IT3708: Project 3

Mikkel Antonsen and Christian Jonassen ${\it March~21,~2013}$

Contents

1	Requirements for compiling running the application	3
2	System description	3
3	Verification of the ability to evolve catching agents	3
4	Verification of the ability to evolve catching and avoiding agents	3
5	Significant modifications to the tracker scenario	3
6	Attempted modifications to the topology	4
7	Analysis of an evolved successful CTRNN	4
8	Appendix: Class diagram (large version)	4

1 Requirements for compiling running the application

The project uses CMake, clang++, freeglut3, and the Boost libraries. On Debian systems, it should be sufficient to type

sudo apt-get install cmake freeglut3 freeglut3-dev libboost-dev-all freeglut3 freeglut-3-dev

Then run ./init-cmake. That is also the script one would have to edit in order to use a different C++ compiler than clang++.

2 System description

In general, the genotype is represented by a **fixed-length** sequence of bit patterns. Each bit pattern is of a certain length L, encoding a number between 0 and 1. This number is computed by dividing the number of high bits by L to get the percentage p. The value v_k for the given parameter K is then given by

$$v_k = K_l + (K_u - K_l)p \tag{1}$$

where K_u and K_l are the upper and lower bounds of the parameter, respectively. The genotype is diagrammed below:

$$\overbrace{b_1b_2 \dots b_k}^{\text{\% of param. 2}} \underbrace{b_{k+1}b_{k+2} \dots b_{2k}}_{b_{k+1}} \underbrace{b_{k+1}b$$

In this project we use L=8. The class diagram for the system is in the appendix.

- 3 Verification of the ability to evolve catching agents
- 4 Verification of the ability to evolve catching and avoiding agents

High-fitness agents typically do

5 Significant modifications to the tracker scenario

The following modifications are made:

• Each block has a constant speed of -1 in the x direction (in addition to its normal speed in the y direction).

6 Attempted modifications to the topology

The following modifications are made:

•

- 7 Analysis of an evolved successful CTRNN
- 8 Appendix: Class diagram (large version)

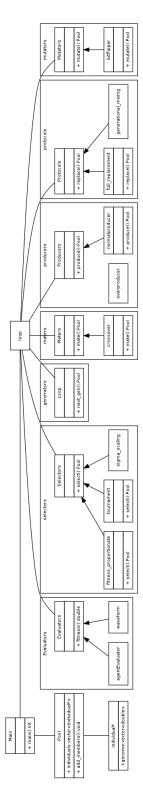


Figure 1: Class diagram