
Preface

This project report is one of the deliverables in the course TDT4290 Customer
Driven Project. The customer of this project was Tapir Academic Press, a company
located in Trondheim. Tapir Academic Press is Norway's largest university press
for literature in technology and the natural sciences. The assignment was to create
a web site for the Press, emphasizing on the distribution and sale of digital papers
online. Another aspect of the assignment was to document how current solutions of
distributing electronic papers are done, such as the business domain of eBooks.

The project was carried out during the fall of 2009 at the Norwegian University
of Technology and Science, with the help and support of main supervisor Basit A.
Kahn and assistant supervisor Bian Wu. We would like to thank the employees at
Tapir Academic Press, and especially Yngve Syrtveit, the main representative from
Tapir Academic Press, for being of great help during the project.

Mats Gøran Karlsen

Joakim Bjerkheim Arne Bjørgan

Erik Smistad Olav Undheim

Trondheim, November 18, 2009

i

ii

Contents

Contents iii

List of Figures vii

List of Tables x

1 Introduction 2
1.1 Project name . 3
1.2 Stakeholders . 3
1.3 Customer . 3
1.4 Project background . 4
1.5 Project scope . 4
1.6 Duration . 4
1.7 Report outline . 5

2 Project Directive 6
2.1 Project mandate . 8
2.2 Project plan . 9
2.3 Organization . 14
2.4 Templates and standards . 16
2.5 Project management . 18
2.6 Quality assurance . 19

3 Preliminary Study 22
3.1 Market investigation . 24
3.2 Software development methodology 25
3.3 Version control system . 29
3.4 Systems now in use at Tapir . 31
3.5 Technologies and programming languages 38
3.6 Content Management System and Frameworks 40
3.7 Piracy and copyright . 41
3.8 Paragallo . 42
3.9 Third party payment solutions . 43
3.10 Customer �ltering techniques . 46
3.11 Preliminary study conclusions . 49

4 Requirements Speci�cation 52
4.1 Functional requirements (product backlog) 54

4.1.1 Use cases . 57
4.1.2 Detailed description of product backlog 69

iii

4.2 Non-functional requirements . 74

5 Sprint 1 76
5.1 Sprint plan . 78
5.2 Sprint backlog . 79
5.3 Design - Software architecture . 80

5.3.1 Introduction . 80
5.3.2 Model View Controller Pattern 80
5.3.3 Modules . 81
5.3.4 UML Model Diagram . 82
5.3.5 Database model . 83

5.4 Implementation - Graphical User Interface 84
5.5 Tests and results . 89
5.6 Sprint evaluation . 90

6 Sprint 2 92
6.1 Sprint plan . 94
6.2 Sprint backlog . 95
6.3 Design . 96
6.4 Implementation . 97

6.4.1 Products and groups . 97
6.4.2 Product search and browsing 99
6.4.3 Admin interface . 102
6.4.4 IP range for institution . 105

6.5 Tests and results . 106
6.6 Sprint evaluation . 107

7 Sprint 3 110
7.1 Sprint plan . 112
7.2 Sprint backlog . 113
7.3 Design . 114
7.4 Implementation . 115

7.4.1 My Account Interface . 115
7.4.2 Journals . 118
7.4.3 Discounts . 119
7.4.4 Watermarking of PDF �les . 120
7.4.5 Checkout process and PayEx integration 120
7.4.6 Statistics . 122

7.5 Tests and results . 124
7.6 Sprint evaluation . 125

8 Sprint 4 128
8.1 Sprint plan . 130
8.2 Sprint backlog . 131
8.3 Design . 132
8.4 Implementation . 133

8.4.1 The front page . 133
8.4.2 Journals . 134

iv

8.4.3 Managing subscriptions . 135
8.4.4 Shopping cart . 136
8.4.5 Discounts . 139

8.5 Acceptance testing . 140
8.6 Results . 145
8.7 Sprint evaluation . 146

9 Overview of system structure 148
9.1 System structure . 150
9.2 Modules . 153

9.2.1 Account . 153
9.2.2 Product . 155
9.2.3 Order . 158
9.2.4 Discount . 160
9.2.5 Statistics . 161
9.2.6 Journal . 161

9.3 Database . 162
9.4 PayEx integration . 164
9.5 Security . 165

9.5.1 File security . 165
9.5.2 Account security . 165
9.5.3 Payment security . 165
9.5.4 Access control . 165

10 Evaluation 166
10.1 Work process . 168
10.2 Results . 174
10.3 The customer and the project . 175
10.4 The supervisors . 175
10.5 Further work . 176
10.6 Suggestions for improvements . 177
10.7 Concluding remarks . 178

Glossary 192

References 193

Appendices 1

A Project directive 2
A.1 Contact information . 2
A.2 Meeting notice . 3
A.3 Meeting notice - supervisors . 4
A.4 Meeting minutes . 5
A.5 Weekly status report . 6

v

B Sprint 1 4
B.1 GUI sketches . 4

C User manual 7
C.1 Log in . 9
C.2 Account . 10
C.3 Product . 12
C.4 Groups . 13
C.5 Journal . 14
C.6 Subscription . 14
C.7 Statistics and log . 15
C.8 Discount . 16

vi

List of Figures

2.1 Organization chart . 14

3.1 Scrum procedure[1] . 25
3.2 Waterfall model[2] . 28
3.3 Version control system[3] . 29
3.4 Level 1 DFD . 31
3.5 Customer using the net store . 34
3.6 Process order and send books . 35
3.7 Customer buys subscription . 36
3.8 Changing the IP range of a customer 37

5.1 MVC pattern [4] . 80
5.2 Class diagram of important classes 82
5.3 ER diagram of our database . 83
5.4 An early sketch of how the frontpage should look like 84
5.5 The front page of the web site . 86
5.6 Website registration form . 86
5.7 Registration complete . 87
5.8 Logged in at the web page . 87
5.9 Web site when you forget the password 88
5.10 Administrator uploading new �le . 88
5.11 Sprint 1 burndown graph . 90

6.1 The updated database . 96
6.2 Product overview . 97
6.3 Products details . 98
6.4 Group overview . 98
6.5 Group details . 98
6.6 Sprint 2 backlog . 99
6.7 View of an article . 100
6.8 Advanced search . 101
6.9 Overview of users . 102
6.10 Adding a new user . 103
6.11 Editing an existing user . 104
6.12 IP �ltering overview for instituion . 105
6.13 IP Subnet for instituion . 105
6.14 The burndown chart of this sprint . 108

7.1 Updated database model . 114
7.2 Personal details . 115
7.3 User edit page . 116

vii

7.4 Order history . 117
7.5 Order details . 117
7.6 The user interface for a given journal 118
7.7 The form for subscribing to a journal 118
7.8 Watermarked PDF �le . 120
7.9 Dialog for summary when not logged on 120
7.10 PayEx payment form . 121
7.11 Download section . 121
7.12 Statistics main page . 122
7.13 File visits and download counter . 122
7.14 Administration log . 122
7.15 User interface for adding a new customer discount 123
7.16 The burndown chart of this sprint . 126

8.1 Database model . 132
8.2 Front page part 1 . 133
8.3 Front page part 2 . 134
8.4 Personal details . 135
8.5 Adding a subscription . 135
8.6 Shopping cart summary . 136
8.7 The shopping cart index . 137
8.8 The user can enter saved shopping carts from the user menu 137
8.9 Overview over saved shopping carts 138
8.10 Product summary with buy button 138
8.11 Shopping cart showing an order with multiple discounts 139
8.12 The order history showing order with multiple discounts 139
8.13 The burndown chart of this sprint . 147

9.1 Diagram of the entire system . 150
9.2 Filestructure . 151
9.3 Attribute type class diagram . 156
9.4 ER diagram of the attribute system and product module 157
9.5 Group . 158
9.6 Final ER diagram of the database 163
9.7 Sequence diagram of payment . 164

10.1 Bar chart of the phases . 169
10.2 The total hours used for each group member 170
10.3 Hours worked per week . 170
10.4 Activity on design and implementation 171
10.5 Activity on the report . 171
10.6 Activity per hour on the implementation 172
10.7 Lines of code on the web page . 173

A.1 Contact list . 2
A.2 Notice of meeting . 3
A.3 Notice of meeting, supervisor . 4
A.4 Meeting Minutes . 5

viii

A.5 Weekly status report . 6
A.6 Status report, part 2 . 1
A.7 Status report, part 3 . 2
A.8 Status report, part 4 . 2

