Modelling acoustic wave propagation in an axially symmetric

system with a finite-difference time-domain method

Erlend Magnus Viggen

November 12, 2008

Abstract

A finite-difference time-domain method for modelling acoustic wave propagation in an axially sym-
metric system is described, and the results of an implementation of this method are shown. The model
is shown to be reasonably accurate for high frequencies with resolution settings that give a running
time of roughly a minute, and increasingly accurate with increasing resolution. The numerical errors
of the model are looked at, as well as what algorithms take up its running time. The model is used to
dismiss possible changes in the nature of acoustic propagation in air due to the shape of the system.

I INTRODUCTION

This text shows the details behind a model of
acoustic wave propagation in an axially symmet-
ric system, using a finite-difference time-domain
method. This model has applications in studying
acoustic propagation in systems such as horns and
circular ducts. The model can also answer sev-
eral general questions about propagation in axially
symmetric systems. For one, if a horn has a very
sharp curve, do the wavefronts still always propa-
gate in a direction parallel to the wall of the horn?
And do systems such as this cause dispersion in an
otherwise non-dispersive medium such as air?

It is also useful to look at the precision of the
model compared to how long a simulation using it
takes. Analyzing which parts in it take the most
computational time might aid in optimizing the
model.

Figure 1: A system that is axially symmetric about
the z axis, here represented by a horn. Wave prop-
agation is studied inside the horn.

II FINITE DIFFERENCE METHOD

When using finite difference methods, the space of
the system is divided into a grid of nodes that are
equally spaced along each dimension. Each node
holds the state of the system at that point. In
this problem, there are two physical dimensions, r
and z, as seen in figure 1, as well as one dimension
of time. With this grid, it is possible to estimate
the value of a differential at one point using the
values of this point and the neighboring points.
For instance, the first and second derivatives of
the parameter ¢(r) at node i in the grid are [2]

i ir1 — i1

dr 2Ar (1)
Phi g1 — 20i + dia @)
arr (AT)2 .

Here Ar is the spacing between nodes on the r
axis.

Acoustic wave propagation is governed by the
wave equation [1],
1 0%

2 _
VP*C?W, (3)

where p = p(r, z,t) is the axially symmetric sound

pressure and V? is the Laplace operator, which in

cylindrical coordinates is [1]

0? 10 1 02 0?

Vie oS = 4
8r2+7’8r+r2892+322 )

When utilized on a axially symmetric function,

0?/06? gives zero, and the Laplace operator sim-

plifies to

0? 10 0?

2—7 —_— P
v _87‘2—’_7"87"—'—822' (5)



When equation 5 is put into equation 3, it be-

comes
02 10 02 1 0%p
(6‘7’2+r<97“+8,22>p_028t2' (©)

Each derivative in this equation can be approx-
imated using a finite difference approach. With
the notation used, 7 is an r coordinate, j a z coor-
dinate and k a t “coordinate”, so that for instance
r = i¢Ar. This system of spatial coordinate nota-
tion is also shown in figure 2. With this notation,
the terms then become:

> __ Pit1 —2pi +pia

ﬁpi ~ (AT)Q =1I,2, (7)
A =t )
é%pk ~ Pr+1 —(Zptz;;- Piot g, (10)

Since Itz = Ir2 + I, + 1227
Pk+1 — 2Pk + Pr—1
2 (At)?
After some calculation, this results in the un-
bounded update function:

=T+ 1.+ 1. (11)

Prt1 = p(—2a + 27+ 2)
+ piti(a+ B)

+pi—1(a—f)

+pj+1(7)

+pj-1(7)

+ Pk—-1-

(12)

For clarity and to save space, only the coordinates
that are different from ¢, 7 and k have been explic-
itly written. Where no other coordinates are speci-
fied, 7, j and k are implicit, so that p;11 = Diy1,j k-
Also, three simplifying quantities have been intro-
duced:

Lo By 13
A (13)
12 (A
0= ear (1
A (A
"= (15)

This update function is used to update most of
the nodes in the system from their state at time &
to their state at time k£ + 1. For the nodes lying at
boundaries (i.e. by a wall or on the z axis), special
update functions are needed.

i+2 @ ] [ ] °
i+ 1 (] ] ] [
i ° o . .

i—1 . . . .
j—1 J i+l j+2

Figure 2: A boundary exists between nodes in the
wall (the gray area) and nodes in air (the white
area).

