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Summary 
 
This report serves as a guideline for designing, validating and verifying HDL-based safety functions. 
The report motivates the selected methods and motivates their conformity with specified safety 
requirements. The report primary addresses conformity validation against IEC 61508 restricted to the 
boundaries of custom defined circuits. 
 
The first part of the report provides a brief introduction to the basic principles of custom defined 
integrated circuits designed using HDL, with a specific focus on the difference between an ASIC and a 
FPGA. This brief introduction is followed by a description of the design flow used for such circuits, 
which is a fundamental part of this report. 
 
The next part gives an introduction to functional safety and its basic concepts. In this part, basic means 
and measures for achieving functional safety are described. Topics such as redundancy, applied fault 
model and behaviour at fault are discussed in order to give the reader a background for the principles 
addressed in the report. 
 
The system design part is one of the two major parts of this report and merges the required design flow 
from IEC 61508 standard and the Space product assurance, ASIC/FPGA development, ECSS-Q-60-02 
standard. This forms the basis of this report and hence provides the final argument of functional safety. 
The reader will find all documentation and the interlocking design phases in the design process with 
the corresponding procedures that are required from these standards within the scope of this report. 
 
The next major part describes the process of safety validation and system verification of the resulting 
system produced by the required design process. This part also addresses all relevant requirements 
from the above mentioned standards. Commonly used and recommended methods for validation and 
verification are also described in this part. The part is ended by a flow graph used for showing how 
different analysis methods correlates and in which phase of the design certain methods are most 
suitable. 
 
The report ends with four appendixes where the first appendix gives a very brief introduction of 
reliability theory. The second appendix contains a small VHDL-example of an hypothetic system used 
to describe certain issues in this report. The third appendix contains cross references between this 
report and IEC 61508 and finally the last appendix contains checklists intended to be used to support 
the application of this report in a real design. 
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Introduction 
 
The main target of this project was to develop a guideline for validating HDL-based safety functions 
used in control systems for safety-related applications. The method will primarily concern the 
requirements of the IEC 61508 standard by extraction and reformulation of some requirements. The 
method for conformity assessment was developed concurrently with this report within the same 
project. 
 
The guideline aims to support system designers and system safety assessors in activities primarily 
related to IEC 61508. Although requirements related to the scope of this method are fully addressed, 
this method does not claim to provide sufficient information to enable complete conformity with the 
standard in its full extent. The reader shall have all parts of IEC 61508 available when taking this 
guideline into practice. 
 
There is a large difference between HDL defined functions and software defined functions. The HDL 
description is an alternative way of drawing a circuit diagram (i.e. defines hardware) while software 
defines a sequence to be performed by already existing hardware. On the other hand the HDL is 
developed to be as similar to a common programming language as possible. 
 
Standardization and conventional methods for safety validation give poor or no support for the special 
features and properties of custom defined circuits, thus safety validation of systems containing such a 
technology might be difficult. Most methods used for hardware/software validation are not applicable 
without modifications for HDL. 
 
This report aims to clearly describe which requirements from IEC 61508 should be fulfilled regarding 
safety functions realised with HDL and how these requirements should be interpreted for the special 
features and properties of this technology. The report does also function as a guideline for conformity 
assessment. The report includes an illustrative example of a HDL-based function.  
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2. Scope 
 
The development process and validation methods described in this report concern safety-related 
functions realized with programmable logic or custom defined integrated circuits (IC:s) using 
hardware description language (HDL). In order to perform the safety validation of such a system, the 
methods used have to consider all aspects of custom defined IC:s. 
 
The contents of this report address the aspects of a safety-related control system which consider 
custom defined complex ICs and describe means to validate such a system (function) according to 
relevant safety requirements. These requirements are extracted from common safety standards for 
control systems such as IEC 61508. The result of a validation using the finalized method conforms to 
these standards within the scope of this technical report. Other technologies used in the same system 
(e.g. microprocessors and software) are covered by other validation methods. 
 
The report regards the design process, the allocation of safety requirements, the minimum set of 
documentation required, functional safety requirements and different analysis techniques. An example 
of subjecting some methods on a HDL-function is also included. 
 

I OASIC

External circuitry

LS

S FE

Subsystem n

Subsystem n+1

S FE

EUC

 
Figure 1 Application with an electronic control system. 

 
Consider Figure 1 that illustrates n+1subsystems controlling the EUC. Each subsystem is equipped 
with sensors (S) and final elements (FE) connected to a logic system (LS). This connection is done 
through an input interface (I) and an output interface (O). This report concerns the input and output 
interfaces and a logic system when configured as shown in subsystem n. The EUC, the sensors and the 
final elements are excluded from the scope of this report. Any safety-related data communication 
between subsystems (e.g. communication protocols and safety principles) is also excluded from the 
scope of this report.  
 
Regarding different system levels, the following denotation is used throughout this report: 
-The E/E/PES design level describes how different subsystems are correlated. 
-The subsystem design level describes how one of these subsystems is internally designed. 
-The ASIC design level describes how the ASIC is internally designed. 
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3. Definitions and acronyms  
 
Application Specific Integrated Circuit (ASIC): A full custom or semi custom designed integrated 
monolithic integrated circuit that may be digital, analog or a mixed function for one user. 
Ref. [1], section 3 
 
Architectural Design review: ADR  
Ref. [1], section 3 
 
ASIC/FPGA Control Plan: ACP 
Ref. [1], section 3 
 
ASIC/FPGA Development Plan: ADP  
Ref. [1], section 3 
 
ASIC/FPGA Requirements Specification: ARS  
Ref. [1], section 3 
 
Critical Design Review: CDR  
Ref. [1], section 3 
 
Cell: Specific circuit function including digital and/or analog basic blocks 
Ref. [1], section 3 
 
Cell library: A collection of mutually compatible cells which conforms to a set of common 
constraints and standardized interfaces designed and characterized for a specific technology. 
Ref. [1], section 3 
 
Common cause failure (CCF): Failure, which is the result from one or more events, causing 
coincident failures of two or more separate channels in a multiple channel system, leading to system 
failure. 
Ref. [5], clause 3.6.10 
 
Data Sheet A Data Sheet contains detailed, functional, operational and parametric description of a 
component including block diagram, truth table, pin/signal description, environmental, electrical and 
performance parameters, tolerances, timing information, package description, and others. 
Ref. [1], section 3 
 
Design Validation Plan: DVP 
Ref. [1], section 3 
 
Design Validation Review: DVR 
Ref. [1], section 3 
 
Diagnostic coverage: Fractional decrease in the probability of dangerous hardware failures resulting 
from the operation of the automatic diagnostic tests 
 
Equipment Under Control (EUC) equipment, machinery, apparatus or plant used for manufacturing, 
process, transportation, medical or other activities. 
 
Electrical/Electronic/Programmable Electronic System (E/E/PES): System for control, protection 
or monitoring on one or more E/E/PE devices including all the elements of the system such as power 
supplies, sensors and actuators, input and output devices, and communication devices. 
 
Failure rate (λ): Quantitative estimation of the probability for a part of a system or a component to 
fail in operation within a certain time period (e.g. per hour) 
 



 6

Floorplan: A floorplan is an abstracted, scaled layout drawing of the die, outlining the form, size and 
position of the major functional blocks and the pads including power7ground lines, clock distribution 
and interconnect channels. 
Ref. [1], section 3 
 
Hardware Description Language (HDL): is used to design the, or configure, in-circuit hardware 
(most commonly digital circuits) by the means of a programming language (e.g. HHDL, Verilog). The 
transformation between HDL and the circuit hardware is referred to as synthesis (compare to software 
compilation).  
 
Initial Design Review: IDR 
Ref. [1], section 3 
 
In-System Programmable ISP: Term used to describe programming/reprogramming of devices 
directly on the printed circuit board, from a PC.  
Ref. [20], section 8.5 
 
Mode of operation: Way in which safety-related system is intended to be used, with respect to the 
frequency of demands made upon it, which may be either 

low demand mode: where the frequency of demands for operation made on a safety-
related system is no greater than once per year and no greater than twice the proof-test 
frequency; 
high demand or continuous mode: where the frequency of demands for operation 
made on a safety-related system is greater than once per year and greater than twice the 
proof-check frequency 

Ref. [5], clause 3.5.12 
  
Netlist: A netlist is a formatted list of cells (basic circuits) and their interconnections 
Ref. [1], section 3 
 
Off The Shelf (OTS): Denotes components that is developed and manufactured by a third part relative 
to the design team, intended for use as a part of the design for which the internal functionality might 
not be known. The OTS component is often regarded as a black box component. 
 
NOTE 1 The OTS component is often referred to as an IP-block (IP- Intellectual property) when 
designing using HDL.  
 
Prototype device: A prototype device is a fabricated ASIC or programmed FPGA used to validate the 
new design in respect to functionality, performance, operation limits and compatibility with its system. 
Ref. [1], section 3 
 
RTL: Register Transfer Language 
 
Safe failure fraction (SFF): Fraction of all potential failures that is safe failures. A safe failure does 
not have the potential to put the safety-related system in a hazardous or fail-to-function state. 
 
Safety Integrity: The safety integrity of a safety-related system is the probability of the system to  
satisfactorily perform the required safety functions under all the stated conditions within a stated 
period of time. 
Ref. [5], clause 3.5.2 
 
Safety Integrity Level (SIL): Safety integrity level is a discrete level (one out of a possible four) for 
specifying the safety-integrity requirements of the safety functions to be allocated to the E/E/PE 
safety-related systems, where safety integrity level 4 has the highest level of safety integrity and safety 
integrity level 1 the lowest. 
Ref. [5], clause 3.5.6 
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Safety lifecycle: The safety lifecycle refers to necessary activities involved in the implementation of 
safety-related systems, occurring during a period of time. The safety lifecycle starts at the concept 
phase of a project and finishes when all of the E/EP/PE safety-related systems, other technology 
safety-related systems and external risk reduction facilities are no longer available for use. 
Ref. [5], clause 3.7.1 
 
System on chip (SoC): a chip that holds all of the necessary hardware and electronic circuitry for a 
complete system. SoC includes on-chip memory (RAM and ROM), one or several microprocessors, 
peripheral interfaces, I/O logic control, data converters, and other components that comprise a 
complete computer system 
 
Systematic failure: A systematic failure is a failure related in a deterministic way to a certain cause, 
which can only be eliminated by a modification of the design or of the manufacturing process, 
operational procedures, documentation or other relevant factors. 
Ref. [5], clause 3.6.6 
 
Test pattern A test pattern defines simulation stimuli and its expected responses (considering specific 
constraints to meet test equipment requirements) used to show correct behaviour of a device. 
 
Validation: Confirmation by examination and provision of objective evidence that the particular 
requirements for a specific use are fulfilled. 
Ref. [5], clause 3.8.2 
 
Verification: Confirmation by examination and provision of objective evidence that the requirements 
have been fulfilled 
Ref. [5], clause 3.8.1 
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4. Introduction to HDL Defined Integrated Circuits 
 
With the introduction of standardized Hardware Description Languages (HDL) in the late 1980’es, the 
possibilities for defining Application Specific Integrated Circuit (ASIC) were greatly improved. 
Before, most integrated circuits were defined through configuration of cell primitives (AND-, OR-, 
Inverter-gates etc.). Simulation was mostly done through transistor level simulation and was very 
cumbersome. With the advent of HDL, digital circuits could suddenly be described on a behavioural 
level in a software-like manner, enabling easier simulation and debugging. It was however not until 
programs (synthesis tools) for translating the HDL description to hardware primitives became 
available in the beginning of the 1990’es that the use of HDL for system design, rather than just 
modeling, emerged. This suddenly enabled the designer to model the circuit behaviour and 
functionality, simulate it and translate it to an ASIC or an FPGA (Field Programmable Gate Array) 
that performs custom specialized functions.  
 
The use of HDL transforms the electrical design process from being hardware design with 
components, PCBs and solder, to writing a software model that is treated by other specialized software 
(synthesis, router etc.) transforming the HDL model from pure software into an equivalent electrical 
hardware component. The transformation from HDL to hardware is controlled by the designer through 
software scripts, making the complete design realized through a sequence of software models and 
other software’s interaction with the designer and the electrical design. As transformation progresses, 
the design becomes more and more attached to hardware, even though it still only exists as a software 
model of the intended electrical design. Figure 2 shows the HDL transformation to hardware through 
software interaction. 
 

Software Hardware
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Figure 2: Software to hardware transformation. 

Using HDL for defining customized components has several advantages over designing with standard 
components. First and foremost the designer gains control over the exact functionality of the HDL 
based component; this makes it possible to replace standard components of which only a portion of the 
functionality was utilized. Furthermore, the designer is able to select the exact implementation of 
particular functions that best suits the application, and not only what is on the market at the time. So if 
for instance redundancy for a specific function is required, it is only a matter of copying the HDL, 
whereas that specific function might not even be accessible for replication in a standard component.  
 
HDL defined components make the system design less dependent of future component availabilities. 
In the case of an ASIC, choosing a common advanced technology, often guarantees component supply 
for many years, and thus a stable and robust system design. In the case of FPGA technology, the 
evolution often makes components obsolete in a matter of a few years. However, as HDL is highly 
portable, the HDL design can be remapped to a new FPGA family at an acceptable cost and with 
limited risks. 
 
Development of HDL for ASICs and FPGAs is quite similar: the goal is to model the functionality in a 
way that can be translated to hardware (synthesized). From a synthesis perspective it is only a matter 
of choosing between different libraries with different primitives. The ASIC design consists of building 
the circuit all the way to transistor level and subsequently producing it, whereas the FPGA design 
consists of reprogramming a device. The verification by simulation of an ASIC is very demanding as 
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it cannot just be programmed in an FPGA and tested. The ASIC workflow contains many more 
process steps to make the transformation to hardware and to verify that the transformation in each step 
was correct. Eventually the ASIC needs to be manufactured, this is a process which takes time and is 
quite expensive. 
 

Table 1: Comparision of ASIC and FPGA technology 

FPGA ASIC 
Expensive in low numbers Very expensive in low numbers 
Expensive in high numbers Inexpensive in high numbers 
Reprogrammable Not reprogrammable 
Cold start reprogramming necessary No cold start reprogramming needed 
High power consumption Low power consumption 
Short development time Long development time 
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5. ASIC Design Flow 
 
This chapter presents a description of a general ASIC (Application Specific Integrated Circuit) design 
development flow. The design development flow described here consists of 6 consecutive phases, 
taking the design of an ASIC from the early requirements specification all the way to the verified and 
validated prototypes ready for production. This description will mainly focus on digital design. 
 
The ASIC development presented here, is based on the ESA ASIC/FPGA development specification 
[1], and shares the same development phases. Figure 3 gives an overview of the development flow. 
 

Verification

Review

Verification/
Validation

Test/
Validation

Layout

Prototype
Implementation

Design validation
and Release

Detailed
Design

Architectural
Design

Definition
Phase

Production

Redesign

Requirements

 
Figure 3: ASIC design development flow overview 

The Definition Phase identifies the specific requirements for the ASIC. During this step, the 
architecture of the ASIC is investigated and planned, both on algorithmic and technological level. A 
suitable ASIC technology is identified and chosen. Feasibility study of chosen implementations is 
carried out and documented, justifying that the ASIC will meet the initial requirements. Risks 
assessment is carried out along with the feasibility study. The target of this phase is an ASIC 
Requirements Specification that will be used throughout the rest of the ASIC development.  
 
In the Architectural Design phase the hierarchical design in terms of digital and analog breakdown is 
carried out. Based on the ASIC Requirements Specification the ASIC is designed on architectural level 
implementing the specified functionality and algorithms. Third party blocks (IP, Intellectual Property) 
is selected if needed, and verified before being integrated in the design. Along with the ASIC design 
work, a Verification Plan is established defining how the ASIC design is to be validated. The 
verification could also consist of prototype hardware implementation e.g. in an FPGA. Verification 
scenarios are defined and test simulations, called test-benches, are developed and run with the design 
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or with design subblocks, verifying the design’s correct functionality. Reviews are held to ensure that 
the design fulfills the requirements and that the test-benches sufficiently verify the functionality and 
possible error states. The output from this phase is a design model that can be simulated and where all 
critical blocks have been modeled sufficiently to define their exact implementation. 
 
During the Detailed Design the design model is finalized. For digital design this involves that all 
modules and functions are made synthesizable (RTL, Register Transfer Level) and transformed to 
hardware primitive models (gate level, logical hardware primitives). The translation from RTL to gate 
level consists of synthesis, where the design is mapped to the chosen technology and optimized using 
the timing and electrical specifications in the ASIC Requirements Specification. Post production 
testing preparations are also made during this phase. Throughout the work in this phase the design is 
verified against the output from the Architectural Design phase through simulation or other 
verification methods. From the Detailed Design phase, the output from a digital design is a 
synthesized and verified model (gate netlist) ready for layout, and the output from an analog design is 
an electrical circuit netlist ready for layout. 
 
The Layout phase is the next step in the transformation from RTL to hardware, where the gate netlist, 
consisting of logical hardware primitives is placed and routed; the netlist describes all interconnects 
between the gates, and the layout phase places all the gate instances on the chip area such that the 
interconnects can be routed correctly. Output from this phase is a full layer description of the ASIC 
chip implementation in silicon, including the content of the logical hardware primitives (transistors). 
Interconnect and gate delays are extracted from the layout implementation for timing verification and 
simulation with the design’s test-benches. 
 
The last step in the transformation is the Prototype Implementation, where the chips are manufactured 
in silicon according to the layout layer description. Each layer is transformed into a mask which is 
then used to transfer the layer definitions to the silicon chip into a photo lithographical like process. 
This step is usually carried out by a third party, called the foundry, since it requires a very specialized 
machinery and knowledge. After silicon production, the chips are packaged and are now ready for the 
use in the application. 
 
The Design Validation and Release phase verifies that produced ASIC conforms with the specification 
both functionally, electrically and performance wise. It often includes field prototype testing of the 
ASIC in the application, but could also include characterization of the ASIC operation in various 
critical environments. After this step the ASIC can either go to production, or if failed to redesign. 
 
In the next sections more details will be given about the specific tasks included in a general ASIC 
design development flow as described above. It will also include a brief description of the current 
tools and techniques employed during the ASIC design, and their purpose will be described shortly. 
Since there are several ways to establish an ASIC development flow, the project specific development 
flow is to be defined during the Definition Phase, according to [1]. The flow used here is an example 
of a representative design flow. 
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6. Introduction on Safety Requirements and ASIC design 
 
This section introduces and describes some of the fundamental functional requirements applicable on 
safety-related E/E/PES derived from IEC 61508. This section also addresses how to interpret these 
requirements on the design and design process for an ASIC. 
 
6.1. Introducing discussion 
 
In IEC 61508 all integrated circuits used are generally considered as black-boxes. If an E/E/PES is 
primarily based on one large ASIC/SoC the designer/assessor has to focus on the very detailed internal 
design of the integrated circuit. However, there is no support for that in standards such as IEC 61508. 
The designer/assessor is instead confined to rely upon own interpretations. This sub-section is a brief 
discussion on fundamental safety requirements and provides some motivations on how to apply these 
requirements on an ASIC design. 
 
In IEC 61508, the concept of redundant multi-channeled systems is handled where each channel is 
physically separated from each other. One channel is in most cases a ”stand alone” E/E/PES, often 
including one microprocessor with its sensors and final elements. Each channel has a PFH (Probability 
of Failure per Hour) that depends on the components used. When combining the channels the 
complete PFH for the entire control system (part of SIL requirement) may be obtained. This report 
addresses safety-related systems/functions implemented to some extent in one circuit (ASIC) 
combined with none or few external components, i.e. ”nearly” single channeled systems, using the 
terms of IEC 61508. See [16] for further guidance relating to control systems for machinery. 
 
The SIL (Safety integrity Level) target is determined by a set of requirements related to the safety life 
cycle, described in IEC 61508-1. These requirements consider the complete design and operation of a 
device. The SIL is a measure of risk reduction. One part of the set of requirements addressed in this 
section concerns the probability of hardware failure.  
 
When determining the level of PFH according to IEC 61508 some methods are commonly 
recommended. Examples of such methods are failure modes and effects analysis (FMEA), reliability 
block diagrams (RBD) and Markov Analysis. These methods are described in the following parts of 
this report. The PFH estimates the availability of the control system. The FMEA applies different 
failure modes on relevant components and examines their corresponding consequences. For an 
example, consider the BJT npn-transistor which has a limited set of failure modes. 
 
Table 2: Example of an incomplete FMEA-table 

No. Component: BJT npn-transistor 
Failure mode 

 
Failure effect 

 
Comment 

 
Probability of 
occurrence (λ) 

1 Short c-b Application related 
consequence 

Any pin may be shorted to 
another on the silicon  
or on the PCB 

A 

2 Short b-e ”  A 
3 Short e-c ”  A 
4 Open c ” Any pin may be opened on 

the silicon or on the PCB 
B 

5 Open b ”  B 
6 Open e ”  B 
7 hie altered +/- 50% ” Functional failure C 
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There are also other possible failure modes than those mentioned in Table 2 usually not considered 
without a specific application related reason. The letters A, B and C symbolizes failure rates for the 
actual component failure modes. 
 
The probability of the occurrence of any failure in this particular component is referred to as λ (the 
failure rate). This parameter is often fetched from a data base or a component standard such as  
[17], and is defined by following equation: λ = 1/MTTF where MTTF is the Mean Time To Failure.  
 
According to the standard, λ is assumed to be constant through the complete life cycle of the control 
system. The failure rate describes the probability of the occurrence of a stochastic single-point failure, 
implying that the failure occurs in the transistor and causes one of the transistor’s failure modes after 
the predicted time MTTF. The PCB has to be considered as another component with its own failure 
rate. 
 
The result of the integration of all the components in the system and the calculation of the final level 
of reliability (e.g. using reliability block diagrams) should be treated as an indicator of the 
approximate level of reliability. There are a huge amount of parameters influencing the reliability of 
each component and the assumption that the failure rate is constant through the complete lifetime of 
the system is a coarse approximation. Great care should be taken when calculating the confidence 
intervals for such a result.  
 
One conclusion of this reasoning is that there are several levels of uncertainty in the process of 
determining the reliability (or behaviour at fault) of a system/function - 
-It is up to the assessor to determine which components are related to the safety function 
-It is the assessor who determines which failure modes are relevant for each component and how 
failure modes affect the functionality of the system both locally and globally. 
-The estimated result of the calculations has a high level of uncertainty (one or two orders of 
magnitude). Hence the parameters that determine if the E/E/PES fulfils the functional safety 
requirements will, ultimately, depend on qualitative measures. 
 
The PFHsys depends on additional parameters besides the failure rate of individual components. These 
parameters will also be described later in this report. Reliability data should always be treated 
carefully. It is recommended to only use the absolutely worst-case assumptions. This is natural in the 
qualitative approach since no one would like to rely upon misguiding or too optimistic reliability 
approximations on the adopted safety functions. The backside of that kind of reasoning is that usage of 
too pessimistic reliability estimations may bring injustice to a system that already has a sufficient 
hardware/software configuration causing overrating and hence increasing the level of complexity. A 
positive side of using the quantitative approach is that it forces the designer/assessor to regard the 
control system functionality from a different perspective when performing the analysis.  
 