B.1 Page listing scienti�c publications . 4
B.2 Page for a speci�c journal . 5
B.3 Page of a speci�c article . 5
B.4 Customer's personal information page 6
B.5 Shopping cart checkout . 6

C.1 Admin menu . 9
C.2 Admin menu . 10
C.3 Choosing edit user . 10
C.4 Choosing admin and save . 11
C.5 Ip range page . 11
C.6 Admin menu . 12
C.7 Journal admin view . 14
C.8 Google Analytics . 15

ix

List of Tables

2.1 Workload . 11
2.2 Gant Diagram . 11
2.3 Milestones . 12
2.4 Risk-table . 13
2.5 Risk-matrix . 13

3.1 Group competence . 39
3.2 IPv4 class network structure[5] . 47

4.1 Customer browsing products . 57
4.2 Customer user account registration 58
4.3 Customer searches for product . 59
4.4 Admin uploads new product . 60
4.5 Admin change product attributes . 61
4.6 Admin changes IP range . 62
4.7 System admin controls access of users 62
4.8 Admin manages groups of products 63
4.9 Admin views statistics . 63
4.10 Customer purchase product . 64
4.11 Customer subscribes to journal . 65
4.12 Administrator watermarks �le . 66
4.13 Administrator sets a discount . 66
4.14 Customer using shopping cart . 67
4.15 Customer puts together a compendium 68
4.16 Customer order history . 68

5.1 Sprint 1 backlog . 79
5.2 Sprint 1 backlog with used time . 90
5.3 Sprint 1 burndown table . 91

6.1 Sprint 2 backlog . 95
6.2 The sprint backlog with hours used 107

7.1 Sprint 3 backlog . 113
7.2 Discounts for an order . 119
7.3 Customer and group discounts . 123
7.4 The sprint backlog with hours used 125

8.1 Sprint 4 backlog . 131
8.2 Correspondence between tests and backlog items 141
8.3 The sprint backlog with hours used 146

x

10.1 Hours used on each phase . 169
10.2 Lines of code for each group member 173
10.3 Items in the product backlog . 174

xi

xii

Abstract

Tapir Academic Press is Norway's largest university press for literature in tech-
nology and the natural sciences. Today Tapir distributes scienti�c papers on hard
format, sold in bookstores and through a net store. The press would also like to
distribute digital versions of such papers. The assignment is to make a prototype of
a new net store that can distribute digital articles and books.

A fully functional web site was created. The web site is made with the Zend
Framework, an open source, object-oriented web application framework implemented
in PHP. The resulting net store has support for di�erent kind of products and �le
types. Journal and paper grouping system was made to ease the uploading of a new
�le. Files can inherit properties, such as author and price, from the group system,
which makes it easier and faster to upload a new product.

The net store has functionality for IP �ltering. Institutions, for example NTNU,
can buy or get discount on certain products. If a user sits on an IP belonging to that
institution, the user will get access to products already bought by the institution.
Another important aspect of distributing digital products is the copyright issues. A
soft copyright measure was used, where text documents can be watermarked with
customer information. The payment system was connected to PayEx, a company
that takes care of the actual transferring of money for a product.

1

CHAPTER 1

Introduction

2

1.1. PROJECT NAME

The purpose of this chapter is to give a brief introduction of the project. This
includes the background for the project, what kind of product the project group is
to make, general information about the the course and an outline of the context of
this report.

1.1 Project name

The title of the assignment is "Tapir Academic Press: IT system for distributing
scienti�c papers online." The title of the project and planned prototype will be Tapir
ePublish.

1.2 Stakeholders

This project is a part of the TDT4290 Customer Driven Project course. Tapir
Academic Press' main representative is Yngve Syrtveit, and Lasse Postmyr will
attend some meetings. The main supervisor of the group is Basit A. Kahn and the
assistant supervisor is Bian Wu. The project group consists of Joakim Bjerkheim,
Mats Gøran Karlsen, Olav Undheim, Erik Smistad and Arne Bjørgan.

1.3 Customer

The project sponsor, often referred to as the customer or the client of the project,
is Tapir Akademisk Forlag, translated to Tapir Academic Press in English. Tapir
Academic Press is a part of SiT Tapir AS, owned by "Studentsampskipnaden i
Trondheim" (SiT). The customer is represented by Yngve Syrtveit and Lasse Post-
myr. Yngve Syrtveit is Editor and developer of digital learning facilities, has a
master's degree in computer science from NTNU and is the main contact for the
project group. Lasse Postmyr is Editor for technology and the natural sciences and
has a Ph.D in chemistry from NTH.

Tapir Academic Press is Norway's largest university press for literature in tech-
nology and the natural sciences. The Press is based in Trondheim. The publications
include textbooks and academic literature for universities and university colleges,
as well as for vocational and professional education. They also publish high quality
literature of a more general nature. All in all, the compay publish about 120 new
titles annually.[6]

The product lines are

∙ Textbooks for university and university college education

∙ Textbooks for vocational and professional education

∙ Research literature

∙ Journals

3

CHAPTER 1. INTRODUCTION

1.4 Project background

During the last decades, digital information has had an enormous development. This
information, which could be electronic books and articles, is generally fast, easy and
cheap to duplicate. Tapir Academic Press wants to advance in the �eld of digital
education and eLearning. A part of this is trying to distribute scienti�c papers
online in a digital version, such as pdf �les.

The customer of the project is Tapir Academic Press. The Press currently has
IT systems and a net store for sale of regular books, but is looking into ways of
distributing electronic articles. The objective of this project is to create a web
site for selling electronic papers. The assignment requires the project group to
gain insight into some technological aspects of distribution of scienti�c papers, e.g.
di�erent solutions for payment, IP-�ltering and access control based on IP range,
DRM and issues regarding distribution of content protected by copyrights. The
research into di�erent technologies will be an important part of the �nal delivery,
together with the web site prototype. Through this project, Tapir Academic Press
wants to create a prototype of a web site for electronic articles, with a possible
addition for other formats such as regular eBooks and multimedia �les. By having
such a web site, the Press will also get an insight into the customer usage and the
possible market for electronic articles.

1.5 Project scope

The project scope is de�ned as the work that needs to be accomplished to deliver
a product service or result with the speci�ed features and functions. This is "the
hows" of the project, whereas product scope is "the what". The goals are listed in
the next section.

The main delivery is a net store which is tailored towards the distribution of
electronic articles and eBooks. Tapir Academic Press will continue to have the
current net store for paper books, and the existing IT systems. The new net store is
to have its own database and not tamper with the current customer data. If the new
site works well and there exists a demand for electronic papers, then the current net
store and the new store might be "forged" together, but this is speci�ed by Tapir
to be outside the scope of this project.

The second part of the delivery is the study of available technologies for electronic
books and articles. Tapir Academic Press is continuously considering new ways to
improve customer satisfaction, and a part of the product scope is thus to do some
study into ways of o�ering new services to the customer.

1.6 Duration

The project started on the 25th of August 2009. A pre-delivery of the report is to
be handed in to IDI department at NTNU before 12:00 on the 28th of September
2009. Project demonstration and �nal delivery is on November 19th 2009.

4

1.7. REPORT OUTLINE

1.7 Report outline

The �rst chapter, i.e. the current chapter, contains a brief introduction about the
project and how the report is organized. The second chapter is the project directive,
which contains information about the background of the project and general project
management. Chapter three is a preliminary study of the topics that are relevant
for this task. Chapter four is requirement speci�cation, where it is stated in detail
what kind of functional and non-functional requirements the solution has to have.
Then each sprint has a chapter for itself. The sprint chapters are made in the same
format, with a general introduction of what is to be achieved that sprint and a
conclusion of what was actually achieved. After the sprints, an evaluation of the
course and the project is given. The project ends with a conclusion of what was
made, the limits of it and potential improvements that can be made in later work
with the prototype.

5

CHAPTER 2

Project Directive

6

The project directive describes the administrative aspects of the project, and
describes the foundations on which this project is based on. This section will give
an overview of the purpose, the scope and a chapter overview of the project directive.

Purpose

The purpose of the project directive is to establish routines and set guidelines for
the project management and execution. It provides a full and �rm foundation for
the initiation of the project.

Scope

The project directive contains administrative information about the project, includ-
ing information about the task, the team, the customer and the project plan. It is
a dynamic document that may be changed if changes in the project or its premises
occur. Throughout the project it is likely that the team will �gure out better and
more e�cient routines and standards, and then the project directive will be changed
accordingly.

