
Last Planner

TDT4290 Customer Driven Project

Group 2

by

Atiyeh Seifvand
Kishore Kosuri

Eirik D. Haukedal
Aleksander L. Waage
Tobias Laupsa Nilsen

Christian Skar
Ole Kristian Ekseth

Abstract

i

Contents

Abstracti I PlanningRequirements 1

1 Project Directive 1
1.0.1 Chapter Overview . 1

1.1 Project Purpose . 1
1.2 Project Mandate . 2

1.2.1 Project name . 2
1.2.2 Project sponsor . 2
1.2.3 Stakeholders . 2
1.2.4 Client: Iterate . 2
1.2.5 Project Background . 2
1.2.6 Project Goal . 4
1.2.7 Similar Products . 5
1.2.8 External Conditions . 5
1.2.9 Duration . 5

2 Planning 7
2.1 Project Plan . 7
2.2 Team Organization . 7

2.2.1 Templates and Standards . 7
2.3 Risk Management . 7
2.4 Quality Assurance . 7

3 Preliminary Studies 8
3.1 First Impressions . 8
3.2 Scrum . 8
3.3 Study of Technologies and Software . 8

3.3.1 Model - View - Controller . 8
3.3.2 Python . 8
3.3.3 Django Framework . 8

3.4 Code Conventions . 8

4 Requirements 9
4.1 Product backlog . 9
4.2 Non-functional Requirements . 9
4.3 Use Cases . 9
4.4 Test Plan . 9

II Sprints 10

5 Sprint 1 10
5.1 Spring Backlog . 10
5.2 Implementation . 10
5.3 Sprint Evaluation . 10

ii

6 Sprint 2 11
6.1 Spring Backlog . 11
6.2 Implementation . 11
6.3 Testing . 11
6.4 Burndown Chart . 11
6.5 Client Feedback . 11
6.6 Sprint Evaluation . 11

7 Sprint 3 12
7.1 Spring Backlog . 12
7.2 Implementation . 12
7.3 Sprint Testing . 12
7.4 Testing . 12
7.5 Burndown Chart . 12
7.6 Client Feedback . 12
7.7 Sprint Evaluation . 12

8 Sprint 4 13
8.1 Spring Backlog . 13
8.2 Implementation . 13
8.3 Sprint Testing . 13
8.4 Testing . 13
8.5 Burndown Chart . 13
8.6 Client Feedback . 13
8.7 Sprint Evaluation . 13

9 Sprint 5 14
9.1 Spring Backlog . 14
9.2 Implementation . 14
9.3 Sprint Testing . 14
9.4 Testing . 14
9.5 Client Feedback . 14
9.6 Sprint Evaluation . 14

III Evaluation 15

10 Overall System Architecture 15
10.1 Overall Architecture . 15
10.2 Further Development . 15
10.3 Limitations . 15

11 Project Evaluation 15
11.1 Using Scrum . 15
11.2 Group Dynamics . 15
11.3 Learning Python. ? . 15
11.4 Risks . 15
11.5 Time Estimation . 15

12 Future Work 16

iii

13 Acknowledgement 17
./References/References18

List of Figures

1 Planning process of Last Planner . 3
2 Look ahead process involved in Last Planner . 3
3 Pull process of Last Planner . 4
4 Pull process of Last Planner . 4
5 CCSR Process Weekly Report . 5
6 CCSR Reasons . 5

iv

Part I

PlanningRequirements

1 Project Directive

This section discusses about the administrative plans of the project. This includes the results of the
planning phase: project mandate, project plans and various templates, tools and routines involved with
the project.

1.0.1 Chapter Overview

The following sections can be found in this chapter:

1. Project mandate: This presents details about the customer and project.

2. Project organization: This states about our team organization and distribution of tasks and re-
sponsibilities.

3. Project plan: This part discusses on overall plan for the project, The choices we made for develop-
ment and various pahses involved in the development process.

4. Templates and standards: This section describes about the various templates used while working
with the project.

1.1 Project Purpose

The purpose of this project is to develop and deliver the Last Planner (planning the work at construction
sites) application for the Client "Iterate and Belief". The task of this report is to sum up the stages of
development, creating the application, whom this report in addition describes.

1

1.2 Project Mandate

1.2.1 Project name

The name of the project is ”Last Planner”.

1.2.2 Project sponsor

The project sponsor is Iterate AS and Belief AS, one of Norway’s leading consultancy companies.

