
1

Implementing SLAM and D∗lite in a simulated
e-puck robot

Mikkel Antonsen

Abstract—I tried to implement SLAM and D∗lite on a two wheeled differential drive robot. D∗lite works perfectly but
SLAM does not produce a map that is good enough to run D∗lite on.

Index Terms—Problems, issues, IR is problematic,

F

1 INTRODUCTION

IN mobile robotics there are two important
problems that need to be solved, localization

and mapping. Before we can have autonomous
vehicles in the streets and in our homes, they
need to be able to correctly estimate where they
are and what their environment looks like, in
order to avoid damaging property or hurting
people.

The problem called Simultaneous localiza-
tion and mapping (SLAM) is to estimate the
map and the location at the same time. Given
a sensor and an accurate location estimate it
is easy to build a map of the environment.
Similarly it is easy to find a robots pose given
sensor readings and an unbiased map. Doing
both at the same time, on the other hand, is
hard. Some effective and scalable solutions to
this problem does exist.

In the rest of this paper I am going to
discuss path planning with D∗ lite and my
attempt at implementing grid mapping with
Rao-Blackwellized particle filters[4], which is
based on fastSLAM[3], and why I failed.

1.1 Section
1.1.1 SLAM
The SLAM problem can be succinctly summa-
rized as

p(x1:t,m | z1:t, u1:t−1) (1)

or stated in words as the probability of a
given map and trajectory given sensor readings

and odometry. Our goal will be estimating
this joint posterior. One can use the following
factorization

p(x1:t,m | z1:t, u1:t−1) = p(x1:t | z1:t, u1:t−1)p(m | x1:t, z1:t)
(2)

as suggested by [1]. The posterior p(x1:t |
z1:t, u1:t−1) can be efficiently approximated with
a particle filter. Each particle in will represent
a belief about where the robot is, given all the
evidence we have gathered from the odometry
and sensors. Calculating the map probability
p(m | x1:t, z1:t) is done independently by each
particle by employing ”mapping with known
poses”. Each particle uses its estimated x and
the sensor reading it has up until time t to make
the map.

To maintain an estimate of the posterior
p(x1:t | z1:t, u1:t−1) at time t the particle filter
will sample particles from time t-1, using a
probabilistic odometry model. Each particle is
then given a new weight given

w
(t)
t =

p(x
(i)
1:t | x1:t, u1:t−1)

π(x
(i)
1:t | x1:t, u1:t−1)

(3)

such that each particle maintains its relative
importance but all the importance weights sum
to 1. The particles are resampled proportionally
to their given importance so that we end up
with n equally weighted particles. The resam-
pling is done to keep us from ending up with
one very heavy weighted particle and instead
have many smaller particles covering our prob-
ability distribution. From [2] we get that the

2

weight of particle i at time t can be computed
by

w
(i)
t ∝

p(zt | m(i)
t−1, x

(i)
t)p(x

(i)
t | x

(i)
t−1, ut−1

π(xt | x(i)1:t, z1:t, u1:t−1)
· w(i)

t−1

(4)
This is a fairly ‘naive’ version of the weight-

ing step and more advanced ones are men-
tioned in the articles previously cited. Even
though not optimal, it should work and so I
tried to implement it to see if it worked at all.
The problem I quickly faced was that the term
p(zt | m(i)

t−1, x
(i)
t). This probability is given by a

gaussian where the expected value is given by
the euclidean distance between the position xt
and the what ever obstacle is present on the
map at mt−1 in the direction of the sensor (0
if no obstacle is within sensor range). I did
not know what the standard deviation would
be, so I used 1 cm. When navigating around
straight walls the robot is exceedingly unlikely
to sense an obstacle with more than one sen-
sor at the time (because the limited range of
the sensors makes the distance from the front
sensors to the wall ¿¿ 4 cm). As a result the
probability will be equal to 1 for seven of the
sensor at any given time, this obviously carries
very little information and does not help the
robot orient itself very much.