Chapter overview

The project directive contains the following chapters:

∙ Chapter 2.1 Project mandate
This section contains the stakeholders, objectives, resources and economy of
the project. In addition we have the general terms.

∙ Chapter 2.2 Project plan
This section describes the di�erent phases of the project. It also contains the
project workload, milestones and risks that can occur during the project.

∙ Chapter 2.3 Organization
This chapter gives an overview of how the group is organized, which roles each
participant has and the responsibilities connected to a speci�c role.

∙ Chapter 2.4 Templates and standards
This chapter states the speci�c templates and standards used by the group
during all phases of the project.

∙ Chapter 2.5 Project management
This chapter contains the meeting routines and the timekeeping for the project.

∙ Chapter 2.6 Quality assurance
This chapter describes how the development process can be tailored to meet
the requirements of the customer, such as project routines, response times for
notices and minutes of meetings.

7

CHAPTER 2. PROJECT DIRECTIVE

2.1 Project mandate

The project mandate contains information about the project's background, objec-
tives and constraints, which was not covered in the �rst chapter.

Stakeholders

Interested parties are Tapir Academic Press, the project team and the project team's
supervisors. Contact information for the stakeholders is enclosed in Appendix A.

Project objectives

The following list summarizes the overall project objectives:

∙ Make an overview of the current information system in Tapir Academic Press

∙ Do a study into subjects related to distributing electronic articles, such as
DRM, IP-range, security, payment etc.

∙ Create a standalone web site for distributing electronic articles and periodical
papers.

General terms

Tapir Academic Press will provide a server for the application to run on. The imple-
mentation should preferably be written in PHP and the web site should preferably
be in both Norwegian and English. There are few demands from the customer, ex-
cept that the prototype should be a standalone product and the existing web shop
and IT system should continue in the same manner as before. An agreement on
"Intellectual property rights for master's theses and student project reports at the
IME faculty" have to be signed by the parties involved in the project, meaning the
project group, main supervisor, the customer and the faculty. The project group is
not allowed to publish material received from Tapir Academic Press, such as articles,
transaction orders and the Press' customer data.

Resources

∙ Computers: There are available PCs at the P15 building at NTNU for the
members of the project group. Everyone in the project group have their own
laptops as well.

∙ Printouts: The group has a quota of 500 pages each.

∙ E-mail: The project group is assigned an electronic mailing list in order to
simplify communication, kpro5@idi.ntnu.no.

∙ Photo copying, telephone and telefax may be provided by IDI by request.

8

2.2. PROJECT PLAN

Economy

Estimated workload of the TDT4290 course is 310 hours per student for the whole
semester. For the group as a whole, counting �ve members, this equals 1550 hours
workload. From the start to the end of the project, this means an estimated 25
hours per week for each student in the project group.

2.2 Project plan

The project plan de�nes the concrete work plan that is to be used during the lifespan
of the project. This includes the di�erent phases of the project, the milestones and
the workload distributed into each phase.

The group, together with the customer, has decided that Scrum will be the
development model to be used in the project. The main reason for choosing Scrum
is because of its incremental nature. The main delivery of the project is a web site
with net sales of electronic articles. Two of the most important aspects of the web
site are modularity and usability. By using Scrum, it is possible to show the customer
what the product will look like early in the project. Although the contact persons
(listed in Appendix A) have experience with information technology, the main users
of the system will be people without programming experience. As workable deliveries
are to be delivered in the end of each sprint, it will be easier to keep the system
modular.

We have divided the project work into three sprints after the initial preliminary
study and the requirement speci�cation. Each sprint will start with a sprint planning
meeting with the customer and last for two weeks. At the end of each sprint there
is a demo with the customer where everyone can attend. On the demo the product
of the sprint will be showed. After the demo there will be a review meeting of
re�ections from the last sprint; what was good and what could be done better. A
discussion of Scrum compared to other development models is given in chapter 2
(the preliminary study).

Phases

The group has divided the project into eight phases, excluding project management
and self study which run over all phases. There is a strong correlation between the
phases of the project and the actual chapters in the report.

∙ Planning is the �rst phase and consists of the initial start up of the project
and the subjects described in the project directive chapter.

∙ Preliminary study is the second phase and consists of a research into sub-
jects for the project, for example what programming languages that can be
used for the prototype, and a discussion of what is best of the available op-
tions. This phase also requires a look into the existing systems in use by Tapir
Academic Press.

9

CHAPTER 2. PROJECT DIRECTIVE

∙ Requirement speci�cation is the third phase and consists of mapping out
the requirements for the prototype to be made, both functional and non-
functional. In addition to labeling the requirements, it will also be necessary
to make use case and diagrams of the required system.

∙ Sprint 1 starts after the �rst three phases. Before the �rst sprint, the require-
ments will be translated into a backlog which is to be used for the sprints. The
�rst sprint will start with the highest priorities from the backlog, which will
be a working prototype with the most important functionality.

∙ Sprint 2 will be similar to sprint 1, except that now we already will have
something to build on. This sprint will typically be to add functionality to the
product.

∙ Sprint 3 is the last sprint and at this point it will be important to produce a
�nal product to the customers satisfaction. If needed we have the possibility
to add a fourth sprint at the end of the project.

∙ Project evaluation is a phase where we will evaluate the project as a whole
and look back at the di�erent phases.

∙ Presentation and demonstration is the last phase. In this stage we prepare
the �nal presentation, �nish the report and deliver the �nal product.

10

2.2. PROJECT PLAN

Workload

The estimated workload is given in Table 2.1. The estimate was made by looking at
the recommended work distribution in the information booklet for the course and
by looking at old project reports. The most signi�cant di�erence from other reports
is a shorter pre study but a bit longer sprints. This is as we plan to delve deeper
into subjects in the start of each sprint, depending what we choose to focus on.

Table 2.1: Workload

The gantt-diagram in table 2.2 shows the planned work for the project period.
More information about milestones will be written in the next section.

Table 2.2: Gant Diagram

11

CHAPTER 2. PROJECT DIRECTIVE

Milestones

The milestones for the project are given in Table 2.3. Most of the milestones are
made internally by the project group in order to have something to work towards,
to plan progress. The most important date internally is the 20th September, which
is the date we want to be �nished with the three �rst chapters; project directive,
preliminary study and requirement speci�cation. Considering the workload distri-
bution, this means a lot of work early on in the project. This is a choice made by
the group in order to avoid running out of time later before the �nal deadline, and
to reduce the risk of project work clashing with exercises in the other courses.

Table 2.3: Milestones

Project risks

To keep track of risks in the project we have classi�ed and written them down. The
risk table with some of the initial risks we had is found in table 2.4. The risks are
changing continuously through the project and so will the risk table be. We have
classi�ed them as either High, Medium or Low. Every risk has a strategy or action
to deal with it. The four types of actions are:

∙ Avoid: Take action to make sure the risk will never occur

∙ Reduce: Reduce the probability that the risk will occur by taking actions, or
prepare for the risk so the damage when it occurs is lower

∙ Transfer: Let a third party handle the risk

∙ Accept: Do nothing with the risk but realize that the risk will be there, and
handle it if it arises

The total risk of a record is achieved by combining the consequence with the
probability, see the matrix in table 2.5

12

2.2. PROJECT PLAN

Table 2.4: Risk-table

Table 2.5: Risk-matrix

13

CHAPTER 2. PROJECT DIRECTIVE

2.3 Organization

In this section we will outline how the project group is organized, the role assign-
ments and the responsibility of each group member.

Organization chart

Figure 2.1: Organization chart

Although the organization model is organized as an ordered hierarchy scrum
suggests that the group works more like a �at structure with no speci�c roles where
instead the whole team collectively focus on completing the tasks within the sprint.
The reason for using the model depicted in �gure 2.1 is to make sure that all the
di�erent aspects of the project are taken care of; i.e the �nal delivery has a high
degree of quality.

Scrum Roles

There are three roles in Scrum:

∙ Product owner - who has the responsibility of prioritizing the tasks in the back-
log and evaluating the sprint results. The product owner is Tapir Academic
Press, represented mainly by Yngve Syrtveit.

∙ Scrum master - is the facilitator of the sprints and have the responsibility of
enforcing Scrum processes and act as a bu�er between the scrum team and
outer distractions. The scrum master for this project is Olav Undheim.

14

2.3. ORGANIZATION

∙ Team members - are responsible for the actual work. The scrum team is self
regulating and responsibility is divided dynamically.

