad Milosavljevic
Dusan Stefanovic
Jørgen Faret
Johan Reitan

Supervisor:
Anh Nguyen Duc

Customer:
Eli Nordvik

Elin Svendsen
Lars Kristian Sundset

November 20, 2013

Abstract

The course TDT4290 Customer Driven Project is a master-level course hosted
by the department of computer and information science at NTNU. The purpose
of the course is to give computer science students an introduction to software
development in the real world and the problems and challenges this entails. The
objective of the project is to make a realistic prototype of an information system
for a 3rd party customer.

In this case, the customer is NAV Hjelpemiddelsentral Sør-Trøndelag. NAV
(Norges Arbeids- og Velferdsetat) is the governmental welfare agency in Norway,
and NAV Hjelpemiddelsentral is the branch of NAV that deals with assisting people
with disabilities in Norway.

The development team consists of four students at NTNU, the Norwegian Uni-
versity of Science and Technology. The students are taking this course as a part
of their master’s degree in computer science.

The task specified by the customer was to create a mobile application for iOS
to assist in the planning of room layouts when modifying houses to facilitate the
installation of assistive technology for people with disabilities.

This report contains a documentation of the development process, from prelim-
inary study and planning through implementation and finally a project summary
and evaluation.

Preface

We would like to thank our supervisor, Anh Nguyen Duc, for his guidance through-
out this course. We would also like to give a special thank you to our customer
contacts Eli Nordvik, Elin Svendsen and Lars Kristian Sundset for their enthu-
siasm as well as their eagerness to assist us with any problems we encountered
throughout the course of the project.

1

Contents

I Planning and project management 10

1 Project directive 11
1.1 Project name . 11
1.2 Project mandate . 11
1.3 Project duration . 11
1.4 Project stakeholders . 12
1.5 Customer description . 13

2 Project plan 14
2.1 Project phases . 14
2.2 Milestones . 15
2.3 Risk assessment . 18
2.4 Roles . 21
2.5 Test plan . 22
2.6 Architecture plan . 27

3 Preliminary study 30
3.1 Development methodology . 30
3.2 Technological aids . 33

4 Quality assurance 37
4.1 Group interaction . 37
4.2 Supervisor interaction . 38
4.3 Customer interaction . 38

5 Requirements 39
5.1 Functional requirements . 39
5.2 Non-functional requirements . 40
5.3 Use cases . 41

2

II Sprints 44

6 Sprint 1 45
6.1 Duration . 45
6.2 Scrum master . 45
6.3 Backlog . 46
6.4 Goals . 47
6.5 Design and implementation . 47
6.6 Testing . 49
6.7 Deliverables . 49
6.8 Customer feedback . 49
6.9 Sprint evaluation . 50

7 Sprint 2 51
7.1 Duration . 51
7.2 Scrum master . 51
7.3 Backlog . 52
7.4 Goals . 53
7.5 Design and implementation . 53
7.6 Testing . 56
7.7 Deliverables . 57
7.8 Customer feedback . 57
7.9 Sprint evaluation . 58

8 Sprint 3 59
8.1 Duration . 59
8.2 Scrum master . 59
8.3 Goals . 59
8.4 Backlog . 60
8.5 Design and implementation . 62
8.6 Testing . 63
8.7 Deliverables . 64
8.8 Customer feedback . 65
8.9 Sprint evaluation . 65

9 Sprint 4 67
9.1 Duration . 67
9.2 Scrum master . 67
9.3 Goals . 67
9.4 Backlog . 68
9.5 Design and implementation . 70

3

9.6 Testing . 71
9.7 Deliverables . 73
9.8 Customer feedback . 73
9.9 Sprint evaluation . 73

III Conclusion and evaluation 75

10 System architecture 76
10.1 Logical view . 76
10.2 Process view . 78
10.3 Implementation view . 90
10.4 Deployment or physical view . 90
10.5 Use case view . 91

11 Acceptance testing 92
11.1 Functional requirement coverage . 92
11.2 Requirement testing . 94
11.3 Test cases . 94
11.4 Evaluation . 94

12 System evaluation 95
12.1 Usage scenario . 95
12.2 User questionnaire . 96
12.3 Questionnaire results . 98
12.4 Questionnaire data analysis . 98
12.5 Conclusion . 98

13 Project evaluation 102
13.1 Using scrum . 102
13.2 Risk evaluation . 103
13.3 Time management . 105
13.4 Group dynamics . 106

Bibliography 109

A Code conventions 111
A.1 Objective C . 111
A.2 XML . 113

4

B User manual 115
B.1 Creating a plan . 115
B.2 Removing a plan . 115
B.3 Loading a plan . 116
B.4 Editing a plan . 116
B.5 Customize UI . 119
B.6 Exporting and sharing a plan . 119

C Test executions 120
C.1 Sprint 1 integration tests . 120
C.2 Sprint 2 integration tests . 123
C.3 Sprint 3 integration tests . 129
C.4 Sprint 4 integration tests . 137
C.5 System tests . 149

5

List of Figures

1.1 Illustration of the project stakeholders, and their communication
usually through Johan Reitan, the communication responsible . . . 12

2.1 Gantt diagram illustrating the project plan 17
2.2 A diagram showing the main components of the system 27
2.3 A diagram that illustrates what deployment platforms the app will

utilize . 28
2.4 An initial class diagram . 29

3.1 Figure depicting the Scrum process. 31
3.2 Figure depicting the waterfall model. 32

5.1 Use case diagram . 41

6.1 Burn down chart for sprint 1 . 47

7.1 Burn down chart for sprint 2 . 53

8.1 Burn down chart for sprint 3 . 61

9.1 Burn down chart for sprint 4 . 70

10.1 Class diagram . 77
10.2 Package diagram . 78
10.3 Communication diagram for creating a new plan 79
10.4 Sequence diagram for creating a new plan 79
10.5 Communication diagram for loading a plan 80
10.6 Sequence diagram for loading a plan 80
10.7 Communication diagram for adding an element 81
10.8 Sequence diagram for adding an element 82
10.9 Communication diagram for editing a plan 83
10.10Sequence diagram for editing a plan 83
10.11Communication diagram for deleting an element 84

6

10.12Sequence diagram for deleting an element 85
10.13Communication diagram for saving a plan 86
10.14Sequence diagram for saving a plan 86
10.15Communication diagram for exporting a plan 87
10.16Sequence diagram for exporting a plan 88
10.17Communication diagram for sharing a plan 89
10.18Sequence diagram for sharing a plan 89
10.19Component diagram . 90
10.20Deployment diagram . 91
10.21Use case diagram . 91

13.1 Pie chart illustrating the distribution of work hours per task 106

7

List of Tables

2.1 Table of risks . 18
2.2 Test identifiers . 25
2.3 A template for documenting integration tests. 26
2.4 A template for documenting system tests. 26

5.1 Table of use cases . 42

6.1 Backlog for sprint 1 . 46
6.2 Total work hours for sprint 1 . 46

7.1 Backlog for sprint 2 . 52
7.2 Total work hours for sprint 2 . 52

8.1 Backlog for sprint 3 . 60
8.2 Total work hours for sprint 3 . 61

9.1 Backlog for sprint 4 . 69
9.2 Total work hours for sprint 4 . 69

11.1 Functional requirements implemented 93

12.1 Task items given to subjects for usage testing 96
12.2 Questions and statements in questionnaire given to each test subject 97
12.3 Results from user questionnaire after performing usage testing . . . 99
12.4 Comments given by the different test subjects after performing us-

age testing . 100
12.5 Grouping of questions by program quality they describe 100
12.6 Grouping of questions by program part they describe 101
12.7 Scores of software qualities given by users 101
12.8 Scores of program parts given by users 101

A.1 Naming conventions . 112

8

C.1 Test case INTG-11 . 120
C.2 Test case INTG-12 . 121
C.3 Test case INTG-13 . 122
C.4 Test case INTG-21 . 123
C.5 Test case INTG-22 . 124
C.6 Test case INTG-23 . 125
C.7 Test case INTG-24 . 126
C.8 Test case INTG-25 . 127
C.9 Test case INTG-26 . 128
C.10 Test case INTG-31 . 129
C.11 Test case INTG-32 . 130
C.12 Test case INTG-33 . 131
C.13 Test case INTG-34 . 132
C.14 Test case INTG-35 . 133
C.15 Test case INTG-36 . 134
C.16 Test case INTG-37 . 135
C.17 Test case INTG-38 . 136
C.18 Test case INTG-41 . 137
C.19 Test case INTG-42 . 138
C.20 Test case INTG-43 . 139
C.21 Test case INTG-44 . 140
C.22 Test case INTG-45 . 141
C.23 Test case INTG-46 . 142
C.24 Test case INTG-47 . 143
C.25 Test case INTG-48 . 144
C.26 Test case INTG-49 . 145
C.27 Test case INTG-410 . 146
C.28 Test case INTG-411 . 147
C.29 Test case INTG-412 . 148
C.30 Test case SYST-1 . 149
C.31 Test case SYST-2 . 150
C.32 Test case SYST-3 . 151
C.33 Test case SYST-4 . 152

9

Part I

Planning and project management

10

Chapter 1

Project directive

1.1 Project name
The name of the project is BoligApp. This is also going to be the name of the
application to be developed.

1.2 Project mandate
The purpose of the project is to develop an application to assist in the planning
of room layouts when modifying houses to facilitate the installation of assistive
technology for people with disabilities. The application should ensure the plan
is in accordance with Norwegian building laws and regulations. In addition, the
application should be able to connect to NAV’s assistive technology database and
import items from it into the plan.

1.3 Project duration
The development team was created and first customer contact established Wednes-
day the 21st of August. The final report of the project is to be delivered and
presented on Thursday the 21st of November. The group has therefore set the
deadline for finishing the project to Sunday the 17th of November.

11

Jørgen Faret

Student team
Dusan Stefanovic

Nenad Milasavljevic

Johan Reitan

Customer team
Eli Nordvik Elin Svendsen

Lars Kristian Sundset

Supervisor

Anh Nguyen Duc

Figure 1.1: Illustration of the project stakeholders, and their communication usu-
ally through Johan Reitan, the communication responsible

1.4 Project stakeholders
Customer
Company name NAV Hjelpermiddelsentral Sør-Trøndelag

Customer contacts
Eli Nordvik eli.nordvik@nav.no
Elin Svendsen elin.svendsen@nav.no
Lars Kristian Sundset lars.kristian.sundset@nav.no

Development team
Johan Reitan joharei@stud.ntnu.no
Jørgen Faret jorgenfa@stud.ntnu.no
Dusan Stefanovic dusans@stud.ntnu.no
Nenad Milosavljevic nenadm@stud.ntnu

Advisor
Anh Nguyen Duc anhn@idi.ntnu.no

12

mailto:eli.nordvik@nav.no
mailto:elin.svendsen@nav.no
mailto:lars.kristian.sundset@nav.no
mailto:joharei@stud.ntnu.no
mailto:jorgenfa@stud.ntnu.no
mailto:dusans@stud.ntnu.no
mailto:nenadm@stud.ntnu
mailto:anhn@idi.ntnu.no

1.5 Customer description
NAV is the governmental welfare agency in Norway. NAV Hjelpemiddelsentralen
Sør-Trøndelag (NAV HMS) is the branch of NAV that deals with assisting people
with disabilities in the region Sør-Trøndelag in Norway. They have a lot of assistive
technology that they need to install into the houses of their patients. Today, the
employees at NAV HMS need to draw plans of the houses by hand in order to
visualise how they will look like, and if they comply with the laws and regulations.
This is tedious work, and could be done easier and more accurate with the use of
an app like BoligApp.

13

Chapter 2

Project plan

2.1 Project phases
On the first week members should get to know each other and familiarize them-
selves with the project. The first meeting with the customer is also held on the
introductory week. After we get all necessary information from the customer, we
are going into the project planning phase (2.1.1). This phase lasts for two weeks
in which we are going to focus on risk assessment, understanding the specifications
of the project and creating a WBS. In this phase, all administrative tasks should
be done, including getting the required equipment from the customer in order to
develop. This phase will overlap with the next one where we are going to focus on
learning the skills needed for finishing the project. Our main goals would be to get
comfortable with iOS application development, graphical design, computer vision
and databases in general. Actual development is going to start when the second
phase is over. It is going to include 4 sprints and one introductory sprint, and will
last for 7 weeks. The main product of the development phase is a complete appli-
cation that we can present to the customer. The testing phase is going to occur
next. Unit testing, integration, system and final acceptance testing will be done in
this phase. The last three weeks are reserved for finishing the documentation and
the project report, which will also be written throughout the whole process. Dur-
ing this period, the remaining sections should be completed, the whole document
thoroughly revised and prepared for final delivery.

2.1.1 Planning and research

In this phase we are going to introduce each other to the course, do basic planning
of the project, make a list of requirements, role distribution and preliminary study.

14

2.1.2 Learning

Our main focus here will be on learning the Objective C programming language,
as the team is not familiar with it, and developing iOS applications in general.
Besides that, we are going to learn about databases, 2D modelling and computer
vision. This phase is crucial for a successful developing phase.

2.1.3 Sprints

We have decided to use the scrum methodology for this project, which means
our work will be divided into sprints. For more information about our choice of
development methodology, see section 3.1.4.

Before beginning a new sprint, a sprint planning meeting should be held. The
scrum master, the rest of the team and the customer should attend this meeting,
in which they are going to choose which features and functionalities have the
highest priority. Based on that information, the chosen task is moved from the
product backlog to the sprint backlog. The scrum team and the customer should
collectively define a sprint goal which is later discussed during the sprint review
meeting. See Figure 2.1 for an illustration.

2.1.4 Developing

In this phase our focus will be on actual coding. Code refactoring, and other code
fixing tasks will be done in this phase.

2.1.5 Testing

The testing phase represents time spent on testing the system. Integration, unit
testing, system testing, etc. should be done here. This phase is going to overlap
with developing phase due to test-driven development methodology.

2.1.6 Documentation

The last part of the project will include evaluation of our work, finishing docu-
mentation and final presentation for advisor and customer.

2.2 Milestones
We have split the development of our project into four main segments. Each
milestones will be covered by one sprint.

15

2.2.1 Milestone 1 - Load and display plan

The first functionality to be implemented is the portion of the program that enables
the application to load and display a plan. This is a core functionality for the
application and implementing this will be the first milestone.

2.2.2 Milestone 2 - Make plan interactive

The second main functionality to be implemented is make the plans interactive.
This entails being able to move, resize, rotate and remove items in the plan cor-
rectly.

2.2.3 Milestone 3 - Expand plan functionality

The third main functionality to be implemented is expand the functionality of the
application by adding the ability to draw new plan elements in addition to adding
functionality of the plan viewer by adding the ability to zoom and pan in the plan.

2.2.4 Milestone 4 - Import items from database

The fourth main functionality to be implemented is to connect to and load items
from the assistive technology database NAV has. This also entails creating an
interface that translates attributes from the database into graphical attributes in
our plan.

16

2013
Aug Sep Oct Nov
35 36 37 38 39 40 41 42 43 44 45 46 47

Introduction
Planning and research

Learning
Sprints

Sprint 1
Sprint planning

Development
Unit testing

Integration testing
Documentation

Milestone 1

Sprint 2
Sprint planning

Development
Unit testing

Integration testing
Documentation

Milestone 2

Sprint 3
Sprint planning

Development
Unit testing

Integration testing
Documentation

Milestone 3

Sprint 4
Sprint planning

Development
Unit testing

Integration testing
Documentation

Milestone 4

Testing
Documentation
Writing report

Figure 2.1: Gantt diagram illustrating the project plan

17

2.3 Risk assessment
Table 2.1 shows a list of possible problematic situations that could occur during the project work.

Table 2.1: Table of risks

Risk description Probability Severity Consequences Preventive actions

Unfamiliar/
inexperienced with
development
platform

H M Delays, lesser product quality Read documentation, follow
tutorials, ask experts

Poor time planning H L Overtime, delays, lesser
product quality

Use generous time estimates in
the beginning. Update
estimates continuously as the
project progresses, and new
problems surface

Customer changes
their minds

H M Unnecessary work (work that is
already finished could be
discarded), delays, overtime

Keep up good communication
with the customer to get to
know the change of plans as
early as possible

Customer does not
have technical
expertise

H H Difficult to get the required
information, delays

Early contact with the
customer in order to find out
where the required information
can be found.