Another point of view of Table 2 addresses the nature of the failure modes used. Failure modes 1-6 
can all be injected in the physical test object (i.e. it does not matter if they are occurring inside the 
transistor encapsulation or on the PCB) but failure mode no. 7 which is a functional failure can only 
occur inside the transistor by alternations in the silicon-die. Therefore the resulting failure effects may 
be explicitly determined. 
 
When considering linear circuits (such as logical gate arrays, UARTs, buffers etc.) a way of reasoning 
similar to that applied for the transistor is used to establish the failure modes. Most of the failure 
modes concern shorts/open circuits between intersecting pins and simple functional failures. If the 
device has a somewhat more complex but still pre-defined functionality, methods such as FTA (Fault 
Tree Analysis) may be required to support the selection of functional failure modes. These 
components are classified as Type A components in IEC 61508. 
 
As more complex circuits do not have a pre-defined functionality (such as microprocessors, digital 
signal processors, FPGAs etc.) the standard states that the methods mentioned above are insufficient 
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for proving particular requirements. This is because these components functionality is defined by 
software that has to be analyzed; a specific failure rate with a reasonable confidence range  can not 
easily be addressed. The only failure modes that are displayed in the FMEA are short and open circuits 
of intersecting circuit pins. Normal functional requirements on type B components consider the 
hardware configuration (N-channeled systems) and/or different techniques for monitoring the 
operation of the software that defines the functionality. Examples of these techniques are RAM/ROM 
checksum tests, software diversity, input/output plausibility testing, program flow monitoring etc. 
What is not mentioned in the standard is that these techniques are all really monitoring potential 
failure modes that may occur in the integrated circuit hardware. Such failure modes may be short-
circuits in the in-circuit data bus, memory faults in the microprocessor program counter, faults in the 
comparators who evaluate conditional branches or fault in the instruction decoder look-up table (etc.) 
of a microprocessor. 
Table 3 Integrated E/E/PES considerations 

Aspects related to  
IEC 61508 

Integrated E/E/PES 

Type A components The complete system is embedded in one circuit, due to the huge amount of 
type A components only groups of components composing one limited 
system function is considered in the assessment process (e.g. multiplexers, 
gates, minor groups of gates, adders, dividers etc.). 

Type B components  All included Type B components are analyzed and treated as described in the 
standard (including software)  

Hardware configuration When the ASIC is mounted on the PCB its treated as a general off the shelf 
complex integrated circuit 

 
Compliance with a SIL depends on several aspects including one or both of the following: 
 
-The reliability of the function (i.e. of the components used) 
-The system configuration (i.e. N-channel hardware configuration with physical separation) 
In terms of IEC 61508, a SoC is always considered as a single-channeled E/E/PES regardless of 
integrated monitoring and redundancy. 
 
Therefore in terms of IEC 61508 a single SoC carrying a safety function cannot alone comply with 
requirements on hardware fault tolerance (i.e. higher safety integrity levels) without any additional 
components that are used for providing functional and physical independence, see table 6 and 7. 
However, in systems where the safety function is highly dependent upon the ASIC functionality, the 
detailed design of the ASIC becomes a central part of the safety assessment. Even though physical 
redundancy is realized by a few and probably passive external components, the safety function will 
primarily depend upon the internal functionality of the ASIC. The main objective of this report is 
therefore to describe a methodology that maps relevant requirements in IEC 61508 on the design flow 
described in section 8 in this report. 
 
By using techniques for increasing the level of fault tolerance in a SoC the reliability of that design 
will also be increased. In space technology several means and techniques for increasing the fault 
tolerance are commonly used in microprocessors. An example of such a technique is TMR (Triple 
Modular Redundancy) where, for example, the actual microprocessor consists of three separated 
processor cores placed on the same silicon-die and a 2oo3 voter. There are also techniques available 
for testing and evaluating the fault tolerance in a SoC. Examples of such a test is heavy-ion fault 
injection or soft saboteurs implemented into the VHDL model. What test technique to use depends on 
the applied fault model. 
 
6.2. Generally about failure models 
 
There are two types of failures to be considered: systematic failures and random hardware failures. 
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6.2.1. Systematic failures 
 
A systematic failure is such a failure that is introduced in the design through an error, mistake or 
misunderstanding during a phase of the design process. A systematic failure is therefore related in a 
deterministic way to a certain cause and can only be eliminated by a modification of the design, 
manufacturing process, operational procedures, documentation or other relevant factors.  
 
An example of a cause to a systematic failure is a latent firmware error that will manifest itself only 
under special circumstances and hence remains undetected during the integration tests. The fault will 
in this case be a part of the design and remain through the manufacturing process and thereby become 
a systematic failure. 
 
6.2.2. Random hardware failures 
 
The random hardware failure is caused by one or more degradation mechanisms types in the hardware. 
The failure occurs at a random time point. Such failures may be caused by faults of the types described 
in 5.2.2.1 – 5.2.2.3. 
 
6.2.2.1. Transient hardware faults 
 
The fault persists for a very short time, and then disappears. Example of cause for such a fault may be 
glitches arising from combinatorial logic where the output signals alter slightly different in time 
because of different delays in the logic network. Another example may be insufficient signal integrity 
(i.e. EMI related cause) 
 
6.2.2.2. Intermittent hardware faults 
 
The fault persists in a time-period and then disappears. An example of the cause of such a failure may 
be a transient failure occurring in the moment of altering the state in a state machine making one 
output erroneously low (or high) while the state machine remains in that state. It is although not likely 
that the fault appears the next time this state is reached. 
 
6.2.2.3. Permanent hardware faults 
 
Once the fault occurs it remains. Causes of such faults are always related to hardware degradation. 
Examples of causes of such faults may be component aging and/or wearing. 
 
The event of a random permanent hardware failure may be expressed as a time dependent probability 
function and that is characterized by the failure rate. This is not possible with transient or intermittent 
faults. 
 
IEC 61508 refers primary to permanent hardware failures and systematic failures in the requirements 
for hardware safety integrity. In [6] annex C an example is used to illustrate how to calculate the safe 
failure fraction of a subsystem. In the first step (a) the example assumes that a complex circuit has a 
distribution between the number of safe failure modes and the number of dangerous failure modes of 
50%, because is not possible to analyze each failure mode. 
 
According to IEC 61508 an ASIC is to be considered as a black-box complex circuit with a defined 
failure rate. If a safety function is almost completely integrated into an ASIC the designer should also 
regard transient and intermittent faults as well. Design principles and techniques for analysis and test 
may be integrated in the safety life cycle of IEC 61508. 
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6.3. Brief description of basic principles of redundancy 
 
The primary purpose of using redundancy is to increase the availability of a system. The second 
purpose is to increase the robustness of the system. A redundant function is realized by duplicating an 
already existing function. Redundancy may be implemented at different system levels, depending on 
the requirements to be met. Often these original safety-related functions are very complex and hence 
expensive to fully duplicate. It is therefore common to only duplicate a specific part of such a 
function. All examples mentioned in the text below are only intended to explain/clarify the actual topic 
considered. 
 
6.3.1. Hardware redundancy 
 
By hardware redundancy is understood the duplication of parts of the electronic hardware in such a 
way, that if one part fails to operate, at least one remaining part will still deliver the correct service. 
Examples of hardware redundancy may be: 
  
-N-modular-redundancy (nMR) where n denotes the number of microprocessors (channels) that are 
connected in parallel to a majority voter. 
-Watchdog-timer: Device equipped with an oscillator (separated from the microprocessor oscillator) 
that monitors of the execution process in the microprocessor. 
 
6.3.2. Software redundancy 
 
By software redundancy is understood the duplication of parts of the software, so that if one part of the 
software fails to operate at least one remaining part will deliver the correct service. 
It is possible to introduce redundancy at several system levels in software such as using several 
variables for critical data storage. Examples of software redundancy may be: 
 
-Additional redundant conditions before initiation of a critical event in conjunction with special bit 
patterns (instead of single bits) for critical flags.  
-Implementation of different redundant data paths between critical inputs and their corresponding 
outputs. 
 
6.3.3. Information redundancy 
 
By information redundancy is understood the duplication of critical information so that if one part of 
the information becomes distorted it remains at least one part that contains the correct information. 
Examples of information redundancy may be:  
 
-Multiple storage of any type of critical information. 
-One common means to duplicate information is to represent the actual information with a checksum. 
When increasing the uniqueness of the checksum, the degree of redundancy between the checksum 
and the actual information increases. 
 
6.3.4. Time redundancy 
 
By time redundancy is understood the duplication of the same critical control at several locations in a 
control sequence (series configuration). Each state in the sequence is redundant but the control 
sequence of outputs does not change until all states have been passed. 
Example of time redundancy may be: 
 
-Increasing the stability, by reading an analogue value using an ATD-converter at different points in 
time and then “comparing” these readings by making an average value. 
-Duplicating a control module to a series configuration, assuring that the outputs remains correct 
through a sequence.  
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-Repeated transmissions of the same message via a communication channel. 
 
6.3.5. Diversification 
 
When using redundant functions, the system outputs are always, to some extent, dependent on the 
corresponding system inputs and hence redundant functions are more or less dependent on each other. 
Take for an example two relays connected in parallel and controlled by two redundant channels. If the 
relays are equivalent and delivered from the same distributor and manufactured at the same factory at 
the same time, a fault occurring in one relay will most probably also occur in the other relay at roughly 
the same time.  
 
Such a failure caused by two simultaneous faults is denoted a common cause failure (CCF) and the 
risk of CCF arising because both relays are operated in similar environmental conditions, submitted to 
similar operational and electrical loads. The risk for CCF is relevant for all kinds of redundant 
functions and has to be considered. In order to reduce the risk of CCF the principle of diversification 
may be used. Diversification of a function means that a redundant function is designed and 
implemented by means different from the original function, but both functions still having the same 
outcome.  
 
Assuming that the previously mentioned relays were controlling a motor, if one of the relays is 
exchanged by an electromechanical motor brake system so that one channel disables the electrical 
power supply to the motor and the other channel mechanically brakes the motor rotation, these two 
functions have become diversified. Another example of diversification is when using two redundant 
bytes in a critical software control flow and always keeping them inverted towards each other. 
 
Diversification may be applied on all kinds of redundant functions, and the decision on whether to 
diversify a redundant function and the degree of diversification should be based on a CCF risk 
estimation. In IEC 61508 such estimation is expressed by the β–factor.  
 
6.4. Diagnostics 
 
When using redundant functions, the availability of a system is increased (i.e. the probability of a 
system to operate according to the specification at a certain time) but under a period during the 
product lifetime, the system will fail to operate regardless of implemented redundancy/diversification 
(unless repaired). It is therefore common to adopt mechanisms for diagnosing the system in order to 
detect if the system operates out of its specification. 
 
Diagnostic mechanisms are usually designed so, that the result of the diagnostic test becomes input 
parameters to subsystems that affect the system operation. Such diagnostic mechanisms take 
responsibility for maintaining the correct system operation and, hence become an important part of the 
control sequence, instead of solely diagnosing the system. Such diagnostic functions should be 
considered in the system requirements specification. 
 
When handling safety-related systems, it is common to add redundancy and diversity in conjunction 
with diagnostic functions, to ensure that critical failures are detected and handled in time to prevent 
the loss of safety-related functions. 
 
Figure 4 illustrates an example of different operational states of a system and exemplifies the 
integration of diagnostic functionality in electronic control systems. The little circles containing 
numbers denote operational transitions. 
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Figure 4: Diagnostic impact example on different system operational states. 

 
The following text describes some aspects considered in Figure 4. This is only an example and gives a 
point of view for a reasoning that should be carried out in more detail for any system during design or 
validation that uses diagnostic functions. 
 
Transition 1: A fault occurs and the system transits from normal mode of operation to a degraded 
mode of operation. The degraded mode of operation is very unpredictable, because the system 
operates apparently according to the specification but carrying a latent fault. This latent fault may 
manifest itself randomly (e.g. due to time of execution, certain combinations of input parameters or 
only in combination with an additional fault) 
Example: An undetected fault occurring in one out of two redundant functions only affect the system 
service when the other function ceases to provide the correct service. 
 
Transition 2: The fault prevents the system to make the transition from the degraded mode of 
operation to the failed mode of operation where it is no longer able to deliver its specified service (e.g. 
loss of the safety function). For some types of faults, the period under which the system remains in the 
degraded mode of operation may be negligible which increases the difficulty of detection.  
 
Transition 3: The diagnostic functions implemented, provide the subsystems with information about 
the fault occurrence and hence forcing the entire system to transit to a special mode of operation where 
it remains delivering its service according to the specification but with reduced functionality (e.g. fail-
safe mode). 
 
Transition 4: The fault(s) become restored (e.g. repaired or the disturbance disappears) whereby the 
system transits from the special mode of operation back to normal mode of operation. 
 
Transition 5: While the system remains in the special mode of operation an additional fault occur not 
detected by the diagnostic functions. This forces the system back to the degraded mode of operation 
where it will remain until an additional fault occurs and becomes detected (transition 3) or worse, 
undetected (transition 2). 
 
Transition 6: While the system remains in special mode of operation, an additional fault occurs, 
causing the system to transit directly to the failed mode of operation (e.g. writing an erroneous value 
to the outputs that are assumed to provide some well-defined value in the fail safe mode). 
 

Normal
operation

Degraded
operation

Failed in
operation

Special
operation

1 2

3

4

5
6
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7. System design 
 
When designing safety-related control systems a similar design flow is used as when designing 
ordinary control systems but a number of additional items also have to be considered. During the 
definition phase the purpose of the final product is defined (concept) and possible limitations in usage 
have to be sorted out (requirements specification). The main objective when designing/validating a 
not-safety-related system is to prove that all system functionality is implemented according to the 
system specification. When designing/validating a safety-related system the main objective is to prove 
that the system ability of risk reduction is sufficient according to a risk analysis (which also 
incorporates the above). The difference between these two objectives is that the design/validation of a 
safety-related system always includes the target application and the design process performance. The 
system design part of this report covers two major areas, the documentation and the development 
process. 
 
There are three measures that shall be considered when judging the achieved level of risk reduction 
(SIL): 
Hardware safety integrity level – A quantitative measure that is primary based on the system 
behaviour at fault due to dangerous hardware failures. This measure is primary determined through 
design as described in this report and expressed as the PFH or PFD. 
 
Systematic safety integrity level – A qualitative measure based on the applied methods and design 
principles for limiting the occurrence of systematic failures in the resulting product.  
These methods shall control failures:  

- caused by hardware and HDL design (i.e. implemented techniques and principles such 
as hardware diversity and diagnosis and control flow sequence monitoring etc.) 
- due to Environmental stresses (i.e. implemented techniques and principles such as 
temperature monitoring, transient protection, over-dimensioning, separation between 
power lines and data signals etc.) 
- during operation (i.e. implemented techniques and principles such as modification 
protection) 

 
HDL safety integrity level – A qualitative measure based on the applied methods and techniques for 
assuring that the HDL code in an electronic control system achieves its specified safety functions 
under all specified conditions within the stated lifetime. The HDL safety integrity corresponds to the 
software safety integrity described in IEC 61508 wherever applicable. The requirements in this report 
are assumed to be sufficient (due to the design process and the verification process and the safety 
validation process) in order to fully conform to [4]. 
 
7.1. Documentation process 
 
7.1.1. Introduction 
 
The IEC 61508 standard sets out a generic approach for all safety lifecycle activities related to the 
development of electrical/electronic/programmable electronic systems (E/E/PES) that perform safety 
functions. The guidance and support provided by the IEC 61508 standard is intended for the 
development of systems based on commercially accessible electrical/electronic components. 
 
The purpose of the present work is to define the complete set of requirements addressing E/E/PES that 
integrate custom designed components such as ASIC/FPGA.  
 
7.1.2. Design documentation  
 
Development of custom designed components is regulated by sector specific standards from which 
requirements are extracted. The requirements specification adapted to ASIC - based E/E/PES 
development is illustrated by Figure 5. 
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Figure 5: Relation between safety requirements and design requirements. 

 
7.1.2.1. Objectives 
 
The first objective of the documentation requirements is to specify the necessary information to be 
provided to ensure that all activities necessary for the realization phase of the overall and software 
safety lifecycles can be effectively performed. 
The second objective of the documentation requirements is to specify the necessary information to be 
provided in order to perform:  
 - the management of functional safety  
 - the verification  
 - the functional safety assessment  
 
7.1.2.2. General 
 
The E/E/PES is made up from a number of identifiable and separate subsystems. An ASIC is a 
complex component or a subsystem that together with the other subsystems shall implement the 
specified safety functions. The E/E/PE safety-related system design documentation shall specify the 
techniques and measures during the E/E/PES lifecycle phases to achieve the safety integrity level. In 
the present context only the Realization phase is of concern as shown in Figure 7 of chapter 8 System 
design.  
 
The requirements that are listed in the following are retained under the assumption that other parts and 
subsystems of the E/E/PES compel to the requirements stated for the applicable phases of the IEC 
61508 standard. As far as the ASIC is concerned, its realization is submitted both to the requirements 
of IEC 61508 concerning the realization phase as well as the requirements of the sector specific 
development requirements. Our first concern for safety development aspects, has lead our choice for 
support documentation to: [1] Draft Specification “Space product assurance – ASIC/FPGA 
development”. 
 
7.1.3. Documentation requirements 
 
The requirements will be grouped according to the development phases of the ASIC/FPGA as it is 
described in [1]. 
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7.1.3.1. Definition phase 
 
All system configurations and characteristics, all issues imposing requirements on the device shall be 
collected in a definition status. The settled definition status shall have no ambiguity and shall cover all 
necessary resources for the design activities. The documents associated with that phase shall contain: 
 

a) ASIC/FPGA Requirements Specification (ARS) 
This document shall cover the items listed in [1], paragraph 5.2.2 a – s. 
 

b) Feasibility and Risk analysis Report (FRR) 
This report shall provide a judgement on the feasibility of the ASIC/FPGA development as 
defined by the Requirements Specification, as well as an assessment of the risks involved.  
This document shall cover the tasks listed in [1], paragraphs 5.2.3.1 and 5.2.3.2 
 

c) ASIC/FPGA Development Plan (ADP) 
This document shall identify the project external interfaces and constraints, the design flow, 
resources (equipment, software and personnel), the allocation of responsibilities, outputs to be 
produced and, finally, a schedule with milestones, decision points, type and number of design 
reviews. 
 

d) Minutes of meeting (MoM) of the Initial Design Review (IDR) 
The MoM of the IDR shall be added to the Management Documentation. During the IDR 
meeting the ARS, the ASIC/FPGA Requirements specification and the FRR are assessed. The 
MoM shall in case of a satisfactory result of the IDR meeting provide the evidence that an 
authorization to proceed with the Architectural Design has been given.  

 
7.1.3.2. Architectural design 
 

a) Architecture Definition Report 
The Architecture Definition Report shall include the architecture broken down to the selected 
blocks, their interfaces, functionality/algorithms and interactions. A detailed text specification 
shall be edited. 

 
b) Verification plan 

The Verification plan shall define how the functionality and non-functional requirements 
stated in the Definition Phase Documentation shall be demonstrated at all levels of modeling, 
starting from the behavioural level down to the gate level. 
[1], paragraph 5.3.3 a. – c. 

 
c) Architecture Evaluation and Optimization Report 

Activities specified in the Architecture definition and to be verified according to the 
Verification plan, shall be covered by the Architecture Evaluation and Optimization Report.  

 
d) Preliminary Data Sheet 

A preliminary Data sheet shall be produced, updated and completed later at the end of the 
ASIC/FPGA development. (See chapter [1] ,7.a.1 for details) 

 
e) Design Database, containing: 

- Simulation models 
- Verification results 

 
f) Memory of meeting (MoM) of the Architectural design review (ADR) 

The MoM shall in case of a satisfactory result of the ADR meeting provide the evidence that 
an authorization to proceed with the Detailed Design has been given. The MoM of the ADR 
shall be added to the Management Documentation. 
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7.1.3.3. Detailed Design 
 
The high-level architectural design is translated during the Detailed Design phase into a structural 
description on the level of elementary cells of the selected technology/library. 
The main output of the Detailed Design is a Design Database containing, or allowing an automatic and 
repeatable generation of the inputs to the Layout. The scripts required for this generation are an 
essential part of the Detailed Design, and all these scripts shall be part of the design Database. 
 

a) Design Entry Report 
This document shall cover, among others, the design tasks specified in the ADP, the 
implementation of the test concepts and the selection of buffers to the I/O requirements 
defined in the ASIC/FPGA Requirements Specification. See [1], paragraph 5.4.2 a – g. 

 
b) Netlist Generation Report 

This document shall cover the tasks carried out in order to translate the source description of 
the design into the netlist as well as any other information required for the layout generation. 
 

c) Netlist Verification Report 
Al the tasks required by the Verification Plan shall be covered. See [1], paragraph 5.4.4 a – l. 

 
d) Updated Data Sheet with pin-out 

The Data Sheet shall be updated to incorporate the new established information on pinout, 
estimated timing, etc. For further details see [1], paragraph 7.4.1 

 
e) Updated Design Database, containing: 

- Pre-layout netlist 
- Constraints for layout (floorplan, constraints for timing driven layout, etc.) as defined in 

the ADP 
- Test vectors for production test 

 
f) Memory of Meeting (MoM) of Preliminary Design Review (PDR) 

The MoM of the PDR shall in case of satisfactory result of the PDR meeting provide the 
evidence that an authorization to proceed with the Layout has been given. The Preliminary 
Design Review shall as minimum cover and approve the design decision/trade-offs taken 
during the Detailed Design phase, the conformance to reliability, testability and radiation 
hardening requirements, and the extent and results from simulations in this phase. The risk 
mitigation activities shall be checked. The outputs to be reviewed and the items to be checked 
are listed in [1], paragraphs 1 – 5. 

 
The MoM of this meeting shall be added to the Management Documentation. 
 
7.1.3.4. Layout 
 
The layout shall generate the placement and routing information to meet the design rules, timing and 
other constraints. 
 

a) Layout generation Report 
The Layout Generation Report shall cover the tasks carried out under the Layout generation 
phase. See [1], paragraph 5.5.2 a – I. 
 

b) Layout Verification Report 
The Layout Verification Report shall cover the tasks carried out under the Layout Verification 
phase. See [1], paragraph 5.5.3 a – l. 
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c) Design Validation Plan  
The Design Validation Plan shall specify the measurements that shall be performed on the 
prototypes in order to verify that the implemented devices contain the functionality and the 
characteristics they are designed for. See [1], paragraph 5.5.4 a – d. 

 
d) Updated Data sheet 

The layout verification results in updated parameters that shall be documented in the Data 
Sheet. For further details see [1], chapter 7.4.1 

 
e) Draft Detail Specification 

The set-up of the Draft detail specification shall be based on the information collected in the 
Design documentation, and should comply to the requirements given in [1], chapter 7.4.3. 

 
f) Updated design Database, containing: 

Post-layout netlist in the agreed format depending on the targeted technological approach 
(GDS II, FPGA P&R files or other) Corresponding parasitic information 

 
g) Memory of meeting (MoM) of the Critical Design Review (CDR) 

The CDR shall result in the approval of design and layout and the release for prototype 
implementation. As a minimum it shall cover and approve the layout, final simulations and the 
production test, the Design Validation Plan and the risk mitigation activities. The outputs to be 
reviewed and the items to be checked are detailed in [1], paragraphs 1 – 6 of the current 
section. 