Responsibilities

Although a scrum team does not have �xed roles, we have divided each chapter so
that one person has the main responsibility of its delivery and quality. This person
also has the responsibility of writing the introduction and conclusion if needed.

∙ Project directive - Olav Undheim.

∙ Preliminary study - Joakim Bjerkheim.

∙ Requirement speci�cation - Mats Gøran Karlsen.

∙ Sprint 1 - Erik Smistad.

∙ Sprint 2 - Arne Bjørgan.

∙ Sprint 3 - Mats Gøran Karlsen.

∙ User and system documentation - Joakim Bjerkheim.

∙ Project evaluation - Olav Undheim.

∙ Conclusion - Olav Undheim.

15

CHAPTER 2. PROJECT DIRECTIVE

2.4 Templates and standards

This chapter describes all templates and standards used in the project.

Templates

Templates are to be made for documents that should be in the same format. This
includes:

∙ Notice of meeting, found in Appendix A.2, A.3

∙ Minutes of meeting, found in Appendix A.4

∙ Status reports, found in Appendix A.5

Folder structure and �le naming

The folder structure is made in the same manner as the project report. LaTeX �les
should have the same �lename as the headline of the document in order to keep the
folders structured.

Version control procedures

∙ Commits should always have a comment written in English and should explain
short and direct what has been changed

∙ Untested code or code with errors should never be committed

∙ Con�icts should always be resolved properly with the one who �rst discovers
it

Code conventions and standards

Because we are using Zend Framework for PHP, the Zend coding standards should be
used. These are de�ned in http://framework.zend.com/manual/en/coding-standard.html,
but a summary and some additions/di�erences are mentioned below.

Encoding
Code should always be encoded with UTF-8

Commenting and language
The language in the code should be strictly English. This counts for both comments
and naming of variables, functions and classes. Comments in the code should be
written docblocks which follow the PHP Doc standard and should be parseable by
the php documentor http://phpdoc.org/. Inline comments should start with //. All
methods and classes should be documented with docblocks.

16

2.4. TEMPLATES AND STANDARDS

Naming conventions
Naming of variables, functions and classes should be as verbose as possible. Func-
tions and variables names should be written in the "camelCase" format. No under-
scores should be used in variable names. Except for members that are declared as
private or protected which should start with one single underscore. Constant should
be written in upper case and can use underscore to seperate words.

For example LOOP_LIMIT and DEBUG_MODE.

Coding style
Strings should be quoted be a single quote, like: $a = 'this is a string';

A comma in an argumentlist or in array declaration should always have a trail-
ing space for increased readability:
$array = array(1, 2, 3, 'foo', 'bar');
function a($foo, $bar, $deluxe) ..

Curly brackets on control structures such as if/else, loops and exceptions should
start on the same line the structure begins on and should have a space between the
structure start and the curly bracket.

if($foo == $bar) {
// Do something

}

while(true) {
// Do something forever

}

But curly brackets de�ning the scope of functions and classes should start on a
new line.

function fooBar()
{

// Do some stu�
}

class Cool_Class
{

public function coolMethod()
{

// Do stu�
}

}

17

CHAPTER 2. PROJECT DIRECTIVE

2.5 Project management

This section outlines the way the project management will be done in the project.

Meetings

There are three di�erent types of meetings. Customer meetings are scheduled every
Monday at 12:30 in room R92. We use a shared Google Docs document for the
agenda where everyone, including the customer, can add issues that they want to
have addressed at the next meeting. Before the meeting, meeting minutes from
last week meetings will be sent to the customer. Supervisor meetings are scheduled
each Wednesday from 14:15 to 15:00 at ITS-236. A status report of what tasks has
been performed since the last meeting is to be handed over to the supervisors before
each meeting. Internal group meetings, often just referred to as "Group meetings",
are set to be held at least once per week. This meeting is scheduled on Thursdays
from 10:15. Team work sessions are working hours where the whole group, or those
available in the group, sit together and work with the project. This is done to
encourage better communication when working with tasks and better cooperation.
We also believe it will be more motivational to have such team work hours, and
in the early phase it will be important in order not to procrastinate tasks which
doesn't have an immediate deadline in the near future. The hours given here does
not account for exercise lessons in other courses:

∙ Monday: 12:30 to 16:00, after the customer meeting

∙ Tuesday: 16:00 and onwards

∙ Wednesday: 15:00 and onwards

∙ Thursday: 10:15 to 14:00, after the group meeting

∙ Friday: 14:00 and onwards

Timekeeping

A spreadsheet has been created in Google Docs that all group members can edit
concurrently. Every group member is responsible for documenting how many hours
he has used for each phase at each week.

18

2.6. QUALITY ASSURANCE

2.6 Quality assurance

This chapter aims to guarantee the quality of delivered work.

Routines for producing quality

This section outlines the routines concerning the written material.

All documents that are written and delivered is to follow a template. To avoid
misspellings and such, one other group member has to read censorship before the
text is published.

New code shall be reviewed by one other team member before submitted to the
system. All written code should be tested, either manual or automatic. The code
should be well documented so that external people can understand the code. The
code is to follow conventions.

We have got a dedicated person with main responsibility on the written report,
Arne Bjørgan. When a chapter in the report is �nished, the group reviews the
material and discusses the result. Joakim Bjerkheim are appointed the Quality
assurance responsible.

Routines regarding customer

This section takes care of the aspects of quality assurance concerning the customer.

Con�rmation of meeting requests should be made within 24 hours. Answers to
questions should be made within 24 hours. The other group members should ap-
prove the meeting minutes. Meeting minutes from customer meeting should be sent
to the customer within 24 hours after the meeting.

Routines regarding the supervisors

This section takes care of the aspects of quality assurance concerning the supervisors.

All sent e-mails are to be sent to both Basit and Bian at the same time. We shall
have at least one meeting every week. Room is to be booked by the supervisors.
The group sends the agenda, report, changelog on the report, meeting summary
from last time, meeting summary from customer meeting and status report. This
is preferably sent in one mail, to both Basit and Bian, and the subject should con-
tain"Kpro5" These documents are to be sent at least 8 working hours before the
meeting.

19

CHAPTER 2. PROJECT DIRECTIVE

Internal routines

This section takes care of routines within the group.

Before any meeting starts, we assign one person as responsible for writing meet-
ing minutes. We will have a group meeting every thursday between 1015 and 1400.
Meeting minutes will be sent to all project participants within 24 hours. Every group
member should check it's learning and email at least twice a day. In weekends one
check is enough. Contact via cell phones will be used in emergency situations. If
unexpected problems come by, this should be adressed in an extraordinary meeting.

Testing

All written code should be tested, either manual or automatic. The sequence of the
testing phases:

∙ Unit test: Testing of single methods, done while programming from early in
all sprints

∙ Module test: Communication between parts of program, more comprehensive
than unit testing but done simultaneously

∙ System test: Testing of the system as a whole, done in the end of the sprints

∙ Integration test: Testing of the system together with external participants,
done in the end of sprint 3

Non functional tests including end user:

∙ Usability tests: Secure that the communication between the user and the sys-
tem is as expected, these tests takes place from sprint 2 and outwards

∙ Acceptance tests: End user tests the system, based on these tests the customer
decides whether the product should be used, after sprint 3.

20

2.6. QUALITY ASSURANCE

21

CHAPTER 3

Preliminary Study

22

Purpose

The purpose of this chapter is to give an overview of the relevant knowledge in
connection with the project. While we are in the preliminary phase we will try to
get as much information about useful technologies as possible.

We will also look into existing solutions to similar tasks to see if we can apply
any of these to our project.

Scope

Based on the lack of time we will only scratch the surface in this phase. Some
aspects will not be covered. We have not written about equivalent web services,
although they are listed here.

Because this is only a super�cial overview, we will need to look more deeply into
the themes while working on the project. Such studies will then be included in the
respective sprint chapter.

Chapter overview

The pre-study contains the following chapters:

∙ Chapter 3.1 Market investigation
This section tells us what solutions the competitors use.

∙ Chapter 3.2 Software development methodology
This section contains an introduction to waterfall and scrum, and a discussion
about which we should use in the project.

∙ Chapter 3.3 Version control system
This section discusses which VCS we should use for collaboration and version
control.

∙ Chapter 3.4 Systems now in use at Tapir
This section gives an overview of the systems that Tapir uses today, and how
the buying process is done in todays systems.