Continued on the next page

18

Risk description Probability Severity Consequences Preventive actions

Missing equipment M H Delays, functionality not
implemented

Talk to the customer about
acquiring necessary equipment.
Make the best of what we have

The scope of the
project is too big

H M Project will not meet the
specifications

Take time to plan properly, so
that we can estimate how much
of the specification we are
actually able to deliver, and
report to the customer as soon
as possible

Unexpected team
member absence

M H Overtime, delays. The person
absent could miss much of the
project development and have a
hard time catching up when he
comes back

Keep the person concerned
updated on the progress. Make
sure all project material is
available for everyone at all
times

Loss of data L H Varying, but could be fatal Backup and version control
system (git, Google Drive and
Dropbox), be careful

Difficult problems
during
implementation etc.

H M Overtime, delays, change of
plans

Be well prepared (use the
learning phase (2.1.2)
effectively), research problem,
ask for help

Continued on the next page

19

Risk description Probability Severity Consequences Preventive actions

Technical problems
with tools and
software

M M Overtime, delays, loss of data,
frustration and demoralization,
change of plans

Choose software carefully, ask
for help

Internal conflicts L M Lower work morale and
productivity, delays

Make sure everyone has their
say, be involved in the project,
avoid unequal distribution of
work

20

2.4 Roles
Each role assignment with exception of the Scrum Master is fixed throughout
the duration of the project. The Scrum Master role is dynamic, and every team
member will be Scrum Master for one of four sprints.

Scrum Master - Dynamic The scrum master is responsible for keeping track
of team progress, observing individual progress and making sure that every task is
completed on time and managing workload. He is also responsible for the weekly
status reports and ensuring that the process is followed, including issuing invita-
tions to daily scrums, sprint reviews, and sprint planning. He is also responsible
for preparing meeting agendas and managing scrum meetings.

Communication Responsible - Johan Reitan The communication respon-
sible manages communication with external stakeholders. His main duty is to
establish and maintain good communication between the team and the customer.

Development Responsible - Dusan Stefanovic The development responsi-
ble is responsible for design and implementation of the product. He has to manage
architecture and code reviews and the progress of the application development. He
is also responsible for code standards and conventions, code quality and code doc-
umentation.

Documentation Responsible - Johan Reitan The documentation responsi-
ble is responsible for keeping the documentation up-to-date with the development
and for putting the project report together. He has to manage documentation
reviews and to have an overview of the entire document, how it is structured, and
to maintain a steady progress.

Team Leader - Dusan Stefanovic The team leader has the responsibility to
organize and manage the team, resolve conflicts, and lead internal meetings. He
should also ensure that members are motivated and that everybody gets proper
tasks.

Test Responsible - Jørgen Faret The test responsible is the person respon-
sible for creating and making sure tests are run. He should create standards for
testing, such as unit tests, ensure that the unit tests are up to date, and cover an
adequate amount of functionality. He is also responsible for creating integration
tests, usability tests and any other tests deemed necessary for the completion of
the project.

21

Quality Assurance Responsible - Nenad Milosavljevic The QA responsi-
ble is responsible for ensuring that the team is following the routines and standards
agreed upon throughout the project in regards to group interactions and meeting
routines.

Software Repository Responsible - Johan Reitan The software repository
responsible helps the team members learn how to use the repository system agreed
upon. In addition he is also responsible for monitoring the repository and ensuring
that it is being used correctly.

Secretary - Jørgen Faret The secretary is responsible for taking minutes from
all meetings with the customer and the supervisor. He is also responsible for
setting up team meetings and booking rooms.

2.5 Test plan
This section will describe the test plan for the project. The test plan specifies the
a description of the test methods to be used, a description of the procedures when
performing the different types of tests, as well as a formal layout to be used when
documenting tests.

The purpose of testing is to find potential bugs and errors in the code so that
these may be corrected. In addition, during the higher levels of testing when the
application is completed we will perform an evaluation of the system in accordance
with the ISO-9126 standard for evaluation of software quality.

2.5.1 Testing techniques

There are three main techniques for software testing: black-box testing, gray-box
testing and white-box testing.

White-box testing

White-box testing is a test technique that tests internal workings of an application
as opposed to its functionality. In white-box testing, the tester is fully aware of all
the implementation details of the program, and the tests are typically performed
by the developer.

Although this testing technique is very useful for uncovering bugs in functions
or methods, it is not very well suited for detecting unimplemented parts of the
specification or missing requirements. White-box testing is applicable to testing

22

on several levels from early to middle phases of the development cycle. In practice
it is most commonly used to perform unit testing.

Black-box testing

Black-box testing is a testing technique that tests the functionality of an appli-
cation, without peering into the application’s internal structure. In this form of
testing, the application can be seen as a “black box” where user input is the input
and application behavior and response is the output. No knowledge of the internal
structure and design of the program is required when performing black-box testing,
which means this testing technique can be performed by anyone from developers
to end-users.

Black-box testing is applicable to all levels of testing, but is well suited for and
typically used to perform high-level testingat the end of the development phase
such as scenario testing and final acceptance testing.

Gray-box testing

Gray-box testing is a combination of black-box testing and white-box testing.
While in black-box the internal structure of the application is completely unknown
to the taster and in white-box the internal structure is completely known to the
tester, in gray-box the internal structure is partially known to the tester. This
means that the tester has access to internal data structures and algorithms for
purposes of designing test cases, but the actual testing is performed at the black-
box level.

Gray box testing is considered to be non-intrusive and unbiased because it
does not require the tester to have access to source code. This form of testing is
typically used to perform integration testing at the mid stages of the development
phase.

2.5.2 Testing methods

We will use four different testing methods throughout the development of our
application: unit testing, integration testing, system testing and scenario testing.

Unit testing

Unit testing is a low-level testing method based upon the concept of verifying
that individual units of code work as expected. Usually the programmer doing the
coding is the same person that writes the tests, and unit testing is often performed
continuously with the development of the program. Tests are typically very simple,
such as for example executing a function and printing the input and output.

23

Integration testing

Integration testing is a natural extension of unit testing. After the individual units
have been created and tested, the units are combined and these units along with
the interfaces that are used to connect them are tested.

System testing

System testing is a high-level testing method that is conducted on a complete
system to evaluate that the system works properly and is in accordance with the
requirements for the system. System tests test both design and behavior of the
system.

Scenario testing

Scenario testing is a testing method that gives a user simulates scenarios and asks
the user to use the program given the conditions of the scenario. Ideally, these
scenarios will portray a realistic use-case of the program and have an outcome that
is easy to evaluate.

2.5.3 Testing approach

In the development of our application, we will use all of the aforementioned testing
methods and techniques. We will continuously perform unit testing while writing
code for each individual class during the sprints. This will be performed using
white-box testing. Because these unit tests will be performed by the developer
while programming in the form of small tests ensuring that method behavior and
output is as expected, these tests will not be documented.

At the end of each sprint cycle, we will perform integration testing of the
portion of the application we have developed, using gray-box testing. This will
ensure that the units of code added interact properly and that the classes function
correctly.

At the end of the development process, when the application is finished, we will
perform acceptance testing using system testing ourselves and user testing will be
performed by users unfamiliar with the program using scenario testing, where these
users will be given a list of tasks to perform by us and will not be given assistance
when they perform them. These users also will be asked to give feedback about
the quality of the application. All of this will be done using black-box testing.

24

2.5.4 Scope of tests

The scope of the integration tests will be the individual sub-portions of the program
that are covered by the respective test cases.

The scope of the system tests and the scenario tests will be all the functional
and non-functional requirements.

2.5.5 Test identifiers

Tests will be identified by a combination of letters specifying the testing method
used to perform the test suffixed by one or two numbers, x and y. X specifies the
sprint the test was performed in while y specifies the index of the test.

Integration tests INTG-xy
System tests SYST-y

Table 2.2: Test identifiers

2.5.6 Test priorities

Each test case will be given a priority of either low, medium or high. This priority
describes the severity of a test failure. All system tests have a high priority, and
the priority is therefore not specified in the individual system test cases. This
section will define what each of these given priorities entails.

Low

A test case given that has been given a low priority is a case testing functionality
of the application that exists as a conveniance to the user. The application is fully
functional and usable even if this functionality is completely removed.

Medium

A test case that has been given a medium priority is a test case testing functionality
that would signifcantly reduce the usability of the applicaton if it were removed,
but the application would still work even without this functionality.

High

A test case that has been given a high priority is a test case testing functionality
that is central to the application, and if this functionality were to be removed the
application would no longer be usable.

25

2.5.7 Test case templates
Item Description

Name The name of the test case

Identifier The identifier of the test following the convention defined
in subsection 2.2

Testing technique The testing technique used to perform the test

Features to be tested A short description of the features to be tested.

Priority The priority of the test, and severity of a test failure

Pre-conditions A description of the pre-conditioned that need to be full-
filled before the test begins

Execution steps A stepwise description of how the test is executed

Success criteria The criteria that must be met for the test to be consid-
ered successfull

Test result The result of the test

Test responsible The person that executed the test

Table 2.3: A template for documenting integration tests.
Item Description

Name The name of the test case

Identifier The identifier of the test following the convention
defined in subsection 2.2

Testing technique The testing technique used to perform the test

Requirements to be tested A listing of the requirements this test case tests

Pre-conditions A description of the pre-conditions that need to be
fullfilled before the test begins

Execution steps A stepwise description of the tasks to be executed

Success criteria A listing of the criteria that must be met for the
test to be considered successfull

Test result The result of the test

Test responsible The person that executed the test

Table 2.4: A template for documenting system tests.

26

2.6 Architecture plan

2.6.1 System outline

Figure 2.2: A diagram showing the main components of the system

The user interface A component that allows users to interact with the appli-
cation. It consists of a large number of constructive elements provided by the iOS
SDK, and fewer custom building blocks.

Schematic interaction A component that allows the user to create, view and
interact with the plan. This is one of the main components of this system.

Caching A component that is used for caching files locally with a goal to reduce
the data flow through wireless and mobile networks, because that can be slow and
expensive.

Database connection A component that allows connecting to a database in a
modular way, and adds flexibility to the design. It ensures that if the database
type changes over time, the application logic can remain the same.

2.6.2 Class diagram

A diagram on how to structure the classes for the drawing screen. It is intended for
planning purposes, and will be subject to change as the implementation progresses.
The diagram was initially needed in order to visualize the class structure early in
the development. This can avoid some major rewrites.

27

Figure 2.3: A diagram that illustrates what deployment platforms the app will
utilize

28

PlanElement

pointA[]: Integer
pointB[]: Integer
icon: String

FurnitureElement

getWIdth(): Integer
getHeight(): Integer

RoomElement

getLength(): Integer

ImportedFurnitureElement

name: String

CustomizedFurnitureElement

type: FurnitureType

« Enumeration »
FurnitureType

SOFA
TABLE
BED
CHAIR
CLOSET
MISC

Plan

planElements[]: PlanElement
planElement

* planWindow

1

Figure 2.4: An initial class diagram

29

Chapter 3

Preliminary study

3.1 Development methodology

3.1.1 Scrum

Scrum is a methodology for project management, mainly used in the context of
software development. It is an agile development, which means it follows the
principles of the agile manifesto[7]. These include regular customer feedback, self-
organizing teams, frequent deliveries and ease of adaptation to changes. Scrum is
an iterative and incremental process which builds upon the idea of dynamically
developing a product.
When following this developmental methodology, the overall project is divided
into smaller segments. The customer specifies a set of requirements, and the
development teams based on these create a product backlog. The product backlog
is a master list of every desired feature the project shall have, where each item
in the list also usually has an associated priority and workload estimate.These
product backlog items are called stories. For each scrum iteration, calleda sprint,
the development team selects one or several items from the productbacklog that
they implement in that iteration. These stories are then translated into specific
tasks, and this set of tasks is called the sprint backlog.
At the start of each sprint, a sprint preplanning meeting is held where the team
decides which stories they want to work on in that sprint. This is typically done
by selecting the stories with the highest priority in the product backlog.They then
translates these stories to sprint backlog items and distribute the work throughout
the team. During the sprint daily sprint meetings, called the daily scrum, are held
where each development team member answers the following questions:

• What did I do yesterday?

• What will I do today?

30

30 days

24 h

Working increment
of the software

Sprint Backlog SprintProduct Backlog

Figure 3.1: Figure depicting the Scrum process.

• Am i encountering any problems?

These daily meetings are a central concept in the scrum methodology, and are also
where its name originates.

3.1.2 Waterfall

The waterfall model is a sequential software design process, in which the progress
is seen as flowing steadily downwards through the different phases of the develop-
ment process. The model is regarded as the first formalized approach to software
development. Winston Royce, one of the first people to formally describe the
model in the context of software development [9], defined the model to consist of
the following steps:

• Requirements specification

• Design

• Implementation

• Testing

• Installation

• Maintenance

31

Requirements

Design

Implementation

Verification

Maintenance

Figure 3.2: Figure depicting the waterfall model.

Each phase on the waterfall model is fully completed before moving to the next
phase. Often, the testing and installation steps are merged into a verification steps.

3.1.3 Waterfall vs Scrum

Waterfall and Scrum both have their advantages and disadvantages when used in
the context of software development.
The main supporting argument for using the waterfall model is that time spent
early on in a project finding a realistic way to cover the requirements and creating
a thorough plan for design and implementation will greatly decrease the amount
of problems encountered later. Steve McConnell states the following in his article
"Software Quality at Top Speed"[8]:

Some project managers try to shorten their schedules by reducing the
time spent on quality-assurance practices such as design and code re-
views. Some shortchange the upstream activities of requirements anal-
ysis and design. Others–running late–try to make up time by com-
pressing the testing schedule, which is vulnerable to reduction since
it’s the critical-path item at the end of the schedule.

These are some of the worst decisions a person who wants to maximize

32

development speed can make. In software, higher quality (in the form
of lower defect rates) and reduced development time go hand in hand.

The problem with the Waterfall model is that very often, especially when the
project owner is an external customer, it is unrealistic to expect that a clear,
detailed and precise definition of the project objective exists. This is a problem
that the flexibility and adaptiveness of Scrum solves, and is the main reason why
Scrum has become the dominant methodology for software development in recent
years.
The decision of which development methodology to choose then boils down to the
following question: "Will I have a clear and correct picture of the complete project
span at the beginning of the project?"

3.1.4 Our choice of development methodology

The customer for our project is the Norwegian governmental welfare agency, an
organization that has very little knowledge in the field of software development
and specifically application design for mobile technology. In our initial meeting
with the customer, we were given a description of the desired functionality of
the application to be created. During this meeting it was made clear to us that
the representatives from the organization with whom we would be dealing with
throughout the span of the project had a lot of experience with the tasks within
the field of the intended usage of the application, but had very limited technical
expertise.
In this meeting we also agreed that the final application functionality would, be-
cause of the limited time span and possible risks we could encounter, be subject
to change and would be agreed during continous contact and feedback throughout
the project.
Because of this it was apparent to us that Scrum was the correct methodology for
this project due to it’s adaptiveness and the fact that it is well-suited for iterative
development, and this is the methodology we chose.

3.2 Technological aids
This section presents the tools and applications that were used during the project.
Alternative tools are also briefly discussed, explaining why one tool were chosen
instead of another.

3.2.1 Development technology

33

Xcode The Xcode integrated development environment (IDE)
is the software development tool provided by Apple for OS X
and iOS development. It is available as a free download from the
Mac App Store for the newest OS X versions. The IDE contains
all the tools required by developers, including a user interface
builder and analysis of syntax and semantics.
Included in the IDE suite, there is a modified version of the GNU Compiler Col-
lection, and the LLVM Compiler. These back-ends provide Xcode the support
for C, C++, Objective-C, Objective-C++, Java, AppleScript, Python and Ruby.
Additionally, the LLVM Compiler makes code suggestions and presents relevant
documentation when needed. Starting with version 4.2, the default compiler is the
Apple LLVM Compiler.
When creating applications for iOS, a simulator offers easy debugging and testing.
It provides most of the functionality of a real iOS device, including simulation of
the touch screen. This makes it trivial to test the application, especially the user
interface. [2]
Xcode is the only real option when developing for iOS and other Apple technolo-
gies, which is the reason we are using it.