1.2.3 Stakeholders

Representatives from Iterate AS and Belief AS:

1. Simen Fure Jørgensen

2. Lars Gullaksen

Group 2 in the course TDT4290 Customer-driven project:

1. Atiyeh Seifvand

2. Kishore Kosuri

3. Eirik D. Haukedal

4. Aleksander L. Waage

5. Tobias Laupsa Nilsen

6. Christian Skar

7. Ole Kristian Ekseth

Representatives from The Department of Computer and Information Science/Norwegian University of
Science and Technology:

1. Gustav Aagesen

2. Ole Andreas Alsos

1.2.4 Client: Iterate

The client, named Iterate, is an international firm which provides software solutions for various businesses
and organizations [1]. The main focus of iterate company is to find the best possible software solution
fitting to needs of the customers. This is mainly achieved by becoming acquainted with the domain in
which company is working on. The Lean construction is one such project in that direction.

1.2.5 Project Background

The consultancies Iterate and Belief are working together for developing software products for building
industry. The building projects are getting benefited by following a method known as Last Planner (i.e.
This is a framework for planning the building activities.)[2]. Presently, the Last Planner method is not
fully developed. It is still in experimental stage. Iterate and Belief are exploring the possibilities to
apply it to practical scenarios of construction thus increasing the productivity and saving lot of needless
expenditures on waiting for activities to be done in the construction site.

2

./Images/PlanningProcess.jpg

Figure 1: Planning process of Last Planner

Figure 2: Look ahead process involved in Last Planner

1.2.5.1 Last Planner The Last Planner system was developed by Ballard[3] . The framework was
initially developed for improving the quality management and productivity in construction industry. The
processes involved in the construction process are to schedule tasks, make ready plans and working on the
backlogs and finally weekly work plans and its execution. The following figure 1 illustrates the processes
involved in the planning system.

Last Planner research focuses on improving the quality of assignments in weekly work plans (Koch
Refinery Mid-Plants Project, 1993-45). The research process of last planner continued by adding a look
ahead process to shape and control work flow (PARC, 19956 ; DMOS-6, 19967). This was extended
further from construction to design (Nokia 8 and Hewlett-Packard9 , 1996). The look ahead process is
way of assimilating the tasks for the next period for instance, 3-12 weeks. The weeks are decided upon
the project characteristics and requirements such as materials, labor, and equipment etc. The figure 2
illustrates the look ahead process showing work flow from right to left. The activities for 6 weeks are
looked ahead of its execution. Then they move into workable backlog, which means that all the constraints
have been fulfilled and ready for execution. In other words, The Last planner pull system includes what
can we do and what we should do in the planning process such that it Will produce the desired results.
The figure 3 illustrates the pull mechanism involved in the last planner.

3

Figure 3: Pull process of Last Planner

Figure 4: Pull process of Last Planner

The last planner provides various possibilities to find the PPC (’percent plan complete’; i.e., percentage
of assignments completed) , weekly progress The following are the graphs generated from CCSR project
by implementing last planner process. The CCSR Project was to build laboratory for Stanford University
for which the general contractor was Linbeck Construction.

1.2.6 Project Goal

(The application should provide features for planning and reporting the activities.support tasks like
planning and reporting, but must be easy to use. Usability is an important aspect for this application.
Based on findings in the early stages of the project, the students will further develop an existing software

4

Figure 5: CCSR Process Weekly Report

Figure 6: CCSR Reasons

prototype.). . . . To be done

1.2.7 Similar Products

Presently, the activities at the construction sites are manually maintained by recording the activities on
paper. It becomes difficult for Foreman to arrange and attend the meetings with all the workers when
working in the construction sites. It is rather less efficient way of recording and maintaing the activities
as most of the time is wasted in waiting for others.The commonly followed procedure is Sticky notes or
Papers on wall.

1.2.8 External Conditions

People and Companies The client: A representative from a group should regularly (i.e. Weekly or twice
in a week)contact the client via email or any video conference. The meetings should focus upon updating
the status of the project and taking inputs and requirements needed for the project. The supervisors:
The team should meet the supervisors weekly and update the status of the report and take suggestions
if needed. The group: See section xxxxx for details about the roles of the team members

Computers : The team members will use their personal laptops for the development. The code will
be stored in the already existing GIT repository provided by the client. Each team member will use their
personal laptop for the project. The final product will be used in the construction field. The application
can be used either weekly or daily (depending upon the users who are using it)to monitor the activities
at the construction site.

1.2.9 Duration

The work load for each member is expected to be 312 working hours. In our case, we have 8 members in
our team this constitutes 2496 working hours.

5

• Project start: 31st of August, 2010.