∙ Chapter 3.5 Technology and programming languages
This section discusses what technology we should use when implementing the
solution.

∙ Chapter 3.6 Content management systems and frameworks
This section discusses what CMS and framework we should use for the project.

∙ Chapter 3.7 Piracy and copyright
This section discusses the use of DRM and digital watermarking

∙ Chapter 3.8 Paragallo
This section gives an insight into Paragallo and the solutions they can o�er to
us and Tapir

23

CHAPTER 3. PRELIMINARY STUDY

∙ Chapter 3.9 Third party payment solutions
This section compares the di�erent payment solution providers that exists on
the market.

∙ Chapter 3.10 Customer �ltering techniques
This section discusses the possibilities and solutions for �ltering customers
from their IP-address.

∙ Chapter 3.11 Preliminary study conclusions
Summary of the conclusions made in the preliminary study chapters.

3.1 Market investigation

Websites selling ebooks, scienti�c articles and journal already exists. And there is a
lot of them. From large ones such as books.amazon.com and www.springerlink.com
to smaller ones such as pubs.acs.org. There is also a very high competition in this
industry. But the content that Tapir wishes to publish(at least in the beginning) is
unique. The �ve journals that they wish to sell on the site are only sold by Tapir
and will not exist on any of the other websites. They also don't want to sell other
publishers material on their website, and therefor the content on the website will be
unique. And it is Tapirs goal that the scholars who are interested in this content
will be able to �nd their way to website we will make. Search engine optimization
(SEO) should therefore be one the goals of this project. When someone searches for
Tapirs articles and journals on the web, this projects website should rank high.

Functionality on the competitors websites

We have been looking at what functionality the existing websites o�er. Here is
a list of the websites we checked out:

∙ http://butikk.tapirforlag.no

∙ http://scholar.google.com

∙ http://books.google.com

∙ http://www.sciencedirect.com

∙ http://pubs.acs.org

∙ http://www.springerlink.com

∙ http://cat.inist.fr

∙ http://adsabs.harvard.edu

∙ http://www.sciencedirect.com

24

3.2. SOFTWARE DEVELOPMENT METHODOLOGY

We noticed when sitting on NTNUs network that we gained access to a lot of
the articles and journals on these websites, so the use of IP range for detecting their
customers is already in widespread use in this market. Most website also support
payment online using a third party payment solution, but none o�er payment by
SMS. Websites with a large amount of products usually o�er a way to browse easily
through the products by dividing it into di�erent categories and using tagging. Most
of them also have search box on their website. Some of the websites provide more
fancy functionality like the possibility to preview the PDFs and to view the entire
content of the PDF as a HTML document.

3.2 Software development methodology

Introduction

This section gives a brief discussion around the di�erent development methodologies
that could have been used for this project. Even though there are a lot of di�er-
ent methodologies, we have chosen just to discuss the two methods we considered
the most, waterfall and scrum. Scrum is an agile software development method
that put focus on small iterative "Sprints". Waterfall is a sequential development
methodology where the focus is to completely �nish one phase at a time.

Scrum

Figure 3.1: Scrum procedure[1]

25

CHAPTER 3. PRELIMINARY STUDY

Scrum is an incremental framework, commonly used with agile software develop-
ment. Scrum was intended for management of software development projects, and
has gained a lot of popularity in recent years. Many companies have now started
using scrum instead of the waterfall method, because of the iterative processes.
These processes gives the software developer a chance of getting one part of the
program tested and accepted before moving on to the next part. A project group
will also have the chance to get more feedback from the customer during the de-
velopment process. Scrum reduces the risk of ending up with a product that the
customer doesn't recognize as what they wanted. Scrum contains sets of practices
and prede�ned roles [7]. The main roles in scrum are:

∙ Scrum Master, who maintains the processes

∙ Product Owner, who represents the stakeholders

∙ The Team, a cross-functional group who do the actual analysis, design, imple-
mentation, testing, and so on.

When working with scrum, we have sprints, typically a two to four week period.
In this period the team produces a product increment. This would typically be a
working and tested software module. The set of features that go into a sprint come
from the product backlog, which is a prioritized set of high level requirements of
work to be done. These sets of requirements are put in sprints during the sprint
planning meeting. During a sprint, no one is allowed to change the sprint backlog,
which means that the requirements are frozen for that sprint. After a sprint is com-
pleted, the team demonstrates the use of the software.

Daily scrum meeting

When using scrum we have di�erent kind of meetings that should be executed.
The daily scrum meeting is a time boxed meeting, typically with punishments for the
participants being late. The daily scrum meeting should also have a �xed place and
time every day. During the meeting, each team member answers three questions:

∙ What have you done since yesterday?

∙ What are you planning to do by today?

∙ Do you have any problems preventing you from accomplishing your goals?

The daily scrum meeting should be an e�cient way of managing the progress in
the group.
Sprint planning meeting

At the beginning of the sprint cycle this meeting is held to:

∙ Select what work is to be done.

∙ Prepare the sprint backlog that detail the time it will take to do that work,
with the entire team.

26

3.2. SOFTWARE DEVELOPMENT METHODOLOGY

∙ Identify and communicate how much of the work is likely to be done during
the current sprint.

At the end of a sprint cycle, two meetings are held: the "Sprint Review Meet-
ing" and the "Sprint Retrospective", which is presentation and re�ections about the
sprint just �nished.[7]

The product backlog

The product backlog is a high-level document for the entire project. It contains
what will be built, backlog items. It is open and editable by anyone and contains
rough estimates of both business value and development e�ort. The backlog tells us
what should be done, and how the prioritizing is among the items.[7]

The Sprint backlog

The sprint backlog is a document containing information about how the team is
going to implement the features for the upcoming sprint. Features are broken down
into tasks which are easy to understand for the team members.[7]

The Burn Down

The sprint burn down chart is a publicly displayed chart showing remaining
work in the sprint backlog. Updated every day, it gives a simple view of the sprint
progress.[7]

Waterfall

Waterfall has been a standard development methodology for a long time. It orig-
inated from manufacturing and construction industry, and was adapted into the
software industry as well. It is sequential; starting and �nishing one phase before
the next. Some claim it is called the waterfall methodology because each phase �ows
naturally into the next phase like water over a series of falls. The phases are in se-
quential order; requirements speci�cation, design, construction, integration, testing,
installation and maintenance.[8]

27

CHAPTER 3. PRELIMINARY STUDY

Figure 3.2: Waterfall model[2]

The advantage of the waterfall method is that it is easy to understand and it
encourages a disciplined process. First you think about what should be built, then
you make a plan to build it and �nally you build it. It allows for easy managerial
control. Waterfall is a well suited method when the requirements are �xed and won't
change during the execution of the project. Another possible advantage is that you
have to completely �nish and document one phase before moving to the next, which
force you put a proper e�ort into each phase, and not make any shortcuts in e�ort
or documentation. The disadvantage of the waterfall model is mainly the lack of
�exibility. It does not allow for much re�ection or revision while the project is
running. It becomes harder and harder to do changes in the early stages the further
into the project you come. This means if the customer decide to change their initial
requirements, which they often do with software products, then it will be a costly
change with this development model. Another disadvantage is that all the testing
is done when the system is supposed to be almost �nished, i.e. at the later stages
of the project. At this point it may already be too late to implement the possible
changes that is suggested based on the test results.

28

3.3. VERSION CONTROL SYSTEM

Methodology conclusion

Scrum was chosen to be the software development process for this project, and there
are several reasons for this choice. From earlier experiences the team members have
learned that requirements tend to change during the course of a project. In addition,
the project group does not have a lot of experience making the web system described
in the project objective. This means that having multiple iterations with focus on
making a system that is up and running as quickly as possible will make it easier to
get new ideas which wasn't included at the original requirement speci�cation. Also
since scrum in contrary to the waterfall model does not rely on the overall system
design being �nished before implementation changing requirements would be easier
to implement into the system.

Team member roles are dynamic in Scrum, while the waterfall method has a more
traditional separation of di�erent responsibilities. For a student group a dynamic
team role seems more appropriate. Scrum has also been quite popular the recent
years and as such the project group and the customer felt it would be bene�cial to
learn more about working with Scrum. By using Scrum we get working software
at an early stage and will be able to make good use of the continuous customer
feedback that is o�ered to us.