III BOUNDARY CONDITIONS

For a node that is on the axis, i.e. r = 0 and
1t = 0, L'Hopital’s rule must be used on the I,
term, reducing it to 2. Also, since the node pg is
on the z axis and the system is axially symmetric,
p—1 = p1. This gives the down-bounded update
function,

Pry1 = p(—4a+ 27+ 2)
+ piv1(4a)
+pi+1(7) (16)
+pi-1(7)
+ Pk—1.

Some nodes are inside a wall, as shown in fig-
ure 2. These are not to be updated, and are only
present because it is simpler to handle a square
grid of nodes. When a node inside the system itself
is beside a wall, the update functions in equations
12 and 16 must be altered.

The derivative dp/dx equals zero at a rigid
boundary perpendicular to the x direction [1].
Therefore, if p; is a node beside a wall, and its
neighbor p;; is inside the wall,

Pi+1 — Di

=0, (17)

meaning that
Pi+1 = Di- (18)

With this known, the update functions for all
other boundings can be calculated. These can be
found in appendix A.

IV

An efficient way to time-step through the sys-
tem’s evolution is by sparse matrix multiplication

IMPLEMENTATION



in MATLAB. The pressure of every node in the
system for the current and previous time steps are
stored in a sparse vector, and a sparse matrix is
used to perform every node’s update function for
each step. The matrix also copies the pressures for
the current time step in [p], to the pressures for
the previous time step in [p]g41. If 0 < ¢ < T and
0 < j < J, the pressures p; ;5 in the vector [p]
are organized like shown below:

i Po,0,k T

P1,0.k

P10,k
Po,1,k

Pr1,Jk
P0,0,k—1

L Pr.Jk—1 1

A matrix [A] is created that performs time-
stepping in the system, so that

Plisr = [Al [Pl - (20)

The matrix is constructed according to the update
functions given in sections II, ITI and appendix A.
For further details on how [A] is constructed, see
appendix B.

The nodes in the system at z = 0 are the “prime
movers” of the system. They are not subject to
the update functions in A, but are instead locked
to some time-varying function, for instance a sine
function at a certain frequency, or a Mexican hat
wavelet.

The Mexican hat wavelet bears special mention
as it is not very widely used. It is given by [3]

P(a) o (1—2%) e /2 (21)

where x oc t. The shape of the function can be
seen in figure 3.

The Mexican hat wavelet does not have a fre-
quency and period like a sine function, but a “pe-
riod” T =1/f can be defined as the time between
the two minima at each side. From ¢’(x) = 0 it
can be found that these minima are at z = —/3
and z = /3. When z is defined as z = C ft where
f is frequency and C' a constant,

Az =CfT =C =2V3, (22)

meaning that

x = 2V3ft. (23)

0.5f

o

-0.5

Figure 3: An unscaled Mexican hat wavelet.

This is how time and frequency affect the wavelet
signal in the code given in section B. When start-
ing the wavelet, x starts at —3+/3 to get a reason-
ably smooth start for the system.

V RESULTS

The images of the results will be as shown in figure
4. Every square in the image represents a node. A
light color represents positive pressure while a dark
color represents negative pressure. The large black
area in the upper left of most images represents
the nodes that are in the wall. These have been
coloured black to make the boundary easily visible.
It also bears mention that the images are plotted
in a way so that the lightness for a point is not
proportional to its p value, but instead sgn(p),/p.
This is done to exaggerate the pressures so that
waves far away from the source also are clearly
visible.

Figure 4: Sine wave propagation in a horn with lin-
early increasing radius. The curve is proportional
to z.

All simulations have been performed with a sys-
tem length L = 0.5 m, a signal frequency f = 5000
Hz and a sound propagation velocity ¢ = 343 m/s.
All images are of the system’s state after the time
it takes for sound to propagate from one end of
the system to the other. This is about 1.5 ms.



The reason for this is that the end of the system
is also a hard wall, as open edges are difficult to
simulate.

Unless anything else is specified, the simulation
results are given for the resolutions Ar = 0.005 m,
Az =0.005 m and At = 1077 s.

0.1 0.2 0.3 0.4
z [m]

Figure 5: Sine wave propagation in a system with
a constant circular cross-section.

Figure 5 shows sine wave propagation in a circu-
lar duct of constant radius. It shows a wave that
propagates exactly according to the kgy waveguide
mode as given in Fundamentals of Acoustics [1].