2 IMPLEMENTATION

2.1 Motion model
I decided to use a velocity based motion model
using the following equation from class (with
the slight modification of using 2 · l instead l)

ξ̇I =

 r cos θ
2

r cos θ
2

r sin θ
2

r sin θ
2

r
2·l − r

2·l

 · [φ̇1

φ̇2

]
(5)

When ever the robot moves each particle is
propagated according to this model given a

set of motor inputs
[
φ̇1

φ̇2

]
. Obviously, with this

model all the particles will be propagated to
the exact same place. Random gaussian noise is
added to ξ̇ at each time step to spread the par-
ticles out in the state space. We have discussed
in class whether or not a gaussian distribution

is the best for representing the actuator noise.
The problem with this representation is that the
target distribution is not necessarily the shape
of a gaussian and might be multi modal. These
deficiencies can be mediated by using a two
phase sampling with scan-matching. I will give
a very brief explanation of this process in the
following section.

2.2 Scan-matching

I did not get around to implementing scan-
matching, as it requires a working version of
SLAM. I am going to mentioned what it is for
completeness’ sake. If the target distribution is
not gaussian or is multi modal, the particle fil-
ter might end up with all the particles centered
around one of the modes. To combat this, you
can use a two phase sampling.

By first performing scan-matching you can
get particles closer to all modes of the distribu-
tion making all modes more likely to be repre-
sented when the regular importance sampling
is done afterwards [4].

The objective of scan-matching is updating
the position of each particle to the xt that
maximizes p(zt | xt,mt−1)p(xt | ut−1, x

∗
t−1).

Stated in words, maximizing the likelihood
of the current pose relative to the estimated
map and estimated pose at the previous time
step. This has shown to reduce the error asso-
ciated with multimodal distributions [4].

3 REPRESENTING THE ENVIRONMENT

3.1 The map

The environment is represented by a proba-
bilistic grid map as described in [5]. Where
the state of a given grid cell being occupied
is given by a binary variable, where 1 denotes
occupied and 0 denotes free. The state a cell is
in is given by a probabilistic function.

The cell size has to be chosen. In literature
the recommended size for each cell is 15x15
cm, which is obviously not a good choice for a
robot with a sensor range of 4 cm and diameter
of 7.4 cm. I decided to use a grid size of 1x1
cm which is a nice compromise between the
ratio of cell size and sensor range but still

3

leaving the map small enough to not be too
computationally taxing.

We assume that each cell mi of the map is
conditionally independent on the other cells.
Everything we know about this world tells us
that if one cell is occupied, there’s a higher
probability that adjacent tiles are occupied. As-
suming independence, how ever, we can use
the following factorization when calculating
the probability of a map:

p(m | x1:t, z1:t) =
∏
i

p(mi | x1:t, z1:t) (6)

Further more we use log-odds for represen-
tation of occupancy. This has the benefit of
both being more accurate for small probability
values and makes the algorithm run faster as
we can do additions instead of multiplications.
To get the log-odds that a cell mi is free we use
the following formula

lt,i = log
p(mi | x1:t, z1:t)

1− p(mi | x1:t, z1:t)
(7)

To get the probability back to the former
form we use the following

p(mi | z1:t, x1:t) = 1− 1

1 + exp lt,i
(8)

3.2 Updating the map
Each particle is associated with its own map.
Every time new sensor readings are available
the map is updated with the new evidence. For
all the tiles mi in our sensors range (which is
4 cm) we update the log-odds ratio with the
following equation

lt,i = lt−1,i + inversesensormodel(mi, xt, zt)− l0
(9)

where l0 is the prior belief of the state of the
cell.

3.3 Inverse range sensor model
When we update our belief about the map we
need an inverse sensor model. This model tells
us the probability p(mi | zt, xt) or in words,
the probability of mi being occupied given

the current position and sensor readings. Each
sensor reading is a ray moving radially out
from the periphery of the robot. It is easy to
calculate what tiles the ray crosses using the
angle of the sensor and the range. If the reading
indicates that there’s nothing within 4 cm, the
prior for occupancy is returned. If the reading
indicate that something is within 4 cm, the tile
with the indicated reading is given the log-
odds for being occupied. The others are given
the log-odds for being free.

So what should the log-odds returned be for
an occupied and freec cell? In my implementa-
tion I used the probability 1 for occupied if the
cell is occupied and 0 for being occupied if it
was unoccupied. With less values the robot was
not able to gather enough evidence for each tile
as it moved along. These values are not optimal
and I’m not quite sure how to find the ’right’
ones.

One thing to note is that if you lower the
certainty of the probabilities returned by the
inverse sensor model, you should probably
make sure that you get more sensor-readings
per tile mi. In literature this is solved by having
a laser sensor that gives you a 360 degrees read
out at every time step. With the e-puck you
only get 8 rays (covering approximately 1 de-
gree each) at each time step. This shortcoming
could be mitigated by rotating the robot 180 or
360 degrees from time to time to get several
readings from multiple sensors on each tile.
This would, how ever, make robot extremely
slow.