3.3 Version control system

Version control systems manages the changes of documents. These systems are very
useful when several people are changing the same �les, like we will do in this software
development project. The �les that are committed are stored at a repository, which
usually reside on a server. When you perform what is called a checkout at your
local machine you get a copy of this repository as it was when you performed the
checkout. You can also do an update on your local machine to get the latest updates
from the repository. When someone are �nished changing some �les and want to
share them with the others, they can commit the changes to the repository. Most
modern version control systems support non-linear development. What this means
is that when di�erent users start making changes they create branches from the
main development line (trunk). These branches can later be merged with the trunk
or discontinued. This is illustrated in the picture below.

Figure 3.3: Version control system[3]

29

CHAPTER 3. PRELIMINARY STUDY

Di�erent version control systems

Di�erent version control systems exists, here are the three most popular.

∙ CVS (Concurrent Versions System)
One of the �rst version control systems out there. It was developed in the
1980s and is know seen to be outdated, but is still in widespread use.[9]

∙ SVN (Subversion)
Was developed to be the successor of CVS. The plan was to remove the bugs
that CVS had and add the features it was missing. SVN is wide use today
and is know to be faster and more reliable than CVS.[10]

∙ GIT
Developed by Linus Torvald as a tool for developing his Linux kernels. Has
a strong support for non-linear development by using branching and merging.
Both CVS and SVN has the support of non-linear development, but Git is
know to be very fast and scalable when it comes to non-linear development
and therefor being ideal for very large projects.[11]

Conclusion of which version control system to use

All the VCS mentioned above are installed on NTNUs servers. But none of the
group members have experience with GIT. And since SVN is more recommended
than CVS and most of the groups members have previous experience with it we
decided to use SVN as our VCS.

30

3.4. SYSTEMS NOW IN USE AT TAPIR

3.4 Systems now in use at Tapir

Figure 3.4 is a data-�ow diagram (DFD) showing the data �ow when a customer or-
der of a book is processed. Not all the systems in Tapir Academic Press are pictured
in this DFD, but it gives an insight into the most important system, Schilling.

Figure 3.4: Level 1 DFD

The processes involved in this DFD are:

∙ Process 1: The sta� at Tapir receives an email, fax or telephone call from a
customer with order information

∙ Process 2: If the debitor exists in Schilling we access that account, else we
have to create a new debitor

∙ Process 3: The bill is created at Tapir with information from the Schilling-
system

∙ Process 4: The storage information must be updated according to the item(s)
that are picked for delivery

∙ Process 5: The packet note with order information is created as a sticker that's
put on the packet that will be sent to the customer

∙ Process 6: The packet is sent to the customer via mail delivery. Contains a
bill, a packet note and the item(s) that was ordered

31

CHAPTER 3. PRELIMINARY STUDY

Schilling

Schilling is an enterprise resource planning system especially designed for publishing
companies. The system takes care of tax, percentage of sales price that the writer
collects (royalty), storage management, invoice sending and accounting.

Moses

Moses is a system that among other things converts �les into PDF-�les. Files is to
be delivered to the system, for instance .docx-�les, and you get out a much nicer
looking �le in PDF-format. Moses takes also care of the e-subscriptions.

Mentor

Mentor is Forleggerforeningen's information portal that is used by bookstores. The
publishers gives information about their books, such as title, theme, a description
of the book, number of pages, and where to order them. Employees in the book-
stores use Mentor to search for books when asked by customers, and gets ordering
information.

Aries

Aries administrates the process a text have to go through before it can be published.
This embraces both the editorial work, such as evaluation and academic common
assessment, and the work to be done before pressing the papers (proofreading etc).
For these purposes Aries is divided into two subssystems called Editorial Manager
and PrePrint Manager. Aries includes a function for version control for documents
who are edited online by more than one person at time.

euroConnex

This system delivers an integrated payments processing service for credit and debit
cards to banks, payment processors, and merchants.

32

3.4. SYSTEMS NOW IN USE AT TAPIR

Use of existing systems

We are not going to change any of these programs. What we might want to do
is to code up against Schilling. We have to pay for doing this, and it could be
complicated, but it would decrease the amount of work to be done for Anne.

Use cases

To better understand the current information system at the company, we made four
use cases of typical tasks performed by the customers and the employees at Tapir.
The use cases are given one by one at the next 4 pages.

Each use case has a unique name which identi�es that use case. Participating
actors are the actors involved for this speci�c use case. Flow of events is the major
part of the use case, which states the typical sequential line of events, and the
"extensions" �eld depicts alternatives for a given event. Entry and exit conditions
give the starting and �nishing states, respectively, while the quality requirement
�eld states possible quality requirements involved in the speci�c use case.

33

CHAPTER 3. PRELIMINARY STUDY

Figure 3.5: Customer using the net store

34

3.4. SYSTEMS NOW IN USE AT TAPIR

Figure 3.6: Process order and send books

35

CHAPTER 3. PRELIMINARY STUDY

Figure 3.7: Customer buys subscription

36

3.4. SYSTEMS NOW IN USE AT TAPIR

Figure 3.8: Changing the IP range of a customer

37

CHAPTER 3. PRELIMINARY STUDY

3.5 Technologies and programming languages

Di�erent types of languages

PHP is the most common scripting language for web development. It's an open-
source interpretative language. In an interpretative language the code is not com-
piled, but interpreted at run time. The language is dynamically typed like python,
which means that you can't initialize variables with types like integer or string. The
syntax is similar to that of C++ and Java with some exceptions. As of PHP ver-
sion 5 the language got a descent object model, resembling the Java object model,
making PHP a good language for writing object oriented code. The PHP language
is implemented as a module for the popular Apache web server.[12]

ASP(Active Server Pages) is a technology for making dynamic web pages
and not a language. It is developed by Microsoft and runs on their IIS(Internet
Information Service) server. The language usually used in ASP is VBScript, but
many other languages like Perl and Javascript can be used.[13]

Python is a language originally not made for web development, but with the
mod_wsgi or mod_python Apache modules and the Django framework, this lan-
guage has been enabled for web development. The python language itself is an inter-
pretative language and dynamically typed often used for algorithm construction.[14]

Perl is like PHP a very well know programming language used for web develop-
ment. It runs on the Apache web server and is famous for its text manipulation
capabilities. The syntax of perl resembles PHP and is also dynamically typed.[15]

HTML/CSS is used for describing the content and the layout of a web page.
HTML documents are interpreted by the web browser and comes in many di�erent
dialects where HTML 4 and XHTML 1 are the two main dialects. They are called
dialects of HTML because they don't di�er very much in syntax. The syntax is very
similar to XML syntax like <tag>text</tag>.[16]

CSS (Cascading Style Sheets) is a language used for de�ning the looks of web
pages mostly together with HTML.[16]

Javascript is a client side script language used to manipulate the content of web
pages without the need of sending a new HTTP request to the server. Having
javascript enabled in your browser poses a real security threat and therefor a web-
site should never rely 100 percent that the client has javascript enabled.[17]

38

3.5. TECHNOLOGIES AND PROGRAMMING LANGUAGES

Flash allows for more graphical websites that are not limited by the simplicity of
HTML and images. By using Flash you can make animations and integrate videos
and a lot of other applications in your website. Some of the drawbacks of Flash
is that the clients has to have a Adobe Flash Player plugin installed in their web
browser and search engines can't see into �ash websites and therefor can't index the
content of �ash websites.[18]

Team programming competence

Table 3.1 gives an overview of the experience each team member has with the di�er-
ent programming languages that has been described. We used a classi�cation with
"high", "medium", "low" or "none", to indicate how much knowledge and experi-
ence each group member has for a given technology.. The higher the group total
ranking is for a given language, the better it is to use it.

Table 3.1: Group competence

Final choices of technologies and programming languages

As for which server-side programming language to use our group has the most expe-
rience with PHP and Python, but those who have some experience with Python does
not have any experience with Django which you have to use for developing websites
in Python. Because of this, the popularity of PHP and the fact that the customer
requested PHP to be used we decided to use PHP as our server-side programming
language.

39

CHAPTER 3. PRELIMINARY STUDY

3.6 Content Management System and Frameworks

Di�erent types of Content Management Systems and Frame-
works

Drupal
Drupal is an open-source PHP-based CMS(Content Management System) and some-
times referred to as a CMF(Content Management Framework) because Drupal is
made to be con�gurable and customizable. The development of Drupal started as
early as in 2000 and has a lot of backward compatibility. It is not an object oriented
system, instead Drupal is a layer-based system with 5 layers. Here is an overview of
the layers:

∙ The bottom layer is the data layer

∙ A layer of modules; modules are parts that can be added and removed from
the system with a loose coupling as possible to the other modules

∙ The Blocks and Menus layer get output from a module and can be con�gured
to output in di�erent ways.