From figures 4 and 5, it is also clear that the
wavelength A is slightly in excess of 6.7 cm, which
corresponds well with the analytical value for a
frequency of f = 5000 Hz, A = 6.86 cm.

Figure 6: Sine wave propagation in a horn with a
sharply exponential curve. The curve is propor-
tional to z*.

Figure 6 shows sine wave propagation in a sys-
tem where the radius is sharply increasing after a
point. The circular wavefronts in the figure are
not entirely concentric, as can be clearly seen by
the inner circles having a centre further to the left
than the outer circles. Each circle’s propagation
direction by the wall is still parallel to the wall,
even in this unconventional geometry. This can be
seen from the wavefronts being perpendicular to
the wall.

With the wavelet signal type, the limitations of
the finite difference model for relatively large Ar
and Az is starting to show. Figure 7 shows a lot

0 01 02 03 04
z [m]

Figure 7: Wavelet propagation in a horn with a
smooth exponential curve. The curve is propor-
tional to 22.

of disturbance in the wake of the wavelet. This
disturbance occurs when the peak of the wavelet
passes around 0.05 m, where the radius widens by
Ar, which is a quite significant increase when the
spatial resolution is that low.

O0 01 02 03 04

z [m]

Figure 8: The same simulation as in figure 7, but
with Ar = Az = 0.001 m instead of 0.005 m.

The model is significantly improved by improv-
ing the spatial resolutions Ar and Az to 0.001 m,
as seen in figure 8. The “numerical turbulence” is
strongly decreased. The downside is that the sim-
ulation takes far longer, since the size of [p] and
[A] has increased greatly. A middle road can be
taken by setting Ar = 0.001 m and Az = 0.005 m,
but the problem isn’t lessened to the degree shown
in figure 8.

That it is possible to decrease these effects by
improving the spatial resolution indicates that the
problem is a purely numerical one, and that there
should be very little actual turbulence in the wake
of the wavelet. The reason why this effect is not
apparent for sine signal type is likely that the am-



plitude of the reflection is insignificant compared
to the amplitude of the next part of the sine. As
mentioned at the start of this section, the pressures
are drawn in an exaggerated manner, so that the
disturbances in figure 7 might not really be all that
significant compared to the amplitude of the peak
near the start of the system.

0.15

0.1

0.05

p [unscaled]

o

-0.05

10 12 14
¢ 1] x10™

Figure 9: The pressure at the point z = 0.25 m,

r = 0.1 m in the system in figure 7 as a function
of time, with a wavelet signal.

0.15

0.1
0.05

p [unscaled]
o

-0.05
-0.1
-0.15

10 12 14
¢ 18] x10™*

Figure 10: The pressure at the point z = 0.25 m,
r = 0.1 m in the system in figure 7 as a function
of time, with a sine signal.

Figure 9 shows that the general shape of the
wavelet is intact further out in the system, even
though there are some disturbances at the end of
the signal due to the numerical turbulence. Figure
10 shows a similar disturbance tendency, but as
the general sine shape is preserved, the effect looks
weaker than it actually is in the system images.
These results have been found with the standard
resolutions of Ar = Az = 0.005 m.

Figure 11 shows that an improved spatial resolu-
tion improves the shape of the recorded wavelet so
that it more resembles the excitation signal shown
in figure 3. The disturbance at the end is greatly
reduced, and the two minima are closer in ampli-
tude. The amplitudes are also larger than in figure

0.2

0.1

0.05

p [unscaled]

o

-0.05

-0.1

2 4 6 8 10 12 14
t [s] x10™

Figure 11: The same pressure as in figure 9 with an
improved spatial resolution of Ar = Az = 0.001
m.

9. This is likely due to the diminishing of the re-
flections discussed earlier in this section, allowing
more of the signal energy to propagate directly out
into the horn.

It is puzzling that the extremal points of the
wavelet are affected in such a way that the first
minimum is smaller than it should be compared
to the first maximum and second minimum. This
trend can also be seen in figure 10, where the first
extremal point is small compared to the second
and third. As this trend is also present for the
monofrequency sine signal type, we can rule out
that it stems from dispersion. That the amplitude
difference is strongly diminished by improving the
spatial resolution indicates that it stems instead
from numerical errors.

The fact that the general shape of the wavelet
is the same in figure 11 as in figure 3 and that the
same errors are found for a monofrequency signal
indicates that no dispersion is going on in the sys-
tem, even close to the wall.