3.4 Using the resulting map
It is impossible to use the map that is produced
to navigate the robot. The main issue is that
there will be a lot of holes in the walls on the
map because of insufficient sensor coverage.
The path planning algorithm will use these
holes to find ‘shortcuts’ through the walls, that
are obviously not there.

Some ‘engineering’ solutions could be ap-
plied to solve this problem. One could find
obstacles that are less than the robots diame-
ter apart and draw a wall between them, for
example. This is not a good solution because
we are injecting the belief that cells are not in-
dependent in our system, which we previously

4

assumed. While this is not necessarily wrong, it
is not very elequent. The most problematic is-
sue with this solution is that the robot does not
have a view forwards (because of the lacking
sensors), so it is impossible to ‘repair’ walls in
the map before the robot has already crashed
into it.

4 MOVING THE ROBOT
At each time step the robot gives the D∗lite
algorithm its position and gets a destination
in return. Moving the robot from x to x’ in
a smooth manner was harder than I expected
so I decided in the end to move and rotate
separately. To get the control input for the
wheels I used the following formula

Vwheel =
φC

2π · T · rwheel
(10)

where T is the time step, φ is the desired
turning angle (actual heading - desired head-
ing), C is the circumference of the robot and

rwheel is the radius of the wheel. The φ̇’s in
[
φ̇1

φ̇2

]
were then set to Vwheel but with different signs.
In practice this did not work quite as desired
because as the robot got closer to its desired
angle the desired turning angle φ approaches
0, making the turning rate very low. The angle
would also never be perfect, which caused the
robot to frequently stop to rotate more.

To solve this I use a two phase controller.
In the first phase the robot turns until its ar-
bitrarily close to the desired angle and then a
proportional controller takes over. The propor-
tional controller uses 60% of full motor input to
move forwards and 40% to correct the heading.

If the robot receives a new coordinate that is
on the line made by the robot and the previous
coordinate, the proportional takes over. If the
new coordinate forms an arbitrarily big angle (I
used 1 degree) on the line, the robot turns until
its angle is less than 1 degree away from the
desired angle and the proportional controller
takes over again.

5 D∗lite
I will not write too much about D∗lite as it has
been thoroughly discussed in class, in previ-
ous assignments and as its implementation is

straight forward since the pseudo code given
in the D∗lite paper is a few semi-colons away
from compiling.

The main challenge with implementing D∗

was making the algorithm self-contained in one
class (so its reusable and does not clutter up the
logic in the rest of the robot) and still being
able to change the cost matrix at the right time
from the outside of the class. I did this by
having a method in the class which is called
‘changeEdge’, which alters the connectivity of
the graph. It also does some book keeping so
that in the main loop of D∗ it can look at all
the edges that were altered since last iteration.

6 CONCLUSION

I was unable to get SLAM working properly
in such a manner that I would be able to
navigate the robot using the map produced by
the algorithm. This was to a large extent due
to inefficient sensors and also a lack of knowl-
edge on my part on how to fully utilize the
sensors. With this in mind I will be replacing
the IR sensors with ultra sonic sensors when
attempting a real world application of SLAM.
I will also spend the first phase of the project
gathering statistics about the measurements of
the sensors (such as mean and standard devi-
ation of measurements for objects at different
distances).

REFERENCES

[1] Arnaud Doucet, Nando de Freitas, Kevin Murphy, and
Stuart Russell. Rao-blackwellised particle filtering for
dynamic bayesian networks, 2000.

[2] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Bur-
gard. Improved Techniques for Grid Mapping With Rao-
Blackwellized Particle Filters. IEEE Transactions on Robotics,
23(1):34–46, February 2007.

[3] Michael Montemerlo, Sebastian Thrun, D Koller, and
B Wegbreit. FastSLAM: A factored solution to the simul-
taneous localization and mapping problem. AAAI/IAAI,
2002.

[4] Cyrill Stachniss, Giorgio Grisetti, Wolfram Burgard, and
Nicholas Roy. Analyzing gaussian proposal distributions
for mapping with rao-blackwellized particle filters. 2007
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3485–3490, October 2007.

[5] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Proba-
bilistic Robotics (Intelligent Robotics and Autonomous Agents).
The MIT Press, 2005.