∙ The user permission layer controls who has access to what in the system.

∙ On the surface we have the presentation/template layer made primarily up of
HTML and CSS.

On the Drupal website you will �nd a lot of plugins and modules that can be
downloaded and installed. They have both an e-commerce and a journal module.

Zend framework
Zend Framework is a PHP based framework and not a CMS. The framework is de-
veloped by Zend company the same company that is involved with the development
of the PHP language itself. New versions of the framework is added every month
as a result of constant testing and development of new features. It requires PHP5
and uses best practices within object oriented programming and is based on the
design pattern MVC (Model View Controller). It is highly customizable and all of
its internal code has been made so that it can be overloaded and get added func-
tionality. It also supports the PHP unit testing framework, which allows for test
driven development.[19]

Cake PHP
Cake PHP is also a PHP based framework. It works on both PHP4 and PHP5,
which means that this framework does not take the full advantage of PHP5 ob-
ject model which means that it has among other thing no support for interfaces
and encapsulation of members and methods. This framework is also based on the
MVC(Model View Controller) design pattern.[?]

Django
The Django framework for Python is a new framework which has gained rapid

40

3.7. PIRACY AND COPYRIGHT

success in web development because of its use of best practices and encouragement
to rapid development and clean, pragmatic design.[20]

Final choices of CMS/CMF and framework

The customer initially suggested that we use Drupal since Tapirs other e-store (bu-
tikk.tapirforlag.no) uses Drupal. After the preliminary study the group concluded
togheter with the customer that we will not use Drupal. One of the reason for this is
that Drupal has a reputation for being messy to con�gure and to program new mod-
ules for, especially if you have no previous experience with it. It is also not object
oriented which is a major drawback for our group because our programming/system
developing education at school has been very object oriented. So because of this
and since we are going to make system that requires a lot of customized solutions we
decided not to use a CMS like Drupal for development, but instead use a framework
that allows us to develop the website from scratch rapidly by using the tools in the
frameworks. Since we decided on using PHP, there is no reason to discuss using the
Django framework as it is in the Python language. One in our group has a lot of
experience using the Zend Framework for PHP and recommends it very much. And
since this framework employs the best practices in object oriented programming we
decided together with the customer to use the Zend Framework.

3.7 Piracy and copyright

Since we are going to sell digital material like PDF's in the online store we have
to take into consideration using methods to prevent piracy of the material. This
will be a security for Tapir Academic Press that the articles won't be spread among
institutions and private customers.

Digital Rights Management(DRM)

Digital rights management (DRM) is a generic term that refers to access control
technologies that can be used by hardware manufacturers, publishers, copyright
holders and individuals to try to impose limitations on the usage of digital content
and devices. The term is used to describe any technology which inhibits uses (le-
gitimate or otherwise) of digital content that were not desired or foreseen by the
content provider.[21]

DRM is most known for forcing the user to follow one or more restrictions that
follow the copyrighted material, by implementing technical solutions on how the
material can be used. Typical examples on these solutions are:

∙ copy protection, that the material is locked for printing or limitations on how
many times you can open/run the material.

∙ contain a license that describes the rights that followed the material, and also
a protection of this license.

The adversaries of DRM think that this type of technology charges the con-
sumers with too many restrictions and enable misuse. They also think that DRM

41

CHAPTER 3. PRELIMINARY STUDY

unreasonably limits the user for the usage of a product that is bought legally. An
example of this is that you may not copy the material to another computer for your
own use. DRM has also gained criticism because it's more build upon restrictions
than rights. The supporters claims that DRM is necessary to prevent extended
piracy of digital material.[21]

Digital Watermarking

Digital watermarking is the process of possibly irreversibly embedding information
into a digital signal. The signal may be audio, pictures or video. If the signal is
copied, the information is also carried in the copy.

In visible watermarking, the information is visible in the picture or video. Typ-
ically, the information is text or a logo which identi�es the owner of the media.

In invisible watermarking, information is added as digital data to audio, pic-
ture or video, but it cannot be perceived as such (although it is possible to detect
the hidden information). An important application of invisible watermarking is to
copyright protection systems, which are intended to prevent or deter unauthorized
copying of digital media. While some �le formats for digital media can contain
additional information called metadata, digital watermarking is distinct in that the
data is carried in the signal itself.[22]

Which way do we go?

Just as important for us as the prevention of piracy are satis�ed customers. Putting
a rigid DRM into the articles may lead to customers that are not satis�ed and
chooses to end their subscription or refuse from buying the articles online. Many
have been used to buying a physical copy of the articles, so we can't risk losing
customers due to strict DRM solutions when going towards digital distribution. In
addition the articles are not that valuable compared to books, so the market for
piracy products is not that big. Watermarking is a method for preventing piracy
that we �nd interesting because the customer is not restricted in usage of their
legally bought article. As described above, watermarking consists of either a visible
or invisible mark that connects the product to a customer or distributor. Worst-case
scenario for the customer is that the article contains for example a email or a name.
This will not decrease usability in any extent mentionable. We have decided to make
use of watermarking. Since we are in a pilot project, the distribution will be limited
in volume so the risk is not that high. The system should be made so DRM can be
added in case of revelation of extended piracy.

3.8 Paragallo

[23]
The web site that is to be built in this project needs support for di�erent kind of

�le types and content. Paragallo is a Norwegian company that specializes in deliv-
ering solutions and services for management of multimedia content, which may also
be copyrighted. The reason for doing a brief study into Paragallo is because they
have already set a date for a demonstration with Tapir Academic Press, and as such

42

3.9. THIRD PARTY PAYMENT SOLUTIONS

their solution might be used for this project's web site. Paragallo delivers "solu-
tions and services that manage multimedia content, copyrights, digital distribution,
and interactivity". Paragallo delivers plug and play based multimedia solutions for
companies that have, or want to have, online digital distribution of media content
as a part of the business model. Both services and solutions can be supplied by
Paragallo. Services will typically be business development such as consulting online
distribution of multimedia content. Solutions are typically modules or systems that
take care of certain aspects of an online shop. The provided solutions are described
in the following paragraphs.

∙ Media Bank is a solution for importing, encoding, storing and managing
multimedia �les. The media bank supports all major multimedia technologies
and is thus a good way of handling the data �les, which in the early phases of
this project will be electronic articles in pdf format.

∙ Online shop is currently just for music and audio books, but Paragallo is
working on supporting eBooks as well. What this solution currently o�ers is
licensed music content that can be sold on the web site, typically saved in the
media bank.

∙ On Demand is Web- and MobileTV support, which can be run directly from
the web site. This includes technologies such as Video On Demand, Live
Streaming and Radio Streaming. Although Tapir Academic Press is mainly
focusing on written material, it is a possibility to have video material on the
web site as well.

∙ Interactive is a solution for marketing and attracting new customers. There
are three sub categories under this; SMS messaging, social networking and
mobile marketing.

∙ Admin Portal is an administration solution with live sales statistics, content
management system, partner pro�le, sales reporting templates etc. Creating
a well made administration interface for the web site is an important part of
the project, and the "Admin Portal" is the solution that Paragallo has come
up with.

∙ Billing is the set up and cooperation with 3rd party payment methods. This
includes SMS and Wap (CPA) payment, Visa / Mastercard and micropay-
ments. This solution is also highly relevant for what Tapir Academic Press
wants to have on the web site.

3.9 Third party payment solutions

Payment methods

The website should be integrated with a third party payment system. Such a sys-
tem is needed for receiving payment from customers on the Internet. The way these
systems usually work, which is called the re-direct method, is explained below.

43

CHAPTER 3. PRELIMINARY STUDY

∙ The customer select the products he wishes to purchases and goes to checkout.

∙ The customer is then redirected to a third party payment system

∙ The third party system receives the payment details from the merchants web-
site. Details such as price, amount and product name

∙ The customer supplies his payment details (ex. Credit card type and details)
to the third party website

∙ When payment is complete or canceled the customer is redirected back to the
merchants website.

∙ When payment has been processed, and has completed or failed, the third
party system sends a message, usually by means of a HTTP packet, to the
merchants website. The transaction can then be processed on the merchants
website and the customer can get his product.

Another popular method is the direct method, where the customer always stays
on the merchants website. This can be less confusing for the customer, but it re-
quires that the merchant has a website with a proper SSL certi�cate, which can be
expensive and complex to implement.