LATEX LATEXis a document preparation system based on the typesetting software
TEX. It was originally developed in 1985 as a writing tool for mathematicians and
computer scientists in order to typeset technical documents properly. The idea is
that the author should not be too concerned about the layout of the document, and
focus on the actual content instead. Later, LATEXhas been developed by a growing
community, and is now used for publishing almost every type of document.
For large documents like this project report, LATEXmakes the organization easier
because it automatically handles cross-referencing, tables and figures, page layout
and bibliographies. Compared to WYSIWYG editors like Microsoft Word and
Google Drive, a LATEXdocument is plain text, and can be managed with Git like
the rest of the project.
The learning curve for LATEXcan be steep, but Johan is familiar with it, and rec-
ommended it for this project.

XML Extensible Markup Language (XML) is a markup language designed to
store and transport data. In many ways, it resembles HTML, but the main dif-
ference is that HTML is for displaying information, whereas XML is for carrying
information. Also different from HTML is that the tags in an XML document are
not predefined, but are instead defined as the author inserts them. This makes the
language a very flexible tool for storing any type of data. XML features a simple
document structure in plain text, which makes it easily compatible with future

34

versions or other programs.
The decisive reason for choosing XML as the storage medium for plans was that
we already had a finished XML parser at our disposal, tailored to Xcode (3.2.1).
JSON is another similar format we considered, but based on the reason explained,
we decided to choose XML.

3.2.2 Collaboration technology

Git1 Git is a free and open source source code management
system. Its focus is on speed, while featuring functions that
makes it one of the most popular tools in software development
[10]. In particular, strong support for non-linear development,
distributed development, and efficient handling of large projects
are core functionalities of Git. Linus Torvalds originally created Git for manage-
ment of the source code for the Linux kernel [5].
While Git offers a lot more functionality than we require for this project, it can
easily be used for simple revision tracking and collaboration after having learned
the basics. Using GitHub in order to utilize the powerful tools for distributed
development shipped with Git makes collaboration on code and the report easy
and user friendly.
We also discussed the use of SVN because most of the group members had used
it before, but the fact that Xcode (3.2.1) provides tight integration with Git,
combined with Johans experience, made the group decide to use Git.

Google Drive2 The amazing collaboration technology offered
by Google Drive, allowing many people to work on the same
documents at once, makes it an excellent choice when it comes
to collaboration. It is an easy and user friendly alternative to
other office suites like LibreOffice and Microsoft Office, with the
big difference that it is web based and made with collaboration in mind.
In this project, we mainly use Google Drive for sharing useful information between
the team members, and for writing parts of the report in an easy way before adding
it to the LATEXdocument.

Skype3 Skype is an application for making video and voice
calls over the internet. We use Skype sometimes for meetings

1http://git-scm.com/
2https://drive.google.com/
3http://www.skype.com/

35

http://git-scm.com/
https://drive.google.com/
http://www.skype.com/

with the supervisor, and when we have small group meetings
and don’t need to meet in person.

36

Chapter 4

Quality assurance

In this chapter we will describe the guidelines we have created to ensure efficient
communication within the group, and between the group and the customer and
supervisor.

4.1 Group interaction

4.1.1 Group communication

Group communication shall take place using e-mail. A google group has been
created, which shall be used by members of the group to send e-mails to the rest
of the group.

4.1.2 Group meetings

At the start of each sprint, the group shall meet to discuss the plan during the
sprint.
At the end of each sprint, the group shall meet to review and evaluate the sprint.
There shall be three scrum meetings each week to keep everyone up to speed during
the scrum sprints. If one or several group members are unable to attend in person,
these meetings will be held over skype. These meetings will be held on Mondays,
Wednesdays and Fridays. If a group member is unable to participate in the group
meeting, the rest of the group shall be notified via e-mail as soon as possible.

4.1.3 Group document sharing

Documents and files shall be shared using google drive.

37

4.2 Supervisor interaction
The group shall meet with the supervisor at least once per sprint to review progress
and discuss further work. The point of emphasis in these meetings will be to discuss
progress on the report and if the customer interaction is functioning properly. If
this meeting can not be held in person it shall be held over skype. Time and place
for the next meeting should be decided at the conclusion of each meeting. Minutes
from these meetings shall be written by the secretary and shared with the group
using git.

4.3 Customer interaction
The group shall meet with the customer at the start of each sprint and at the end
of each sprint. When in the transition between two sprints, these meetings can be
combined so that the end-of-sprint meeting and the pre-sprint meeting with the
customer are the same. The point of emphasis in these meetings will be to discuss
the progress of the application. Time and place for the next meeting should be
decided at the conclusion of each meeting. Minutes from these meetings shall be
written by the secretary and shared with the group using git.

38

Chapter 5

Requirements

5.1 Functional requirements
Following is a list of requirements, each assigned a unique ID in order to refer to
them later.

FR1 Create new plan
User can create a new plan as an XML document with a name of their chosing

FR2 Open plan
User can open an existing plan from an XML document for preview or mod-
ification

FR3 Save plan
User can save plan as an XML document

FR4 Add walls and other elements
User can add walls and other custom elements to a plan

FR5 Add custom elements
User can add a custom element to a plan, adjusting its dimensions as desired

FR6 Add database elements
User can add predefined elements from NAV’s database to a plan

FR7 Move elements
User can move elements within a plan

FR8 Resize elements
User can resize elements within a plan

39

FR9 Rotate elements
User can rotate elements within a plan

FR10 Remove elements
User can remove elements from a plan

FR11 Display dimensions
User can view real dimensions of plans and elements

FR12 Detect collision between elements
User can if different elements collide while moving them within a plan

FR13 Camera measurement
User can define the walls of a room using measurements from a camera

FR14 Zoom
User can zoom a plan in and out

FR15 Pan
User can navigate around in a plan.

FR16 Export
User can export the plan to other mobile devices for review and editing.

5.2 Non-functional requirements
NFR1 Usability

Since the application is designed for a wide range of users, it needs to be as
simple as possible to use. The user interface should be simple and intuitive
because most people in the target group has no experience in using similar
applications.

NFR2 Maintainability

This project is intended to be developed further after this course, so the
application should be designed with modularity in mind, in order to make
it easier to expand and upgrade later. Maintaining existing systems and
keeping consistency is one of the primary goals.

NFR3 Performance

It’s very important to have a good response because of the overall user ex-
perience and the measurement accuracy. Every action must be completed in
less than 0.1 second. Transitions between screens must not be longer than
0.5 seconds.

40

NFR4 Efficiency

Because the application is intended for use on a daily basis in a business
environment it is important that it is efficient to use as the point of the
application is to streamline the work of the employees who will be using the
application. The application is intended to replace using sheets of paper,
but if it is slow and clunky to use then paper drawings will be preferable.

5.3 Use cases
Figure 5.1 illustrates an abstraction of the requirements specified by the customer.
It is intended to give an idea of the relations between the main requirements of
the application. For example, if you choose to load a plan, you will be directed to
the plan management where you will be able to make changes to the plan.
For more detailed use case descriptions, see table 5.1.

BoligApp
BoligApp

«include»
«include»

«extend»

«extend»

«extend»

Load plan

Create plan
Manage plan

Add/edit
walls

Add/move
furniture

See if
furniture

fits

User

Figure 5.1: Use case diagram

41

Table 5.1: Table of use cases
Start conditions Steps

Create new plan (FR1)

• User has opened the application
and is on the main screen

1. User presses “Ny plan”
2. User fills in data about the house
3. User presses “Lag plan”

Load plan (FR2)

• User has opened the application
and is on the main screen

• A plan is already created and
available

1. User presses “Åpne plan”
2. User selects the desired plan from

the list
3. User presses “Åpne”

Draw room (FR4)

• A plan is created (see Create new
plan)

• The application is in the plan
view

1. User selects "Vegg" from the list
of items

2. User draws the wall
3. Repeat 2. for as many corners as

the user desires

Add a piece of furniture (FR4)

• A plan is created (see Create new
plan)

• A room is drawn (see Draw room
manually)

• The application is in the plan
view

1. User presses “Legg til”
2. User selects a category from the

list that appears
3. User selects the item to add
4. User drags the newly created

item to the desired location, and
specifies the orientation

Export plan (FR16)

Continued on the next page

42

Start conditions Steps

• A plan is created (see Create new
plan)

• The application is in the plan
view

1. User presses “Eksporter”
2. User selects the file format to ex-

port as from a list
3. User presses “Ok”

43

Part II

Sprints

44

Chapter 6

Sprint 1

6.1 Duration
The duration of sprint one was from the 2nd of September to the 13th of September.

6.2 Scrum master
The scrum master for sprint one was Johan Reitan.

45

6.3 Backlog

ID Task Estimated Actual

1 Create UI 27 29
1.a Create views 2 4
1.b Create view elements 10 10
1.c Design UI 5 5
1.d Learn XCode components 10 10
2 Implement XML support for holding plans 8 19
2.a Design XML structure 4 4
2.b Create XML parser 2 6
2.c Create a few XML samples 1 4
2.d Testing 1 5
3 Display a plan loaded from XML 45 36
3.a Load walls 10 7
3.b Load elements 10 6
3.c Load wall sizes 2 2
3.d Testing 8 10
3.e Learning QuartzCore 15 11
4 Write documentation 10 10

Total hours 90 94

Table 6.1: Backlog for sprint 1

ID Task Estimated Actual

1 Create UI 27 29
2 Implement XML support for holding plans 8 19
3 Display a plan loaded from XML 45 36
4 Write documentation 10 10
5 Sprint planning 2 2
6 Sprint meetings 3 3
7 Supervisor meeting 6 6
8 Customer meetings 12 12
9 Lectures 22 22
10 Write report 65 46

Total hours 200 185

Table 6.2: Total work hours for sprint 1

46

0 2 4 6 8 10
0

40

80

120

160

200

Timeline

R
em

ai
ni
ng

ho
ur
s

Ideal
Actual

Figure 6.1: Burn down chart for sprint 1

6.4 Goals
The main goal of sprint one was to create a user interface as we wanted to have
something to show the customer for the next agreed meeting. In agreement with
the customer, we decided that the first prototype needed to be able to show ele-
ments from an already defined plan. To accomplish that, a lot of back-end stuff
needed to be done, so we decided that the first prototype would not be very user
interactive.

6.5 Design and implementation
In this section we will describe the design and implementation of the XML parser,
the user interface, and the functionality for drawing elements.

6.5.1 User interface design

For designing and building the user interface we have used the interface builder
included in Xcode (more on Xcode: 3.2.1). The main menu and all of the other
views are connected using storyboards and navigation controllers. Some parts of
the user interface in the room plan will have to be implemented progammatically,

47

and will be included in the later sprints.

6.5.2 XML Parser

According to requirement FR2, the system needs to be able to load a plan (see
section 3.2.1 for more about XML).
For the purpose of parsing data from an XML file, we have declared and imple-
mented the following 3 functions:

- (void)loadWalls:(TBXMLElement *)element toPlan:(NAVPlan *)plan;

This function doesn’t return anything, because its purpose is to create plan ele-
ments of type NAVWall and put them into the array of plan elements. The param-
eter element is used as a root element in the XML file, and the plan parameter
is the plan in which elements are going to be saved.

- (void)loadRectangularElements:(TBXMLElement *)element toPlan:(
NAVPlan *)plan;

This function also doesn’t return anything, because its purpose is to create plan
elements of type NAVRectangularElement and put them into the array of plan
elements. Since NAVRectangularElement and NAVWall have different attributes,
we had to create 2 separate functions for parsing. The parameter element is
used as a root element in the XML file, and plan parameter is the plan in which
elements are going to be saved.

- (NAVPlan *)loadPlanFromXML:(NSString *)URL;

As one can understand from its name, this function is used to load a plan from an
XML file. Functions loadWalls and loadRectangularElements are both called
inside this function. The URL parameter specifies the location of the XML file.

6.5.3 Drawing elements

A part of the core functionality of our application is the ability to draw plan ele-
ments on the screen (walls, doors, furniture etc.). The QuartzCore [3] framework
provides useful functions for transforming (moving, resizing, rotating etc.) images.
We decided to use QuartzCore, and to represent elements as the UIImageView
type, because its function (void)drawElements contains all of the code required
for drawing a plan on the screen. That function is called in the (void)viewDidLoad
method located in our NAVPlanViewController class.

48

6.6 Testing
The focus area of this sprint was mainly implementing "back-end" functionality
such as XML file structure. This meant that the amount of testable program func-
tionality produced would be quite small compared to work hours spent. Therefore,
the test set for this sprint only consisted of three cases. All of these items tested
were absolutely essential to the functionality of the overall application, and were
given a high priority.

6.6.1 Test cases

After the implementation phase of this sprint was completed, three tests were
performed:

1. Navigating between windows: Test case INTG-11

2. Opening a created plan: Test case INTG-12

3. Adding an item to the plan: Test case INTG-13

See appendix C.1 for a detailed summary of the test executions and results.

6.6.2 Test evaluation

All tests in this sprint were successfull. This was no surprise, as a lot of the
functionality implemented in this sprint was not very complex.

6.7 Deliverables
At the end of this sprint, we were able to finish and present to the customer the
following requirements:

• FR2: Open plan

6.8 Customer feedback
At the customer meeting, we presented to the customer the main menu and how to
navigate through the program, in addition to how to load a plan and an initial draft
at the plan-viewer component of the application. The customer understood that
the focus area of this sprint had mainly been implementing back-end components of
the application, but was pleased that we had prioritized usability of the application
in the menu navigation by making the buttons large and the labels easy to read.

49

6.9 Sprint evaluation
This section will take a look at things that we have accomplished and include a
quick summary of what went well and what didn’t go so well during this sprint.

6.9.1 Positives

All of the implementation goals of the first sprint were fulfilled. An intuitive,
albeit very simple user interface was created, and we showed the customers how
to load a plan in our customer meeting. The customer was very satisfied by our
presentation of application. We also managed to reach first milestone of our plan
was to load and display display plan.

6.9.2 Negatives

Unfortunately, the documentation part of the sprint wasn’t handled very efficiently.
We had some problems with structuring the document, and in general we focused
much more on creating working prototype then writing proper documentation.The
supervisor suggested that we should make our report more formal, and in general
he had a lot of suggestion about our document subsections and their order. The
sprint planning was also quite poor, which we noticed when we needed to do a lot
of refactoring in sprint 2.

50

Chapter 7

Sprint 2

7.1 Duration
The duration of sprint two was from the 16th of September to the 27th of Septem-
ber.

7.2 Scrum master
The scrum master for sprint two was Dusan Stefanovic.

51

7.3 Backlog

ID Task Estimated Actual

1 Refactor code 5 16
2 Create interactive plan 60 58
2.a Functionality to move elements around in plan 15 17
2.b Check for intersection between two elements 15 11
2.b.i Separating Axis Algorithm 5 3
2.c Check for intersection between wall and element 5 6
2.d Functionality for drawing labels 5 4
2.d.i Point in polygon function 2 2
2.e Testing 10 12
2.f Learn about TouchBegan, TouchMoves and

TouchEnds
10 8

3 User Interface 15 15
3.a Create resize view 15 15
3.a.i Adjust text fields 2 1
4 Write documentation 10 12

Total hours 90 101

Table 7.1: Backlog for sprint 2

ID Task Estimated Actual

1 Refactor code 5 16
2 Create interactive plan 60 58
3 User interface 15 15
4 Write documentation 10 12
5 Sprint planning 2 2
6 Sprint meetings 3 3
7 Supervisor meetings 12 12
8 Customer meeting 6 6
9 Write report 87 69

Total hours 200 193

Table 7.2: Total work hours for sprint 2

52

0 2 4 6 8 10
0

40

80

120

160

200

Timeline

R
em

ai
ni
ng

ho
ur
s

Ideal
Actual

Figure 7.1: Burn down chart for sprint 2

7.4 Goals
Making the plan interactive was the main goal of sprint two. The ability to move
elements around as well as resizing, rotating and removing them was implemented.
In addition the functionality to notify the user if one element intersects with an-
other during translation or rotation was added. All of this was done using pre-
defined elements; the ability to draw new plan elements was not yet implemented
in this sprint. Another goal for this plan was code refactoring: we wanted to ensure
that our code was clean and easy to read for further development.