 
7.1.3.5. Prototype implementation 
 
Agreed number of tested devices (ASICs or FPGAs) 

a) The number of prototypes to be produced for validation is specified. 
b) Production test results and reports 
c) Burn-in, any other production test results, specifications and patterns 

 
7.1.3.6. Design validation and release 
 

The Design validation and release shall generate the information concerning the results of the 
validation tasks and the final data sheet and Detail Specification. The documents associated with that 
phase shall contain: 

a) Validation Report 
b) Radiation Test Report (if applicable) 
c) Release Report 
d) Experience Summary Report 
e) Final Data Sheet 
f) Final Data Specification 
g) Application Note 
h) Memory of Meeting of Design Verification Review 
 

This review shall result in the final acceptance of the design. As a minimum it shall cover and 
approve the production test and design validation test results and all documentation produced 
and updated in this phase.  

- The completeness of the Design Validation Documentation together with the 
documentation of previous development phases is checked 

- The device achievement of functional, performance, interface and compatibility 
characteristics satisfying ASIC/FPGA Requirements Specification is checked 

- The existence of preventive measures and/or contingency plans for all identified risk 
items and the risk analysis of FM production is checked 

The MoM of this meeting shall be added to the Management Documentation  
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i) Validation Breadboard 
j) Burn-in or Screening Test Boards for FM parts 

 
7.1.4. Management documentation 
 
7.1.4.1. Objectives 
 
The documentation shall provide the overall strategy for the development activity including task 
planning and organization, methods and procedures. In the present context, development of 
ASIC/FPGA is an integrated part of the system realization. What constitutes sufficient information 
will be dependent upon a number of factors, including the complexity and size of the E/E/PE safety-
related systems and the requirements relating to the specific application.  
 
7.1.4.2. General 
 
The scope of this work is restricted to the activities related to the realization phase (block 9 of the 
safety lifecycle) of the HDL-based circuit. It is assumed that the preliminary analyses of the overall 
safety lifecycle have been carried out according to the methods and principles recommended by IEC 
61508 (parts 1 – 7). The results of the hazard and risk analysis consequently establish the overall 
safety requirements and the safety requirements allocation.  
The requirements listed in [2], clause 5.2, are compulsory in the development of HDL-based E/E/PE 
control systems at each applicable phase of construction. 
The documentation shall contain sufficient information required for the management of functional 
safety. 
 
7.1.4.3. Requirements 
 
Following basic requirements are compulsory to documentation related to any parts of the system: 
 
The documentation shall contain sufficient information required for the implementation of a functional 
safety assessment, together with the information and results derived from any functional safety 
assessment. 
 
Unless justified in the functional safety planning or specified in the application sector standard, the 
information to be documented shall be as stated in the various clauses of IEC 61508. 
 
The availability of documentation shall be sufficient for the duties to be performed in respect of IEC 
61508. 
 
The documentation shall: 
 - Be accurate and concise 
 - Be easy to understand by those persons having to make use of it 
 - Suit the purpose for which it is intended 
 - Be accessible and maintainable 
 
The documentation or set of information shall have titles or names indicating the scope of the 
contents, and some form of index arrangement so as to allow ready access to the information required 
in IEC 61508. 
 
The documentation structure may take account of company procedures and the working practices of 
specific application sectors. 
 
The documents or set of information shall have a revision index (version numbers) to make it possible 
to identify different versions of the document. 
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The documents or set of information shall be so structured as to make it possible to search for relevant 
information. It shall be possible to identify the latest revision (version) of a document or set of 
information. 
 
All relevant documents shall be revised, amended, reviewed, approved and be under the control of an 
appropriate document control scheme. 
 
Where automatic or semi-automatic tools are used for the production of documentation, specific 
procedures may be necessary to ensure effective measures are in place for the management of versions 
or other control aspects of the documents. 
 
7.1.5. Management of functional safety 
 
Management and technical activities necessary to ensure that the E/E/PE safety-related system achieve 
and maintain the required functional safety shall consider the following issues according to [1], clause 
6.2: 
 - The policy and strategy for achieving functional safety, together with the means for 

evaluating its achievement, and the means by which this is communicated within the 
organization to ensure a culture of safe working 

 - The identification of the persons, departments and organizations, which are responsible for 
carrying out and reviewing the applicable overall, E/E/PES or software safety lifecycle 
phases (including, where relevant, licensing authorities or safety regulatory bodies) 

 - The overall, E/E/PES or software safety lifecycle phases to be applied 
 - The way in which information is to be structured and the extent of the information to be 

documented (see previous paragraphs). 
 - The selected measures and techniques used to meet the requirements of a specified clause or 

subclause (see [3], [4] and [7]) 
 - The functional safety assessment activities, see [2], clause 8. 
 - The procedures for ensuring prompt follow-up and satisfactory resolution of 

recommendations relating to E/E/PE safety-related systems arising from: 
  - Hazard and risk analysis (see [2], clause7.4) 
  - Functional safety assessment (see [2], clause 8) 
  - Verification activities (see [2], clause 7.18) 
  - Validation activities (see [2], clauses 7.8 and 7.14) 
  - Configuration management (see [2], clauses 6.2.1 and 7.16, [3] and [4]) 
 
The procedures for ensuring that applicable parties involved in any of the overall, E/E/PES or software 
safety lifecycle activities are competent to carry out the activities for which they are accountable. In 
particular, the following should be specified: 
 - Training of staff in diagnosing and repairing faults and in system testing 
 - Training of operations staff 
 - Retraining of staff at periodic intervals 
 
The procedures that ensure that hazardous incidents (or incidents with potential to create hazards) are 
analyzed and those recommendations made to minimize the probability of a repeat occurrence. 
 
The procedures for analyzing operations and maintenance performance; in particular procedures for: 
 - Recognizing systematic faults which could jeopardize functional safety, including 
  procedures used during routine maintenance, which detect recurring faults 
 - Assessing whether the demand rates and failure rates during operation and 
  maintenance is in accordance with assumptions made during the design of the system 
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Requirements for periodic functional safety audits in accordance with this sub-clause, 
including: 
 - The frequency of the functional safety audits 
 - Consideration as to the level of independence required for those responsible for the audits 
 - The documentation and follow-up activities 
 - The procedures for initiating modifications to the safety-related systems, see [2], clause 

7.16.2.2. 
 - The required approval procedure and authority for modifications. 
 - The procedures for maintaining accurate information on potential hazards and safety-related 
  systems 
 
The procedures for configuration management of the E/E/PE safety-related systems during 
the overall, E/E/PES and software safety lifecycle phases; in particular the following should be 
specified: 
 - Stage at which formal configuration control is to be implemented 
 - Procedures to be used for uniquely identifying all constituent parts of an item 
  (Hardware and Software) 
 - Procedures for preventing unauthorized items from entering service 
 

a) Where appropriate, the provision of training and information for the emergency services. 
b) The activities specified as a result of a) shall be implemented and progress monitored. 
c) The requirements developed as a result of a) shall be formally reviewed by the organizations 

concerned, and agreement reached. 
d) All those specified as responsible for management of functional safety activities shall be 

informed of the responsibilities assigned to them. 
e) Suppliers providing products or services to an organization having overall responsibility for 

one or more phases of the overall, E/E/PES or software safety lifecycles (see a)), shall deliver 
products or services as specified by that organization and shall have an appropriate quality 
management system. 

 
7.2. Design process 
 
This sub-section describes the design and verification of HDL-code, a major part of a safety-related 
control system. The basis of this text is the ASIC design process described in the draft standard, [1] 
currently used in the design process at DELTA electronics. In order to introduce safety aspects into the 
design process, relevant requirements from IEC 61508 (for ASIC design) have been retrieved and 
distributed among the steps in the design process. The required design flow from IEC 61508  
(see Figure 6) is by this means mapped to the previously mentioned design flow. 
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Figure 6: Realization phase in the safety life cycle (IEC 61508). 

 
The design flow in Figure 6 is divided into following parts in this report: 

a) Definition phase (Safety-requirements specification part in Figure 6) 
-Requirements on documentation 

b) Architectural design (Design phase in Figure 6) 
-Requirements on the hardware design and development (process) 

c) Detailed design (Design phase in Figure 6) 
-Requirements on the HDL specification 

d) Layout (Design phase in Figure 6) 
e) Implementation (Design phase in Figure 6) 

-Requirements on implementation and integration 
f) Validation and release (Validation phase in Figure 6) 

-Requirements on safety validation  
 
The design flow in [1] differs from the IEC 61508 realization flow (Figure 6) only in detail, and hence, 
is very suitable for mapping the standards together.  
 
7.2.1. Definition Phase 
 
The most important outputs from this phase are the following documents: 
Related to the EUC (See [2]) 

a) Concept 
b) Overall scope definition 
c) Hazard and risk analysis 
d) Safety requirements specification 

 
Related to the control system (due to [1], clause 5.2) 

e) Identification of ASIC requirements specification, including part of the safety requirements 
allocation specification 

f) Feasibility study 
g) Risk analysis (due to the quality assurance system) 
h) ASIC development plan 
i) Initial design review 
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All the tasks listed above have to be performed but are not considered in the method presented and 
described in this report. The associated documents are assumed to be available prior to making use of 
this guideline. 
 
Regarding the safety-issues in this part of the design process, IEC 61508 emphasizes SIL’s, a 
fundamental entity and primary criteria for safety validation. The SIL levels define the integrity of a 
safety function in its application (EUC) and may only be determined with a hazard and risk analysis. 
The SIL of an E/E/PES safety function depends on how much risk reduction is required for a specific 
application (EUC). If the same E/E/PES safety system is used for controlling different 
machines/applications (EUC), different SIL may be required from its safety function(s). The standard 
IEC 61508 divides safety functions into two types; low-demand and high demand safety functions. 
See Table 4 and Table 5 below. This also has an impact on the definition phase viewed in Figure 3. 
The overall ASIC design flow also has to be considered when developing the ASIC requirements 
specification.  
 

Table 4: Safety integrity levels: Target failure measures (PFD) for a safety function operating in low demand 
mode of operation 

Safety integrity 
Level 

Low demand mode of operation 
(Average probability of failure to perform its design 
function on demand) 

           4 > 10-5 to < 10-4 
           3 > 10-4 to < 10-3 
           2 > 10-3 to < 10-2 
           1 > 10-2 to < 10-1 

 
Table 5: Safety integrity levels: Target failure measures (PFH) for a safety function operating in high demand or 

continuous mode of operation 
Safety integrity 
Level 

High demand or continuous mode 
of operation 
(Probability of dangerous failure per hour) 

            4 > 10-9 to < 10-8 
            3 > 10-8 to < 10-7 
            2 > 10-7 to < 10-6 
            1 > 10-6 to < 10-5 

 
The probability value ranges in Table 4 and Table 5 do not only concern hardware reliability, but the 
whole safety function, taking into account both hardware, software, the design process, operation and 
maintenance and many other factors. 
 
The design of the safety-related PES shall be created in accordance with the E/E/PES safety 
requirements specification according to Figure 6. This safety requirements specification shall include 
tailored requirements on how to meet the requirements in the following subsections regarding: 
 - Hardware safety integrity 
 - Systematic safety integrity 
 - System behaviour on detection of a fault 
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7.2.1.1. General Hardware requirements 
 
The requirements mentioned below are not limited to the ASIC design nor the subsystem design, but 
shall be considered during the specification relevant to both design processes for safety-related 
systems. 
 
Following requirements for estimating the probability of random hardware failure for safety functions 
have to be regarded when designing the subsystem. The probability of failure of the safety functions 
shall be equal or less than the target failure measure as specified in the safety system requirement 
specification (ref. [3], clause 7.4.3.2.1). Although the requirements mentioned below are not limited to 
the ASIC design, they have to be included in the ASIC design process, since the ASIC takes 
responsibility for a large part of a safety function. 
 
Requirements for the diagnostic test interval 
a) The requirements for the diagnostic coverage are related to the control of the subsystem, and 
therefore involve the functionality of the ASIC and the subsystem configuration. The requirement for 
the diagnostic test interval of a subsystem is divided into the following three possibilities  
Hardware fault tolerance > 0 

1) Hardware fault tolerance = 0 (subsystem on which the safety function is entirely dependent) 
Used in Low demand mode  

2) Hardware fault tolerance = 0 (subsystem on which the safety function is entirely dependent) 
Used in high/continuous mode 

For 1) and 2) the DC test interval shall be selected in order to enable the E/E/PES to meet the 
requirement for the probability of random hardware failures (see Table 8) 
For 3) The sum of the DC test interval and the fault reaction time shall be less than the process safety 
time where the process safety time means the time between failure occurrence (in the EUC or EUC 
control system) and the occurrence of a hazardous event if no safety function is performed. 
Ref. [3], clause 7.4.3.2.3, 7.4.3.2.4 and 7.4.3.2.5 
 
Requirements for system behaviour on detection of a fault 
b) The detection of a dangerous fault in a subsystem that has: 

1) Hardware fault tolerance > 0 shall result in either: 
- A specified action to achieve and maintain a safe state 
- Isolation of the faulty part of the subsystem to allow continued safe operation. If the 

faulty part is not repaired within the assumed MTTR, the system operation shall result 
in 1). 

2) Hardware fault tolerance = 0 (low demand mode) shall result in either: 
- A specified action to achieve and maintain a safe state. 
- The repair of the faulty subsystem is performed within the assumed MTTR. During this 

time the safety of the EUC shall be ensured by additional measures and constraints that 
shall provide at least the same risk reduction as the E/E/PES safety-related system 
without the presence of faults. If the repair is not performed within MTTR, the system 
operation shall result in 3). 

3) Hardware fault tolerance = 0 (high/continuous mode) shall result in 
a specified action to achieve and maintain a safe state 

 
The detection of faults may be done by diagnostic tests, proof tests or by other means. 
Ref. [3], clause 7.4.6 
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Requirements for the control of systematic failures 
c) For controlling systematic faults the E/E/PES shall be designed to be tolerant against: 

- Any residual design faults in the hardware 
- Environmental stresses including electromagnetic disturbances 
- Mistakes made by the operator of the EUC 
- Any residual design faults in the HDL (software) 
- Errors and other effects arising from any data communication process 

 
d) The design of the safety-related E/E/PES shall regard the human capabilities and limitations. The 
design of all interfaces shall follow good human-factor practice.  
The design shall accommodate the likely training or awareness of operators. 
Ref. to [3] clause 7.4.5 
 
e) The principles mentioned in section 6.2 about fault models, section 6.3 about redundancy and 
section 6.4 about diagnosis shall be considered during the architectural design due to above mentioned 
requirements. 
 
General requirements on the design performance 
f) Appropriate techniques and measures shall be used during the design and development of the 
hardware. Refer to [3], table B.2 This table contains recommendations for usage of e.g. structured 
design, modularization, checklists etc. in order to avoid faults during design and development. This 
shall be followed both for the subsystem design and the ASIC design. 
 
g) The requirements in [3], clause 7.4.4.2 – 7.4.4.6 regards the set of documentation that shall be 
produced in order to prevent the introduction of faults during the design and development. These 
requirements regard facilities of the chosen design method, maintenance, and type of tools to be 
preferred and are as applicable for the subsystem design as for the ASIC design. 
Strategies and means for fulfilling these requirements shall be added to both the ASIC design 
specification and the subsystem design specification in order to meet the requirements for the 
avoidance of failures. 
 
h) Maintainability and testability shall be shall be considered during the design, according to the 
detailed system requirements specification. 

 
i) De-rating shall be used as far as possible for all components. Where de-rating is appropriate, a de-
rating factor of at least 0.67 should be used. 
 
7.2.1.2. General ASIC design requirements 
 
All the above requirements have to be reflected in the HDL/ASIC design. As the HDL design is a 
software model of later hardware, the safety requirements for the HDL design as such should apply as 
if the HDL model was in fact a hardware design. So the safety requirements for the HDL model are 
actually those for the hardware design. 
 
Since it is a software model of hardware that is designed, only some requirements of [4] apply. In 
general, the requirements concerning the HDL development and verification process apply (with the 
restrictions imposed by the fact that HDL and common programming languages have different 
features and applications), whereas the general safety requirements and validation requirements do 
not. The reason for this is that the HDL design is developed similarly to conventional software, but is 
transformed in hardware before being operational for validation or system integration. However, if the 
HDL design contains firmware (software running on an embedded CPU), all requirements of [4] must 
apply to that part of the HDL design.  
 
When designing an ASIC most of the transformations from the HDL model to the finished chip are 
automated using specialized software tools. These tools can be directed through control scripts, but 
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because the number of design parameters and the data size are considerable, it is not feasible to control 
the tools in all details. Therefore it has to be envisaged to ensure complex safety critical functions at 
the architectural level rather than at the detailed level. 
 
As the entire design exists electronically throughout the entire design work, first as HDL, later as 
databases and tool control scripts, it is required that all source files (HDL and scripts) that are needed 
for building the design are kept under version control. Keeping all source files under version control 
enables structured HDL development, keeps track of different versions and eases development logging 
for documentation purposes. 
 
Designing safety critical systems thus relies on the safety functions being sufficiently specified before 
commencing the HDL design since the real design is performed through the HDL modeling. Careful 
surveillance of the subsequent design transformation steps is required, so that the intended safety 
functions are implemented correctly. This can be done through constraining the tools or by manual 
interaction with the tools; this should be reduced to a minimum by choosing the right architecture from 
the beginning. 
 
All the redundancy principles from section 6.3 can be implemented in HDL. Software redundancy can 
be seen as algorithms or control flows which basically can be translated to HDL. This means that 
clever software safety algorithms could be used in the HDL design. Another way of making the design 
robust is to add fault tolerance or fault recovery. One example is to add error correction codes to e.g. 
memories, which enable correction of bit errors on the expense of a few extra data bits. 
 
It is important that the ASIC is not accidentally set in an illegal state as a consequence of unstable or 
noisy signals. The behaviour and noise (including glitches) of external input signals must be evaluated. 
Noisy input must be filtered and all asynchronous signals must be synchronized to the design’s 
internal clock before being used.  
 
In order to ensure that the ASICs are manufactured correctly, it is required that the ASICs are tested 
after manufacture with a high coverage of possible faults. To achieve high fault coverage, it is required 
that the design is prepared for the manufacture test already during the design phase, a step called 
Design For Test. This step has nothing to do with functional verification during design, but enables 
testing that the ASIC has been manufactured without errors. Fault models are used to express the 
possible manufacturing errors. Most commonly used is the Stuck-at fault model, which models an 
error as either the input or output pins on a gate being tied to power or ground (logically 1 or 0). 
Usually an overall fault coverage of more than 95% is acceptable, but in case of safety critical designs, 
the fault coverage should be much higher. This calls for careful design of safety functions as well as 
special test preparations of the design to enable high fault coverage of these parts of the design.  
 
When it comes to the technology used for the ASIC, it must be evaluated with regard to robustness 
towards the environment it shall operate; high voltage applications need high voltage technologies, 
space applications need special space approved technologies. Furthermore, a well known and stable 
design library for the chosen technology should be used for implementing the ASIC, in order to avoid 
failures due to lack of validation and characterization of the library cells. 
 
The result of this phase gives a complete set of technical documentation, including a description of the 
EUC and the interfaces between the EUC and the safety-related control system. In addition to this a 
risk analysis has been performed providing a specific SIL for each safety function and a safety-
requirements specification and allocation. The required documentation from the [1] draft standard 
provides with in detail studies on general design requirements, feasibility, a development plan and an 
initial design review that prepares for the next phase – architectural design.  
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7.2.2. Architectural Design 
 
Before engaging the design process measures have to be applied for avoiding systematic faults. A 
systematic fault is a fault introduced in the design flow that propagates through the design process in 
the manufactured end-product. Examples of such failures are if a designer by mistake renames a signal 
erroneously to another signal or if a manufacturing machine always connects a bonding wire to an 
erroneous pad. These kinds of failures become systematic first when the product reaches the end-user. 
It is possible to reduce the probability of systematic failures by careful testing/verification and by 
using special design features (see A.3 in [3]). Following method for selecting a design approach for 
hardware and systematic safety integrity is noted in [3]. 
 

a) Determining the SIL of the safety functions (Refer to [2]), should been done during the 
definition phase. 

b) Hardware safety integrity = Systematic safety integrity = SIL (Table 4 and Table 5) 
c) Hardware safety integrity: Determine the architecture and calculate the probability of loss of 

the safety function due to random hardware single faults (see below) 
d) Systematic safety integrity:  

1) Use design features that tolerate systematic faults 
2) Confirm fulfillment of requirements on “proven-in-use” components 
3) Use techniques and measures for preventing introduction of systematic faults 

 
From the Requirements Specification developed during the Definition Phase, the actual design 
implementation work is initiated. The design flow is depicted in Figure 7 which shall be followed 
during the design and implementation. Usually the work during this phase follows two paths: 
Establishing the ASIC design and establishing the test benches in parallel. The reason is that it is not 
uncommon that much more time is spend on test benches than on the actual ASIC design work itself, 
so it is important to initiate the test bench verification early in the phase. 
 
Most commonly used HDL design development strategy is a top down strategy. Based on the 
architectural investigations done during the Definition Phase, the basic structural hierarchy of the 
design is established. This Architectural Definition is the foundation for the rest of the design and 
considerations about the subsequent physical implementation of functions and blocks has to be taken 
into account here. There are means for re-organizing the design hierarchy during synthesis, but it is far 
better to create the right architecture from the beginning.  
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7.2.2.1. Requirements on the architectural design 
 
The design shall be based on a decomposition of subsystems/modules with each subsystem/module 
having a specified design and a set of integration tests. This also includes the design of the target 
ASIC. If a subsystem has multiple outputs and if a specific combination of the subsystem output states 
may cause a hazardous event, the prevention of this output state(s) shall be regarded as a safety 
function operating in high/continuous mode of operation. 
 
The architectural definition does not only characterize the system in relationships between sub-
modules and fundamental functions but does also define fault tolerance of the complete subsystem. 
According to IEC 61508 there is no support for on-chip fault tolerance so the ASIC has to be designed 
taking into account redundant modules outside the ASIC according to Figure 8 since a large part of the 
safety function is to be implemented in the ASIC. 
 