A final note must be made about the speed of
the model. It takes 80 seconds to run a simulation
as shown in figure 7 on a 2.2 GHz Intel Core 2 Duo
processor (only one core is actually used) running
MATLAB 7.4.0 in Mac OS X 10.5.5, with spatial
resolution Ar = Az = 0.005 m and time resolution
At =10~7s. The MATLAB profiler indicates that
with a frameskip of 100 (one image of system state
drawn per 100 steps), 63% of the CPU time was
used on sparse matrix multiplication, and 26% on
drawing.

With an improved spatial resolution of Ar =
Az = 0.001 m, running the same simulation takes
as much as 34 minutes. The running time has in-
creased roughly 25 times, which is the same in-
crease as the resolution. From this, we see that
running time has a roughly linear relationship to
the resolution.



It might be possible to use a parallel algorithm
for the matrix multiplication so that the full power
of multi-core processors could be utilized. Unfor-
tunately, parallellization is not well supported in
MATLAB at this time.

VI CONCLUSION

It is quite possible to use finite-difference time-
domain methods to model a 2D problem such as
this, but the result is not as fast as other meth-
ods for modelling acoustic propagation, such as
the TLM method. As it is, this implementation
is too slow to get good accuracy on larger systems
for high frequencies, but depending on the appli-
cation, it might be good enough to use with low
frequencies. Lower frequencies means longer wave-
lengths, which would likely allow a significantly
lower resolution. If high-frequency simulations are
required, a raytracing approach might be more ap-
propriate instead. In addition, as the curved horn
surface creates reflection problems with low spatial
resolutions, the removal of curved surfaces would
also improve results for low resolutions.

The large fraction of time spent on sparse matrix
multiplication indicates that it is hard to tweak the
code to run a lot faster, as the built-in algorithms
for this in MATLAB are quite good apart from the
fact that they only use one processor core.

The model been able to answer the two ques-
tions posed in the introduction. It has shown that
wavefronts by the wall propagate parallel to the
wall even in an unconventional horn geometry. In
addition, no dispersion is introduced in the system
by the horn shape, as can be seen from the wavelet
shape in figure 11.

REFERENCES

[1] Lawrence E. Kinsler, Austin R. Frey, Alan B.
Coppens, and James V. Sanders, Fundamentals
of Acoustics, 4th ed., John Wiley & Sons, 2000.

[2] Ulf R. Kristiansen, FEndelige Differansers
Metode i Akustikk, 2003, published as a course
supplement.

[3] The MathWorks, MATLAB Wavelet Toolbox
documentation, mexh function.

A BOUNDED
TIONS

UPDATE  FUNC-

For simplicity, a system of directions is used with
the axes as shown in figure 1 and every result im-

age in section V. The unbounded update function
is found in equation 12, and the down-bounded
update function is found in equation 16.

The left-bounded update function:

Prr1 = [p(—2a + 27+ 2)
+ pit1(a+ B)
+pi—1(a = B) (24)
+pj+1(7)
+ pr-1]/(1 =)

The up-left-bounded update function:
Prt1 = [p(—2a + 2y +2)
+pi—1(a —p)
+pj+1(7)
+pr-1]/(L—a—=B-7)

The up-bounded update function:
Prt1 = [p(—2a + 27+ 2)
+pi—1(a—p)
+pj+1(7) (26)
+pj-1(7)
+pe-1]/(1—a—p)
The up-right-bounded update function:

Prt1 = [p(—2a + 2y +2)

+pi—1(a = f)

+Ppj-1(7) @0

+ e/l —a—=B-7)

The right-bounded update function:
Pr+1 = [p(—2a + 27 +2)

+ piv1(a+5)
+pi—1(a— ) (28)
+pj—1(7)
+pr—1]/(1 =)

The down-right-bounded update function:
Pr+1 = [p(—da + 27 +2)
+ piv1(4e)
+pi-1(7)
+ pr-1]/(1 =)

The down-left-bounded update function:

(29)

Prt1 = [p(—da + 27 +2)
+ pit1(4a)
+pj+1(7)

+ pr—1]/(1 =)

(30)



B MATLAB CcODE

The MATLAB code that was used to implement the model and generate the figures in section V is given
below. The MATLAB language was chosen for its built-in efficient representation of sparse vectors and
matrices, its efficient algorithms for sparse matrix multiplication, its great facilities for plotting figures
as well as its familiarity to the author.

clear all;