• Project end and Final presentation: 25th of November, 2010.

6

2 Planning

2.1 Project Plan

2.2 Team Organization

2.2.1 Templates and Standards

2.3 Risk Management

2.4 Quality Assurance

7

2.5 Prelimenary Studies

The aim of the preliminary studies is to give an overview of the information needed before the development
of the project starts. The following elements are covered by this preliminary study:

Limitations: The observed limitations the frame of this project, in a general term, sets.

Scrum: The methodology of the agile project development used.

Study of technologies and software: Analyzing the tools, and the constraints they imposes.

2.5.1 Limitations

As a software to be developed for a comercial firm, there are certain limitations set. This, in order to
avoid work who is outside the scope of the project. Those limitations are:

Responstime: Complexity of queries to the database system must be less than 0.1 seconds.

Browsers: Will not support backward compatibility for browsers who is not updated with the newst
release. (Exception is for Micosoft Ecplorer, whom the web page will be working from 7 and newer).

Handheld devices: HAndheld devices with a touch screen will not be specifically supported.

2.5.2 Scrum

Scrum is the methodology of the agile project development used. Intitially, scrum was proposed as the
prefered methodoly by the customer, and, during the intial stages of this project, verified as the prefered
methodology in order to reach the goals, set in the guidlines for this project.

Why is scrum the prefered methodology? The main focus is this project is usability. Does usability
corresponds to a developmen cycle, specified by the scrum Methodology? – The scrum methodology
focuses on short development cycles, giving workable program for every sprint, making the road open for
a user-feed-back-responed track of development, implying that, ref figure above, every sprint adds some
functionality to the system.

Daily Scrum Gaing understanding of the other team members work, and the motivating effect about
making commitments to tasks, is, by the group, regarded as a key factor in a project development.
Therefore, a daily scrum meeting isto be held. The tree questions given to each team member is: 1.
What did you do yesterd, 2. What will you do today?, 3. Are there any impediments in your way?.

Scrum Review Meeting At the end of each sprint, a presentation will be given to the customer by
Skype, togheter with the resulting code, uploaded to their test facility.

2.5.3 Study of technologies and software

Analyzing the tools, and the constraints they imposes, opens the horizons, and enhances the under-
standing. Sleceting the best mathing tools for the task, reduces the risks of uncertainty, increases the
productivity and opens a path thorugh the uncertainty.

Model View Controller In the limit of requirements for the system, specified by the client, was the
specification of using the pattern of a “Model View Controller”(MVC) principle. The logic behind the
MVC principle is to layer the code, and thereby enbale modifications on one layer, without the need of
cascading changes in the other parts of the code. (Ref http://martinfowler.com/eaaDev/uiArchs.html).

The isolation of the data, as described above, enables:

Model: Storage keeping of data, in order to render information in the view.

View: Modifications of the user interface (i.e. how the data is displayed), without a change in the
functionality, or the structure of the model used, itself.

8

Controller: Modifications of the functionality (i.e. the speed of execution), without a change in the
user interface, or the structure of the model used, itself.

Making a strong seperation between the model and the presentation (view and controller), decreases
the complexity, whom this model causes, enables rapid changes in code, due to the seperation caused
by the layers. Using the MVC principle, a well known, de facto, standard, eases the time-to-understand
curve for future developers, reducing the cost for reusing the code for future applications.

Python The framework given to the team was written in Python, a programming language. This
section includes a discussion around why the team concluded that the language would solve the task well.

Curve of learning Due to Pythons semantic structure, the curve of learning is higher, compared to
other languages, like PHP. This potential upside might, not neccassary, be a good thing, due to its
potential of creating excessive maintanenace costs in the future. Thereby, in order to avoid this pithole,
documentation would need some high light during the process of working.

The history has it that Python is not a Web language, compared, for instance, to PHP. In recent years,
this has changed, thanks to the introduction of framworks, removing the hinders, opening the road, and
thereby the ability creating complex web pages with the language Python.

The risk of an open source language languish Python is an open source language. Most open source
languages has a tendency of languishing. Due to the widespread usae of the language, among developers
on the web, the tendency is that it will last for some years to come. Thereby, the team evaluates the risk
in the language python to languish as negligeble.

Library, the availability of tools Due to the widespread usage of the language, libararies, like load
testing tools and web framworks, has been developed, with the implication that a community, giving
repons the question arising, exists.

Django Framwork As for Python, the Django Framwork was chosen by the customer as the content
management system (CMS). In order to verify that Django filled the needs whom the requirements of
the project builds upon, a review was made. This section includes an a discussion about why the Django
environment fulfills the need of the tasks set during this project.