7.5 Design and implementation

7.5.1 Interactive plan

According to requirement FR12, the application should be able to detect if the
user wants to move an element to a position where it collides with another element.
The -(void)drawElements function was refactored and now it consists of two
functions containing code for drawing the Wall or Rectangular elements:

(UIImageView*)drawElementAtLocation:(CGPoint)location eName:(
NSString *)name eIcon:(NSString *)icon eWidth:(CGFloat)width

53

eHeight:(CGFloat)height eAngle:(CGFloat)angle;

-(void)drawWallElement:(NAVWall *)element
FromPlanElementwithStartPoint:(CGPoint)startPoint endPoint:(
CGPoint)endPoint doorsAndWindows:(NSMutableArray *)
elementDoorsAndWindows;

These functions draw an element at an exact place in the plan according to at-
tributes read from XML. Note that these functions only draw elements, but do
not add them to the plan, as this will be implemented in sprint 3.

-(CAShapeLayer *)drawWallElementLayerwithWallLayer:(CAShapeLayer *)
elementLayer startPoint:(CGPoint)startPoint endPoint:(CGPoint
)endPoint;

This is a helper function that draws a wall on an element. Because its return type
is CAShapeLayer, it can be reused whenever a wall has to be drawn.

-(BOOL)view:(UIView *)view1 intersectsWith:(UIView *)view2;

This function checks if two elements are overlapping. Because elements can be ro-
tated, the standard function CGIntersectRect cannot be used, so we implemented
the Separating Axis Algorithm in order to check for overlap. SAT (Separating Axis
Theorem) is based on the principle that “If two convex objects are not penetrating,
there exists an axis for which the projection of the objects will not overlap” [4].
Also part of the algorithm are the functions:

-(BOOL)convexPolygon:(CGPoint *)poly1 count:(int)count1
intersectsWith:(CGPoint *)poly2 count:(int)count2;

-(void)projectionOfPolygon:(CGPoint *)poly count:(int)count onto:(
CGPoint)perp min:(CGFloat *)minp max:(CGFloat *)maxp;

-(void)drawLabel:(id)element fromStartPoint:(CGPoint)startPoint
toEndPoint:(CGPoint)endPoint withPoints:(CGPoint *)pointss
pointsCount:(int)pCount;

This function is used to draw labels containing the sizes of walls. The size
should always be written on the outside of the room, which requires some
logics. The argument (CGPoint *)pointss is an array of all wall corners in
the plan, and (int)pCount is the number of corners. After the centre of

54

the wall line is calculated from the points CGPoint)startPoint and CGPoint
)endPoint, two points are created: one on opposite sides of the line center.
Then, the function bool pointInPolygon(int numOfPoints, CGPoint *points
, CGPoint point) is called to check whether any of the newly created points are
inside the polygon made from the vertices of the wall, and one on the outside is
chosen as the label’s central point.

-(BOOL) intersectionOfLineFrom:(CGPoint)p1 to:(CGPoint)p2 ImageView
:(UIImageView*)elementView;

The purpose of this function is to check whether there is an intersection be-
tween a rectangular element and a wall. The way it works is that a rectan-
gular element is divided into the 4 line segments that is its edges. If the ele-
ment is rotated, it is important to note that the end points of each line segment
will have to be translated to that angle, and the line segments recreated. The
helper function -(BOOL)intersectionOfLineFrom:(CGPoint)p1 to:(CGPoint)
p2 withLineFrom:(CGPoint)p3 to:(CGPoint)p4 checks if there is an intersec-
tion between two line segments.

-(void)UpdateElementViewWithUIimage:(UIImageView*)elementView;

This function is called when changes are made to any kind of element. Its purpose
is to save changes to the current plan.

-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;

Handles the event when one of the elements is clicked. It saves the selected element,
its centre and coordinates for where the touch was made.

-(void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event;

Handles events occurring when an element is dragged across the screen. The
function for checking if there is an intersection between elements is called. If there
is a conflict, the selected element turns red, and when the touch is released and
there is still an intersection, the element is moved back to its original position.
If the new position of the element is valid, a dialog will open allowing the user
to resize, rotate and move the selected element. The text fields on the dialog will
only accept numbers and punctuation. The dialog can be moved across the screen.
If an empty space is clicked, this dialog disappears.

55

Every wall has defined start and end points, which are used to move them around
the plan. Elements only need to be touched in order to drag them to the desired
position.

-(void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event;

Called when a touch is released. If the new position of an element is invalid, it
will be set back to its original position.

-(void)btnResizeClicked:(UIButton*)button;

Called when the resize button on the resize dialog is pressed. It will apply the de-
sired transformation to the selected element and update the resize dialog with new
measurements. For modal dialogs we have used the CODialog library1, adjusted
to our needs.

-(void)btnDeleteClicked:(UIButton*)button;

Called when the delete button on the resize dialog is pressed. It removes the
drawing of the element and the element itself from the plan..

7.6 Testing
This section introduced all of the main functionality for executing actions on plan-
elements. The scope of the functionality implemented was clearly defined and it
was easy to create a test set that covered this. The tests testing functionality
to execute actions on plan-elements were all given a high priority, as they were
central to the application being usable, while tests testing for intersecting lines
were given a medium priority because this exists for the conveniance of the user,
but the application would still be usable without it as the intersection would be
visible.

7.6.1 Test cases

After the implementation phase of this sprint was completed, seven tests were
performed:

• Moving an element in the plan: Test case INTG-21

• Checking for intersecting points between two items: Test case INTG-22

• Checking for intersecting points between wall and item: Test case INTG-23
1https://github.com/eaigner/CODialog

56

https://github.com/eaigner/CODialog

• Resizing an item: Test case INTG-24

• Rotating an item: Test case INTG-25

• Removing an element: Test case INTG-26

See appendix C.2 for a detailed summary of the test executions and results.

7.6.2 Test evaluation

All of tests were successfull except the test case testing for detection of intersecting
lines between walls and items. Instead of snapping the item back to the original
position, the item would be moved to an incorrect position. This problem was
communicated to the person responsible for implementing this functionality and
quickly solved.

7.7 Deliverables
At the end of this sprint, we were able to finish and present to the customer the
following requirements:

• FR7: Move elements

• FR8: Resize elements

• FR9: Rotate elements

• FR10: Remove elements

• FR12: Detect collision between elements

7.8 Customer feedback
The initial reaction of the customer to the functionality added to the application
in this sprint was positive, and they were happy that we had understood the
concept of what they wanted developed. They were happy with the wave we had
implemented performing different actions on elements in the plan, and that we had
covered the requirement of checking for intersecting points between plan elements.

57

7.9 Sprint evaluation
This section will take a look at things that we have accomplished and include a
quick summary of what went well and what didn’t go so well during this sprint.

7.9.1 Positives

Like in sprint one, we were satisfied with how the coding part of this sprint went.
We managed to fulfill all of the customer requirements (see 7.7) that we hoped,
and they were pleased with the application during our customer meeting at the
end of the sprint. All of the high priority tests testing functionality of the actions
implemented on the plan elements were successful.

7.9.2 Negatives

Because of some sloppy implementation in sprint one, we had to recode or refactor a
big portion of the code. This refactoring took some time to finish. Documentation
still proved to be problem for us, as we finished most of the documentation for
sprint one during sprint two, we didn’t have time to finish documentation for sprint
two on time. Because of this, we decided to pause developing the application while
we caught up with the documentation at the beginning of sprint three. We also
had some illness to one of our team member in this sprint, resulting in one of the
team members missing two scrum meetings and slowing down both the work on
the application and documentation.

58

Chapter 8

Sprint 3

8.1 Duration
The duration of sprint three was from the 30th of September until the 11th of
October.

8.2 Scrum master
The scrum master for sprint three was Nenad Milosavljevic.

8.3 Goals
The main planned goal of sprint three was the ability to add new elements to the
plan. The ability to zoom and pan around in the plan viewer was also a goal of
this sprint. The customer specified in the sprint pre-planning meeting that they
wanted elements like doors and windows to be docked to walls. In addition they
wanted us to make a few altercations to the user interface. We also decided that
creating new plans, in addition to saving and loading plans was to be implemented
in this sprint, since previously we had just been working on a pre-defined sample
plan.

59

8.4 Backlog

ID Task Estimated Actual

1 Refactor code 5 5
2 Create interactive plan 60 65
2.a Add doors and windows 5 4
2.b Draw new elements 5 6
2.c Draw new walls 5 3
2.d Add new elements to plan 5 5
2.e Add new walls to plan 5 7
2.f Add gesture recognizers 5 10
2.g Create menu for new items 10 10
2.g.i Get to know the library used 6 5
2.g.ii Add elements to list dynamically 2 1
2.g.iii Menu design 2 4
2.h Testing 12 12
2.i Learn about gesture recognizers 8 8
3 User interface 5 1
3.a Create buttons on plan view 1 1
4 Load plan dynamically 10 16
5 Create new plan 10 7
6 Write documentation 10 13

Total hours 100 107

Table 8.1: Backlog for sprint 3

60

ID Task Estimated Actual

1 Refactor code 5 5
2 Create interactive plan 60 65
3 User interface 5 1
4 Load plan dynamically 10 16
5 Create new plan 10 7
6 Write documentation 10 12
7 Sprint planning 2 2
8 Sprint meetings 3 3
9 Supervisor meetings 6 6
10 Customer meeting 6 6
11 Write report 83 75

Total hours 200 198

Table 8.2: Total work hours for sprint 3

0 2 4 6 8 10
0

40

80

120

160

200

Timeline

R
em

ai
ni
ng

ho
ur
s

Ideal
Actual

Figure 8.1: Burn down chart for sprint 3

61

8.5 Design and implementation

8.5.1 XML parser

For the purpose of saving a plan to an XML file, the NAVParser class was
expanded with the -(void)savePlan:(NAVPlan *)plan toXML:(NSString *)
fileName function. Plan elements will be saved to a named plan using the same
parsing conventions as are used for reading a plan.

8.5.2 Interactive plan

For the creation of a slide menu in which the available items are located, we have
used the SWRevealViewControler library 1. We have changed some code to suit
our needs, as we need items to be loaded dynamically.
We have added a gesture recognizer for scaling and rotating elements that
makes the user able to transform elements not only through the resizeview
but also using touch gestures on screen. For this purpose, we have added
UIPinchGestureRecogniser and UIRotateGestureRecogniser which are in-
stanced in the viewdidload method.

-(void) addElementToPlanElementName:(NSString *)name usingImageView
:(UIImageView *)imgView;

This function is used after a new element is drawn on a plan. Its purpose is to
add a new element to the array of plan elements.

-(void) addWallElementToPlanwithStartPoint:(CGPoint)startPoint
endPoint:(CGPoint)endPoint;

This function is used after a new wall is drawn on a plan. The purpose is to add
new wall to the array of plan elements. Drawing a wall is done in the touchesMoved
function by the already defined (in section 7.5.1) function:

-(CAShapeLayer *)drawWallElementLayerwithWallLayer:(CAShapeLayer *)
elementLayer startPoint:(CGPoint)startPoint endPoint:(CGPoint
)endPoint;

1https://github.com/John-Lluch/SWRevealViewController

62

https://github.com/John-Lluch/SWRevealViewController

The TouchesMoved function now contains the part of the code that takes care
of moving doors and windows around the plan. Doors and windows can only be
placed on the wall, and whenever any of those elements changes, its wall function
for update is called. As an array of doors and windows is an attribute of the
NAVWall class, the parent of the element should be updated every time the element
changes.

-(void)UpdateDoorOrWindow:(UIImageView *)doorOrWindow;

This function is called when there are some changes to a door or window element.

8.5.3 User interface

An action bar was added to the plan view, containing buttons for adding items,
showing or hiding wall points and coordinates, and save and export buttons. The
button functions are self explanatory and do not need any special explanation.

8.5.4 Loading plans dynamically

Instead of showing a static list of plans, the load plan view now dynamically
presents all the plans from the specified directory.

8.5.5 New plan

The screen for creating a new plan is now working, and after the name of the plan
is entered, it will show an empty plan with the ability to add items and save the
plan.

8.6 Testing
This sprint introduced adding elements to the plan, and creating new plans. The
important thing when testing this was to try and spot potential problems in the
underlying xml files, because up until this point we had not actually been manipu-
lating the underyling xml in a very complex manner. All of functionality involving
adding adding elements, saving/loading plans and resizing and panning the plan
viewer were given a high priority because they were all deemed central to the
application. Correctly storing plan metadata was given a low priority.

63

8.6.1 Test cases

After the implementation phase of this sprint was completed, eight tests were
performed:

• Navigating menu for adding items: A template for documenting system tests.

• Adding walls: Test case INTG-32

• Adding doors: Test case INTG-33

• Adding items: Test case INTG-34

• Saving and loading a plan: Test case INTG-35

• Plan metadata properly saved: Test case INTG-36

• Zooming the plan: Test case INTG-37

• Panning the plan: Test case INTG-38

See appendix C.3 for a detailed summary of the test executions and results.

8.6.2 Test evaluation

All tests in this phase were successfull.

8.7 Deliverables
At the end of this sprint, we were able to finish and present to the customer the
following requirements:

• FR1: Create new plan

• FR3: Save plan

• FR4: Add walls and other elements

• FR11: Display dimensions

• FR14: Zoom

64

• FR15: Pan

• FR16: Export

8.8 Customer feedback
At the end of this sprint, the application had almost all of its core functionality im-
plemented and the only large remaining part of the application to be implemented
was the connection to the customer’s database of assistive technology. We were
able to let the customer test the application during the meeting at the conclusion
of this sprint and receive feedback about what they though about the usability
of the application. The customer performed a few typical tasks, while talking us
through how they experienced executing these tasks.
The customer was pleased with the look of the application, and happy that we
had got as far as we had done in the development process.
A recurring problem was that the freedom the application was giving the customer
through allowing the customer to manually drag walls wherever he desired and
rotate and resize elements through dragging them came with a drawback. Because
of all the freedom we were giving the customer it was making typical tasks like
creating a square room unnecessarily complex. In addition, the customer was
repeatedly accidently panning and zooming in the plan when trying to perform
actions on elements. Additionally, the customer found it difficult to accurately set
element sizes, like wall lengths, through scaling the elements resizing in the plan.
We agreed we would take measures to improve these areas in sprint four.

8.9 Sprint evaluation
This section will take a look at things we have accomplished and include a quick
summary of what went well and what didn’t go so well during this sprint.

8.9.1 Positives

Sprint 3 was the most productive sprint from the beginning to end, both in the
way of coding and writing documentation. In this sprint, we were able to catch
up in terms of working on our project report in unison with performing work on
the application. We were very pleased to be able to implement what we hoped for

65

in time for the customer meeting because this gave us a chance to receive a lot of
valuable feedback in the customer meeting due to us being able to perform testing
of the application prototype with the customer during the meeting.

8.9.2 Negatives

We had a technical problem with the computer that we planned to use for simula-
tion of the application in the meeting with the customer at the conclusion of this
sprint, resulting in the customer needing to wait for around 20 minutes until we
managed to get the problem fixed.

66

Chapter 9

Sprint 4

9.1 Duration
The duration of sprint four was from the 14th of October until the 26th of October.

9.2 Scrum master
The scrum master for sprint four was Jørgen Faret.

9.3 Goals
The main goal of this sprint was to connect the NAV database for accessibility
aids with our application. Unfortunately, because of some internal communication
problems within NAV, we were unable to get access to the database. As a remedy
for this problem, and to make the application as usable as possible we decided to
focus on the creation of custom elements in this sprint. In addition to this, we also
used this sprint to implement changes to the application that the customer had
suggested after the demonstration of the functionality implemented in the previous
sprint. These changes included:

• Being able to lock the plan viewer to avoid accidentally zooming and panning
when trying to move elements.