% User-set constants

dr = 0.005; % r resolution [m]

dz = 0.005; % z resolution [m]

dt = 1E-7; % t resolution [s]

c = 343; % Speed of sound [m/s]

hornlength = 0.5; % Length of horn [m]

sourcefreq = 5000; % Sound source frequency [Hz]
signaltype = 1; % 1: Sine, 2: Wavelet

frameskip = 100; % Every "frameskip"’th step is plotted
micz = 0.25; % z position of "microphone"

micr = 0.1; % r position of "microphone"

geometry = 3; % 1: Constant cross-section, 2: Linear curve,

% 3: Slow exponential, 4: Sharp exponential
% 5: Chamber in pipe, 6: Camelback

% Calculated constants

nodelength = round(hornlength / dz); % Horn length in nodes

iter = round((hornlength/c) / dt); % Number of iterations

micj = round(micz/dz);

mici = round(micr/dr);

alpha = (c * dt / dr)~2;

betaconst = (¢ * dt)"2 / (2 * dr);

gamma = (c * dt / dz)~2;

% Determine geometry
switch (geometry)
case 1
heights(1l:nodelength) = ceil(0.15 * hornlength / dr);
case 2
heights = floor(0.025/dr + 0.5 * (0 : nodelength-1)*dz/dr );
case 3
heights = floor(0.025/dr + 2 * ((0 : nodelength-1)#*dz)."2 / dr);
case 4
split = round(nodelength/2);
heights(1:split) = floor(0.025/dr + 150 * ((0 : split-1)*dz)."4 / dr);
heights(split+1:nodelength) = heights(end);
case 5
split = round(nodelength/4);
heights(1l:nodelength) = ceil(0.1xhornlength / dr);
heights(split:nodelength-2*split) = ceil(0.25*hornlength / dr);
case 6
heights(1l:nodelength) = ceil((0.05%hornlength + 0.1
- 0.1 * cos(4*pi*(l:nodelength)/nodelength))/dr);
otherwise
error(’Invalid geometry.’);

end
nodeheight = max(max(heights)); % Horn height in nodes
% Create empty iteration vector and matrix

p = sparse(nodeheight*nodelength*2, 1, 0);
A = sparse(length(p), length(p), 0);



% Fill iteration matrix
for j = 1:nodelength
for i = 1:heights(j)

if A>1)
beta = betaconst / ((i-1) * dr);
end

% Calculate the number of this node and its adjacent nodes
nodenum = i + (j-1)#*nodeheight;

pinum = nodenum + 1;

minum = nodenum - 1;

pjnum = nodenum + nodeheight;

mjnum = nodenum - nodeheight;

mknum = nodenum + nodeheight*nodelength;

% Is this node left-bounded?
if ( j ==1 |l i > heights(j-1) )

% Is this node also up-bounded or down-bounded?

if ( i == heights(j) )
% CASE UL
coeff = 1 / (1 - alpha - beta - gamma);
A(nodenum, nodenum) = (- 2%alpha - 2*gamma + 2) * coeff;
A(nodenum, minum) = (alpha - beta) * coeff;
A(nodenum, pjnum) = (gamma) * coeff;
A(nodenum, mknum) = (-1) * coeff;

elseif (i == 1)
% CASE DL
coeff = 1 / (1 - gamma);
A(nodenum, nodenum) = (- 4*alpha - 2%gamma + 2) * coeff;
A(nodenum, pinum) = (4*alpha) * coeff;
A(nodenum, pjnum) = (gamma) * coeff;
A(nodenum, mknum) (-1) * coeff;

else
% CASE L
coeff = 1 / (1 - gamma);
A(nodenum, nodenum) = (- 2%alpha - 2%gamma + 2) * coeff;
A(nodenum, pinum) = (alpha + beta) * coeff;
A(nodenum, minum) = (alpha - beta) * coeff;
A(nodenum, pjnum) = (gamma) * coeff;
A(nodenum, mknum) (-1) * coeff;

end

% Is this node right-bounded?
elseif ( j == nodelength )
% Is this node also up-bounded or down-bounded?
if ( i == heights(j) )
% CASE UR
coeff =1 / (1 - alpha - beta - gamma);
A(nodenum, nodenum) = (- 2%alpha - 2*gamma + 2) * coeff;
A(nodenum, minum) = (alpha - beta) * coeff;
A(nodenum, mjnum) = (gamma) * coeff;
A(nodenum, mknum) = (-1) * coeff;
elseif (i == 1)
% CASE DR
coeff = 1 / (1 - gamma);
A(nodenum, nodenum) = (- 4*alpha - 2%gamma + 2) * coeff;
A(nodenum, pinum) = (4*alpha) * coeff;
A(nodenum, mjnum) = (gamma) * coeff;