Table 6 and Table 7 specify the highest safety integrity level that can be claimed for a subsystem (see 
Figure 8) carrying a safety function. Taking into account the level of fault tolerance and the safe 
failure fraction, the requirements from these tables shall be applied on every subsystem carrying a 
safety function and hence every part of the E/E/PE safety-related system. So although the ASIC is one 
out of several redundant channels the architectural constraints on the subsystem as such impacts on the 
ASIC internal architectural design. The more the safety function depends on the ASIC internal 
functionality the more these architectural requirements affect the ASIC architectural design. 
 

- Hardware fault tolerance N means that N+1 faults may cause the loss of the safety 
function 

- If one fault leads to the occurrence of one or more subsequent faults these are 
considered as a single fault 

- When determining the hardware fault tolerance some faults may be excluded if the 
probability of their occurrence is very low. A fault exclusion shall be properly 
documented and justified 

- The safe failure fraction (SFF) is defined as the ratio of safe failures + dangerous 
detected failures to the total average failure rate of the system. 

 
The tables below regard subsystems as shown in Figure 8. The most important parameter to consider 
during the ASIC architectural design phase is the level of hardware fault tolerance.  
 

Figure 8: Subsystem architectural constraint and ASIC architectural design. 

a) Type A safety-related subsystems –  
1) The failure modes for all components are well defined 
2) The behaviour of the subsystem under fault conditions is well determined 
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3) There is sufficiently dependable data from experience to claim the rates of detected and 
undetected dangerous failures 

 
This table is not applicable for such subsystems (type B) that falls in the scope of this report but are 
useful is such a subsystem are used in parallel with a type A subsystem and is hence not excluded 
from this report. 

Table 6: Architectural constraints on type A subsystems 

Hardware Fault 
Tolerance 

Safe Failure 
Fraction 

    0     1     2 
< 60% SIL1 SIL2 SIL3 

60% - < 90% SIL2 SIL3 SIL4 

90% - < 99% SIL3 SIL4 SIL4 
>99% SIL3 SIL4 SIL4 

 
b) Type B safety-related subsystem – 

1) At least one component in the subsystem has not well defined failure modes 
2) The behaviour of the system under faulty conditions cannot be completely determined 
3) There is insufficiently dependable data from experience to claim the rates of detected and 

undetected dangerous failures 
 
This table shall be used in order to determine the architecture of the subsystem in which the ASIC is 
embedded. 

Table 7: Architectural constraints on type B subsystems 

Hardware Fault 
Tolerance 

Safe Failure 
Fraction 

    0     1    2 
< 60% N/a SIL1 SIL2 

60% - < 90% SIL1 SIL2 SIL3 

90% - < 99% SIL2 SIL3 SIL4 
>99% SIL3 SIL4 SIL4 

 
Both Table 6 and Table 7 are applicable for E/E/PE safety-related systems comprising both type A and 
type B subsystems. In a E/E/PE safety-related system where the safety function are implemented by a 
single channel of subsystems, the hardware safety integrity level that can be claimed is determined by 
the subsystem with the lowest hardware safety integrity level 
 
In an E/E/PE safety-related system where the safety function is implemented through multiple 
channels of subsystems the resulting hardware safety integrity level shall be determined by: 

1) Assessing each subsystem against Table 6 and Table 7 
2) Grouping the subsystems into combinations 
3) Analyzing those combinations to determine the overall hardware safety integrity 

 
7.2.2.2. Requirements on the probability of hardware failures 
 
Following parameters shall be taken into account when estimating the probability of failure for each 
safety function 
Ref. [3], clause 7.4.3.2.2 
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Table 8: Fundamental hardware requirements 

Ref. Parameter Comment 
a) E/E/PE safety-related 

system architecture as 
its relates to each safety 
function 

Deciding which failure modes are in a series 
configuration and which are in a parallel 
configuration 

b) λDD  The estimated rate of failure that would cause 
a dangerous failure to the E/E/PES but which 
are detected by diagnostic tests 

c) λD The estimated rate of failure that would case a 
dangerous failure to the E/E/PES which are 
undetected by the diagnostic tests 

d) Susceptibility of 
common cause failures 
(β) 

A common cause failure is such a failure that 
causes coincident failures in two or more 
channels in a multiple channel systems. 
Refer to [6], annex D for guidelines for 
quantification of common cause failures 

e) Diagnostic coverage 
(DC) and the diagnostic 
test interval 

The DC is calculated by DC = ∑ λDD / λD The 
diagnostic test interval and the subsequent 
time for repair constitutes the mean time for 
restoration. Also refer to [3] clause 7.4.3.2.2 
e) and annex C). 

f) Interval of proof test The interval at which proof tests are 
undertaken to reveal faults that are undetected 
by diagnostic tests. 

g) Repair times for 
detected failures 
(MTTR) 

See e) and [3], clause 7.4.3.2.2 g) 

h) λD for communication Refer to [3], clause 7.4.3.2.2 h) 
 
 
7.2.2.3. Requirements on verification and validation planning and initiation 
 
First step in the verification and validation is establishing the Verification and validation plan that 
contains a description of how the ASIC design and its corresponding subsystem is supposed to be 
verified and in the end validated, this corresponds to the safety validation planning in Figure 6. 
 
The subsystem verification planning shall consider: 
 - The selection of verification strategies and techniques 
 - The selection and utilization of test equipment 
 - The selection and documentation of verification techniques 
 - The evaluation of verification results 
 
The safety validation planning shall be carried out concurrently with the system architectural and 
detailed design and is required to include the following: 
 
Before engaging the safety validation a plan shall be established in order to specify those steps the 
safety validation shall be divided into. This plan shall consider the following: 

a) all requirements in the E/E/PES requirements specification 
b) The procedures to be applied to validate the implementation each safety function with their 

corresponding pass/fail criteria 
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c) The procedures to be applied when validate the safety integrity of each safety function with 
their corresponding pass/fail criteria 

d) The environment in which the tests are to be carried out and testing equipment 
e) Test evaluation procedures 
f) Test procedures and performance criteria for validating the specified EMI criteria 
g) Policies for resolving validation failures 

 
There are several ways to verify an HDL design: simulation, emulation, prototyping in FPGA or 
formal methods. The Verification Plan shall also define how to verify the ASIC in the subsequent 
design phases, in order to keep the functionality of the transformed ASIC design consistent with both 
the RTL code and the requirements specification. This verification plan shall also include the E/E/PES 
verification plan. That verification plan includes the criteria, techniques and tools to be utilized when 
passing through the design phases due to the requirements of safety integrity (Ref. [3], clause 7.9.2.1 – 
7.9.2.4). The E/E/PES verification plan becomes a natural but also required part of the ASIC 
verification plan. 
 
Simulation is the most widely used way of verifying the ASIC design. It has the advantage that the 
design can be observed in depth, and that simulation can be launched on sub designs early in the 
design phase. The creation of simulation test benches are crucial for the verification of the design in 
the subsequent phases, where the HDL code is transformed to hardware. The disadvantage of 
simulation is the sometime long simulation runtimes; this can in some cases be reduced by using 
emulators, which is a mixture of FPGA prototyping and simulation, where hardware emulates the 
design under simulator control. However, the hardware emulators are often very expensive. 
 
As the need for verification of the ever growing ASIC design complexity, new methods for 
verification based on formal methods have emerged. The formal methods aim at proving through math 
that the HDL code functionality is equal to the specification. This methodology is still quite immature, 
lacks sufficient tool support, and relies on the ability to specify the behaviour in a high level language 
other than the HDL. Best established currently is the Signal Property Checking, where the focus is to 
describe the behaviour of signals, usually the most important ones, and check their behaviour during 
simulation or by carrying out a formal proof of conformance to a Signal Property Specification 
(written in PSL language), also see [18]. 
 
The ASIC verification planning is covered in more details in the following sections. 
 
7.2.2.4. Requirements on the architectural HDL modeling and test bench design 
 
When the design architecture is established, the HDL coding can begin. This can include direct RTL 
coding, behavioural modeling or incorporation of third-party designs (e.g. IP’s, Intellectual Property). 
If needed, portions of the design can be implemented using a high level HDL description that 
subsequently can be refined to an RTL description. The goal of the Simulation Model step is to have a 
simulation model of the whole design. There is no requirement as to which level of detail sub modules 
of the design should be modeled, some modules can be in RTL and some as high level behavioural 
description. However, all critical modules should be modeled sufficiently to define their exact 
implementation. All hardware shall be treated as safety-related unless independency between safety 
functions and non-safety functions can be shown. If independence is required between safety functions 
this shall be documented and justified. 
Ref. [3], clause 7.4.2.5 
 
Throughout the coding phase of the design it is important to keep a good coding practice. This 
includes writing HDL code that is easy to understand, verify and maintain. As for conventional 
software it is important to apply a good coding standards a set of rules for how to write good quality 
code) and to document the code through comprehensive formatting, meaningful and unambiguous 
signal, variable, function and module naming. Clear and intuitive code shall be preferred to 
incomprehensible compact coding. The keyword is to keep the HDL simple and clean! Choosing a 
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good hierarchical decomposition, proper signal and variable types, clever data structures and as high a 
level of abstraction as possible (not sacrificing the detailed safety design requirements) will help safe 
HDL modifications subsequently. Throughout the code development documentation shall be 
maintained in form of well commented HDL code and as a part of the design documentation. 
 
These requirements apply for high level modeling, HDL test bench development and low level RTL 
modeling,- both levels shall be maintainable at all stages of the design flow. As most of the HDL 
transformation stages are controlled by command scripts (software), it is equally important that rules 
for good coding practice are applied here. The HDL transformation tools use different script 
languages; they can be standard languages as TCL or proprietary. Usually these scripts consist in 
sequential execution of different transformation tasks within the tool scope, and the level of 
programming is usually quite concrete and simple (no data structures etc.). The transformation tools 
are chosen and documented as a part of the ASIC development plan to cover the design process in the 
optimal way; this also implicitly defines the suite of programming languages used for the ASIC 
development. 
 
To ensure a consistent and transparent design development some form of version control must be 
applied. This ensures that all modifications have a history, are traceable and can be undone/redone if 
necessary. 
 
During the design phases the HDL design shall be reviewed, both in terms verifying the correct 
implementation of the functionality but also looking at the code implementation with regards to the 
chosen coding standards. This applies also for the scripts used for the HDL transformations. 
 
The result of this phase shall be an architectural design of the internal functionality of the ASIC with 
the subsystem architectural constraints taken into consideration. 
The output of this phase shall include: 

- E/E/PES architectural design 
- Subsystem architectural design due to the mentioned constraints (e.g. tape A or type B 

subsystem) 
- ASIC Internal architectural design and descriptions 
- All parameters in Table 8 (for the whole subsystem) 
- A simulation model of the ASIC design 
- Verification plan (all internal sub-modules in the ASIC) 
- Integration plan (How to integrate all sub-hardware modules, internally in the ASIC and 

in the subsystem) 
- Safety validation plan (Initiated, considering the subsystem and the ASIC architectural 

design) 
- Required documents 

 
7.2.3. Detailed Design 
 
In this phase the subsystem and the ASIC is detailed designed according to the architectural design 
specifications. During this phase the hardware safety requirements has to be considered. These 
requirements impact primarily on the subsystem but also on the detailed design of the ASIC. Figure 7 
depicts the steps to carry out during the Detailed Design phase of the ASIC design. The input from the 
previous design phase is a simulation model of the entire design. This model shall have been verified 
to be consistent with the requirements specification from the definition phase. 
 
The goal of the RTL Model step is to get a synthesizable HDL model. Modules of the design which 
have been modeled using high level behavioural constructs should be redesigned to RTL that can be 
synthesized. This requires the designer to be familiar with the language restrictions in the synthesis 
tool (not all HDL constructs can be translated to hardware), so the design work can include trial 
synthesis iterations for verification. This transformation is followed by verification by simulation, 
ensuring that the new model still behaves as required. 
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Prototyping in FPGA is another way of design verification and includes a full synthesis of the design 
targeted for the FPGA technology. The advantage is that the ASIC design functionality can be tested 
“real time” in the final environment (subsystem), thus avoiding very long simulation times. However, 
the ASIC design needs to be quite complete before the FPGA prototyping is recommended, because 
the means of design debugging is quite limited and cumbersome, when all signals are hidden away 
inside the FPGA. 
 
First step is the translation of the RTL model to logic hardware primitives (gates) found in the target 
process standard cell library. The technology process and silicon foundry has already been decided in 
the Definition Phase, and the technology setup for the hardware implementation of the design is a 
prerequisite. Translating the RTL model to a physical representation of the design is called Synthesis. 
Synthesis involves transforming the RTL model into a mathematical representation which can be 
optimized. 
 
The mathematical representation is then replaced by an identical representation, but this time 
consisting of hardware primitives from the technology library; this is called technology mapping. 
Upon technology mapping, the design is optimized, which involves choosing not only one 
implementation of the design, but choosing the optimum implementation between all available gates in 
the technology library. The optimization uses mostly two types of constraints: area and timing. The 
most important is to get the timing right, mostly dictated by the specified clock frequency. When the 
timing is fixed, then the area is minimized, while keeping the timing correct. Throughout the 
optimization, the drive capacity of all gates is observed, such that no gate must drive more gates than it 
is supposed to; otherwise the gate is replaced by one with higher driving capacity. It is important that 
the optimization algorithms keep any implemented redundancy between sub-modules so the detailed 
design remains to correspond with the architectural design. Modifications in the HDL-code might be 
necessary in order to achieve this. The output from this step is a gate level netlist, consisting of gates 
only (hardware primitives), stitched together by wire connections to form a physical representation of 
the design.  
 
After synthesis, or sometimes during, post production test support logic is inserted, called Design For 
Test. Usually this consists of hooking all flip-flops in the design up into large shift registers forming 
so-called scan chains. Scan chains gives in-depth access to the design, such that all gates in the design 
can be tested functionally after production. The design for test is handled by a tool that is able to 
automatically manipulate the gate netlist in order to get high overall testability of the design. Along 
with the design for test step, a test program using the scan chains is developed. This is done by another 
tool that analyzes all gates in the design and how to access them, how to test them and generates a test 
vectors that covers a maximum all possible manufacturing faults in the design. High detection 
coverage of possible manufacture faults is required in order to ensure that the chip has been 
manufactured correctly before the chip is mounted in the application. 
 
Both the synthesis and the subsequent design for test interacts closely with the RTL model, since if 
either fails, it is usually best to go back to the RTL model and do modifications. This usually means 
that several iterations from RTL coding to design for test are done during the design development. 
 
Since the design for test manipulates gate netlist by inserting test support logic, it is necessary to re-
optimize the design, ensuring that the additional test logic has not ruined the integrity of the design. 
The synthesis is concluded by a Static Timing Analysis that verifies that all the timing requirements in 
the design are fulfilled both for best case and worst case operating conditions. After this step the 
design is verified timing wise, leaving the functionality to be verified. 
 
For verifying that the design’s functionality has been maintained throughout the synthesis either 
simulation or Formal Equivalence Check can be used. The simulation is performed using the test 
benches used during the Architectural Design phase and applies “real-life” stimuli to the design. 
Simulation is done on the gate level netlist, where gates are replaced with simulation models, and 
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where gate and wire delay estimates are applied through a timing file (SDF, Standard Delay Format). 
This verifies that the design behaves correctly with the test benches both functionally and timing wise. 
However, since it is not uncommon to experience that simulations slows down 15 times when doing 
gate level simulations, it can be necessary to choose carefully between the functional test benches to 
re-run on the gate level netlist. One mandatory test bench is the post production test program, since it 
is very dependent on the test logic introduced during design for test, and also verifies that this test 
logic works as expected. 
 
Formal Equivalence Check is another way of verifying that the synthesis transformation of the design 
has maintained the intended functionality. This is done by comparing the RTL model and the final 
gate level netlist for equivalence. This method proves that all the logic constructs in the RTL model 
have been correctly translated into gates, but does not consider the timing of the design. Combined 
with a Static Timing Analysis, the formal equivalence check could replace most of the gate level 
simulation. However, most commonly, simulation is still performed, since it more easily enables 
debugging and gives a more comprehensible display of correct design behaviour.  
 
The integration testing applies both to the integration of the sub-modules in the ASIC and the 
integration of modules in the subsystem (including the ASIC when finished). In order to process the 
verification of the sub-modules and the system integration testing the modified V-model is useful and 
should be followed (see Figure 11). 
Documentation shall be provided for each step of the modified V-model and the integration tests shall 
be supported by available information about how the hardware safety integrity requirements are met. 
In addition to this following procedures are required by IEC 61508 and shall be considered whenever 
applicable: 

a) The E/E/PE safety-related systems shall be integrated according to the specified E/E/PES 
design and shall be tested according to the specified E/E/PES integration tests that were 
defined during the architectural design phase. 

b) All modules in the E/E/PE safety-related system shall be tested and shown to interact correctly 
in order to perform its intended function.  

c) Software shall be integrated according to [4] 
d) If a failure is detected, the reason for the failure and its correction shall be documented 
e) If a module is modified, an impact analysis shall be performed and possible re-verification 
f) Required integration testing documentation contain following information 

1) version of the used test specification 
2) criteria for acceptance of integration tests 
3) E/E/PES or subsystem version 
4) Tools/equipment and calibration data 
5) The result of each test 
6) Any discrepancy between expected and actual results 
7) The analysis made and decisions on continuing tests or modify the test object 

g) Techniques in table B.3 in [3] shall be used in order to avoid failures when performing the 
integration. 

 
When the design (subsystem design and ASIC design) has been sufficiently verified and integrated, 
the layout design is initiated. The subsystem PCB layout shall be designed according to the detailed 
design specification and the result of the verification tests and integration tests.  
 
Before the ASIC design layout can begin, a layout specification has to be made, additional formatting 
of the netlist is carried out and all the design constraints for the layout should be defined. This is all a 
part of the task signing off the design before layout ensuring that cumbersome and time demanding 
iterations can be avoided. 
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7.2.4. ASIC Layout design 
 
The layout is the final phase in the design development. This is where the gate netlist is translated to a 
physical representation of transistors, wires, diodes and other layout primitives. The process flow that 
shall be followed is shown in Figure 9. 
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Figure 9: Layout Design Flow. 
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First step in the layout is to plan how to organize the design on the chip, what is called Floorplanning. 
Memory blocks and other large sub designs shall be placed in the best way to minimize the layout area 
and to facilitate the wire connections between the individual blocks. Sometimes it is desirable to 
subdivide the whole design into functional blocks; area for these blocks that need to be implemented 
as separate layout blocks is allocated in the floorplan. Different power supply areas should also be 
placed as separate areas on the chip. The chip pin-out is also implemented during floorplanning. Not 
all of the floorplanning is decided here, much of the work has already been done during the previous 
design phases, such that the gate level netlist already, to some extend, reflects the planned chip layout. 
 
When the block layout of the chip has been decided, the standard cell layout can be generated. A 
standard cell layout consists of the physical implementation of the netlist (or parts of it), where the 
gates are replaced by their physical implementation and wire connections are replaced by metal wires 
in several layers (similar to a PCB). The physical gate consists of a configuration of transistors 
realizing the intended functionality and implemented in a way that enables gates to be placed in rows, 
one beside the other. All standard cells are placed and routed according the specified constraints, such 
that the size and shape of the block is correct and that the timing requirements are fulfilled. Insertion 
of buffers for correct timing of high fan-out nets such as clock and reset nets is also handled here. 
 
Sub-block Place & Route is the implementation of standard cell layouts for sub blocks of the design. 
This division can be useful for better control over the layout process and timing, or if the same block 
has to be used more than once or for reducing the layout complexity of the entire chip by subdivision. 
These sub blocks are then assembled with the rest of the blocks on the chip (e.g. memories etc.) 
according to the floorplan in the succeeding Chip Level Place & Route. Here, all wire connections are 
routed between the blocks and the cells driving the chip pins (pad cells) are added. After this step the 
chip layout is finished and the rest of the tasks are verification steps. 
 
The Layout Verification consists usually of two checks: DRC (Design Rule Check) and LVS (Layout 
Versus Schematic). DRC checks that the layout has been made in a way that can actually be 
manufactured, i.e. that the set of layout design rules for the process has not been violated; an example 
could be the minimum allowed distance between two metal wires. LVS is an equivalence check 
between the gate level netlist and the layout. This checks that the layout implements the gate netlist 
and that there are no short circuits between wires in the design. Passing these two layout checks are 
mandatory to all layouts. 
 
To prepare simulation and static timing analysis of the layout, actual timing delay is extracted from the 
layout. When simulating the gate netlist after synthesis, timing delays have been estimates based on 
assumed wire lengths. Now actual wire delays can be extracted and used for precise delay calculations 
for Static Timing Analysis and Simulation. Timing Extraction is usually done by the layout tool along 
with the layout netlist (containing added net buffers etc.). 
 
Because the layout tool may have added additional buffers or have re-arranged small portions of the 
logic, the final scan test program is not generated until now. The result Test Pattern Generation, also 
called ATPG (Automatic Test Pattern Generation) is simulated along with a selection of the test 
benches developed in the Architectural Design phase to verify that the functionality has been 
maintained through the layout phase. As after synthesis, the layout netlist can then be equivalence 
checked against the RTL model to verify that all logic functions have been translated to the physical 
implementation. 
 
Last step in the layout phase is to sign-off the layout to the foundry and to prepare the encapsulation in 
the package required by the specification by defining how the chip is to be placed and connected in the 
package. This is the last chance to make any last minute changes to the layout before sending the 
design to manufacturing. Test programs for the post production test are also finalized and verified 
through simulation and a test specification defining operating conditions etc. during test is written. 
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7.2.5. Implementation  
 
7.2.5.1. ASIC implementation 
 
The steps in the physical prototype implementation will only be covered briefly. The layout is 
represented as a database containing all the layer definitions that is needed to implement the chip in 
silicon. As mentioned earlier, the manufacture is similar to photo lithographical printing, so the first 
step is to produce the “negatives” defining the layers, called masks. The number of masks depends on 
the foundry process and may vary from around 10 to more than 30. In modern processes, the mask set 
is quite expensive, so foundries have programs where multiple customers share cost of the mask set 
for prototype production. 
 
After mask set production masks are “printed” on to silicon discs, the so called silicon wafers. The 
wafer is “stamped” with prints of the chip layers, one beside the other. This is done up to several times 
for each layer defined for the chip using very advanced technology. A wafer can contain several 
thousand chips in rows and columns, the so called chip dies.  
 
When the wafer is produced, all the chip dies are cut from the wafer by slicing the wafer in rows and 
columns. For encapsulation each of the chip dies are picked from the sliced wafer and placed in the 
package lead frame, to which the inputs and outputs of the chip die are connected through thin gold 
wires (called bonding). After bonding the encapsulation is finalized by adding plastic mould to the 
lead frame thus forming the exterior of the package. 
 
The final step in the manufacture of the chip is to test that the chip has been manufactured correctly. 
This is done by specialized test equipment where the test programs developed during the previous 
phase are used to assign stimulus to the inputs and to check the response on the outputs. These tests 
can be specified to be run at high or low temperatures or using various supply or input voltages. If the 
chip passes these tests, they are ready for shipment to the end user for Design Validation and 
verification in Application. 
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Figure 10: Implementation Flow. 