MVC support in the Django environment Django imposes the MVC principle on the programmer, or
rather MTV framevord, as defined in (ref http://docs.djangoproject.com/en/dev/faq/general/, thereby
preventing the programmer from the pitfalls, whom normally delays a software development project. The
implementation of the MVC principle, may be defined by the following stages :

Model: The data, whom the model represents, is defined in the “models.py” file. This is done by using
the Django ORM models (FIXME: Whats this??).

Template: A set of HTML templates. Those templates are based on the CSS description language. As
the defenition in the section describing the MVC princple above states, only lighweight processing-
and decision making is legal at this stage. The link between the view and the controller (below), is
defined in the “urls.py” file, mapping the URLs to the view function.

View: Describes the presentation of the data for the user, but not how it is presented. Insted, it view
describes wich data is presented. Therby, the view is a python callback function for a particular
URL. Also defined as the “view function”, is the stage in responsibility of the processing, making
use of the models, and methods in the models.

In addidtion, the Django framwork provides a large and active community, includes an automatically
build admin and thorough documentation.

The django framwork supports the model view controller ...
Version Control Working on multiple files creates the need for a file merging- and conflict handling

tool. The git tool was the chosen tool from the customers point of view, but in order to verify that it

9

as well fulfilled the need of this project, a discussion was made. The conclusion, comparing the svn and
the git tools, ref http://www.looble.com/git-vs-svn-which-is-better/, of the subsections below, were that
software called Git fits the need of the project, and therefore became the version control system in use.

Looking first upon the alternative system, the SVN system, it is described as a system with one central
repository, thereby creating the need of connecting to the server in order to commit their changes.

Compered to SVN, git, ref http://git-scm.com/about, is a distributed system, implying that every
group member has a local copy of the repository, using the server as a synchronization tool.

Git was verfied as the best tool to use, due to the factors listed below:

Backup: The delay of getting a backup, if the system crashes, is avoided by keeping the same backup of
the entire repository on several machines. Therby, the status of the server will not cause uncertainty
during the development of the project.

Brancing and merging: The support Git gives of rapid branching and merging, enables multiple users
working on the same files.

Offline working: The opportunity of working offline, without loosing the advantages of the features of
having a version control tool, is provided by Git.

Text editors The text editor for the report writing chosen, was latex.
Document compiling As a methodology for producing, editing and compiling the documentation, the

make utiliy of linux were chosen.

2.5.4 Naming conventions

In order to follow hte standards, the naming conventions used by the code are those specified for the
phyton language, ref http://www.python.org/dev/peps/pep-0008/.

10

3 Requirements

3.1 Product backlog

3.2 Non-functional Requirements

3.3 Use Cases

3.4 Test Plan

11

Part II

Sprints

4 Sprint 1

4.1 Spring Backlog

4.2 Implementation

4.3 Sprint Evaluation

12

5 Sprint 2

5.1 Spring Backlog

5.2 Implementation

5.3 Testing

5.4 Burndown Chart

5.5 Client Feedback

5.6 Sprint Evaluation

13

6 Sprint 3

6.1 Spring Backlog

6.2 Implementation

6.3 Sprint Testing

6.4 Testing

6.5 Burndown Chart

6.6 Client Feedback

6.7 Sprint Evaluation

14

7 Sprint 4

7.1 Spring Backlog

7.2 Implementation

7.3 Sprint Testing

7.4 Testing

7.5 Burndown Chart

7.6 Client Feedback

7.7 Sprint Evaluation

15

8 Sprint 5

8.1 Spring Backlog

8.2 Implementation

8.3 Sprint Testing

8.4 Testing

8.5 Client Feedback

8.6 Sprint Evaluation

16

Part III

Evaluation

9 Overall System Architecture

9.1 Overall Architecture

9.2 Further Development

9.3 Limitations

10 Project Evaluation

10.1 Using Scrum

10.2 Group Dynamics

10.3 Learning Python. ?

10.4 Risks

10.5 Time Estimation

17

11 Future Work

18

12 Acknowledgement

19

References

[1] https://www.iterate.no/no

[2] THE LAST PLANNER SYSTEM OF PRODUCTION CONTROL by HERMAN GLENN BAL-
LARD, May 2000

[3] Ballard, Glenn and Koskela, Lauri (1998). ŞOn the Agenda for Design Management Research.Ť
Proceedings of the 6th Annual Conference of the International Group for Lean Construction, Guaruja
Beach, Brazil, August, 1998.

20