• Zooming in the plan using buttons

• Copying and pasting elements (like walls)

• Creating horizontal and diagonal walls by entering the length of the wall

67

• Creating rectangular rooms by specifying room dimensions

• Removing the decimal points from element dimensions, because this degree
of accuracy was unnecessary

9.4 Backlog

ID Task Estimated Actual

1 Refactor code 5 5
2 Delete a plan from the device (and the list) 4 5
3 Export a plan to PDF, PNG or native plan

format
8 11

3.a Create dialog for exporting 2
3.b Function for exporting to PDF 3
3.c Function for exporting to PNG 3
3.d Function for exporting to .nav 3
4 Share plans over e-mail 10 9
4.a Create dialog for sharing .nav, PNG or PDF 3
5 Import plan for editing 4 4
6 Draw a room element with predefined dimen-

sions
2 3

7 Lock the plan zoom and pan 2 6
8 Wheelchair functionality 5 7
8.a Show diameter and highlight too narrow doors 5
8.b Hide diameter and door highlight 2
9 Create a dynamic list of elements 25 34
9.a Create class for elements list 3
9.b Create parser for loading elements from the list 5
9.b.i Function for loading predefined element 3
9.b.ii Function for lading custom element 2
9.c Create parser for saving default elements 1
9.d Create parser for saving custom elements 6
9.d.i Function for saving custom walls 4
9.d.ii Function for saving custom elements 2
9.d.iii Function for saving custom rooms 2
9.e Dialog for saving custom elements 2
9.f Dialog for insterting custom elements to the plan 2
9.g Testing 15

Continued on the next page

68

ID Task Estimated Actual

10 Rotate one of two connected walls 15 17
10.a Function that allows for rotation 6
10.b Create dialog for rotating wall 3
10.c Testing 8
11 User interface 20 22
11.a Create buttons on plan view 3
11.b Create table with dynamic list of elements 6
11.c Display plan information in the load plan screen 5
11.d Write dimensions above the elements 5
11.e Add zoom buttons 2
11.f Remove decimal points from labels 1
12 Write documentation 10 12

Total hours 110 135

Table 9.1: Backlog for sprint 4

ID Task Estimated Actual

1 Refactor code 5 5
2 Delete a plan from the device (and the list) 4 5
3 Export a plan to PDF, PNG or native plan format 8 11
4 Share plans over e-mail 10 9
5 Import plan for editing 4 4
6 Draw a room element with predefined dimensions 2 3
7 Lock the plan zoom and pan 2 6
8 Wheelchair functionality 5 7
9 Create a dynamic list of elements 25 34
10 Rotate one of two connected walls 15 17
11 User interface 20 22
12 Write documentation 10 12
13 Sprint planning 2 2
14 Sprint meetings 3 3
15 Customer meeting 6 6
16 Write report 79 57

Total hours 200 203

Table 9.2: Total work hours for sprint 4

69

0 2 4 6 8 10
0

40

80

120

160

200

Timeline

R
em

ai
ni
ng

ho
ur
s

Ideal
Actual

Figure 9.1: Burn down chart for sprint 4

9.5 Design and implementation
Deleting a plan is done after the delete button is clicked. The function takes the
name of the plan, builds a file location from it, and the deletes the file. After that,
the table of plans is refreshed.
Exporting a plan is done in the functions -(void)btnExportPDFClicked
:(id)sender and -(void)btnExportPNGClicked:(id)sender of the
NVAPlanViewController.
NAVAppDelegate.m takes care of importing a plan. A file is translated to a URL,
and then using the storyboards, a new ViewController is created in order to
display the plan.
A complete room can be drawn using the touchesBegan and touchesEnded meth-
ods. After the screen is touched, a dialog for entering dimensions appears, and after
the user enters the data, the room will be drawn using four connected walls. This
is handled by the selector -(void)btnInsertRoomClicked:(id)sender. Custom
rooms can be saved for later use, and the dialog will not show when a saved room
is placed on the plan.
Locking of the zoom level and panning is done when the respective buttons in
the plan view are pressed. Their implementation is simple and does not require
further explanation. The same applies to the buttons for zooming in and out as

70

they only change the zoomScale property of the scrollView.

Wheelchair functionality The LongPressElement gesture recognizer is ex-
panded with code to recognize whether the element in question is a wheelchair. A
long press on the wheelchair will go through the array of all doors in the plan and
highlight all those whose width is narrower than the wheelchair’s. In addition, a
circle to represent the wheelchair rotation radius will be displayed. Another long
press on the wheelchair will remove the circle and the highlight of the doors.
-(NAVElementsList *)loadElementsList loads elements from a list to the
TableView that should hold them.
-(void)createDefaultElements is called from NAVAppDelegate and will create
a list of default items if the application was started for the first time on the device.
-(BOOL)SaveElementToListElementCategory:(NSString*)category
attributes:(NSString*)attributes saves custom elements to a list. The
(NSString*)category can be one of three child categories: "WallsChild",
"ElementsChild" or "RoomsChild". The (NSString*)attributes string holds
the name of the element and its attributes (dimensions, diameter and/or label).
A dialog for rotating two connected walls will appear if a long press occurs on their
mutual corner. Rotating of walls is done in the selector btnChangeAngleClicked
:(id)sender, after showing another dialog for choosing the opposite angle or
confirming the angle. The angle used for rotation is calculated, the end point of
the wall to rotate is moved, and the wall layer is redrawn.

9.6 Testing
The main new functionality implemented in this sprint was adding custom ele-
ments, adding wheelchairs and checking for wheelchair accessability, deleting plans
and the ability to export and share plans. In addition, steps to improve remedy
the issues that were discovered with the usability of the application at the con-
clusion of the previous sprint were taken. We decided creating and using custom
elements was functionality that was central to the usage of the application, as
this would effectively replace importing items from the database, and thus gave
these test cases a high priority. We also decided the same applied to exporting,
sharing and deleting plans in addition to testing wheelchairs and wheelchair ac-
cessability. Creating rooms, horizontal/diagonal walls, copying elements, locking
the plan-viewer and zooming using buttons were given a medium priority as they
exist as a shortcut to improve the experience of the user.

71

9.6.1 Test cases

After the implementation phase of this sprint was completed, twelve tests were
performed:

• Creating custom elements: Test case INTG-41

• Using saved custom elements: Test case INTG-42

• Copying elements: Test case INTG-43

• Creating horizontal/diagonal walls: Test case INTG-44

• Creating rooms: Test case INTG-45

• Exporting plans: Test case INTG-46

• Sharing plans: Test case INTG-47

• Deleting plans: Test case INTG-48

• Locking the plan zoom and pan: Test case INTG-49

• Zooming using buttons: Test case INTG-410

• Creating wheelchairs: Test case INTG-411

• Wheelchair accessability: Test case INTG-412

See appendix C.4 for a detailed summary of the test executions and results.

9.6.2 Test evaluation

Two of the integration tests in this sprint were unsuccessfull: deleting plans and
sharing plans, while all of the other tests went without any problems.
When deleting plans, the plans were removed from the list of plans in the menu
to open plans and seemingly deleted, but when exiting the menu and opening it
again, the plan would reappear. We discovered that the xml plan file was not
being deleted from the folder containing the plan files, and were able to fix the
problem quite quickly.
When exporting plans, we were able to correctly send the plan file over e-mail and
it was correctly received, but the recipient was not able to open the plan in their
own BoligApp application. We suspect this is because the device did not recognize
the plan file type, but were not able to remedy this problem before the end of the
sprint.

72

9.7 Deliverables
At the end of this sprint, we were able to finish and present to the customer the
following requirements:

• FR5: Add custom elements

9.8 Customer feedback
As this was the last sprint the application demonstrated at the meeting held with
the customer was one of the last versions of the application that we would be able
to show before delivering the project. This was understood by the customer, and
the product delivered at the conclusion of this sprint therefore represented a final
draft of the application, with the possibility of making some minor adjustments to
the program in the closing stages of the project.
Like in the previous sprint the customer tested the application and performed some
typical usage scenarioes. Overall the user experience of the customer was greatly
improved as we had addressed all of the issues detected during the previous trial,
and added shortcuts for creating square rooms in addition to taking measures to
avoid make it as easy as possible to input elements.
A few issues the customer pointed out were that the created custom items were
displayed in the menu to add items as "custom element" suffixed with their di-
mensions. The customer would have preferred the item to be displayed as their
given labels. We had also not had time to translate the application to Norwegian,
as half of the development team does not speak Norwegian.
Overall the customer seemed very pleased with the product we had produced,
given the limitations of this project (the most prominent of these being the time
available), and felt we had produced something that could be useful as a tool for
their organization.

9.9 Sprint evaluation
This section will take a look at things we have accomplished and include a quick
summary of what went well and what didn’t go so well during this sprint.

9.9.1 Positives

The presentation and user testing of the application to the customer went without
any problems this time. We had a very large backlog for this sprint, especially

73

in terms of items to implement in the application, and are very pleased that we
managed to implement all of the items from the backlog.

9.9.2 Negatives

Because of the large amount of backlog items in this sprint related to implementa-
tion, we did not do enough work on documentation and writing the project report
as we should have, and were at the conclusion of this sprint quite far behind
schedule in these two areas.
Although the presentation of the application went well, we would have liked to
be able to show the customer an application that was fully translated, had label
names for custom elements displayed in the menu to create new custom elements,
and in general was a bit more polished.

74

Part III

Conclusion and evaluation

75

Chapter 10

System architecture

This chapter will describe the system architecture. It will explain the main system
components and their mutual interaction. The view model that we will use is
Philippe Kruchten’s 4+1 view model [6]. The 4+1 view architecture is represented
by logical, process, implementation and deployment views. Each of these consists
of different types of diagrams which describes the system from the perspective of
a particular stakeholder (end user, developers, etc. In general, a stakeholder is a
person who has influence on the system)

10.1 Logical view
In this view, the application’s functionality in terms of structural elements, key
abstractions and mechanisms will be shown. Based on this view, a functional
analysis is made.
For documenting the logical view we have used class and package diagrams.

10.1.1 Class diagram

We will represent both the back end and the front end of our application us-
ing a class diagram, where only important classes and methods are included for
readability. See figure 10.1 for the class diagram. The data for our application
is represented by NAVElement, NAVPlan, NAVWall and NAVRectangularElement.
The class NAVParser is also a part of the data management, and it implements
parsers for saving the list of plans and elements to an XML file. Using the TBXL
class, NAVParser is able to read from an XML file. NAVPlan is our main data
class. Its instance contains objects of the type of its child classes (NAVWall and
NAVRectangularElement), and represents the elements in the plan.
NAVElementsList will hold a list of all elements that can be added to the plan,

76

Figure 10.1: Class diagram

the default one and the one that was added by the end user.
NAVCustomScrollView is our main view for displaying a plan. We have extended
UIScrollView with methods and properties to suit our needs. It will hold all
objects which represents elements in a plan, and methods for manipulating those
elements.
NAVViewController is the start view of our application, and it works like
a main menu of the application. From it, the end user can switch to
NAVLoadPLanViewController which has list of all possible plans, or the user can
navigate to NAVNewPlanViewController on which data for a plan can be entered
and a new plan can be created from it.
NAVPlanViewController is used to display plans. It contains an in-
stance of NAVCustomScrollView, and is the parent view controller of
NAVElementsListTableViewControler.

10.1.2 Package diagram

The organisation of packages is reflected in figure 10.2. A package diagram is often
use to organise use case and class diagrams.

77

Figure 10.2: Package diagram

10.2 Process view
Non-functional aspects like performance and scalability are considered in the pro-
cess view. The focus in the process view is how the system is acting at runtime.
We used sequence and communication diagrams.
Sequence diagrams shows the sequence of messages passed between the objects
on a vertical timeline. Communication diagrams shows communications between
objects at runtime during a collaboration instance. Sequence diagrams are focused
on the flow of messages throughout an interaction over timeline, communication
diagrams are focused on relations between participants.

The diagrams 10.3 and 10.4 show the process of creating a new plan. When the
user taps on the button, an event for tapping the button is registered. The main
menu view, which represents the user interface, will register the action and send
a message to its view controller. The main menu view controller will instantiate
a new Plan view controller with its own view, as a user interface representation.
Then the user can enter the required data and tap the button for creating a new
plan. In response to this action, the system will instantiate a Plan view controller.
The Plan controller will create a Plan model, and afterwards it will open it in the

78

Plan view and show the data to the user.

Figure 10.3: Communication diagram for creating a new plan

Figure 10.4: Sequence diagram for creating a new plan

The diagrams 10.5 and 10.6 show the process of loading a plan. When the user
taps on the button, he is brought to the load plan view. Then user can select

79

which plan to load and tap the button for opening the plan. In response to this
action, the system will instantiate a Plan view controller. The Plan controller will
create a Plan model, and afterwards it will open it in the Plan view and show the
data to the user.

Figure 10.5: Communication diagram for loading a plan

Figure 10.6: Sequence diagram for loading a plan

80

If the user wants to add an element, he interacts with the Plan view which
represents the user interface. User actions are forwarded to the Plan controller,
which checks for constraints and adds the element to the plan model. If the model
data is changed, the controller will update the Plan view to show the changes. See
diagrams 10.7 and 10.8.

Figure 10.7: Communication diagram for adding an element

81

Figure 10.8: Sequence diagram for adding an element

If the user wants to edit a plan, move elements or rotate and resize them,
he interacts with the Plan view. User actions are forwarded to Plan controller,
which checks for constraints and edits data in the Plan model. If the model data
is changed, the controller will update the Plan view to show the changes. See
diagrams 10.9 and 10.10.

82

Figure 10.9: Communication diagram for editing a plan

Figure 10.10: Sequence diagram for editing a plan

83

If the user wants to delete an element, he interacts with Plan view. User actions
are forwarded to the Plan controller, which removes the element from the Plan
model. After changes has occurred, the controller will update the Plan view to
show the new state. Se diagrams 10.11 and 10.12.

Figure 10.11: Communication diagram for deleting an element

84

Figure 10.12: Sequence diagram for deleting an element

If the user wants to save a plan, he interacts with the Plan view. User save
actions are forwarded to the Plan controller, which will save the plan model. The
Plan controller will notify the user that the plan is saved. See diagrams 10.13 and
10.14.

85

Figure 10.13: Communication diagram for saving a plan

Figure 10.14: Sequence diagram for saving a plan

86

After an export action is initiated, an action is sent to the Plan view. It is
forwarded to the Plan controller, which will send an action to the Schematic plan
to create a plan. The Plan controller will notify the user when the export is
finished. See diagrams 10.15 and 10.16.

Figure 10.15: Communication diagram for exporting a plan

87

Figure 10.16: Sequence diagram for exporting a plan

After a share action is initiated, an action is sent to the Plan view. It is forwarded
to the Plan controller, which will send an action to the Schematic plan to create
a plan. The created plan is sent back to the Plan controller. A message is sent to
the user that a plan can be shared. The Plan controller will notify the user when
export is finished. See diagrams 10.17 and 10.18.

88

Figure 10.17: Communication diagram for sharing a plan

Figure 10.18: Sequence diagram for sharing a plan

89

10.3 Implementation view
This view focuses on system architecture and components that are used for as-
sembling and releasing the system. It will focus on actual software module or-
ganization in the development environment. The diagrams in this view represent
physical level artifacts that are built by the team.
For that representation we have used a components diagram.
Interface represents the user interface components. Plan controller represents the
part of the application that is responsible for interaction with the plan. Plan model
is connected to Plan controller as it represents the plan data. Our application is
based on the UIKit and CoreData frameworks which are core components of the
iOS SDK. The TBXML component is responsible for parsing data from and to
XML files. See the component diagram (figure 10.19).

Figure 10.19: Component diagram

10.4 Deployment or physical view
The deployment view represents the hardware on which the system is executed.
It will show physical limitations for distributing the system. It provides hardware
configurations and maps the components from the Implementation view to these
configurations. In our case, our application is made for a specific device, the iPad,

90

which was specified by the customer. See the deployment diagram (figure 10.20).