 
7.2.5.2. System implementation 
 
The implementation of the safety-related subsystem should be carried out in accordance with the 
E/E/PES design specification. All subsystems carrying safety functions shall be identified and 
documented. 
 
a) Following documentation shall be available for each safety-related subsystems, 

1) A functional specification of functions and interfaces that may be used as safety functions 
2) The estimated rate of failure (random hardware failure) that would cause a dangerous situation 

and that is detected by diagnostic tests (λDD) 
3) Same as b) but are not detected by diagnostic tests (λDU) 
4) Environmental limits for the subsystem in order to maintain the validity of the estimated 

failure rates 
5) Limit of the system life time in order to maintain the validity of the estimated failure rates 
6) Any periodic proof tests and/or maintenance requirements 
7) Diagnostic coverage (DC) 
8) The diagnostic test interval 
9) Information required for deriving a measure on the mean time-to-repair (MTTR), such as 

repair times 
10) Information required for deriving the safe failure fraction (SFF) ( see 7)  
11) The hardware fault tolerance 
12) Limits on the application subsystem in order to avoid systematic failures 
13) The highest safety integrity level that can be claimed for a safety function which uses the 

subsystem on the basis of: 
- Measures ant techniques to prevent systematic faults to be introduced during the design 

and implementation of the subsystem 
- The design features which makes the subsystem tolerant against systematic faults 
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14) Information required in order to enable the configuration management of the E/E/PES 
15) Documentary evidence that the subsystem has been validated 

 
b) The estimated rate of hardware random failures may be determined by either 

1) FMEA using component failure data from an industrial source (these data shall have a 
confidence level of > 70%). Site-specific data is preferred. The useful lifetime of the 
components shall also be noted (experience shows that useful lifetime often lies in the range 8 
to 12 years). 

2) From experience of previous use of the subsystem in a similar environment 
 
c) Proven in use: a subsystem may be considered as proven in use if following conditions are fulfilled: 
(if this requirement is fulfilled no information about measures and techniques for prevention and 
control of systematic faults is required) 

1) Clearly restricted functionality 
2) Documentary evidence of previous use (where all failures has been documented) 
3) The documented evidence shall demonstrate that the probability of failure (random hardware 

failure and systematic failure) is sufficiently low and corresponds to the specified SILs 
 
Refer to [3], clause 7.4.7.7 – 7.4.7.12 for further requirements on proven-in-use subsystems. 
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8. System Verification and safety validation 
 
The aim of the overall safety-validation is to prove that a function incorporated in a control system 
fulfils the specified safety requirements. In practice this means that the designer/assessor shall 
demonstrate that the control system has such an integrity that the end-user may trust the resulting 
function to be sufficiently safe and robust for its intended use. 
 
In the context of the present field of application, the following characteristics of a control system are 
addressed: 
 - Hardware safety integrity 
 - Systematic safety integrity 
 - HDL safety integrity 
 
These three properties are strictly dependent on the system design process (including documentation) 
and the resulting functionality of the control system (architectural design and detailed design). This 
may be defined as the functional safety by e.g. the two following specifications: 
 - The system functional properties specification (proven by validation) 
 - The system detailed design specification (proven by verification and test) 
 
The specifications listed above are used only to enlighten some aspects concerning the validation 
process. In a realistic design both specifications are included in the system design specification. 
 
The aim of the test and verification is to prove that the system conforms to the detailed design 
specification, i.e. that the current implementation corresponds to the intended design. Several aspects 
are considered during the verification such as the correctness of the synthesis result, the layout 
correspondence with the HDL description or the correctness of rule-checks. During the verification the 
functional correspondence with the technical specifications is also considered. 
 
The aim of the validation is to prove that the application conforms to the specification of the 
functional properties of the system, i.e. that the function of the system is correct and sufficient 
according to the specified requirements. Such functional properties may be the system behaviour at 
fault, the conditions for reaching a safe-state or the level of fault tolerance. The validation process also 
considers if implemented measures for fault monitoring/control are sufficient for their intended 
purpose. An example of this is to validate an implemented volatile memory test algorithm. A 
validation is commonly a mixture of theoretical analysis techniques and functional tests in order to 
assure that a specific function is “valid” for its intended use. 
 
The above mentioned approaches are included and required in the safety validation process. In order to 
make a reasonable judgment on the hardware-, the systematic- and the HDL safety integrity level one 
have both to assure that the design functions as intended and that the implemented functions are 
sufficient due to the EUC environment. 
 
8.1. Requirements on system verification 
 
In each design phase it shall be shown that the functional and safety integrity requirements are met. 
Methods for verification of the functional safety during the design are described in section 8.7.  
The subsystem design verification shall include all design phases. 
Ref. [3], clause 7.9.2.6 – 7.9.2.10 and table B.5 and table A.1 
 
Working with HDL for defining the electronic circuit behaviour has a number of advantages over the 
traditional PCB design development. First of all the circuit behaviour can be fully customized 
realizing only the needed functionality. Secondly the functionality can be simulated and debugged 
before being implemented. The latter is also a very important part in the design flow, since after 
manufacture of an ASIC there is little or no possibility for correcting design errors (this is not the case 
with an FPGA).  
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Verification of an ASIC design starts early in the design process, i.e. in parallel with the creation of 
the design. The verification plan is an outcome of the Architectural Design phase, and ensures that the 
design is verified to a satisfactory manner and that the functionality is maintained throughout the 
subsequent design transformation steps. Failures during verification shall result in corrective actions 
dealing with the failure by modifying the HDL code or modifying the transformation tools scripts if 
those are the cause of the failure. In the design flow description (section 7.2) there are several 
verification steps between design transformation phases from HDL to the prototype chip. Some of 
these steps are formal, proving that the behaviour is maintained after the transformation, others rely on 
simulation of various functional scenarios in a test bench.  
 
The development flow of HDL is quite similar to that of software. It includes top level system design 
from which the chip design specification is extracted. The chip is then designed in a top down manner, 
first defining the architectural breakdown, continuing with module design, and finishing with the 
actual module implementation and integration. Each block is then verified before being incorporated 
into the chip architecture and tested on chip level. The development follows the software development 
V-model, in the top-down designing and bottom up verification. But since the testing and verifying a 
HDL design is not a trivial task, especially when the target is an ASIC, it is important to start 
developing test benches early in the design process, such that the whole design process is not delayed 
or compromised by lack of test. It is not uncommon that much more than 50% of the total design time 
is spent on developing test cases and test benches. The emphasis on early test and verification 
development is shown in the modified V-model shown in Figure 11 where the test bench development 
is done in parallel with the design development itself. Also see [4], clause 7.1.2.4, which states that the 
designer of software may tailor the depth of the V-model provided that the software is developed and 
fulfils the extent of the software life cycle.  
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Figure 11: Modified V-model. 

 
As described in section 7.2.3, there exist various techniques to test the design. Some performs a formal 
proof of functionality others simulate behaviour on input stimuli. 
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8.1.1. Formal verification methods 
 
Formal methods are applicable for proving that all functionality has been maintained during the design 
transformation. Some of these are: 

a) Static property check: makes a formal proof to verify that the signal properties are correct for 
all possible input sequences. This is still a new technology, but carries high expectations for 
the future. The goal is to specify the circuit behaviour in terms of signal behaviour through a 
signal property specification. The compliance of the design with the signal property 
specification can be verified formally. Ideally the signal property specification could make the 
link between the design specification and HDL, but the signal property specification cannot 
replace the design specification. It can only complement it. 

b) Formal equivalence check: makes a formal proof that the RTL HDL has been transformed 
correctly. The RTL and the gate netlist are checked for full logical equivalence. The 
successful usage of the formal equivalence check relies on a correct RTL HDL design. 

c) LVS (Layout versus schematic): compares the layout primitives with those found in the gate 
netlist. This check ensures that the gate netlist is fully implemented by the layout. Successful 
use of LVS requires a correct gate netlist. 

d) Static timing analysis: analyses that all timing requirements for all gates in the design are 
fulfilled. This check requires that the timing for wires between gates are modeled, either 
extracted from the layout or estimated. 

 
An implementation of a verification flow using the above techniques ensures the RTL to layout 
transformation quite well. However, the first link from the design specification to the RTL is the weak 
point, as it relies on human interpretation of the specification, either as a signal property specification 
or as test benches. This is why the verification plan must focus on how to test and verify the RTL at a 
satisfactory level.  
 
 
8.1.2. Dynamic verification methods 
 
Apart from the static property check some methods are: 

a) Simulation: test cases and test benches are developed to test the design functionality. This 
should simulate the reaction of the design to correct and wrong inputs, thus simulating both 
correct behaviour and error handling. 

b) Dynamic property check: uses the signal property specification to assert a warning if a signal 
property has been violated. Relies on HDL test bench. 

c) Random test bench: generates random input (within some constraints) and simulates it with 
the design. This is used to stimulate the design with more or less obvious data to reveal well 
hidden bugs. This makes the creation of RTL test benches and test data easy, but the 
debugging of a possible failure can be quite difficult. This method verifies the design stability 
and robustness but does not directly verify its correct behaviour. 

d) Fault injection: injects an error in a signal (change the signal value) and simulate its 
consequence. The method tests the robustness and failure immunity of the design, but should 
only be applied in areas where this is an important feature. 

e) Code coverage: characterises the completeness of the RTL test bench by counting the number 
of times selected lines of code or constructs have been visited when running the test bench. 
Gives a statistical measure of how well the test bench simulates the design. 

f) Semi formal methods: based on coverage measures, formal methods are used to try to activate 
difficult areas of the design. This method relies on coverage metrics, which could be obtained 
from the test benches or from experience. 

g) Trial FPGA implementation: enables real time running of the design in its environment. 
Especially nice when the target is an ASIC. 
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8.1.3. Detailed verification plan 
 
It is apparent that the creation of proper test benches is crucial to ensure a correct design, which 
demands a well prepared verification plan. This plan could cover: 

a) Detailed specification of the test cases and test benches that should be run to verify the correct 
behaviour of the design on normal input stimuli. 

b) Detailed specification of the test cases and test benches that should be run to verify the correct 
behaviour of the design on erroneous input stimuli. 

c) Detailed specification on how the safety critical parts of the design are verified. 
d) How the design should be tested, i.e. the mix of test benches using different methods. 
e) Which tests should be done and at which level. Run time grows rapidly when performing gate 

netlist level simulations. 
f) When is the design tested well enough. A design can be tested infinitely, but when is the test 

satisfactory. 
g) How to handle the possible interaction with application software. 
h) How to model the environment and interactions. 
i) Plan for review of test benches. 

 
The test benches have to be reviewed just like the design itself. Much of the behaviour of the design is 
built in the test benches, and it is equally important that the functionality of the test benches is as 
correct as the functionality of the design. For the design validation it is as important that the design 
and the test benches are well documented and delivered for control. A “what-if” analysis is far easier 
to perform through an established test bench than by reading the HDL code. Thus the test benches are 
in fact a part of the design, not an appendix.  
 
8.2. Requirements on documentation 
 
Structured HDL and ASIC/FPGA development demand structured documentation. One established 
way of structuring the design documentation is described in [1]. Here the main objective is to record 
the design development as it progresses through the design phases, and eventually get a design 
documentation database that contains a design description along with justifications for all design 
decisions made during the design phases.  
 
The design phases contribute with different documents, starting from the requirements specification 
and the risk analysis via the HDL and the transformation tool scripts to the layout verification report. 
The following sections give a short description of documents that can be extracted during the ASIC 
design process presented in Figure 7 and Figure 9. 
 
8.2.1. Architectural design 
 
The main documentation from this phase consists of the design broken down to module level and a 
description of interfaces between modules. Decisions on how to implement algorithms and optimize 
them should also be covered. The verification plan is made and evaluated. The design results from this 
phase are: 

a) Verification plan: How the design should be verified throughout the design phases. 
b) Signal Properties:  High level behaviour of selected signals 
c) Test bench: Documentation on setup and on how to operate the test benches. 
d) Simulation Model: Behavioural description of the design 
e) Simulation: Results of the simulations 

 
8.2.2. Detailed design 
 
This phase mainly consists of transforming the design from a high level description to a netlist 
description. This involves a number of automated transformations, which all include scripts for 
controlling the transformation. The work and decisions performed during this phase must be 
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documented. After transforming the design it must be verified. The result of these verifications must 
be documented. The results from the process steps during this phase are: 

a) Simulation: Result of simulating the RTL model 
b) Formal Verification (Property Check): Formal proof of conformance with the signal property 

specification 
c) Synthesis: Control script containing decisions and method, and log file containing transcript of 

all operations 
d) Design for Test: Control script and test solution decisions. 
e) Re-Optimization: Control script containing decisions and method, and log file containing 

transcript of all operations 
f) Static Timing Analysis: Timing report 
g) Gate level simulation: Simulation results of gate netlist 
h) Formal Equivalence Check: Equivalence proof between RTL model and gate netlist. 

 
8.2.3. Layout design 
 
As for the previous phase most of the transformations in this phase are automated and script 
controlled. The documentation will therefore contain a description of the performed work, decisions 
taken, and report the results of the verification. The results gathered during this phase are: 

a) Floor planning: Report of decisions and flop plan strategy for the chip layout. 
b) Sub-block Place & Route: Control scripts and area and timing report in log file 
c) Chip level Place & Route: Control scripts and area and timing report in log file 
d) Layout Verification: Design rule check report and “Layout vs. Schematic” validation report 
e) Static timing analysis: Timing report 
f) Test Pattern Generation: Production test fault coverage 
g) Layout Level simulation: Simulation result of layout gate netlist 
h) Formal Equivalence check: Equivalence proof between  RTL and layout gate netlist 

 
For more information about system verification refer to e.g. [19] 
 
 
8.3. Requirements on safety validation 
 
This clause contains a brief introduction to some commonly used validation methods. None of the 
analysis methods mentioned are compulsory but they are all strongly recommended. It is assumed that 
the design process described in section 8 of this report has been followed and that all required 
documentation has been produced. 
 
The design process described in section 8 shall be verified both for compliance with the requirements 
listed in this report and with all additional relevant requirements listed in standards [1] and [2]. The 
validation shall furthermore be carried out in accordance with the validation plan produced during the 
design process. 
 
Following documents are particularly important: 
 -E/E/PES Safety requirements specification, that includes: 
 -E/E/PES Safety functions specification 
 -E/E/PES Safety integrity requirements specification 
 -E/E/PES Safety validation plan 
 
The validation methods mentioned in this section are not trivial in practice and there are several cases 
and system configurations that require a deeper understanding of these methods than mentioned here. 
When validating/verifying a real E/E/PES most of the described methods require computer aid. 
 
Not all recommended validation methods and analysis techniques are addressed in this clause, for 
further information about other suitable methods see [7]. 
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When performing the safety validation the below requirements shall be considered: 
 
8.3.1. Requirements on E/E/PES safety validation 
 
The objective of safety validation is to validate that the system fulfils the safety requirements for 
safety functions and safety integrity levels, entirely. The validation shall be carried out according to 
the validation plan. All used measurement instruments shall be calibrated against a traceable standard 
or a well-recognized procedure. The instruments must also be verified for correct operation prior to 
use.  
 
Each E/E/PES safety function specified in the safety requirements specification shall be validated by 
test and/or analysis. The E/E/PES maintenance and operation procedures shall also be validated. 
 
For each safety function validated the following documentation shall be produced: 

a) Version of the safety validation plan 
b) The tested (or analyzed) safety function with reference to the safety requirement specification 
c) Tools and equipment along with calibration data 
d) Test results 
e) Discrepancies between expected and actual results. Following additional documentation shall 

be added for the discrepancies: 
f) The analysis made 
g) Decision made on continuing test or issuing a modification request 

 
The developer of the EUC and the EUC control system shall have access to the results of the 
performed safety validation. In order to avoid faults during the performance of the validation [3], table 
B.5 should be used. 
 
If a deviation that requires a design modification is detected during the validation the requirements 
listed in clause 8.3.2 below must be considered. 
 
8.3.2. E/E/PES Modification 
 
The required safety integrity of an E/E/PE safety-related system shall remain after 
corrections/modifications. Regarding ASIC-based systems this is an important matter since such 
systems often are ISP. 
 
[3] requires the following documentation after a system modification activity: 
 - Detailed specification of the system modification 
 - Analysis of the modification impact on the overall system (e.g. hardware, software, human 

interactions) 
 - All approvals for changes 
 - Progress of changes 
 - Test cases for components including revalidation data 
 - E/E/PES configuration management history 
 - Deviations from normal operations and conditions 
 - Necessary changes to system procedures 
 - Necessary changes to documentation 
 
Manufacturers or system suppliers shall maintain a system in order to inform the users of detected 
defects affecting the safety. Modifications shall be performed with at least the same level of expertise, 
automated tools, planning and management as the original design for fulfilment of IEC 61508. 
 
After modification the E/E/PES safety-related system shall be reverified and revalidated. 
Ref. [3], clause 7.8 
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8.4. Methods for static analysis 
 
Static analysis techniques aim to theoretically prove that particular requirements are fulfilled or point 
out the parts of the design that shall be subject to further dynamic analyses and functional tests. 
 
8.4.1. FBA (Functional Block Analysis) 
 
Aim: 
To extract the safety-related parts of the subsystem and to provide the analyst with knowledge on how 
different parts (modules) of a subsystem interact.  
 
Performance: 
The FBA method produces a graphical presentation of the parts of the subsystem subject to further 
detailed analysis. This method is usually the first to be performed in a safety validation. Several 
persons may/should be involved in the analysis performance process. The performer(s) of the analysis 
may select different graphical representations and/or system levels depending on what kind of system 
is analyzed. 
 
Result: 
The result of the method is not necessarily restricted to either software or hardware. It shall rather give 
an overview of the complete function. Great care should be taken when performing the FBA as the 
result will not only incorporate safety-related parts of the subsystem but will also exclude parts not 
considered to be safety-related. It is important that no part of the subsystem that may affect the safety 
function is excluded.  
 
 
One method of analyzing HDL is to use equivalent hardware circuit diagrams. This method has 
several advantages:  
 - The process of drawing the result of FBA is often automated (i.e. the possibility of 

illustrating the VHDL code as a circuit diagram is commonly integrated in the development 
tool) 

 - The ASIC under consideration will be transparent due to its surrounding electronics 
 - The FBA will clearly display the level of separation (redundancy) between channels 
 - The FBA will prepare for other static analysis methods such as data flow diagrams and 

FMEA 
 - The FBA may be hierarchically presented. This is necessary for more complex systems 
 
Applicability: 
 - All system levels in the hardware platform 
 - System levels in the HDL description covering the RTL-description and higher levels. 
 
Example: 
See appendix B figure B.2 and B.3 which both are different kinds of FBAs 
 
See [7], Annex B.2.3.2 
 
8.4.2. DFA (Data flow Analysis) 
 
Aim: 
To determine exactly which parts of the system affecting a safety-related data path and which data 
variables/signals are involved in the occurrence of a single safety-related event resulting from the 
alternation of the system input signals.  
 
Performance: 
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A graphical representation of the data flow from input signals to safety-related output signals is 
produced. The data flow analysis is independent of the conditions involved in the chain of events but 
considers only information carrying signals. One safety function usually contains several data flows.  
 
Result: 
The analysis technique gives information about e.g. 
 - Information stored in the system which affects the safety function 
 - Implemented data diversity/redundancy 
 - Allocation of safety-related information in the system 
 - Conformance with the system specification 
 
Applicability: 
 - All system levels in the hardware platform 
 - System levels in the HDL description covering the RTL-description and higher levels. 
 
See [7], Annex B.2.3.2 
 
8.4.3. SSA (Signal Sequence Analysis) 
 
Aim: 
To determine the logical conditions and required sequence of events that enable input signals to affect 
a safety-related output; similar with the control sequence analysis described in [7]. 
 
Performance: 
The HDL code and the detailed result of the FBA are studied and a graph is produced with emphasis 
on showing all conditions that have to be fulfilled before any input is allowed to affect a safety-related 
output. By manually parsing the HDL and interpreting the code as circuit primitives (such as gates, 
multiplexers, registers) the code may be drawn as a circuit diagram that displays the functionality at 
the level of granularity required for the analysis purpose. Only specifically interesting parts of the 
design should be considered. 
 
Result: 
A graphical presentation of the relationship between different signal conditions used to illustrate and 
clarify specific safety-related sequences of events and condition consistency. 
 
Applicability: 
 - This analysis technique may be used for parts where it is not more illustrative to use STDA  
  (See section 8.4.4). 
 - All system levels in the hardware platform 
 - System levels in the HDL description covering the RTL-description and higher levels. 
 
See [7], Annex B.2.3.2 
 
8.4.4. STDA (State transition Diagram Analysis) 
 
Aim: 
To analyze a sequence performed by the system focusing only on the system conditions for state 
transitions due to safety-related signals regardless of the source of individual signals.  
 
Performance: 
Studying the safety-related parts of the control system and constructing a graphical state transition 
diagram that includes all safety-related states and all other states that have the possibility of transiting 
to the safety-related states. The state transition diagram shall model the system control structure. A 
recommendation is to apply the technique at a sufficiently high system level. 
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Result: 
 - The order of interlocking events for initiating a safety-related action 
 - The conditions for the above mentioned events 
 - Possibilities of entering fail-safe states 
This analysis technique is very suitable for HDL realized subsystems as any sequence process will be 
implemented as a physical state machine in the hardware. 
 
Applicability: 
 - All system levels in the hardware platform 
 - System levels in the HDL description covering the RTL-description and higher levels. 
 
See also [7], Annex B.2.3.2 
 
 
8.4.5. FMEA (Failure modes and Effects Analysis) 
 
Aim:  
To identify possible sources of failure in the system components and to determine the consequences in 
terms of system behaviour due to the occurrence of these failures. 
 
Performance: 
Failure modes and effects analysis is a bottom-up method that analyses potential failure modes and 
their causes and effects on system performance. To be able to perform an FMEA a predefined fault 
model has to be selected. The fault model defines how the system elements may fail in operation and 
how extensive the FMEA will become. The FMEA is not necessarily restricted to electronic hardware. 
It may be apply as well on e.g. firmware, communication protocols, mechanic systems, pneumatic 
systems or hydraulic systems.  
 
8.4.5.1. Defining the scope of the analysis 
Because the FMEA is a detailed analysis it usually becomes large. It is therefore necessary to extract 
only the parts of the system that are relevant for the analysis. The easiest way is to create a functional 
block diagram of the system and reduce the non safety-related blocks (FBA). The functional block 
diagram gives an overview of the system at a high system level. It is important to carefully study all 
interfaces between the blocks so that no safety-related signal is forgotten and thereby excluding a 
safety-related part from the analysis. The result of the functional block diagram reduction should be 
documented and motivated. 
 
8.4.5.2. Determining the system success/failure criteria 
The requirement for fault tolerance is defined by a product standard or as a result of a risk analysis and 
is often very general. It is recommended to translate the requirement into a criterion that is precisely 
defined for the actual safety function(s) in the system to be analyzed. It is also important to distinguish 
the different operational states of the system and how the requirement(s) applies(y). 
Examples of operational states: 
Start-up, operation, shut-down, degraded-operation, safe-state, and safety shut-down. 
 