A(nodenum, mknum) = (-1) * coeff;
else
% CASE R
coeff = 1 / (1 - gamma);
A(nodenum, nodenum) = (- 2*alpha - 2*gamma + 2) * coeff;
A(nodenum, pinum) = (alpha + beta) * coeff;
A(nodenum, minum) = (alpha - beta) * coeff;
A(nodenum, mjnum) = (gamma) * coeff;
A(nodenum, mknum) = (-1) * coeff;
end

% Is this node simply up-bounded?
elseif ( i == heights(j) )
% CASE U
coeff = 1 / (1 - alpha - beta);
A(nodenum, nodenum) = (- 2*alpha - 2*gamma + 2) * coeff;
A(nodenum, minum) = (alpha - beta) * coeff;
A(nodenum, pjnum) = (gamma) * coeff;
A(nodenum, mjnum) = (gamma) * coeff;
A(nodenum, mknum) (-1) * coeff;

% Is this node simply down-bounded?
elseif (i ==1)
% CASE D
coeff = 1;
A(nodenum, nodenum) = (- 4*alpha - 2*gamma + 2) * coeff;
A(nodenum, pinum) = (4xalpha) * coeff;
A(nodenum, pjnum) = (gamma) * coeff;
A(nodenum, mjnum) = (gamma) * coeff;
A(nodenum, mknum) (-1) * coeff;

% Is this node not bounded at all?
else
% CASE N
coeff = 1;
A(nodenum, nodenum) = (- 2*alpha - 2*gamma + 2) * coeff;
A(nodenum, pinum) = (alpha + beta) * coeff;

A(nodenum, minum) = (alpha - beta) * coeff;
A(nodenum, pjnum) = (gamma) * coeff;
A(nodenum, mjnum) = (gamma) * coeff;

A(nodenum, mknum) (-1) * coeff;

end

% Also copy this node to the last half of the vector (k and k-1)
A(mknum, nodenum) = 1;
end
end

% Set plot colour and size
figure
colormap(gray) ;
set(gca, ’FontSize’, 20);
switch geometry
case 1
set(gcf, ’OuterPosition’, [440, 300, 550, 250]);
case 2
set(gcf, ’OuterPosition’, [440, 300, 550, 400]);
case 3
set(gcf, ’OuterPosition’, [440, 300, 400, 500]);
case 4
set(gcf, ’OuterPosition’, [440, 300, 400, 500]);



case 5
set(gcf, ’OuterPosition’, [440, 300, 550, 250]);
case 6
set(gcf, ’OuterPosition’, [440, 300, 550, 350]);
end

% Perform the iterations
for it = 1l:frameskip:iter

% Set source values and perform a step
for skipno = 0O:frameskip-1
% Set source values
t = (it+skipno)*dt;
switch signaltype
case 1
sourceval (it+skipno) = sin(2*pi* sourcefreq *t);
case 2
x2 = (2*sqrt(3)*sourcefreq*t - 3*sqrt(3))°2;
sourceval (it+skipno) = (1 - x2) * exp(-0.5%x2);
end
p(1:heights(1)) = sourceval(it+skipno);

% Store the pressure at a point in the system for later analysis
p_mic(it+skipno) = p(1 + nodeheight*micj + mici);

% Perform a step
p = A*p;
end

% Put the pressures into a two-dimensional matrix for display
pimg = zeros(nodeheight, nodelength);
for j = l:nodelength
colstart = 1 + (j-1) * nodeheight;
colend = j * nodeheight;
pimg(:, j) = p(colstart:colend);
pimg(heights(j)+1 : nodeheight, j) = -1.5;
end

% A hack to lock the colour of zero
pimg(end, 1) = 1.5;

% Use square root of pressures for plot clarity (can be commented out)
pimg = abs(pimg.~(1/2)) .* sign(pimg);

% Plot the state of the system
imagesc((0:nodelength-1)*dz, (0:nodeheight-1)*dr, pimg);

axis xy

axis image

xlabel(’$z$ [m]’, ’Interpreter’, ’latex’);
ylabel(’$r$ [m]’, ’Interpreter’, ’latex’);
getframe;

end

10