Figure 10.20: Deployment diagram

10.5 Use case view
This view will describe use cases that explains the system from the perspective of
the end users and other stakeholders. The use case view should be the first view
that is created in the system development lifecycle. The use case view forms the
reason why all other views exist. It is represented by Use Case diagrams, which
consists of actors and actions. See the Use Case diagram (figure 10.21).

Figure 10.21: Use case diagram

91

Chapter 11

Acceptance testing

In this chapter we will perform an evaluation of the functionality of the program
to determine if the requirements specified in section 5 are adequately fulfilled.
This will be done by performing system tests that cover all of the implemented
functional requirements. Requirements that we did not attempt to implement will
not be tested.

11.1 Functional requirement coverage
Table 11.1 gives an overview of which functional requirements were covered in the
implementation, and which were not. This section will highlight which functional
requirements were not covered during development, and why.

Adding database elements

As described in section 9.3, there were some internal communication problems
within NAV that lead to us neither being able to get the necessary information
about NAV’s assistive technology database nor the permission to read data from
the database within a time frame that allowed us a realistic chance of implementing
the functionality.

Camera measurement

The ability to draw a schematic drawing of a room using the panoramic photo
option of a mobile device was a requirement that we spent a lot of effort on
researching in the initial stages of this project. Already in the first meeting with
the customer, we made it clear that we feared implementing such a functionality
was an unrealistic requirement for a project of this magnitude. We searched online,
and tried to find help at NTNU’s department of computer science. When this lead

92

Requirements covered Sprint implemented

FR1 Create new plan 3
FR2 Open plan 1
FR3 Save plan 3
FR4 Add walls and other elements 3
FR5 Add custom elements 4
FR7 Move elements 2
FR8 Resize elements 2
FR9 Rotate elements 2
FR10 Remove elements 2
FR11 Display dimensions 3
FR12 Detect collision between elements 2
FR14 Zoom 3
FR15 Pan 3
FR16 Export 3

Requirements not covered

FR6 Add database elements
FR13 Camera measurement

Table 11.1: Functional requirements implemented

93

nowhere, we decided to abandon implementing this requirement out of fear of
completely bottlenecking the whole project. This was made clear to the customer
prior to development began.

11.2 Requirement testing
We will test that the requirements are fulfilled by using system testing. As specified
in the test plan (see section 2.5), the scope of each system test will be a set of re-
quirements. The individual test cases will be formulated as relatively complex and
high-level tasks to perform in the application. Success criterias will be relatively
vague, because we will continuously be monitoring program behaviour throughout
the tests and the amount of specific things required for a test to succeed will be
too much to write in a test case cell.

11.3 Test cases
We have formulated four test cases to test all of the requirements that have been
implemented:

• Create plan: Test case SYST-1

• Populate plan: Test case SYST-2

• Edit plan : Test case SYST-3

• Export and delete plan: Test case SYST-4

See appendix C.5 for a detailed summary of the test executions and results.

11.4 Evaluation
All of our system tests were successfull. Based on this, we determine that our
application adequately covers the requirements and is of acceptable quality.

94

Chapter 12

System evaluation

In this chapter we will perform an evaluation of the final system. We will focus on
the following subset of the characteristics of software quality defined by the ISO
9126 standard [11] for software quality:

• Functionality

• Efficiency

• Usability

Efficiency and usability are also qualities that we have listed as non-functional
requirements for our application. This will be done by asking subjects to perform
a typical usage scenario of the application that we will define. The subjects will
be given the user manual to the application(see appendix B), but will not receive
any assistance while performing the usage scenarioes. We will in other words be
asking these subject users to perform scenario tests for us, but this process will
not be documented as normal tests, as the focus area is not whether the system
is technically functioning properly, but how a user experiences the usage of the
system.
After we have gathered the data from the user tests, we will use the data gathered
to perform an evaluation of the system.

12.1 Usage scenario
Here we will define the usage scenario that we will ask the users to perform.
This scenario will be conveyed to the user as a sequence of instructions. These
instructions are specified as high-level tasks and are formulated without containing
specific buttons to press or any other application-specific instructions to avoid
giving the subjects too much information, because an important quality we are

95

Task ID Task description

T1 Open the application
T2 Create a new plan
T3 Draw a plan of your own bedroom including all furniture as accurately

as possible
T4 Save the plan
T5 Exit to the main menu
T6 Open the plan you created
T7 Send a picture of the plan you created as an e-mail to yourself

Table 12.1: Task items given to subjects for usage testing

testing is the intuitiveness and ease-of-use of the application. Table 12.1 contains
this set of instructions that is given to the subjects.

12.2 User questionnaire
We decided to create a questionnaire using Google Forms 1. The first page of our
questionnaire gathered a little bit of personal information about each subject and
some information about their familarity with using iPad applications. We then
gathered information about the subject’s experience of using the application by
listing a series of statements, and having the subject enter on a scale of 1 to 5 how
much they agreed with the different statements. We had one page for each screen
of the application, with the page listing statements about the plan-viewer being
the most extensive.
Table 12.2 shows all the questions given to each user in the online questionnaire.
The Horizontal lines represented the different pages of the questionnaire. Each
page of the questionnaire covered a different part of the application, and included
a description to the user to clarify what the questions referred to. For example the
screen with questions about the window for drawing a plan, included a description
that clarified that the window for drawing a plan referred to the part of the plan
viewer where the actual and elements were shown, but did not refer to the sidebar
for adding elements to the plan.
The last page of the questionnaire asked the subjects if they had any comments
about how they experienced the usage of the application.

1https://support.google.com/drive/answer/87809?hl=no

96

https://support.google.com/drive/answer/87809?hl=no

Question ID Question

Q1 What is your age?
Q2 What is your gender?
Q3 Do you own and frequently use an iPad or iPhone?
Q4 On a scale of 1-5 how proficient do you consider yourself with

using iOS applications?
Statement ID Statement

S1 I thought the main menu was intuitive and easy to understand
S2 I thought the main menu looked good
S3 I thought the main menu included all the functionality I required

S4 I thought the screen for creating a new plan was intuitive and
easy to understand

S5 I thought the screen for creating a new plan looked good
S6 I thought the screen for creating a new plan included all the

functionality I required
S7 I thought the window for drawing a plan was intuitive and easy

to understand
S8 I thought the window for drawing a plan looked good
S9 I thought the window for drawing a plan included all the func-

tionality I required
S10 I thought drawing a room was easy and satisfying
S11 I thought populating a room with items was easy and satisfying
S12 I thought it was easy to understand how to export the plan
S13 I thought the ability to lock panning and zooming in the plan

viewer was helpful
S14 I thought the buttons to zoom in and out in the plan viewer

were helpful
S15 I thought the sidebar for adding elements in the window for

drawing a plan was intuitive and easy to understand
S16 I thought the sidebar for adding elements in the window for

drawing a plan looked good
S17 I thought the sidebar for adding elements in the window for

drawing a plan included all the functionality I required
S18 I thought the screen for loading plans was intuitive and easy to

understand
S19 I thought the screen for loadnig plans looked good
S20 I thought the scren for loading plans included all the function-

ality I required

Table 12.2: Questions and statements in questionnaire given to each test subject

97

12.3 Questionnaire results
We conducted usage testing with 10 test subjects. Table 12.3 shows the results
from this questionnaire.
Table 12.4 contains the comments that the subjects had about the usage of the
application.

12.4 Questionnaire data analysis

12.4.1 Question grouping

By quality

To evaluate the program by the criteria specified in the beginning of the chapter,
we have grouped the questions by which quality they describe as shown in table
12.5.

By program part

To evaluate the different parts of the program individually, we have grouped the
questions by which part of the program the describe the quality of, as shown in
table 12.6.

12.5 Conclusion
As shown in table 12.7, users thought our application had a functionality of 3.9, a
usability of 3.8 and an efficiency of 4.0. These are scores that we are pleased with.
As shown in table 12.8, users gave our main menu a score of 4.0, our new plan
menu a score of 3.8, our load plan menu a score of 4.5, our plan drawing window
a score of 3.5 and our sidebar for adding elements a score of 3.6. We would have
liked to have received a better score the parts of our application that provide the
functionality for drawing plans and pupulating plans with elements, while we are
pleased with the scores our menus received.

98

User ID U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

Query Results Average

Q1 21 23 20 22 19 20 56 49 22 24 27.6
Q2 M M M M M F M F M F N/A
Q3 Y Y N Y N N Y N N Y N/A
Q4 4 5 3 4 2 4 3 2 3 4 3.4

S1 5 3 5 5 4 3 5 3 5 5 4.2
S2 4 3 5 4 4 3 4 5 5 5 4.0
S3 3 3 4 4 4 3 4 4 5 4 3.7
S4 4 2 5 4 4 4 4 2 5 4 3.8
S5 4 3 4 4 3 3 3 3 4 4 3.5
S6 5 4 4 5 5 3 5 4 5 4 4.4
S7 3 3 2 4 4 3 4 3 3 3 3.2
S8 3 3 4 4 3 3 4 3 4 4 3.5
S9 5 3 4 4 3 3 3 4 4 4 3.7
S10 4 2 5 4 4 4 4 2 5 4 3.8
S11 3 3 2 3 2 3 4 3 3 3 2.9
S12 5 4 3 4 4 5 4 4 5 4 4.2
S13 5 5 5 4 4 5 4 4 5 3 4.4
S14 5 5 5 4 4 5 4 4 5 4 4.5
S15 4 3 5 4 4 5 4 4 4 4 4.1
S16 4 3 3 3 4 3 4 3 5 4 3.5
S17 4 3 3 3 4 3 4 1 3 4 3.2
S18 5 5 5 3 5 5 5 5 5 4 4.7
S19 5 4 5 3 5 5 4 5 4 4 4.4
S20 5 5 5 3 5 5 4 5 4 4 4.5

Table 12.3: Results from user questionnaire after performing usage testing

99

User ID Comment

U1 Everything went better than expected

U2 Nice app!

U3 Strange that the settings button in the main menu didn’t work.

U4 None

U5 I thought drawing a plan was kind of annoying as performing actions
on elements didn’t behave as I expected.

U6 What’s the difference between export and share?

U7 None

U8 None

U9 None

U10 None

Table 12.4: Comments given by the different test subjects after performing usage
testing

Functionality Usability Efficiency

S3 S1 S3
S6 S2 S6
S9 S4 S9
S17 S5 S13
S20 S7 S14

S8 S17
S10 S20
S11
S12
S13
S14
S15
S16
S18

Table 12.5: Grouping of questions by program quality they describe

100

Main menu New plan Load plan Draw plan Add element

S1 S4 S18 S7 S11
S2 S5 S19 S8 S15
S3 S6 S20 S9 S16

10 S17
S11

Table 12.6: Grouping of questions by program part they describe

Software quality Average score

Functionality 3.9
Usability 3.8
Efficiency 4.0

Table 12.7: Scores of software qualities given by users

Software quality Average score

Main menu 4.0
New plan 3.8
Load plan 4.5
Draw plan 3.5

Add elements 3.6

Table 12.8: Scores of program parts given by users

101

Chapter 13

Project evaluation

In this chapter we will discuss our experience with this project. We will present
our thoughts about using scrum, and how the group worked together. We will also
discuss the risks described in section 2.3, explain their impact on the project and
how the preventive measures worked. The management of time is an important
aspect of this course, as the group has to constantly balance how much they work
on the product and the report. Lastly, we will give our evaluation of the course.

13.1 Using scrum
The essence of the scrummethodology is to re-evaluate the project at fixed intervals
(sprints). This makes it an ideal work flow if the project is not very accurately
defined, and if some tasks are not sure to be finished as planned. In our project,
both of these are the case. The customer had some ideas on what functionality they
wanted in the product, but most of the design decisions were up to us. Some of the
functionality that we had implemented in one sprint were, after feedback from the
customer, improved and expanded in later sprints. For example, the functionality
for adding elements, that was implemented in sprint 1, was expanded throughout
the sprints until, in sprint 4, it included adding custom elements.
For the last sprint, we had initially planned to connect the application to NAV’s
database of assistive technologies. Because of some communication problems, how-
ever, as explained in section 9.3, we obviously had to re-structure our plan for sprint
4. Using the sprint planning meeting, it was easy to adapt to the problem, and
plan new tasks to work on.
As a team, we have worked very closely, so that we have usually known what
the other team members have been working on. This made the scrum stand-up
meetings seem quite rigid and unnecessary, although we carried them through as
a formality.

102

13.2 Risk evaluation
This section discusses the items we described as possible risks in table 2.1. We will
look at the preventive measures described, if we properly executed these preventive
measures, and if they were effective. If a risk occurred, we will discuss the problems
it caused and the consequences these entailed.

13.2.1 Unfamiliar with development platform

This case was not much of a risk as it was a fact we knew would be problematic,
as only one of our group members had any previous experience with using the
development platform we would need to use.
The preventive measures we had described were to read a lot of documentation,
try to find people with knowledge that could assist us at the university, and work
through tutorials. These preventive measures were effective. We allocated enough
time at the beginning of our project for learning about the development platform
we would use, and this risk did not become a significant problem.

13.2.2 Poor time planning

We made good plans for the progress of the implementation early on in the project.
This plan was followed quite closely up until the 4. sprint when we encountered
the problem with the database communication (see section 9.3), and we had to
reschedule our plan. This was all according to the preventive actions defined.
The report writing, on the other hand, was not as closely planned, and we ended
up doing a lot of work in the last week.

13.2.3 Customer changes their mind

This risk did not occur, as the customer was clear and specific throughout the
course of this project about what they wanted us to develop. We executed our
preventive measure throughout the project of maintaining frequent contact with
the customer, but did not see if this measure was effective as the problem did not
occur.

13.2.4 Customer does not have technical expertise

Like the group being unfamiliar with the development platform, the customer not
having technical expertise was a problem that we knew we would need to handle.
The preventive measures we had described were to have early contact with the
customer. We had extensive early contact with the customer, to make sure that we

103

had a clear set of requirements for the application that was realistic to implement
in the given time period.
Despite us executing the preventive measure we had described, this risk became a
problem at a later point during the development process when we needed access to
a database to connect it to our application. The problem was that the database is
managed by an external party, and communication between us and this party took
place through the customer. This resulted in the wrong questions being asked to
the about the database system to the database responsible, and contributed to the
problems we had with connecting to the database system.

13.2.5 Missing equipment

This risk occurred early on in the project, as we realized during planning that we
needed OSX machines to develop applications for iOS. We executed our preventive
measure of quickly talking to the customer about the necessary equipment, and
the customer quickly acquired the necessary equipment for us. Therefore, this risk
occured but did not present a significant problem.

13.2.6 The scope of the project is too big

This risk was linked to the risk specifying that the customer did not have technical
expertise, because both of them could result in the project having requirements
that were unrealistic to implement. We executed the preventive measure of plan-
ning properly early on in the project and communicating clearly to the customer
what we felt was realstic to achieve. This measure was effective and the risk did
not become a problem.

13.2.7 Unexpected team member absence

This problem occured in sprint 2 (see section 7.9.2), when one of the team members
was ill for almost a week. The person who was ill was kept up to speed on the
progress of the team, but missed two scrum meetings. This problem resulted in
the team being slightly delayed, but the severity of the problem was not that high
and we quickly got back up to speed when the person returned.

13.2.8 Loss of data

We encountered a few cases throughout the course of this project where we lost
data due, both in the code of the application and in the report. The use of a
software repository handled these problems well, as we could look at the commit

104

history and recover the data, and the only consequence of the problem was wasting
time.

13.2.9 Difficulty with implementation

We did a thorough job in the planning and learning phase, as specified in the
preventive measure for this risk, and did not encounter any major difficulties during
the development of our application.

13.2.10 Technical problems with tools and software

As described in subsection 13.2.8, we had a problem where lost data a couple of
times. This was due to a text editor automatically overwriting changes that had
been pulled from the software repository. This problem could have been avoided
by more carefully evaluating which software to use, as we stated as a preventive
measure for this risk. The consequence of this problem was that we lost a couple
of hours, until we found the source of the problem.

13.2.11 Internal conflict

We did not experience any significant internal conflicts throughout the course of
this project. The preventive measures listed here executed, and were effective for
keeping the group harmonious and morale good.