8.4.5.3. Defining the failure model 
The following aspects should be considered and documented before engaging the analysis: 
 - The environment in which the system is to be used 
 - The failure mode behaviour with respect to time (transient, intermittent, permanent) 
 - The type of failure mode to be analyzed (random single failure, common cause failure, 

differential cause failure) 
 - The applicability of failure modes (may some failure modes be excluded? This is often 

mentioned in the product standards or component specific data sheets) 
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The failure model does not necessarily concern single components. An FMEA may as well be 
performed at a higher system level using failure modes that involve a group of components within 
subsystems.  
 
8.4.5.4. FMEA worksheet 
 
The FMEA is performed by using a worksheet. The following example illustrates how an FMEA 
worksheet may be formed: 
Table 9: FMEA example worksheet 

Ref. Component Failure 
mode 

Local effect System effect Failure detected? Failure 
dangerous?

1 R11, 10k 
5W 

Short Motor 
overload 
protection 
disabled 

Unintended 
motor stop 

Yes (motor 
overload 
monitor/protection)  

No 

2 Push-button 
SW3 

Short CPU receives 
start command 

Unintended 
motor start-up

No Yes 

 
Each component/element included in the FMEA is listed with its corresponding failure modes and 
effects. For more detailed information about the FMEA worksheet see [12]. 
 
Result: 
The result of the FMEA is especially used when claming conformance with the requirements in  
IEC 61508 and is compulsory to determine the DC and SFF. 
 
Applicability: 
 - All system levels in the hardware platform 
 - System levels in the HDL description covering the RTL-description and higher levels. 
 
See also [7], Annex B.6.6.1 
 
8.5. Methods for dynamic analysis  
 
Aim: 
Prove that particular requirements are fulfilled by testing specific properties of a physical prototype or 
product. These techniques are used for the validation of a complete subsystem to show that the 
functional requirements concerning the system properties are fulfilled. The methods and techniques in 
this section are referred to as FIT (Fault Injection Testing) and SPT (System Property Testing) in 
section 8.8. 
 
Performance: 
Dynamic method performance depends on the tool in use. 
 
Result: 
Evidence that the requirements for the system behaviour or system properties are fulfilled.  
The result is limited to the extent of the specification of the actual dynamic test procedure.  
 
Applicability: 
These methods may apply during the design process (verification) but primarily on an end-line 
prototype. 
 
Example: Verifying that the time-requirement is still fulfilled regardless of an applied failure mode 
derived from a previous FMEA.  
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See also [7], Annex B.6.5 
 
8.5.1. Simulation/Test benches 
 
The VHDL design tools provide powerful means for simulating operation of all parts in a VHDL 
design and are therefore suitable in most stages of the design process. One example is the verification 
of state transitions in the V-model. Such tests shall be planned and performed according to the 
requirements in section 8.1. 
 
Test benches are VHDL models that act as the circuit surrounding electronic in the VHDL simulation 
tool and that generate input signals and handle the corresponding output signals. These are very useful 
in order to verify functional compliance with the system specification. The part of the design subject 
to the test bench is, from the test bench point of view treated as a black box. The detailed test bench 
design should be planned concurrently with the design. 
 - The verification result depends on the test bench design 
 - The results are retrieved from the simulator “ideal”-environment which may lack influential 

factors from the physical environment (such as at-speed-failures, specific environmental 
stresses or degradation in the circuit construction process) 

 
8.5.2. ASIC Emulation 
 
ASIC emulation is similar to microprocessor emulation and is performed by applying an emulator pod 
to the application hardware platform and connecting that pod to a VHDL simulator environment. The 
emulation is a circuit simulation where the test bench in fact is the physical application platform. 
 
8.5.3. Fault injection 
 
Fault injection is a means of failure analysis where the fault is injected into the hardware and the 
consequence of the failure is directly analyzed in operation. There are several different means for 
injecting failures into the design and then analyzing the result of the failures. Different types of fault 
insertion are presented in the following sections. 
 
8.5.3.1. Design 
 
The fault is injected by design modifications, e.g. forcing a signal to a certain value. The consequence 
of the fault is analyzed by simulation, emulation or during normal operation (when using ISP 
programmable logic). It is important to correctly restore the design after having analyzed a fault. This 
way of inserting the fault is passive. The inserted fault is a permanent fault. 
 
8.5.3.2. Saboteurs 
 
A saboteur is a more or less complex device that injects a fault as a function of its input parameters, 
i.e. the fault injection is conditional. Examples of saboteurs may be: 
 - Replacing a certain package in a communication process with an faulty package 
 - Forcing the value in a register at a certain time 
 - Varying the persistence and moment of occurrence for a single fault 
 
The saboteur may also be connected to the test bench and hence allowing automated parametrical fault 
injection. When using saboteurs the following should be considered, 
 - The effect on the normal operation of the system shall be minimized (e.g. a saboteur may 

prolong the delay-time and hence faulty enhancing the system ability of detecting the fault 
injected) 

 - It is important that the saboteur is correctly removed from the design after use. The injected 
faults from a saboteur may be permanent, intermittent or transient and affect all functional 
system levels of the design. 
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8.5.3.3. Environmental influences 
 
Additional to the required environmental tests further tests may be used for fault injection. Examples 
of environmental fault injection may be: 
 - Transient voltage injection on the system inputs (Power supply, Clock signal, I/O etc.) 
 - Heavy ion injection (injects a large amount of stochastic single point failures at a given time 

period) 
These methods require a sample of the implemented system and the tests are not applicable if using 
e.g. a prototype implemented in a fine grained FPGA. The repeatability of these tests is low for 
detected failures and it is difficult to localize the fault that causes the failure. 
These methods should primary be used on designs in which the safety function depends on the ASIC 
and as complement to all other methods mentioned in this report.  
 
8.6. Methods for reliability analysis 
 
Methods for reliability analysis are a subset of static analysis methods and aim to predict or estimate 
quantitative measures of the reliability of a system, subsystem or component. 
 
Aim:  
To estimate the probability of failure for a system, a subsystem or a component. 
 
Performance:  
Safety-related parts are distinguished from the design. A reliability measure is retrieved for each 
component (which may be subsystems) in the safety-related part and by using the methods below the 
resulting reliability measure is estimated for the complete safety-related part. 
 
Result: 
One single reliability measure for a subsystem or safety-related part. 
 
Applicability: 
Subsystem level; it is not possible to perform trustworthy reliability estimations within an integrated 
circuit. 
 
References: [9], [11], [13] 
 
8.6.1. Reliability Block Diagram (RBD) 
 
The reliability block diagram aims to describe a system function in terms of the reliability of the 
system elements composing that particular function. The reliability block diagram describes the 
function by connecting its elements, usually in series, in parallel or using a combination of 
components series and in parallel. A reliability measure is assigned to each element. The RBD is 
eventually used for rendering a reliability measure for the complete function.  
 
All elements are assumed to be completely independent of each other. Failures or repairs to individual 
blocks are considered to be statistically independent events. The RBD is not suitable for modelling 
order or time dependent events; compare other modelling techniques such as Markov analysis for such 
cases. 
 
The RBD does not necessarily represent the physical hardware of a system but the relationship 
between different functional elements that combined form a system function. Each element in an RBD 
represents substructures that may represent another RBD (system reduction). 
 
In order to construct the RBD the following topics have to be considered: 
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 - The system fault definition (e.g. FMEA) 
 - Performance parameters and permissible limits of such parameters 
 - Environmental and operating conditions 
 - Duty cycles 
 
8.6.1.1. RBD model evaluation 
 
Consider appendix A that states the relationship between the reliability function R and the unreliability 
function Q so that R = 1 – Q 
 
Series models: 
The resulting reliability is given by multiplying the individual reliability of all elements that contribute 
to the realisation of the function. The function will operate success only if the reliability is > 0 for each 
element at a given time. 

∏
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=
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where N is the number of elements in series and RN is the reliability for each element. 
Rtot = R1R2 for N = 2 
 
Parallel models: 
The resulting unreliability is given by multiplying the individual unreliability of all elements that 
contribute to the realisation of the function. The function will fail only if the reliability = 0 for each 
element at a given time. 
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where N is the number of elements in series and QN is the unreliability for each element 
This may be expressed in terms of reliability using the relationship R + Q = 1 
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Rtot = R1 + R2 – R1R2 for N = 2 
 
More complex models 
If the RBD cannot be expressed only as a combination of elements in series and in parallel another 
approach has to be used. 
 
Using the conditional probability rule 
Rs = Pr(SS/X operational) x Pr(X operational) + Pr(SS/X faulty) x PR(X faulty) 
 
Rs denotes the system reliability 
Pr(SS/X operational) – The probability of system success if element X is operational (Rx = 1) 
Pr(SS/X faulty) – The probability of system success if element X is faulty (Rx = 0) 
 
When using this formula the RBD is calculated in steps in order to retrieve the above described 
parameters. The formula is then applied to retrieve Rs. 
 
Using Boolean truth tables 
Any RBD may be displayed in a truth table where all blocks are represented as either operational (rn) 
or faulty (r´n) and in all possible combinations. The table will contain N columns and 2N rows, if N is 
the amount of elements in the RBD. The resulting expression is formed by the sum of products of each 
row that makes the system success (SS) become true. 
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Example of a simple RBD: 
This example illustrates how the described methods for evaluation may be used. 
 

 A  B

 C

I O

 
Figure 12: Simple RBD example 

 
Using series and parallel model expressions, 
A in series with B  RAB = RARB 
C parallel to RAB  RS = RAB + RC - RABRC = RARB + RC - RARBRC 
The resulting system reliability from Figure 12 becomes: RS = RC + RARB(1-RC) 
 
Using a truth table 

Table 10: Truth table example 

A B C SS 
0 0 0 F 
0 0 1 T 
0 1 0 F 
0 1 1 T 
1 0 0 F 
1 0 1 T 
1 1 0 T 
1 1 1 T 

 
Rewritten in a Boolean expression the system success formula becomes, 
SS = r’A.r’B.rC + r’A.rB.rC + rA.r’B.rC + rA.rB.r’C + rA.rB.rC 
 
Using basic Boolean algebra this formula may be minimized to: 
SS = rC + rA.rB.r’C 
 
By inserting the reliability terms the system reliability formula is created, 
Rs = RC + RARB(1-RC) 
 
Substitution of probability variables by Boolean variables 
Instead of using truth tables it is sometimes more suitable/convenient to use general Boolean algebra 
for such analyses. The algebraic method is the most straight forward method when 
 - the RBD contains several similar elements 
 - the RBD contains directional relations between elements 
 - the RBD is complex 
 
It is although important to keep following in mind when using Boolean algebra: 
A system contains two redundant subsystems A and B with the Boolean survival variables a and b. 
The system success may be expressed in Boolean form as, 
SS = a + b 
 
The variables are overlapping each other and therefore this relation cannot be substituted directly by 
probability variables as previously when using the truth table method (The result would incorrectly be 
Rs = RA + RB) 
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In order to get a correct result the Boolean form SS = a + b first has to be re-written in order to ensure 
that the variables are not overlapping. This process is called disjointing and after the process has been 
performed no term in a sum of products overlaps another term. One way to disjoint the example above 
is: 
SS = a + a’.b 
 
After substituting the probability variables into this rewritten expression: 
Rs = RA + (1-RA)RB which is correct. 
 
Each term of a Boolean expression has to be disjointed with respect to every other term. Two terms 
are mutually disjointed if at least one variable in one term appears in its complementary form in the 
other term. 
 
Disjointing a Boolean sum-of-products with two terms: 
Assume two terms T1 and T2. In order to disjoint T2 with respect to T1 use the following steps, 
 a)  Retrieve all variables from T1 which do not appear in T2 (assume v1,v2,v3,v4) 
 b)  Expand T2 with T2* = v’1.T2 + v1.v’2.T2+v1.v2.v’3.T2 + v1.v2.v3.v’4.T2 
 c)  Resulting sum-of-products: T1 + T2* where the two terms are disjointed with respect to each 

other 
 
Procedure for a complete sum-of-products: 
Assume SS1 = T11+T12+..+T1n, T11 is the reference term 
 1)  Disjoint with each term T12 .. T1n as described above (T11 –T12, T11 – T13 , .. , T11- T1n) 
 2)  Simplify the resulting SS1 but keeping the sum-of-product form: SS2 =T21 + T22 + .. + T2n 
 3)  Repeat the procedure 1-2 using on SS2 using T22 as the reference term (T21 is now disjointed 

with the other terms and may therefore be left out) 
 4)  Continue 1-3 until all terms are disjointed, and the result is SSn = Tn1 + Tn2 + .. +Tnn 
 
The following example shows how the disjointing procedure may be manually performed. When a 
Boolean expression is larger it may be suitable to implement the procedure as an algorithm in a 
computer. 
Assume that the following Boolean expression is extracted during an analysis, 
SS = a.b + b.c + d where T11 = a.b, T12 = b.c, T13 = d 
 
Step 1.1 
SS1 = SS 
First handle T11 and T12.  

a) Find variables in T11 that do not appear in T12: a 
b) T12* = a’.T12 = a’.b.c 

Handle T11 and T13 
a) Find variables in T11 that do not appear in T13: a.b 
b) T13* = a’.T13 + a.b’.T13 = a’.d + a.b’.d  

 
Step 1.2 
And hence SS1 becomes: 
SS2 = a.b + a’.b.c + a’.d + a.b’.d, where T21 = a.b, T22 =a’.b.c, T23 = a’d, T24 = a.b’,d 
The first term T21 is disjointed with all other terms. 
Handle T22 and T23 

a) Find variables in T22 that do not appear in T23: b 
b) T23* = b’.T23 = b’.a’.d 

Handle T22 and T24 
a) Since T22 contains b and T24 contains b’ they are already disjointed 
b) T24* = T24 
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Step 1.3 
Hence SS2 becomes: 
SS3 = a.b + a’b.c +a’.b’.d + a.b’.d, No pairs of terms lack a common variable that is not 
complementary and therefore is all terms are disjointed and ready for substitution with probability 
variables. 
After some simplification of SS3 the final result becomes, 
SS = b(a + a’c) + b’d 
 
When performing this procedure, one should always range the sum-of-product so that the term with 
the lowest number of variables is used as the first reference term (T11) and the term with highest 
number of variables as the last (Tmn). 
 
Comments about disjointed Boolean expressions: 
 - The result of the method allows substitution of probability variables (reliability variables) 
 - The method may be efficiently used in Boolean expressions arising from Fault Tree Analysis 
 - Instead of substituting reliabilities by the Boolean variables, availabilities can be used 
 
For more information about this topic, see [11]. 
 
8.6.2. Fault Tree Analysis 
 
The fault tree (FT) analysis technique is a method for top-down analysis that is suitable for both 
qualitative and quantitative analysis of E/E/PE systems. The FT displays the relation between a top-
event and its intermediate events. Logical gates exclusively determine the relationship between these 
events. All events in the FT are required to be independent of each other. The FT method is a cause-
consequence process and when applied on E/E/PE system reliability it becomes an efficient tool for 
analyzing the E/E/PE system provision for failure and risk reduction. 
 
In the process of developing the FT the top event (basic system failure) becomes divided into its 
intermediate events (lower system level faults) and their corresponding relationships. The granularity 
of the FT is then refined and expanded until the lowest desired system level is reached. The final 
events are denoted basic events, which also define the limit of resolution for the entire FT. 
 
In the figure below some basic FT symbols are viewed. For further information about other symbols, 
see [13]. 
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1) 2)

3) 4)

5)

 
Figure 13: Basic FT symbols. 

 
Figure 13 Symbol 1) – The OR-gate. This gate is used when a failure (event) is occurring if any of the 
intermediate failures (events) occurs. 
 
Figure 13 Symbol 2) – The AND-gate. This gate is used when a failure (event) occurs only if all 
intermediate events occur.  
 
Figure 13 Symbol 3) This symbol illustrates the top event or intermediate event. The interpretation of 
such an event may be e.g. the failure of a system, the failure of a subsystem or function or the failure 
of a component depending on which level in the FT the symbol is present.  
 
Figure 13 Symbol 4) This symbol is referred to as a house event which means that this particular event 
is expected to occur. The house event does not necessarily have to be the consequence of a fault. 
 
Figure 13 Symbol 5) This symbol illustrates the basic event which also defines the limit of resolution. 
The interpretation of these events also differs depending on the system level at which they are used, 
e.g. short in a resistor, failure to generate correct PWM-signal, source code execution fault etc. In 
order to enable quantitative analysis the probabilities for these events have to be retrieved from an 
external source. 
 
When the FT is finished it may be used for quantitative analysis. This is done by forming a Boolean 
expression where the basic events are the Boolean variables. In order to replace the Boolean variables 
with probability variables refer to section 8.6.1.1 substitution of probability variables into Boolean 
variables.  
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Figure 14: Fault tree example. 

 
To render a Boolean expression for the FT example in Figure 14, 
ETOP = E0 + E1, E0 = E2.E3, E1 = e+f, E2 = a.b, E3 = c.d 
 
ETOP = a.b.c.d + e + f 
 
In order to perform quantitative analysis, the Boolean expression must first be disjointed. The result of 
the disjointing procedure is, 
ETOT = a.b.c.d.e’.f’ + e’.f + e 
 
8.6.3. Markov chain modeling 
 
The Markov chain considers a sequence of events and analyses the transition paths from any state to 
another. There are two basic Markov analysis methods, the Markov chain  
(Discrete states and discrete time domain) and the Markov process (continuous states). A Markov 
chain may be described as: 
 - homogeneous, with constant transition rate between states or  
 - non-Homogeneous, where all transition rates are functions of a global clock (e.g. elapsed 

mission time).  
 
The Markov model analyses the probability of the transition between one known state (i) to the next 
state (j) where i,j = 1,2,3…n . Any transition is assumed to be completely independent of the previous 
states and the time of occurrence of the previous transition. 
 
In terms of reliability Markov modelling may be used to analyze the probability of system failure. The 
basic principle of the Markov chain is displayed in the example below, 
 

A B

λ

µ

1−λ 1−µ

 
Figure 15: Simple Markov model example 
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The Markov chain in Figure 15 exemplifies an E/E/PES where the system is either in the state A – 
operational or in the state B – failed. The system will remain in the state A until – Operational until a 
failure occurs and results in a transition to the state B - failed. The transition between A and B is 
determined by the failure rate λ(t). The system will remain in the state B - failed until it is repaired and 
hence re-transit to the system operational state A. The transition between B and A is determined by the 
repair rate µ(t) . 
 
The example above is coarse and while expanding the analysis to more detailed system levels the 
Markov chain will grow into a state transition diagram possibly including a huge amount of states and 
transitions.  
 
The Markov chain is often described in mathematical terms as:  
 
(E1) PAPdt

d ⋅= ][  
 
where P  is an 1 x n column vector, [A] is an n x n matrix and n is the total number of states to be 
considered during the analysis. 
 
The matrix [A] is obtained by examining the system due to each state n and the probability for the 
system of being in each of the state n at a time t + ∆t as a function of the current state of the system at 
time t. 
 
Consider for example an E/E/PE system or subsystem providing a service that is composed of two 
separate functions. If one of these functions fails the system is degraded but still operational, if both 
functions fail, the service is disabled and detected by the system that hence becomes enabled for 
repair. The E/E/PE system is designed to minimize the common cause factor (β). 
 

S1 S2 S3

µ∆t

λ1∆t λ2∆t

1-λ1∆t 1-λ2∆t 1-µ∆t

 
Figure 16: Example Markov chain. 

S1 –  The system is fully operational 
S2 –  The system is degraded in operation but remains to deliver the service. Since the failure 

does not affect the service, the repair rate from this state is considered as larger than the 
system life-time. The system cannot recover from this state. 

S3 –  The system is disabled and cannot deliver its service, the system will remain in this 
state until repaired. 

 
In this example n = 3 
 
The A matrix is composed of all the equations Pn for n = 1..3 (where Pn is the probability for the 
system of being in state n at the time t + ∆t expressed as a function of the system state at time t) so that 
the probability of being in one of the states Pn at a given time t always equals 1. 
 
The probability of P1 therefore equals the probability of not transit to P2 or being repaired and hence 
transiting from P3 during ∆t. The probability of P2 equals the probability of either transit P1 P2 or 
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not transit P2 P3 during ∆t. The probability of being in P3 equals the probability of transiting to P2 
 P3 or not being repaired during ∆t. 

 
P1(t + ∆t) = P1(t) [1-λ1∆t] + P3(t) µ∆t 

 P2(t + ∆t) = P1(t) λ1∆t + P2(t)[1-λ2∆t] 
P3(t + ∆t) = P2(t) λ2∆t + P3(t)[1-µ∆t] 

 
The above equations may be rearranged into, 
 

[P1(t + ∆t) - P1(t)]/∆t = -P1(t) λ1 + P3(t)µ 
 [P2(t + ∆t) – P2(t)]/∆t = P1(t) λ1 - P2(t) λ2 

[P3(t + ∆t) – P3(t)]/∆t = P2(t) λ2 - P3(t)µ 
 
When ∆t  0 in the equation above is recognized as (compare with equation E1) 
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The equation (E2) usually has to be solved using special mathematical algorithms, especially when the 
number of states enlarges. However, computer aided tools for supporting Markov modeling with these 
algorithms implemented exist. The information to provide these tools with is the state transition 
diagram and all failure rates and repair rates. 
 
The Markov modelling method is useful for analyzing the probabilities of sequenced events. Here are 
some disadvantages of Markov modelling: 
 - λ and µ may differ several orders of magnitude from each other. 
 - Enormous amounts of states if a too detailed system level is analyzed 
 
For further information about Markov chain modelling please see e.g. [9], [11], [14] and  [15]. 
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8.6.4. Availability Analysis 
 
The PFH of a system denotes the system unavailability which means the probability that the system is 
unable to deliver its correct service (i.e. the safety function) at a given point of time within the range 
of the proof test interval (mission time). See [11] for further information about availability. 
 
MDT – Mean Down Time: The average time a system is unavailable due to failure.  
 
Availability is applicable for repairable systems and is therefore applicable on a high system-level. 
The concept of uptime and downtime denotes the average time during which the system is available 
(uptime) within the system mission time and the average time during which the system is unavailable 
due to failure and repair (downtime). See Figure 17 for an illustration of the system availability over 
its mission time. 

Figure 17: System availability due to the mission time. 

The momentary availability of the system is expressed as A(t) which is the probability that a system is 
available at a given time t after start of operation. The mission availability is the average value of A(t) 
during a time range and is expressed as 
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where the time interval (t2 – t1) commonly equals the mission time T which denotes the proof test 
interval in IEC 61508 and the expression hence becomes: 
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The steady-state availability is retrieved when T is large or unknown and is determined by: 
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The achieved availability/unavailability is determined by: 
 

T
uptime

T
downtimeAA =−=1  or 

T
downtime

T
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When studying the availability of complex systems, Markov modelling is commonly used. Please refer 
to section 8.6.3 in this report for introducing information about Markov modelling. The result of the 

Markov model is a differential equation: PAP
dt
d

⋅= ][  where P is the probability of being in a 

specific operational mode at a certain time. 