13.3 Time management
According to the course compendium, the total amount of work hours for our
group should be 25 ∗ 14 ∗ 4 = 1400. 25 person-hours per week seemed too much at
first, but wee soon realized that this project would demand a lot of effort.
The period before the first sprint was used for preliminary study and the initial
project planning. We wanted to be well prepared for the project, and put a lot
of effort into this phase. During the sprints we tried to use equal amounts of
time on the implementation and the report. The last period after the last sprint
was focused mainly on writing the report, but a little implementation was done
there as well. This was unquestionably the period with the most work hours, as
the project was approaching the end. See figure 13.1 for an illustration of the
distribution of work hours per task. We ended up working for a total of 1249
hours on this project, which is about 22.3 hours per person per week.

105

Implementation

437

Write report

597

Prestudies+planning

120
Others

95

Figure 13.1: Pie chart illustrating the distribution of work hours per task

13.4 Group dynamics
Here we will evaulate how the group functioned as a whole, how the role assignment
worked, how the work was distributed and if we encountered any difficulties related
to language or culture seeing as the group consisted of two Norwegian students
and two Serbian students.

13.4.1 Role assignment

As described in section 2.4 we assigned the group into the following roles:

• Scrum master: dynamic

• Communication responsible: Johan Reitan

• Development responsible: Dusan Stefanovic

• Documentation responsible: Johan Reitan

• Team leader: Dusan Stefanovic

• Test responsible: Jørgen Faret

• Quality assurance responsible: Nenad Milosavljevic

• Software repository responsible: Johan Reitan

106

• Secretary: Jørgen Faret

Having the scrum master role as a dynamic role worked well, because it gave every
team member the opportuniy to lead a scrum cycle and therefore worked well
in teaching every group member what being a scrum master entailed. Because
we had a team leader in place for the development of the application, being the
scrum master in the context of our project mainly entailed leading sprint pre- and
post-planning meetings in addition to leading scrum stand-ups.
In general, the roles that had very clearly defined areas of responsibility were the
roles that worked best during the project. This includes the roles communication
responsible, documentation responsible, team leader, test responsible, software
repository responsible and secretary. Seeing as the group worked as a quite cohesive
unit, and was quite small, the roles quality assurance responsible and development
responsible did not play as big of a part, and were maybe not as necessary as we
had planned.

13.4.2 Work distribution

Initially, the plan was to divide the workload both in terms of coding and writing
the report equally amongst the four group members, with the roles responsible
for overseeing work on each of these two points (documentation responsible and
development responsible) responsible for delegating specific tasks and ensuring
progress in their respective areas.
During the course of the project, we gradually started dividing work so that Nenad
and Dusan focused more on working on the development of the application, and
Jørgen and Johan focused more on writing the report and testing the application.
This was done because Nenad and Dusan were a little more familiar with develop-
ing iOS applications, while Jørgen and Johan were more the only team members
familiar with writing in LATEX and were slightly more comfortable with technical
writing. After sprint one was concluded, and until the closing stages of the project,
this remained the general distribution and functioned well.

13.4.3 Culture and language

Because our group was a group with two Norwegian and two Serbian students, ours
was a group with a potential for language difficulties and misunderstandings due
to different cultural backgrounds. This was something we as a group were aware
of and discussed in one of our first meetings. Luckily, because all of the members
of the group spoke english very well, we did not experience any difficulties due
to language. We also all did a good job of making sure to be clear and concise
when commicating to avoid the fact that we are from different cultures causing

107

any problems.
A result of our different nationalities, combined with the fact that the two group
members from each country had quite similar areas of expertise, did result in the
group members from each country working slightly closer with each other than
with the group as a whole.

108

Bibliography

[1] Apple. Conventions. [Online; accessed 2013-10-14]. 2012. url: https :
/ / developer . apple . com / library / ios / documentation / cocoa /
conceptual/ProgrammingWithObjectiveC/Conventions/Conventions.
html.

[2] Apple. Developer tools overview. [Online; accessed 2013-10-14]. 2013. url:
https://developer.apple.com/technologies/tools/.

[3] Apple. Quartz Core Framework Reference. [Online; accessed
2013-10-11]. 2012. url: https : / / developer . apple . com /
library / mac / documentation / graphicsimaging / reference /
QuartzCoreRefCollection/_index.html.

[4] William Bittle. SAT (Separating Axis Theorem). [Online; accessed 2013-11-
08]. 2010. url: http://www.codezealot.org/archives/55#sat-algo.

[5] Git. Git. [Online; accessed 2013-11-02]. 2013. url: http://git-scm.com/.

[6] Philippe Kruchten. “Architectural Blueprints - The "4+1" View Model of
Software Architecture”. In: IEEE Software (Nov. 1995).

[7] Agile Manifesto. Principles behind the Agile Manifesto. [Online; accessed
2013-10-11]. 2001. url: http://www.agilemanifesto.org/principles.
html.

[8] Steve McConnell. Software Quality at Top Speed. [Online; accessed 2013-11-
06]. 1996. url: http://www.stevemcconnell.com/articles/art04.htm.

[9] Winston W. Royce. Managing the development of large software systems.
[Online; accessed 2013-10-11]. 1970. url: http : / / leadinganswers .
typepad.com/leading_answers/files/original_waterfall_paper_
winston_royce.pdf.

[10] Ian Skerrett. Eclipse Community Survey Results for 2013. [Online; accessed
2013-10-07]. 2013. url: http://ianskerrett.wordpress.com/2013/06/
12/eclipse-community-survey-results-for-2013/.

109

https://developer.apple.com/library/ios/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Conventions/Conventions.html
https://developer.apple.com/library/ios/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Conventions/Conventions.html
https://developer.apple.com/library/ios/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Conventions/Conventions.html
https://developer.apple.com/library/ios/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Conventions/Conventions.html
https://developer.apple.com/technologies/tools/
https://developer.apple.com/library/mac/documentation/graphicsimaging/reference/QuartzCoreRefCollection/_index.html
https://developer.apple.com/library/mac/documentation/graphicsimaging/reference/QuartzCoreRefCollection/_index.html
https://developer.apple.com/library/mac/documentation/graphicsimaging/reference/QuartzCoreRefCollection/_index.html
http://www.codezealot.org/archives/55#sat-algo
http://git-scm.com/
http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html
http://www.stevemcconnell.com/articles/art04.htm
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
http://ianskerrett.wordpress.com/2013/06/12/eclipse-community-survey-results-for-2013/
http://ianskerrett.wordpress.com/2013/06/12/eclipse-community-survey-results-for-2013/

[11] Wikipedia. ISO/IEC 9126. [Online; accessed 2013-11-15]. 2013. url: http:
//en.wikipedia.org/wiki/ISO/IEC_9126.

110

http://en.wikipedia.org/wiki/ISO/IEC_9126
http://en.wikipedia.org/wiki/ISO/IEC_9126

Appendix A

Code conventions

A.1 Objective C
In order to ensure easier maintenance of the system, as well as creating a foundation
for future development, we have agreed on some code conventions. All of these
conventions comply to the rules defined by Apple [1].

Code blocks All code blocks that follow a function declaration, class declara-
tion, conditional statement or control flow statement should start on a new line.

Indentation All code blocks must be intended. The starting brace can be on
the same line as the statement or declaration it’s enclosed by, or it can be on a
new line.

Spacing after keywords After each keyword there should be a space. An if
statement, for example, should be written as if␣(condition), instead of if(
condition).

- (void)loadWalls:(TBXMLElement *)element toPlan:(NAVPlan *)plan;

Naming conventions We are going to follow the camelCase convention, which
means that all phrases will be written without spaces, and the first letter in each
word is capitalised except the first one. Function and variable names should be
self explanatory. Table A.1 shows some examples.

Code examples

111

Table A.1: Naming conventions

Case Rule Example

Variables lower camelCase anExampleVar
Methods lower camelCase myMethod()
Classes Upper camelCase TestClass
Interfaces Upper camelCase TestInterface
Constants all uppercase EXAMPLECONST

//NAVPlanViewController.h

// the name of the variables starts with a small letter
@property (strong, nonatomic) NAVPlan *plan;
@property (strong, nonatomic) NSMutableArray *elements;
@property (strong, nonatomic) NSMutableArray *dimensions;

// function name begins with a lower case letter and is self
explanatory

- (void)drawElements;

@end

// NAVPlanViewController.m

// define a constant, name is in capital letters
#define NUMBERS_ONLY @"1234567890."

//variables definition
@interface NAVPlanViewController () {

CGFloat px;
CGFloat py;
CGPoint validCenter;
bool positionInvalid;
UIImageView *activeElement;
UITextField *txtWidth;

}

112

// constructor method which includes an example of indentation and
spacing after keywords

- (id)initWithCoder:(NSCoder *)decoder
{

self = [super initWithCoder:decoder];
if (self) {

self.elements = [NSMutableArray array];
self.dimensions = [NSMutableArray array];
// Custom initialization
NAVParser *parser = [[NAVParser alloc] init];
self.plan = [parser loadPlanFromXML:[[NSBundle mainBundle]

pathForResource:@"testPlan" ofType:@"xml"]];
}
return self;

}

A.2 XML
Our XML (read about XML in 3.2.1) follows a simple structure: every plan element
is assigned its own tag which contains all the required attributes for that specific
element. For example, walls are defined in a tag named <wall>, and have start and
end points, with tags respectively named <startPoint> and <endPoint>. These,
in turn, have x and y coordinates as attributes. The document is structured so
that it is easily read and interpreted by humans, mostly for the sake of control
while developing.
An example plan in XML:

<?xml version="1.0"?>
<plan>

<name>Plan name</name>
<description>Plan description</description>
<wall>

<startPoint>
<x>100</x>
<y>600</y>

</startPoint>
<endPoint>

<x>100</x>
<y>100</y>

113

</endPoint>
</wall>
<rectangular>

<originPoint>
<x>400</x>
<y>350</y>

</originPoint>
<name>Bed</name>
<height>128</>
<width>202</>
<icon>images</>
<angle>130</angle>

</rectangular>
</plan>

114

Appendix B

User manual

Contents
B.1 Creating a plan . 115

B.2 Removing a plan . 115

B.3 Loading a plan . 116

B.4 Editing a plan . 116

B.4.1 Adding elements . 116

B.4.2 Transforming elements 117

B.5 Customize UI . 119

B.6 Exporting and sharing a plan 119

B.1 Creating a plan
How do I create a plan?

1. Tap the "Ny plan" button on the menu screen

2. Enter the information to describe the plan

3. Tap the "Lag plan" button

B.2 Removing a plan
How do I remove a plan?

1. Tap the "Åpne plan" button on the menu screen

115

2. From the list of plans, select the one to be deleted

3. Tap the button "Slett plan"

B.3 Loading a plan
How do I load a plan?

1. Tap the "Åpne plan" button on the menu screen

2. From the list of plans, select the one to open

3. Tap the "Åpne" button

B.4 Editing a plan

B.4.1 Adding elements

How do I open the menu for adding elements to a plan?

1. On the screen displaying the plan, tap the "Legg til" button in the lower left
corner

2. A list of elements will appear on the left side of the screen

3. Tap the "Legg til" button again to close the list

How do I add walls to a plan?

1. Choose "Vegger" in the list of elements, which makes the wall submenu
appear

2. Select between the different wall elements:

(a) If "Frihånd" is selected, tap and drag across the plan to draw a wall of
desired length

(b) If one af the fixed walls is selected, tap on the screen where you want
the wall to start, and then enter the length of the wall

3. Save elements to the elements list for future use by tapping the "Lagre"
button

4. For using saved, custom walls, select one from the list and tap the screen at
the starting point

116

How do I add items to a plan?

1. Choose the "Elementer" submenu in the list

2. Select the item to add

3. Tap the screen to choose the position of the element

4. A screen for entering measurements will show up

5. Save elements to the elements list for future use by tapping the "Lagre"
button

6. Insert an element by tapping the "Legg til" button

How do I add a room to the plan

1. Choose the "Rom" submenu in the list

2. Select between rooms. "Med klokken" eller "Mot klokken" means the direc-
tion that the room shall be drawn starting from the tapped point.

3. Tap the screen to choose the start point for the room

4. A screen for entering the measurements will appear

5. Save elements to the elements list for future use by tapping the "Lagre"
button

6. insert the room by tapping the "Legg til" button

B.4.2 Transforming elements

How do I resize an item?
There are two ways to resize items:

1. (a) Click on the element

(b) A resize/rotate menu will appear. Insert the measurements and tap the
"Endre" button

2. (a) Pinch items with two fingers on the screen. Both touch points must be
on the item

How do I rotate items?
There are two ways to rotate items:

117

1. (a) Click on the element

(b) A resize/rotate menu will appear. Insert the angle and tap the "Endre"
button

2. (a) Touch the item with two fingers

(b) Start rotating both fingers around the center of the element

How do I rotate walls?
If you want to specify the angle between two walls manually, do the following:

1. Long press the connecting corner

2. A rotate menu will appear. Insert the angle and tap one of the buttons "Blå"
or "Gul" to choose which wall to rotate.

3. A confirmation dialog will appear. If the angle is not correct, tap the "Mot-
satt vinkel" button. Otherwise, tap the "OK" button.

How do I move items?

1. Tap the item an hold onto it while dragging it around

2. The item will turn red if there are obstacles (other items or walls) at its
current position. If the item is released when it is red, it will be placed back
to the last valid position.

How do I move walls?

1. Tap one of the wall’s corners, and hold onto it while dragging it around.

2. The wall will turn red if there are obstacles (other items or walls) at its
current position. If the item is released when it is red, it will be placed back
to the last valid position.

How do I activate special functions for an item?

1. A long tap on the item will set its state to active. What happens depends
on the type of item (e.g. for a wheelchair, all doors which are too narrow
for the wheelchair to pass through will turn red, and a radius showing the
wheelchair rotation will be shown.

2. Long tap the item again to set its state to inactive.

How do I zoom in and out in the plan?
This can be done in two ways:

118

1. By tapping the "Zoom inn" and "Zoom ut" buttons at the bottom of the
plan view screen

2. By pinching the plan view with two fingers

How do I save a plan?

1. Tap the "Lagre" button on the bottom of the plan view screen

B.5 Customize UI
How do I hide dimensions?

1. Tap the "Skjul mål" button at the bottom of the plan view screen

2. Tapping again will show the dimensions

How do I hide corners?

1. Tap the "Skjul hjørner" button at the bottom of the plan view screen

2. Tapping again will show the corners

How do I lock scrolling and zooming of the plan?

1. Tap the "Lås zoom"/"Lås panorering" buttons in the bottom right of plan
view screen.

2. Tap again to unlock zoom/scroll.

B.6 Exporting and sharing a plan
How do I export a plan?

1. Tap the "Eksporter" button at the bottom of the plan view screen

2. Choose the format for exporting the plan. The exported file is saved on the
device.

How do I share a plan?