UP

DOWN time

Availability

Mission time (T)
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Given an initial condition: ktP == )0(  this differential equation is solvable. If the matrix A is 
reasonably small the differential equation may be transformed into the Laplace domain using the 
Laplace transform. In this domain the equation may be solved explicitly as an ordinary system of 
equations. When the desired variables (target probabilities) have been extracted the equations are 
transformed back to the time domain using the inverse Laplace transform. 
 
Availability analysis AAV(t):  
Consider the average probability of remaining in an operating state where it continues to deliver its 
correct service i.e. A(t) = PSUCCESS(T). The mean value of A(t) is then calculated in order to get the 
steady state availability AAV(t). 
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Unavailability analysis UAV(t): 
Consider the average probability of entering an operating state where it is unable to deliver its correct 
service during its lifetime i.e. U(t) = PFAILURE(T). The mean value of U(t) is then calculated in order to 
get the steady state unavailability UAV(t) 
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The availability/unavailability value obtained by solving the equations above is composed oftwo 
terms, one transient term and one steady-state term. If the mission time (proof test time interval) is 
very large the transient term may become negligible. It can be shown for a subsystem or an 
independent function that the steady state term always is expressed by: 
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If this approximation is trustworthy, AS or US may be substituted directly into the resulting reliability 
expression from e.g. a reliability block diagram. 
 
The value of the PFDAV or the PFHAV denotes the unavailability of the system UAV(t). The PFDAV 
denotes the average probability of failure (i.e. the average probability for the system to enter one of the 
system degradation states in the Markov model during the mission time). The PFHAV denotes the 
average probability of a failure to occur per hour (i.e. the average rate that the system enters one of its 
degradation states) 
 
The main difference between these two measures is the design of the Markov model for different 
failure rates and mean down times. Depending on the type of failure-rates to take into consideration 
the states in the Markov model will differ both how they relate with each other and in amount. In order 
to make use of unavailability analysis the system has to be partitioned into repairable parts. The ASIC 
itself cannot be claimed repairable, but the ASIC together with its corresponding hardware platform 
may be replaced and hence is repairable by the means of the proof test interval limitation of its 
acceptable lifetime. 
 
When handling multiple channelled systems the β–factor is used to model the probability of common 
cause failures to occur affecting both channels similarly. 
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The safety function is primarily embedded in an ASIC and is therefore not repairable according to the 
scope of this method, i.e. the system lifetime is limited of its proof test time interval. 
 
Following parameters are necessary to determine before engaging the calculation of PFH or PFD, 
 
-Proof test interval (T) 
The proof test shall be periodically conducted in order to reveal any failures that have not been 
detected by the diagnostic tests of the system. When a failure is detected the system is completely 
restored. The proof test interval (T) determines the time (h) between proof tests performed. 
 
-The mean time to restoration (MTTR) 
The mean time to restoration is the average time for system recovery after the event of a detected 
failure. If the repair rate is assumed constant then: µ = 1/MTTR (all other types downtimes may be 
regarded in this parameter as well) 
 
-The mean time to failure (MTTF) 
The mean time to failure is the average time for a component/subsystem (independent function) or a 
system to fail in operation. Regarding individual components several parameters has to be considered.  
See [17] for further information. For subsystems and complete systems refer to section 8.6 for suitable 
methods. If the failure rate is assumed to be constant then: λ = 1/MTTF 
 
-The safe failure fraction (SFF) 
The safe failure fraction is the partition of safe failures out of all failures and is given by: 
 

∑ ∑ ∑
∑ ∑

++
+

=
DUDDS

DDSSFF
λλλ

λλ
 

 
-The diagnostic coverage (DC) 
The diagnostic coverage is the partition of detected dangerous failures out of all dangerous failures 
and is given by: 
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The parameters SFF and DC are qualitative measures and it is recommended that these figures are 
based on a detailed FMEA. 
 
The resulting parameters SFF and DC are used to point out which hardware safety integrity level is 
applicable (see Table 6 and Table 7). The PFD/PFH estimation is used to show conformance with the 
target hardware SIL by comparing the final PFD/PFH with Table 4 or Table 5) 
 
8.7. Methods for validation of the design process and the verification process 
 
Aim:  
To verify that the required design and verification processes have been followed. In section 9.8 three 
methods are mentioned addressing the procedure of documentation system validation (DSV), the 
design process validation (DPV) and the design verification validation (DVV). 
 
Performance: 
The documentation system is verified by inspections and walkthroughs and reviews in order to show 
compliance with the requirements concerning documentation. 
 
Applicability: 
All design phases 
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Example: 
Ensure that the verification has been followed according to the verification plan and that all required 
documents have been produced at the correct verification step. 
 
Reference: [7] 
 
8.7.1. Design review and inspections 
 
Under following sub-sections methods for reviewing, verifying and validating the design and 
verification process carried out during the system design and verification. 
 
8.7.1.1. Walkthroughs (system design review) 
 
Aim:  
To reveal discrepancies between the specification and the implementation and to describe the general 
functionality of the control system for a designer or an assessor.  
 
Performance:  
In walkthrough methods the designer(s) and assessor(s) manually go through the system design 
(process and verification) together and check the correctness and functionality. Usually some test 
cases, checklists and guidelines are used in this process. Specified functions of the safety-related 
system draft are examined and evaluated to ensure that the safety-related system complies with the 
requirements given in the specification. Doubts and potential weak points concerning the realization 
and use of the product are documented so that they may be resolved.  
In contrast to an inspection, the author is active and the inspector is passive during the walk-through.  
 
Result:  
The result of the walkthrough procedure is a supplement and often an introductive input to most of the 
validation techniques and methods mentioned in this report. The result as such may not be sufficient to 
motivate fulfilment of specific requirements to be validated. 
 
Applicability:  
All phases in the design and safety validation process 
 
References: [7] 
 
8.7.1.2. Inspection (reviews and analysis)  
 
Aim: To inspect that relevant requirements have been fulfilled.  
Description: Specified functions of the safety-related system, the design documentation system and 
the design verification system are examined and evaluated to ensure that the safety-related system 
conforms to relevant requirements. The inspection shall be carried out using formalized and structured 
techniques such as checklists based on the overall safety requirements. Any deviations found shall be 
documented and resolved. In contrast to a walk-through, the author is passive and the inspector is 
active during the inspection procedure. 
 
Result: 
Documented fulfilment of relevant requirements. 
 
Applicability: 
All phases in the design and safety validation process 
 
References: [7] 
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8.7.1.3. Fagan inspections 
 
Aim: To reveal mistakes and faults in all phases of the HDL development.  
Performance: A "formal" audit on quality assurance documents aimed at finding mistakes and faults. 
The inspection procedure consists of five stages: planning, preparation, inspection, rework and follow-
up. Each of these stages has its own separate objective. The complete system design process 
(specification, design, coding and testing/verification) must be inspected. In the process the 
programmer reads the source code to a group who asks questions and analyses the program by using a 
checklist. 
 
Result:  
Shows conformity to the requirements for the HDL design, implementation and verification 
 
Applicability: 
All phases in the system verification and system validation process 
 
References: [7] 
 
8.7.1.4. Checklists  
 
Aim:  
To use a formal and structured approach for the system safety validation the design process and 
system verification process.  
 
Performance:  
A worksheet is established containing references to relevant requirements. Each requirement is 
accompanied with a set of concise questions that forms the criteria for success for that particular 
requirement. Checklists are also useful for the designer during the design and verification process in 
order to make sure that no relevant requirement is disregarded. 
 
Result:  
All results in the checklists are well justified by comments/remarks and references to other 
documentation. The final judgment of each requirement should be stated as a pass or fail conclusion. 
The use of such checklists simplifies the final conclusion on overall conformity. The checklist often 
forms the basis for inspections. 
 
Applicability: 
All phases in the design and safety validation process 
 
Reference: [7] 
 
8.7.2. Documentation system 
 
In the following sub-sections methods for reviewing, verifying and validating a documentation system 
are listed. 
 
8.7.2.1. Examination of documentation completeness  
 
Aim: To check the completeness of the documentation required (from the design and verification 
process and from the safety validation process). 
 
Performance: The required documentation is checked for completeness. A recommendation is to 
establish a checklist prior of commencing the design, verification and validation. The documentation 
system is then developed in accordance with the checklist through all phases. 
Examples of useful data in such a checklist are: 
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- Document description 
- Documentation number (reference/version/revision) 
- Performer(s) (e.g. designer/assessor) 
- Phase and date of creation (e.g. safety validation plan) 
- Present document status 
- Phase and date of finalization  
- Approved by the responsible for the design phase, verification phase or validation phase 

(Pass/Fail) 
 

Result: Declaration of conformity to relevant requirements for documentation. 
 
Applicability: All phases in the design and safety validation process 
 
Reference: None 
 
8.7.2.2. Examination of the system specification 
 
Aim: To examine the fulfilment of the requirements regarding design process specifications, design 
verification specifications and safety validation specifications and to make sure that all relevant 
requirements and specified functional properties and constraints have been considered. 
 
Description: Various qualities of a specification document are assessed by an independent team. The 
assessment is preferably carried out through an examination performed by the designer team in 
conjunction with an independent team. After the examination, the independent team should be able to 
reconstruct the operational function of the system in an indisputable manner without referring to any 
further specifications. 
 
Result: Statement of conformity of relevant requirements for the system specifications and the 
adequateness of the system specifications  
 
Applicability: All phases in the system verification and system validation process 
 
Reference: [7], clause B.2.6 
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8.8. E/E/PES Hardware Safety Validation performance 
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9. Conclusion 
 
The major conclusion of this work is the possibility of combining the means of functional safety with 
the very detailed design flow in the ECSS standard for ASIC/FPGA development. This is achieved by 
dividing the relevant part of the product development flow into following: 
 
-Definition phase 
-Architectural design phase 
-Detailed design phase 
-Design implementation phase 
-Design verification phase 
-Design validation phase 
 
During all of these phases the designer/assessor has to consider the requirements that are not covered 
in this report and relate to the overall life cycle concept of IEC 61508. Every design decision or 
validation conclusion has to be related to the EUC and its corresponding risks. It is therefore not 
possible to determine the conformance to a SIL for a safety function only by the methods listed in this 
report. This report may only provide information that supports the determination of:  
 
-the hardware safety integrity level; 
-the systematic safety integrity level 
-the HDL safety integrity level; 
 
Sufficient information is compulsory before engaging the analysis and design according to the 
requirements listed in this report and in the target standards as mentioned above. Examples of  
checklists that may be used for guiding the application of this technical report is provided in appendix 
D. 
 
According to the standard IEC 61508 safety-related functions have to depend both on the ASIC 
internal function and on the functionality of the hardware platform in which the ASIC is implemented; 
in order to prove compliance, the target system has to be designed with this prerequisite. If the 
designer implements all safety-related functions in an ASIC this report may also be used but no 
compliance to the standards may be proven. 
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Appendix A. Introducing reliability theory 
 
A.1 Basic reliability measures in E/E/PE safety-related systems 
 
This clause gives an introduction to the principles of reliability from which several of the analysis 
methods mentioned in this report are based. This overview is neither exhaustive nor complete in the 
subject. See [11] and other literature about fundamental probability theory for further or more detailed 
information. 
 
R(t) denotes the reliability of a component at a given time t 
Q(t) denotes the unreliability of a component at a given time t 
 
Relation between the reliability function and the unreliability function: 
 

1)()( =+ tRtQ  
 
Pr denotes the probability of correct operation (reliability) for a component, Pr = R(a) 
where a = specific time 
 
In a system where one of the events (functional failures) A or B occurs or both events occur causing a 
total system failure, the reliability R(t) is given by (intersection): 
 

)()()( BPAPBAPPr =∩=  
 
In a system where both the events (functional failures) A and B have to occur in order to cause a total 
system failure, the reliability R(t) is given by (union): 
 

)()()()()( BPAPBPAPBAPPr −+=∪=  
 
The intersection expression and the union expression only apply if the events (functional failures) A 
and B are completely independent of each other. 
 
A.2 Probability density and distribution functions 
 
pdf – probability density function (f(x)) 
cdf – cumulative density function (F(x)) 
 
Let X be a random continuous variable, then 
 

∫=<≤
b

a

dxxfbXaP )()(  

 
gives the probability of X to take a value in the given interval [a,b]. The pdf represents the relative 
frequency of failure multiplied by a function of time. If a = 0 and b = ∞ then the intersection 
expression always equals 1. The relation between the cdf and the pdf is provided by: 
 

)()( xF
dx
dxf =  
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f(t) is normally expressed as the normal distribution. The random variable X is exchanged to t (time) 
since E/E/PE systems are time invariant.  
 
A.3 The Reliability Function 
 
At a given time t the reliability function is given by cdf as: 
 

∫
∞

=−=
t

dttftFtR )()(1)(  

 
This expression may be used for estimating the probability of a unit functioning at a time t.  
 
A.4 The Failure Rate function 
 
The failure rate function is a measure to find out the number of failures occurring per unit time and is 
mathematically defined as: 
 

)(
)()(

tR
tft =λ  

 
A.5 The Mean Life (MTTF) 
 
The MTTF (Mean Time To Failure) is determined by the mean time of operation for a product and is 
calculated as: 
 

∫
∞

⋅=
0

)( dttftMTTF  

 
It’s not recommended to consider MTTF solely as a reliability metric for the whole product. The 
distribution function may differ a lot although the mean life time is the same for different distribution 
functions. The MTTF metric shall not be confused with the MTBF (Mean Time Between Failure) 
metric. These two metrics are only identical if the failure rate is constant. The usage of MTBF only 
becomes meaningful when considering repairable systems. 
 
There are also other statistical metrics (median life and modal life). For more information see [11]. 
 
A.6 Distributions 
 
Some commonly used normal distributions for reliability are the following: 
 
a) The normal distribution or Gaussian distribution: 
 

2)(
2
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πσ

−
−

=
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etf  

 
b) The Weibull distribution: 
 

β

η
γ

β

η
γ

η
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1)()(
−

−
−−

=
t

ettf  

This distribution is used when the failure rate is not constant during the component life time. 
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c) The exponential distribution: 
 

tetf λλ −=)(  
 
This distribution is the most commonly used in reliability prediction. Using the previously mentioned 
equations it can be shown that, 
 
The reliability function tetR λ−=)(  
The failure rate λλ =)(t  (constant) 

The mean life 
λ
1

=MTTF  

The exponential distribution is also assumed to be used in this report. Given any pdf these metrics may 
be calculated using the equations shown in the previous subsections. 
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Appendix B. VHDL example 
 
This section describes an exemplifying design where a large part of the functionality is implemented 
in one ASIC. The system is a double channelled and fail-safe and could be used in different 
applications such as a two-hand controller or a hold-to-run controller. The system is only an example 
used for clarification purpose and is not intended for realization. No requirements may be claimed as 
fulfilled when using the system in figure 1 unless a proper safety validation of the safety integrity is 
carried out according to relevant standards. 
 

 
Figure B.1: VHDL code example system 

 
B.1 System general description 
 
The main purpose of this system is to keep a defined value on the outputs (O1 and O2) if the input 
values differ from the functional specification and if a fault occurs in any of the modules that forces 
the system into an operational mode that is not specified. The example is intended to describe the 
methods listed in this report. If connected to sensors and actuators such a system could be part of a 
safety function (if correctly designed and validated). By analyzing figure B.1 and gathering parts that 
affect the outputs, the system architecture may be derived as an FBD. 
 

 
Figure B.2: Example system architecture (FBD) 

 
Figure B.2 clearly shows that the system consists of two separated (redundant) channels that may 
independently affect the state of the outputs. It can also be seen in figure B.2 that both channels by 
some means have the possibility of monitoring each other. This architecture is therefore a 1oo2D-
architecture according to IEC 61508 as the system may continue to fulfil the specified requirements 
although one channel has completely failed. “D” means that there is self-diagnosing function 
implemented in the system. 
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B.2 System detailed description 
 
- ASIC 
The ASIC functionality is divided into two devices (A and B) inside the ASIC. These in-circuit 
devices are physically well-separated and isolated from each other on the chip. The devices may 
communicate asynchronously with each other via an internal bus (which also may include other 
control signals).  
 
- Passive nets 
Both devices are connected to external filters (Net 1 and Net 2). Net 1 is used to supply power to 
device 2. Net 2 is used to supply power and hence to enable the OUTPUT interface. Net 2 depends on 
the ASIC and on external signals.  
 
- Interfaces 
The output interface contains electronics for signal level adaptation to the EUC. The output signal 
vectors O0 and O1 contain control signals (both for steering and for feed-back). The input interface 
(INPUTS) does also contain electronics for signal adaptation from the EUC. The signal vectors I0 and 
I1 contain sensor inputs, feed-back signals and two separated clock-sources, one for each device. 
 
Table B.1: System overview  
Modules Description 
INPUTS Input signal adaptation, passive 
OUTPUTS Output signal adaptation, active – controlled by Net 2 
Device A, B Separated modules with control logic 
Net 1, 2 Passive filters with suitable configurations and breaking frequencies 
Signals  
I0, I1 Input vectors providing the ASIC with control signals, feed-back signals and two 

different clock sources running with different frequency 
C0, C1 Control signals to the charge pumps dependent on the correct functionality in the 

devices (A and B) 
P0, P1 Voltages dependent on the correct functionality of the devices (A and B) 
Internal bus Signal vector 
O0, O1 Output control signal vectors entirely dependent on the input vectors and the correct 

functionality of device A and B 
 
 
B.3 Short VHDL code description/introduction 
 
Table B.1 describes the general functionality of device A and device B. The VHDL code is not 
complete and no detailed technical descriptions of solutions are added. The VHDL-code illustrates one 
approach as follows: 
 
Library – Contains primitives and types (compare with include-files in C) that the synthesis-tool 
recognizes 
Entity – Defines a “black box” with all input and output signals 
Architecture – Defines the inner functionality of a certain entity or “black box” (i.e. describes how the 
outputs relates to the inputs) 
The first thing that is done in the Architecture part is to define inner signals that are used within the 
entity. In this program is created a signal-type to which only four different values A1 – A4 (or 00, 01, 
10, 11) may be assigned. This signal is used to define the different states of the state-machine 
illustrated in figure B.1. Some other signals are also defined (“send” and “rec”).   
Process – A process is equivalent to a digital circuitry. The process is only sensitive to the parameters 
mentioned in its sensitivity list; in this case the clock and the reset signal. The process outputs will not 
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change until one of the parameters in the sensitivity list changes regardless of other process inputs 
(used for allocating latches and/or flip-flops, i.e. creating synchronous logic).      
The first process condition becomes true during reset and determines the initial reset condition, i.e. 
sets all signals to their default value (including the state-variable being initialized to the state A1). This 
condition depends only on the reset-signal. 
 
The second process condition may only become true if following are fulfilled: 

- an event occurs in the clock signal (positive ore negative edge) 
- the clock signal becomes high  

On each positive clock edge this part of the process will change the process outputs. In practice the 
complete process will be “translated” into a combinatorial circuitry where all outputs are connected to 
a D-flip-flop that is controlled by the clock and the reset signal; see figure A. 

Figure B.3: The Ctrl_A process realization (STA). 
 
The conditions in the synchronous part consist of a case-statement which is compared to the state-
variable. All logic within one state will be processed in one clock cycle and all states are finalized by 
defining which state to enter at the next clock cycle. No control conditions are added in separate states 
in this example but some describing comments and the assignment of the next state accordingly to 
figure B.1. The state machine presently described is a Moore-state machine. In practice the states of 
such a state machine would most probably contain control signals to several sub-state machines that 
process the system inputs/outputs and would be huge in comparison to this example. 
 
B.4 VHDL code functional description 
 
Ctrl_A: process 
A1: The state machine in this example begins with an initial state that is processed only once after a 
reset. This state performs all necessary initiations and reads a status value from a non-volatile memory 
indicating if the system wakes up from a previous safe-state operation. If any fault is detected when 
performing initial fault monitoring or if the status value of the current state is defined as state A4. If no 
fault is detected the next state shall be state A2. 
 
A2: This state processes the system inputs and performs fault monitoring. A full UART buffer is 
indicated by the signal “rec”.  The handling of received messages should be performed using proper 
measures depending on the type of information. If a fault is detected (in the hardware or in the input 
signals or in the received message) the next state will be the safe-state (A4) or state A3. 
 
A3: This state processes the system outputs and performs fault monitoring. When specific conditions 
are met a message may be composed, stored in the UART-buffer and sent by setting the signal “send” 
high. If a fault is detected (in the hardware or in the input signals or in the received message) the next 
state will be safe-state (A4) or state A2. 
 
A4: Safe-state – writes the status to the non-volatile memory and forces all outputs to zero. The state-
machine is locked at this state. If the power supply is switched off and on again, the system shall 
immediately be forced to this state. 
 

LOGIC

REGISTER (D-flip-flops)

Clock

Reset

Inputs

Current state

Outputs
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If for some other reason another state than these four occurs (e.g. synthesis error so that the state signal 
consists of more than two wires) the state variable shall be forced to state A4 (safe-state). 
             
UART 
The UART is defined as a separate hardware device (process). No means for implementing UARTs 
are mentioned in this report. Such a process may require several sub-processes in order to function; 
this is not considered here. 
 
Device B is implemented similarly as Device A. 
 