1. Tap the "Del" button at the bottom of the plan view screen

2. Choose e-mail in the sharing dialog

3. Choose format for sharing

4. Fill out the necessary fields to send the e-mail

119

Appendix C

Test executions

C.1 Sprint 1 integration tests
Item Description

Name Navigate windows

Identifier INTG-11

Features to be tested The possibility to navigate through the different win-
dows and correctness of program flow

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Main menu is open

Execution steps
1. User presses ’Ny plan’
2. User presses ’Tilbake’
3. User presses ’Åpne plan’
4. User presses ’Tilbake’

Success criteria Application must properly navigate between pages

Test result Success

Test responsible Jørgen Faret

Table C.1: Test case INTG-11

120

Item Description

Name Load plan

Identifier INTG-12

Features to be tested Opening a plan

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Main menu is open
2. Plan is created

Execution steps
1. User presses ’Åpne plan’
2. User selects a plan from the list of plans
3. User presses ’Åpne’

Success criteria The correct plan is opened and properly displayed

Test result Success

Test responsible Jørgen Faret

Table C.2: Test case INTG-12

121

Item Description

Name Create item

Identifier INTG-13

Features to be tested Adding an element to the plan

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User presses ’Legg til’
2. User selects an item to add and drags it to plan

Success criteria Item is displayed in plan

Test result Success

Test responsible Jørgen Faret

Table C.3: Test case INTG-13

122

C.2 Sprint 2 integration tests
Item Description

Name Create item

Identifier INTG-21

Features to be tested Moving an element in the plan

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer
3. An element is created

Execution steps
1. User selects an element by pressing it
2. User drags the element to the desired location

Success criteria Element is moved to the correct location

Test result Success

Test responsible Jørgen Faret

Table C.4: Test case INTG-21

123

Item Description

Name Create item

Identifier INTG-22

Features to be tested Checking for intersecting points between two items

Priority Medium

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer
3. Two items are created

Execution steps
1. User selects an item by pressing it
2. User drags the item so that it is overlapping with

another item

Success criteria Item becomes red and upon release of element it moves
back to original location

Test result Success

Test responsible Jørgen Faret

Table C.5: Test case INTG-22

124

Item Description

Name Create item

Identifier INTG-23

Features to be tested Checking for intersecting points between wall and item

Priority Medium

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer
3. An item is created
4. A wall is created

Execution steps
1. User selects an item by pressing it
2. User drags the item so that it is overlapping with

a wall

Success criteria Item becomes red and upon release of element it moves
back to original location

Test result Failure

Test responsible Jørgen Faret

Table C.6: Test case INTG-23

125

Item Description

Name Create item

Identifier INTG-24

Features to be tested Resizing an item

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer
3. An item is created

Execution steps
1. User selects an item by pressing it
2. User selects two points on top of the item and

moves the points either towards or away from the
center of the item.

Success criteria Item increases in size if points are moved towards center
of element and decreases in size if points are moved away
from center of element

Test result Success

Test responsible Jørgen Faret

Table C.7: Test case INTG-24

126

Item Description

Name Create item

Identifier INTG-25

Features to be tested Rotating an item

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer
3. An item is created

Execution steps
1. User selects an item by pressing it
2. User selects two points on top of the item and

moves the points in the same direction around the
center of the item

Success criteria Item is rotated with the direction of the movement of
the points

Test result Success

Test responsible Jørgen Faret

Table C.8: Test case INTG-25

127

Item Description

Name Create item

Identifier INTG-26

Features to be tested Removing an item

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer
3. An item is created

Execution steps
1. User selects an item by pressing and holding for a

short amount of time
2. User presses delete on the popup menu

Success criteria Item is removed from the plan

Test result Success

Test responsible Jørgen Faret

Table C.9: Test case INTG-26

128

C.3 Sprint 3 integration tests
Item Description

Name Create item

Identifier INTG-31

Features to be tested Navigating menu for adding items

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User presses ’Legg til’
2. User presses ’Vegg’ in the list of element categories
3. User presses ’Tilbake’
4. User presses ’Gjenstand’ in the list of element cat-

egories
5. User presses ’Tilbake’

Success criteria Application properly navigates in the menu

Test result Success

Test responsible Jørgen Faret

Table C.10: Test case INTG-31

129

Item Description

Name Create item

Identifier INTG-32

Features to be tested Adding walls

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User presses ’Legg til’
2. User presses ’Vegg’ in the list of elements
3. User presses a point in the plan
4. User drags to a desired endpoint for the wall

Success criteria A wall is created starting at the startpoint and ending
at the endpoint

Test result Success

Test responsible Jørgen Faret

Table C.11: Test case INTG-32

130

Item Description

Name Create item

Identifier INTG-33

Features to be tested Adding doors

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer
3. A wall is created

Execution steps
1. User presses ’Legg til’
2. User selects ’Gjenstand’ in the list of element cat-

egories
3. User presses ’Dør’
4. User presses a point in the plan
5. User drags the door and attaches in on top of a

wall

Success criteria Door is displayed properly on top of a wall

Test result Success

Test responsible Jørgen Faret

Table C.12: Test case INTG-33

131

Item Description

Name Create item

Identifier INTG-34

Features to be tested Adding items

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User presses ’Legg til’
2. User selects ’Gjenstand’ in the list of element cat-

egories
3. User presses a point in the plan not conflicting with

other elements to put the item

Success criteria Item is properly displayed at the correct location.

Test result Success

Test responsible Jørgen Faret

Table C.13: Test case INTG-34

132

Item Description

Name Create item

Identifier INTG-35

Features to be tested Saving and loading a plan

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan with a set of elements is created
2. Application is in plan viewer

Execution steps
1. User presses ’Lagre’
2. User exits the plan viewer
3. User presses ’Åpne plan’
4. User finds the previous plan in the list of plans
5. User opens the plan

Success criteria Plan is displayed with the same elements in the location
with the same size as when it was saved

Test result Success

Test responsible Jørgen Faret

Table C.14: Test case INTG-35

133

Item Description

Name Create item

Identifier INTG-36

Features to be tested Plan metadata properly saved

Priority Low

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Main menu is open

Execution steps
1. User presses ’Ny plan’
2. User inputs desired plan metadata and presses

’Lag plan’
3. User presses ’Lagre’
4. User presses ’Tilbake’
5. User presses ’Åpne plan’
6. User finds the previous plan in the list of plans and

inspects metadata

Success criteria Plan is displayed with correct metadata

Test result Success

Test responsible Jørgen Faret

Table C.15: Test case INTG-36

134

Item Description

Name Create item

Identifier INTG-37

Features to be tested Zooming in the plan

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User selects two points in the plan where there are

no elements and drags the points further away or
closer to each other

Success criteria The plan zooms out if the points were dragged further
from each other and zooms in if they were dragged fur-
ther away from each other

Test result Success

Test responsible Jørgen Faret

Table C.16: Test case INTG-37

135

Item Description

Name Create item

Identifier INTG-38

Features to be tested Panning in the plan

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User selects a point in the plan where there are no

elements and drags the point

Success criteria Plan is panned in the same direction as the point is
dragged

Test result Success

Test responsible Jørgen Faret

Table C.17: Test case INTG-38

136

C.4 Sprint 4 integration tests
Item Description

Name Create item

Identifier INTG-41

Features to be tested Creating custom elements

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User presses ’Legg til’
2. User selects ’Gjenstand’ in the list of element cat-

egories
3. User selects ’Brukerdefinert gjenstand’
4. User presses a point in the plan not conflicting with

other elements to put the item
5. User enters the desired height and width and label

of the item

Success criteria Item is properly displayed at the correct location with
the correct size.

Test result Success

Test responsible Jørgen Faret

Table C.18: Test case INTG-41

137

Item Description

Name Create item

Identifier INTG-42

Features to be tested Using saved custom elements

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User presses ’Legg til’
2. User selects ’Gjenstand’ in the list of element cat-

egories
3. User selects the desired custom element
4. User presses a point in the plan not conflicting with

other elements to put the item

Success criteria Item is properly displayed at the correct location with
the correct size.

Test result Success

Test responsible Jørgen Faret

Table C.19: Test case INTG-42

138

Item Description

Name Create item

Identifier INTG-43

Features to be tested Copying elements

Priority Medium

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer
3. An element is created

Execution steps
1. User presses an element
2. User presses ’Kopier’ in the pop-up menu
3. User presses a point in the plan not conflicting with

other elements to put the item

Success criteria Item is properly displayed at the correct location.

Test result Success

Test responsible Jørgen Faret

Table C.20: Test case INTG-43

139

Item Description

Name Create item

Identifier INTG-44

Features to be tested Creating horizontal/diagonal walls

Priority Medium

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User presses ’Legg til’
2. User selects ’Vegg’ in the list of element categories
3. User selects ’Horisontal vegg’
4. User presses a point in the plan not conflicting with

other elements to draw the wall
5. User sets wall length
6. User selects ’Vertikal vegg’
7. User presses a point in the plan not conflicting with

other elements to draw the wall
8. User sets wall length

Success criteria Horizontal and vertical walls are displayed properly

Test result Success

Test responsible Jørgen Faret

Table C.21: Test case INTG-44

140

Item Description

Name Create item

Identifier INTG-45

Features to be tested Creating rooms

Priority Medium

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User presses ’Legg til’
2. User selects ’Rom’ in the list of element categories
3. User inputs room dimensions
4. User presses a point in the plan not conflicting with

other elements to draw the room

Success criteria Room is properly displayed at the correct location.

Test result Success

Test responsible Jørgen Faret

Table C.22: Test case INTG-45

141

Item Description

Name Create item

Identifier INTG-46

Features to be tested Exporting plans

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer
3. Plan with elements is created

Execution steps
1. User presses ’Eksporter’
2. User chooses a file format for eksporting

Success criteria A correct picture of the plan is exported.

Test result Success

Test responsible Jørgen Faret

Table C.23: Test case INTG-46

142

Item Description

Name Create item

Identifier INTG-47

Features to be tested Sharing plans

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer
3. Plan with elements is created

Execution steps
1. User presses ’Del’
2. User selects a plan as file format for sharing
3. User inputs the e-mail desired recipient and meta-

data for the e-mail
4. User presses send
5. User opens the e-mail inbox of the recipient
6. User opens the plan attachment in the e-mail

Success criteria Plan is opened and is unchanged from when it was sent

Test result Failure

Test responsible Jørgen Faret

Table C.24: Test case INTG-47

143

Item Description

Name Create item

Identifier INTG-48

Features to be tested Deleting plans

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Main menu is open

Execution steps
1. User presses ’Åpne plan’
2. User selects a plan from the list of plans
3. User presses ’Slett’

Success criteria Plan is removed from list of plans and the plan’s xml-file
is deleted from the folder containing plans

Test result Failure

Test responsible Jørgen Faret

Table C.25: Test case INTG-48

144

Item Description

Name Create item

Identifier INTG-49

Features to be tested Locking the plan zoom and pan

Priority Medium

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User presses ’Lås skjerm’
2. User attemps to pan plan by dragging a point in

the plan
3. User attemps to zoom plan by selecting two points

in the plan and dragging them further away or
closer to each other

Success criteria The plan viewer does not pan or zoom

Test result Success

Test responsible Jørgen Faret

Table C.26: Test case INTG-49

145

Item Description

Name Create item

Identifier INTG-410

Features to be tested Zooming using buttons

Priority Medium

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User presses ’Zoom ut’
2. User presses ’Zoom inn’

Success criteria Plan zooms in when user presses ’Zoom inn’ and zooms
out when user presses ’Zoom ut’

Test result Success

Test responsible Jørgen Faret

Table C.27: Test case INTG-410

146

Item Description

Name Create item

Identifier INTG-411

Features to be tested Zooming using buttons

Priority High

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer

Execution steps
1. User presses ’Legg til’
2. User selects ’Gjenstand’ in the list of element cat-

egories
3. User selects ’Rullestol’
4. User inputs the desired dimensions of the

wheelchair in the popup menu
5. User presses a point in the plan not conflicting with

other elements to place the wheelchair

Success criteria A wheelchair element is placed at the desired location

Test result Success

Test responsible Jørgen Faret

Table C.28: Test case INTG-411

147

Item Description

Name Create item

Identifier INTG-410

Features to be tested Zooming using buttons

Priority Medium

Testing technique Integration testing

Testing method Gray-box testing

Pre-conditions
1. Plan is created
2. Application is in plan viewer
3. At least one wall is created
4. At least one door is created
5. A wheelchair with a diameter larger than the width

of the door is created

Execution steps
1. User presses the wheelchair and holds until the

wheelchair border is green

Success criteria The door created becomes red to illustrate that the
wheelchair won’t fit through it

Test result Success

Test responsible Jørgen Faret

Table C.29: Test case INTG-412

148

C.5 System tests
Item Description

Name Create plan

Identifier SYST-1

Testing technique Black box

Requirements to be tested
• NFR1
• NFR3
• NFR4
• FR1
• FR3

Pre-conditions None

Execution steps
1. User opens application
2. User creates a new plan, making sure to fill

in all of the metadata
3. Users saves plan
4. User closes application

Success criteria
1. All non-functional requirements are fulfilled
2. Program flow is correct
3. All buttons pressed produce expected re-

sponse
4. No unexpected program behavior is observed

Test result Success

Test responsible Jørgen Faret

Table C.30: Test case SYST-1

149

Item Description

Name Populate plan

Identifier SYST-2

Testing technique Black box

Requirements to be tested
• NFR1
• NFR3
• NFR4
• FR2
• FR3
• FR4
• FR5
• FR7
• FR11
• FR12
• FR14
• FR15

Pre-conditions An empty plan is created

Execution steps
1. User opens application
2. User loads a created plan
3. User populates the plan adding at least one

item of each category
4. User saves plan
5. User closes application

Success criteria
1. All non-functional requirements are fulfilled
2. Program flow is correct
3. All buttons pressed produce expected re-

sponse
4. No unexpected program behavior is observed

Test result Success

Test responsible Jørgen Faret

Table C.31: Test case SYST-2

150

Item Description

Name Edit plan

Identifier SYST-3

Testing technique Black box

Requirements to be tested
• NFR1
• NFR3
• NFR4
• FR2
• FR3
• FR7
• FR8
• FR9
• FR10
• FR11
• FR12
• FR14
• FR15

Pre-conditions A plan that is populated with elements is created

Execution steps
1. User opens application
2. User loads created plan
3. User rearranges the elements in the plan to

create a realistic room with items, making
sure to perform the actions move, rotate, re-
size and remove at least once

4. User saves plan
5. User closes application

Success criteria
1. All non-functional requirements are fulfilled
2. Program flow is correct
3. All buttons pressed produce expected re-

sponse
4. No unexpected program behavior is observed

Test result Success

Test responsible Jørgen Faret

151

Table C.32: Test case SYST-3
Item Description

Name Export and delete plan

Identifier SYST-4

Testing technique Black box

Requirements to be tested
• NFR1
• NFR3
• NFR4
• FR2
• FR16

Pre-conditions A plan that is populated with elements is created

Execution steps
1. User opens application
2. User loads created plan
3. User exports plan via e-mail
4. Users deletes plan
5. User closes application
6. User opens application
7. User verifies that plan is deleted

Success criteria
1. All non-functional requirements are fulfilled
2. Program flow is correct
3. All buttons pressed produce expected re-

sponse
4. No unexpected program behavior is observed

Test result Success

Test responsible Jørgen Faret

Table C.33: Test case SYST-4

152

153

	I Planning and project management
	Project directive
	Project name
	Project mandate
	Project duration
	Project stakeholders
	Customer description

	Project plan
	Project phases
	Milestones
	Risk assessment
	Roles
	Test plan
	Architecture plan

	Preliminary study
	Development methodology
	Technological aids

	Quality assurance
	Group interaction
	Supervisor interaction
	Customer interaction

	Requirements
	Functional requirements
	Non-functional requirements
	Use cases

	II Sprints
	Sprint 1
	Duration
	Scrum master
	Backlog
	Goals
	Design and implementation
	Testing
	Deliverables
	Customer feedback
	Sprint evaluation

	Sprint 2
	Duration
	Scrum master
	Backlog
	Goals
	Design and implementation
	Testing
	Deliverables
	Customer feedback
	Sprint evaluation

	Sprint 3
	Duration
	Scrum master
	Goals
	Backlog
	Design and implementation
	Testing
	Deliverables
	Customer feedback
	Sprint evaluation

	Sprint 4
	Duration
	Scrum master
	Goals
	Backlog
	Design and implementation
	Testing
	Deliverables
	Customer feedback
	Sprint evaluation

	III Conclusion and evaluation
	System architecture
	Logical view
	Process view
	Implementation view
	Deployment or physical view
	Use case view

	Acceptance testing
	Functional requirement coverage
	Requirement testing
	Test cases
	Evaluation

	System evaluation
	Usage scenario
	User questionnaire
	Questionnaire results
	Questionnaire data analysis
	Conclusion

	Project evaluation
	Using scrum
	Risk evaluation
	Time management
	Group dynamics

	Bibliography
	Code conventions
	Objective C
	XML

	User manual
	Creating a plan
	Removing a plan
	Loading a plan
	Editing a plan
	Customize UI
	Exporting and sharing a plan

	Test executions
	Sprint 1 integration tests
	Sprint 2 integration tests
	Sprint 3 integration tests
	Sprint 4 integration tests
	System tests