B.5 Further aspects 
 
For a designer several additional aspects has to be taken into consideration. Examples of questions that 
must have well-motivated answers are: 

- what kind of communication topology to be used 
- how to monitor the sequence in the state-machine 
- which parameters shall affect the composition of the signals C0 and C1 
- what type of signals shall be used as system outputs (dynamic or static) 
- how to design the passive nets? 
- what level of fault tolerance is acceptable before entering the safe-state 

 
There is no perfect template for designing safety-related control systems because each application has 
its own properties and characteristics which affect the selection of the safety-principles to be applied. 
One general reflection is that fault handling measures always affect the performance of the system. 
The correct way to answer the questions listed above is to carry out the design process according to 
relevant standards or to follow the recommendations of this report.  
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Table B.2: VHDL code example  
Device A Device B 
 
Library My_foundry_lib; 
Use My_foundry_lib.std_logic_package.ALL; 
 
Entity DeviceA is 
Port(    I0_clk, D0_reset        : in     std_logic_package; 
            I0_FB, I0_sensor       : in     std_logic_package; 
            D0_bus_RX               : in     std_logic_package; 
            D0_bus_TX               : out    std_logic_package; 
            C0_out, O0_actuator : out    std_logic_package; 
            D1_reset                    : out    std_logic_package); 
End entity DeviceA; 
 
Architecture DeviceA_impl of DeviceA is 
Type t_state is (A1, A2, A3, A4); 
Signal state                : T_state;  
Signal send, rec         : std_logic_package; 
Begin 
    Ctrl_A : Process(I0_clk, I0_reset)  
    Begin 
       If I0_reset = 1 then  
               State                  <=  A1;        --Reset settings 
               O0_actuator      <= ‘ 0’; 
               C0_out              <=  ‘0’; 
               D1_reset           <=  ‘0’; 
               Send                  <= ‘0’; 
       Elsif I0_clk’event and I0_clk = ‘1’ then  
               Case state is 
                  When state = A1 => 

   -- Initiating sub-state machine that starts  
                         --  manipulating C0 and sends a reset-pulse 

   -- (D1_reset) to device 2 when P0 becomes 
                          -- high enough. Perform system fault monitoring  
                          -- and check the non-volatile memory 
                          -- if waking up in failure mode of operation. 
                             state <= A2; -- (if fault detected: state <= A4) 
                  When state = A2 => 

-- Process inputs (I0_sensor, I0_FB), act on 
                          --  received messages (rec) 

-- and perform system fault monitoring and 
-- controlling. Maintain P0 

                              state <= A3; -- (if fault detected: state <= A4) 
                  When state = A3 => 
                          -- Process outputs (O0_actuator), compose and send 
                          -- messages (send) and perform system fault  
                          -- monitoring and controlling. Maintain P0 
                             state <=  A2; -- (if fault detected: state <= A4) 
                  When state = A4 => 
                          -- Safe-state – force all device outputs to zero  
                          -- Write fault-status into non-volatile memory 
                              state <= A4; 
                  When others => 
                             state <= A4; -- Should not reach this state  
                End case; 
        End if; 
     End process Ctrl_A; 
 
    UART : process(RX, send, I0_clk) 
    Begin 
       -- Implementation of the UART to handle 
       -- the internal bus. Full buffer indicated by rec. 
       -- This process needs additional processes for the time 
       -- reference. 
    End UART; 
 
End DeviceA_impl;    

 
Library My_foundry_lib; 
Use My_foundry_lib.std_logic_package.ALL; 
 
Entity DeviceB is 
Port(    I1_clk, D1_reset        : in       std_logic_package; 
            I1_FB, I1_sensor       : in       std_logic_package; 
            D1_bus_RX               : in       std_logic_package; 
            D1_bus_TX               : out     std_logic_package; 
            C1_out, O1_actuator : out     std_logic_package); 
End entity DeviceB; 
 
 
Architecture DeviceB_impl of DeviceB is 
Type t_state is (B1, B2, B3, B4); 
Signal state                : T_state;  
Signal send, rec         : std_logic_package; 
Begin 
    Ctrl_B : Process(I1_clk, I1_reset)  
    Begin 
       If I0_reset = 1 then  
               State                   <=  B1;        --Reset settings 
               O1_actuator       <=  ‘1’; 
               C1_out               <=  ‘0’; 
               Send                   <=  ‘0’; 
 
       Elsif I1_clk’event and I1_clk = ‘1’ then  
               Case state is 
                  When state = B1 => 

   -- Initiating sub-state machine that 
   -- start manipulating C1 until P1 sufficiently high 
   -- for enabling the outputs (O0 and O1)   

                          -- Perform system fault monitoring and  
                          -- check the non-volatile memory if waking up in 
                          -- failure mode of operation. 
                             state <= B2; -- (if fault detected: state <= B4) 
                  When state = B2 => 

-- Process inputs (I1_sensor, I1_FB), act on 
                          --  received messages (rec) 

-- and perform system fault monitoring and 
-- controlling. Maintain P1 

                              state <= B3; -- (if fault detected: state <= B4) 
                  When state = B3 => 
                          -- Process outputs (O1_actuator), compose and send 
                          -- messages (send) and perform system fault  
                          -- monitoring and controlling. Maintain P1 
                             state <=  B2; -- (if fault detected: state <= B4) 
                  When state = B4 => 
                          -- Safe-state – force all device outputs to zero  
                          -- Write fault-status into non-volatile memory 
                              state <= B4; 
                  When others => 
                             state <= B4; -- Should not reach this state  
                End case; 
      End if; 
    End process Ctrl_B; 
 
    UART : process(RX, send, I1_clk) 
    Begin 
       -- Implementation of the UART to handle 
       -- the internal bus. Full buffer indicated by rec. 
       -- This process needs additional processes for the time 
       -- reference. 
     End UART; 
 
End DeviceB_impl; 
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Appendix C.1. Cross reference (IEC 61508-1) 
 
Clause Subclause NT report reference 
5.2 5.2.1 8.1 
 5.2.2 8.1 
 5.2.3 8.1 
 5.2.4 8.1 
 5.2.5 8.1 
 5.2.6 8.1 
 5.2.7 8.1 
 5.2.8 8.1 
 5.2.9 8.1 
 5.2.10 8.1 
 5.2.11 8.1 
 5.2.12 8.1 
6.2. 6.2.1 8.1 

6.2.2 8.1 
6.2.3 8.1 
6.2.4 8.1 

 

6.2.5 8.1 
7.1.4 - N/a 
7.2.2 - N/a 
7.3.2 - N/a 
7.4.2 - N/a 
7.5.2 - N/a 
7.6.2 - N/a 
7.7.2 - N/a 
7.8.2 - N/a 
7.9.2 - N/a 
7.10.2 - N/a 
 7.11 7.11.2 N/a 
7.12 7.12.2 N/a 
7.13 7.13.2 N/a 
7.14 7.14.2 N/a 
 7.14.3 N/a 
 7.14.4 N/a 
7.15 - N/a 
7.16 - N/a 
7.17 - N/a 
7.18 - N/a 
8.2 - N/a 
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Appendix C.2. Cross reference (IEC 61508-2) 
 
 
 
 
 

Clause Subclause NT report reference
7.2.2.1 N/a 
7.2.2.2 N/a 

7.2.2 

7.2.2.3 N/a 
7.2.3.1 N/a 
7.2.3.2 N/a 

7.2.3 

7.2.3.3 N/a 
7.3.2.1 8.2.2.3 7.3.2 
7.3.2.2 8.2.2.3 
7.4.2.1 8.2.1 
7.4.2.2 8.2.1 
7.4.2.3 8.2.2.4 
7.4.2.4 N/a 
7.4.2.5 8.2.2.4 
7.4.2.6 N/a 
7.4.2.7 N/a 
7.4.2.8 N/a 
7.4.2.9 N/a 
7.4.2.10 N/a 
7.4.2.11 8.2.2.1 
7.4.2.12 8.2.2.1 

7.4.2 

7.4.2.13 8.2.1.1 
7.4.3.1.1 8.2.2.1 
7.4.3.1.2 8.2.2.1 
7.4.3.1.3 8.2.2.1 
7.4.3.1.4 8.2.2.1 
7.4.3.1.5 8.2.2.1 
7.4.3.1.6 8.2.2.1 
7.4.3.2.1 8.2.1.1 
7.4.3.2.2 8.2.2.2 
7.4.3.2.3 8.2.1.1 
7.4.3.2.4 8.2.1.1 
7.4.3.2.5 8.2.1.1 

7.4.3 

7.4.3.2.6 N/a. 
7.4.4.1 8.2.1.1 
7.4.4.2 8.2.1.1 
7.4.4.3 8.2.1.1 
7.4.4.4 8.2.1.1 
7.4.4.5 8.2.2.1 

7.4.4 

7.4.4.6 N/a 
7.4.5.1 8.2.1.1 
7.4.5.2 8.2.1.1 

7.4.5 

7.4.5.3 8.2.1.1 
7.4.6.1 8.2.1.1 
7.4.6.2 8.2.1.1 

7.4.6 

7.4.6.3 8.2.1.1 
7.4.7.1 8.2.5.2 
7.4.7.2 8.2.5.2 
7.4.7.3 8.2.5.2 
7.4.7.4 8.2.5.2 
7.4.7.5 8.2.5.2 
7.4.7.6 8.2.5.2 
7.4.7.7 N/a 
7.4.7.8 N/a 
7.4.7.9 N/a 
7.4.7.10 N/a 
7.4.7.11 N/a 

7.4.7 

7.4.7.12 N/a 
7.4.8.1 N/a 7.4.8 
7.4.8.2 N/a 
7.5.2.1 8.2.3 
7.5.2.2 8.2.3 
7.5.2.3 8.2.3e 
7.5.2.4 8.2.3 
7.5.2.5 8.2.3 
7.5.2.6 8.2.3 

7.5.2 

7.5.2.7 8.2.3 

Clause Subclause NT report reference 
7.6.2.1 N/a 
7.6.2.2 N/a 
7.6.2.3 N/a 
7.6.2.4 N/a 

7.6.2 

7.6.2.5 N/a 
7.7.2.1 9.3.1 
7.7.2.2 9.3.1 
7.7.2.3 9.3.1 
7.7.2.4 9.3.1 
7.7.2.5 9.3.1 
7.7.2.6 9.3.1 

7.7.2 

7.7.2.7 9.3.1 
7.8.2.1 9.3.2 
7.8.2.2 9.3.2 
7.8.2.3 9.3.2 

7.8.2 

7.8.2.4 9.3.2 
7.9.2.1 8.2.2.3 
7.9.2.2 8.2.2.3 
7.9.2.3 8.2.2.3 
7.9.2.4 8.2.2.3 
7.9.2.5 9.1 
7.9.2.6 9.1 
7.9.2.7 9.1 
7.9.2.8 9.1 
7.9.2.9 9.1 

7.9.2 

7.9.2.10 9.1 
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Clause Subclause NT report reference 
7.2.2.1 7.2.1 
7.2.2.2 7.2.1 
7.2.2.3 7.2.1 
7.2.2.4 7.2.1 
7.2.2.5 7.2.1 
7.2.2.6 7.2.1 
7.2.2.7 7.2.1 
7.2.2.8 7.2.1 
7.2.2.9 7.2.1 
7.2.2.10 7.2.1 

7.2.2 

7.2.2.11 7.2.1 
7.3.2.1 8.1 
7.3.2.2 8.1 
7.3.2.3 8.1 
7.3.2.4 8.1 

7.3.2 

7.3.2.5 8.1 
7.4.2.1 N/a 
7.4.2.2 7.2.2 
7.4.2.3 7.2.2 
7.4.2.4 7.2.2 
7.4.2.5 7.2.2 
7.4.2.6 7.2.2 
7.4.2.7 7.2.2 
7.4.2.8 N/a 
7.4.2.9 7.2.2.3 
7.4.2.10 7.2.2 
7.4.2.11 7.2.2 

7.4.2 

7.4.2.12 7.2.2 
7.4.3.1 N/a 
7.4.3.2 7.2.2 

7.4.3 

7.4.3.3 7.2.2 
7.4.4.1 N/a 
7.4.4.2 7.2.2 
7.4.4.3 7.2.2 
7.4.4.4 7.2.2 
7.4.4.5 7.2.2 

7.4.4 

7.4.4.6 7.2.2 
7.4.5.1 N/a 
7.4.5.2 7.2.2 
7.4.5.3 7.2.2 
7.4.5.4 7.2.2 

7.4.5 

7.4.5.5 7.2.3 
7.4.6.1 7.2.2 7.4.6 
7.4.6.2 7.2.2 
7.4.7.1 8.1 
7.4.7.2 8.1 
7.4.7.3 8.1 

7.4.7 

7.4.7.4 8.1 
7.4.8.1 8.1 
7.4.8.2 8.1 
7.4.8.3 8.1 
7.4.8.4 8.1 

7.4.8 

7.4.8.5 8.1 
7.5.2 7.5.2.1-8 N/a 
7.6.2 7.6.2 N/a 
7.7.2 7.7.2.1-8 N/a 
7.8.2 7.8.2.1-10 N/a 

Clause Subclause NT report reference 
7.9.2.1 8.2 
7.9.2.2 8.2 
7.9.2.3 8.1 
7.9.2.4 8.2 
7.9.2.5 8.2 
7.9.2.6 8.2 
7.9.2.7 8.3 
7.9.2.8 8.1 
7.9.2.9 8.2 
7.9.2.10 8.2 
7.9.2.11 8.2 
7.9.2.12 8.1 

7.9.2 

7.9.2.13 N/a 
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Appendix D. Guiding checklists  
 
Every row in the table below is to be considered as a requirement by the means of this report. 
 
Table D.1 Initiating set of documentation, related to the EUC, required to be produced before the appliance of 
this report 

Ref. Description Related 
section 

Notes, 
remarks 

Requirement 
fulfilled ? 
(Yes/No) 

Referred 
document(s) 

A.1.1 Is/are the document(s) 
describing the concept 
available? 

8.1    

A.1.2 Is/are the document(s) 
describing the overall scope 
definition available? 

8.1    

A.1.3 Is/are the document(s) 
describing the hazard and risk 
analysis available? 

8.1    

A.1.4 Is/are the document(s) 
describing the overall safety 
requirements available? 

8.1    

A.1.5 Is/are the document(s) 
describing the safety 
requirements allocation 
available? 

8.1    

A.1.6 Is/are the document(s) safety 
requirements specification 
available (part of the 
functional specification)? 

8.1    

A.1.7 Does/do the safety 
requirements specification 
document(s) include the safety 
function specification? 

8.2    

A.1.8 Does/do the safety 
requirements specification 
document(s) include the safety 
integrity specification? 

8.2    

A.1.9 Does the functional 
specification include an 
identification of the ASIC 
requirements specification? 

8.2    

A.1.10 Does the functional 
specification include an ASIC 
feasibility study? 

8.2    

A.1.11 Does the functional 
specification include a quality 
related ASIC risk analysis 

8.2    

A.1.12 Does the functional 
specification include an ASIC 
development plan? 

8.2    

A.1.13 Has an initial design review 
been performed and 
documented? 

8.2    
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Table D.2 General requirements (Definition phase) 

Ref. Description Related  
section 

Notes, 
remarks 

Requirement 
fulfilled ? 
(Yes/No) 

Referred 
document(s) 

A.2.1 Is the control system to be 
designed according to the 
safety requirements 
specification? 

8.2.1    

A.2.2 Does the safety requirements 
specification consider the 
diagnostic test interval to be 
achieved? 

8.2.1.1 a)    

A.2.3 Does the safety requirements 
specification include 
requirements on the system 
behaviour on detection of a 
fault? 

8.2.1.1 b)    

A.2.4 Does the safety requirements 
specification include 
requirements for controlling 
systematic failures? 

8.2.1.1 c)    

A.2.5 Does the safety requirements 
specification regard human 
capabilities and limitations? 

8.2.1.1 d)    

A.2.6 Are the principles mentioned 
in the report section 7.2 – 7.4 
considered in order to meet the 
general requirements? 

8.2.1.1 e)    

A.2.7 Are the general requirements 
for the design performance 
considered (techniques and 
measures, documentation and 
maintainability/testability)? 

8.2.1.1 f-h)    

A.2.8 Is de-rating used (>0.67) as far 
as possible for all system 
components? 

8.2.1.1 i)    

A.2.9 Are all mentioned general 
ASIC requirements 
considered? 

8.2.1.2    

A.2.10 Does the definition phase 
result in a complete 
requirement specification? 

-    
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Table D.3 Requirements in the architectural design phase (to be included in the system design requirements 
specification and in the architectural design) 

Ref. Description Related 
section  

Notes, 
remarks 

Requirement 
fulfilled ? 
(Yes/No) 

Referred 
document(s) 

A.3.1 Is the safety integrity level 
translated into: 
-HDL safety integrity level? 
-Hardware safety integrity 
level? 
-Systematic safety integrity 
level? 

8.2.2    

A.3.2 Are the ASIC design and test 
bench design planned to be 
carried out in accordance with 
the design flow in figure 7  

8.2.2    

A.3.3 Is the planned design based on 
a decomposition of 
subsystems/modules? 

8.2.2.1    

A.3.4 Does every subsystem/module 
have a specified design? 

8.2.2.1    

A.3.5 Does every subsystem/module 
have a specified set of 
integration tests? 

8.2.2.1    

A.3.6 Is it possible to depict the 
overall architectural design as 
in figure 8? 

8.2.2.1    

A.3.7 Is the design divided in type A 
and type B components, 
according to table 6 and 7? 

8.2.2.1    

A.3.8 Are the SFF and level of 
hardware fault tolerance 
determined? 

8.2.2.1    

A.3.9 Is table 8 integrated to its full 
extent in the system design 
specification? 

8.2.2.2    

A.3.10 Has a verification and 
validation plan been 
established (according to all 
requirements in this section)? 

8.2.2.3    

A.3.11 Has this verification and 
validation plan been 
established concurrently to the 
architectural design? 

8.2.2.3    

A.3.12 Does the verification plan 
describe how to verify the 
ASIC in the subsequent design 
phases? 

8.2.2.3    
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Ref. Description Related 

section  
Notes, 
remarks 

Requirement 
fulfilled ? 
(Yes/No) 

Referred 
document(s) 

A.3.13 Are requirements on the HDL 
code quality included in the 
system design specification? 

8.2.2.4    

A.3.14 Are requirements on the HDL 
code quality included in the 
test bench design 
specification? 

8.2.2.4    

A.3.15 Has a system for version and 
revision and modification due 
to the design handling been 
established and included in the 
system design specification? 

8.2.2.4    

A.3.16 Is a plan established for 
reviewing of the HDL code 
and the script files used? 

8.2.2.4    

A.3.17 Has the architectural design 
phase resulted in the outputs 
specified? 

8.2.2.4    

A.3.18 Have all requirements in the 
architectural phase been 
verified and approved in order 
to close this phase and open 
the detailed design phase? 

-    
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Table D.4 Detailed design phase 

Ref. Description Related  
section 

Notes, 
remarks 

Requirement 
fulfilled? 
(Yes/No) 

Referred 
document(s) 

A.4.1 Is the modified V-model 
described in figure 11 in 
conjunction with the design 
flow in figure 8 used during 
the detailed design? 

8.2.3    

A.4.2 Are all requirements a)-g) 
regarded? 

8.2.3    

A.4.3 Have sufficient integration and 
verification tests been 
performed during the detailed 
design? 

8.2.3    

A.4.4 Has the hardware platform 
PCB been designed according 
to the design specification and 
regarding the results of the 
verification tests performed? 

8.2.3    

A.4.5 Is the ASIC layout designed in 
accordance with the design 
flow in figure 9? 

8.2.4    

A.4.6 Is an initiating plan established 
for organizing the design on 
the chip (floor planning)? 

8.2.4    

A.4.7 Has a sub-block place and 
route action been performed? 

8.2.4    

A.4.8 Has the ASIC layout been 
verified by the means of a 
design rule check (DRC)? 

8.2.4    

A.4.9 Has the ASIC layout been 
verified by the means of an 
equivalence check between the 
gate level netlist and the layout 
(LVS)? 

8.2.4    

A.4.10 Has actual timing data being 
extracted (Timing extraction) 
due to the layout (actual wire-
lengths present)? 

8.2.4    

A.4.11 Is ATPG used in order to 
verify the different steps in the 
implementation? 

8.2.4    

A.4.12 Have means for post 
production tests been 
established? 

8.2.4    

A.4.13 Has the prototype ASIC been 
manufactured (by the means of 
a foundry process or in a fine-
grained FPGA)? 

8.2.5.1    

A.4.14 Is the system implemented in 
accordance with the system 
design specification? 

8.2.5.1    
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Ref. Description Related  
section 

Notes, 
remarks 

Requirement 
fulfilled ? 
(Yes/No) 

Referred 
document(s) 

A.4.15 Are all safety functions 
identified and documented? 

8.2.5.2    

A.4.16 Is all required documentation 
for the subsystem available? 

8.2.5.2 a)    

A.4.17 Has the rate of failure been 
determined according to the 
requirements? 

8.2.5.2 b)    

A.4.18 Have the requirements for 
components that are 
considered as proven in use 
been fulfilled? 

8.2.5.2 c)    

A.4.19 Have all requirements in the 
detailed design phase been 
verified and approved in order 
to close this phase and open 
the detailed design phase 

-    

 
Table D.5 Verification process 

Ref. Description Related 
section 

Notes, 
remarks 

Requirement 
fulfilled ? 
(Yes/No) 

Referred 
document(s) 

A.5.1 Has the ASIC and functional 
safety verification begun at an 
early stage in the detailed 
design phase?  

9.1    

A.5.2 Is the design verification plan 
an outcome from the 
architectural design phase? 

9.1    

A.5.3 Have the verification actions 
in the design flow viewed in 
figure 8 been followed? 

9.1    

A.5.4 Has the modified V-model in 
figure 11 been used during the 
detailed design? 

9.1    

A.5.5 Have the methods a)-c) for 
static property check been 
used during the verification 
steps in the detailed design? 

9.1.1    

A.5.6 Have the methods a)-g) for 
fault injection and simulation 
been used during the 
verification steps in the 
detailed design? 

9.1.2    

A.5.7 Have the used test benches 
been verified as the actual 
design? 

9.1.3    

A.5.8 
 
 
 
 

Has all the required 
verification documentation 
from the architectural design 
been produced? 
 

9.2.1    
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Ref. Description Related 

section 
Notes, 
remarks 

Requirement 
fulfilled ? 
(Yes/No) 

Referred 
document(s) 

A.5.9 Has all the required 
verification documentation 
from the detailed design phase 
been produced? 

9.2.2    

A.5.10 Has all the required 
documentation form the layout 
design phase been produced? 

9.2.3    

A.5.11 Have all requirements in the 
design verification process 
been verified and approved in 
order to close this phase and 
open the safety validation 
process? 

-    

 
Table D.6 Safety validation process 

Ref. Description Related 
section  

Notes, 
remarks 

Requirement 
fulfilled ? 
(Yes/No) 

Referred 
document(s) 

A.6.1 Has the E/E/PE safety 
requirements specification 
been composed according to 
the requirements? 

9.3    

A.6.2 Are all requirements on safety 
validation regarded when 
starting the safety validation? 

9.3.1    

A.6.3 Has an action plan been 
established according to the 
requirements that handle 
modifications of the system 
due to the validation results? 

9.3.2    

A.6.4 Have suitable static analysis 
methods been used in order to 
show the design compliance 
with the requirements in the 
safety validation plan? 

9.4    

A.6.5 Have suitable dynamic 
analysis methods been used in 
order to show compliance with 
the requirements in the 
validation plan? 

9.5    

A.6.6 Have suitable analysis 
methods been applied in order 
to estimate the probability of 
failure and the system 
availability? 

9.6    

A.6.7 Have suitable methods been 
used for verify and validate the 
design and verification process 
(including the documentation 
system)? 

9.7    
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Ref. Description Related 
section 

Notes, 
remarks 

Requirement 
fulfilled ? 
(Yes/No) 

Referred 
document(s) 

A.6.8 Has the system been verified 
and validated to correspond 
with the required SIL due to 
the: 
-Hardware safety integrity 
-HDL safety integrity 
-Systematic safety integrity 
And hence providing sufficient 
risk reduction? 

9.8    

A.6.9 Have all requirements not 
regarded by this report been 
fulfilled in order to prove 
conformity to the standards [1] 
and [2] - [4] ? 

10    

A.6.10 Have all requirements in the 
design safety validation 
process been verified and 
approved in order to close this 
phase and release the final 
system to the end-user? 

-    

 



 

 



 

 

 