SMS payment
The customer also wanted us to look into payment solutions by SMS(Short Message
Service). SMS is a service you can use with most mobile telephones today. One SMS
can contain up to 160 characters and you can send to any telephone that support
the SMS service. With SMS payments we mean that you send an SMS to speci�c
number and then your mobile subscription is overcharged for that one SMS. And
then the money gets transferred to the merchant. There are restrictions of how much
you are allowed to receive from SMS payments. In Norway its 1NOK to 100NOK,
and it can be di�erent for each country. For instance in Denmark the maximum
price is 75 DKK.

44

3.9. THIRD PARTY PAYMENT SOLUTIONS

Di�erent payment solution providers

Here is a description of a few third party Internet payment solutions.

DIBS

DIBS Payment services is one of Scandinavias largest supplier of payment systems
over Internett. They o�er features like payment by all the major credit cards. But
they don't have any functionality for payment by SMS or invoice. DIBS has a lot
of great technical documentation on their tech website[http://tech.dibs.dk].[24]

PayEx

PayEx is also one of the largest supplier of payment solutions in the Nordic coun-
tries. They also have documentation on how to integrate your own system with
theirs. But they have a lot more features than DIBS like payment by SMS and
invoice. For SMS payments the customer needs to have a Norwegian, Swedish or
Danish mobile subscription. Supports both the direct and re-direct methods ex-
plained in the previous section regarding SMS payment. PayEx is implemented as a
web service using WSDL and SOAP to exchange information between the merchants
website and PayEx.[25]

PayPal

PayPal is a large international payment solution which have no monthly or estab-
lishing fees, only transactional fees. It has a great API which is easy to use. It uses
the re-direct method, with a simple HTTP post as the callback mechanism. But it
does not have SMS or invoice payment methods.[26]

Sendega

Sendega is an SMS gateway company. They have features for sending and receiving
SMS and receiving payment by SMS.[27]

Final choice of payment solution

We have decided to use the re-direct method for payment as it is fairly easy to
implement, is well support and in common use. Together with the customer we
decided to use PayEx as the best third party payment solution since they are the
online nordic payment solution company that support the methods we wish to use:
payment by card, invoice and SMS.

45

CHAPTER 3. PRELIMINARY STUDY

3.10 Customer �ltering techniques

The project customer wants the store to use automated �ltering techniques to sim-
plify the authentication process for the user. Looking at sites o�ering similar prod-
ucts advanced IP range �ltering is commonly used. The same kind of functionality
is wanted by the user.

The IP protocol

An IP address is a numbering identi�cation and logical address that is assigned
to devices participating in a computer network utilizing the internet protocol for
communication between the nodes. The original design of TCP/IP stack, which is
mostly used today in public networks, consists of an address space of 32 bits. This
is called the IPv4. Due to the increased number of computers in the internet today
a new standard for addressing has been proposed IPv6 which is a system that uses
128 bits to de�ne an address space.

Subnetworks

SubnetworksThe IP protocol also has the task of routing data packets between
networks. IP addresses used in TCP/IP speci�es source and destination nodes in
the topology of the routing system. For this purpose some of the bits in the IP range
are designated to subnetworks (subnet).A subnet describes network computers and
devices that have a common, designated routing pre�x. This is done by dividing the
IP address into two parts: network identi�er and the host identi�er. Subnetting is
supported by both the IPv4 and IPv6. Subnet masking is only supported by IPv4;
this is done by specifying which bits of the address that designate subnetworks. The
other method used is CIDR (Classless Inter-Domain Routing). This is supported
by both IPv4 and IPv6. Here the IP address is followed by a slash and the number
of bits (decimal format) used for the network part , called the network pre�x. An
example of IPv4 CIDR notation: 129.241.111.111/24. Here the 24 �rst bits are used
to de�ne the network and subnet.By utilizing subnets one gets a hierarchy with the
organization network address space partitioned like a tree structure. The borders
between the networks are often routers. By organizing the network in such a way
excessive rates of packet collision are minimized.

46

3.10. CUSTOMER FILTERING TECHNIQUES

Internet Protocol version 4 Classes

Classful network is a term used to describe the network architecture of internet until
1993. It divided the address space of IPv4 into the �ve address classes as shown in
�gure 3.2. As seen from the �gure the �rst three bits de�nes the class.[28]

By todays standard dividing networks into classes is obsolete. This is mainly
because too many sites were too big for a C class network and therefore received a B
class block. This caused the problem of the available addresses in the B pool became
too small for the rapid growing internet. Therefore a new way to divide networks
were proposed using classless domains; Classless Interdomain Routing (CIDR).[28]

The term network class is mainly today used in general discussions about net-
works to describe. But for the sake of completeness we have included here.

Table 3.2: IPv4 class network structure[5]

While the 127.0.0.0/8 network is in the Class A area, it is designated for loopback
and cannot be assigned to a network.Class D is reserved for multicasting. Class E
reserved for future use

Network address translation (NAT)

NAT is the process of modifying the network address information in datagram packet
headers while in transit from source to destination. Normally this is done in routers
or computers connecting the rest of the local network to the internet. By using equip-
ment that does NAT multiple client devices can appear to share IP addresses.[29]

IP �ltering

IP �ltering is a network layer facility used to decide which types of datagrams which
will be processed normally and which will be discarded. Discarded simply means
wheter the datagram is to be deleted or ignored. Di�erent sorts of criteria for
datagram �ltering is possible. Commonly used criterias are:

∙ Protocol type

∙ Socket number

∙ Datagram type

∙ Datagram source address

∙ Datagram destination address

47

CHAPTER 3. PRELIMINARY STUDY

IP �ltering is a done in the network layer. This means that the �ltering does not
know about the semantics of the package content or the origin of the package. This
means that �ltering of this type alone may not be enough. This is where setting up
proxy servers may come in handy[30]

Proxy servers

To prevent behavior mentioned above one can use proxy servers for each service
that one wishes to pass through. Proxy servers understand the application they were
designed to proxy and thereby prevent abuses, such as another service using the same
port as the web server. This is handled such that the proxy will answer requests
to the assigned ports and only allow datagrams designed for the service to pass
through. A number of proxy server programs exsist both free and commercial.[31]

Access control

Access control systems are designed to enable control access authority to areas and
resources in a given computer based information based system. ACL includes au-
thentication, authorization and audit. It also include measures such as encryption,
digital signatures, monitoring by users/automated. [32] There are two classes of
access control models:

∙ Capabilities based

∙ Access control lists (ACL)

Capability based models are based on entities holding capabilities granting them
access to the object. Access is conveyed by transmitting capabilities over a secure
channel.

ACL models are based on granting subjects access by validating them against a
list associated with the object in question. Access is conveyed by editing the list.

Both models have mechanisms to allow access rights to be granted to members
of groups.

ACL systems provide services for identi�cation and authentication, authorization
and accountability where:

∙ Identi�cation and authentication determines who can log on to a system and
the association with the software subjects they are able to control as a result
of logging in.

∙ Authorization determines what a subject can do

∙ Accountability identi�es what a subject has done

FEIDE

FEIDE stands for "Felles elektronisk ID" which in english can be understood as
an electronic ID which you can be used from any location. And that is basically
what Feide is. Feide is an identity management system on a national level for the

48

3.11. PRELIMINARY STUDY CONCLUSIONS

educational sector in Norway. Almost every educational institution such as NTNU,
UiO, UiS, HiST and all the other universites and schools in Norway is using or is
starting to use Feide..[33]

Therefore we suggested to the customer that this might be a good alternative
to IP �ltering, as that solution limits the user in the way that the user has to be
on campus to get the products. With Feide the users can get the products from
anywhere in the world.

The way Feide work is by the method of re-directing. When a website wants a
user to identify himself with Feide. The website redirects the user to the Feide login
page. When the user has successfully logged in at the Feide login site, feide redirects
the user back to the main website and sends a set of attributes to the website with
information about the user. This information can be like name, address, phone
number, institution, faculty etc

It is very easy to implement, but you should have an SSL certi�cate so that the
tra�c can run on https and hence encrypt the information about the user, but it's
not required.

Final choices of customer �ltering techniques

We want to use a combination of ACL and capabilities based access control. By
letting the system administrator edit a list of the customers IP ranges we can check
against the ACL over what services are to be provided.

From the users standpoint when he/she connects from a network in the ACL
their client is recognized and hereby given access to all the documents that the
account in the ACL have subscribed to.

For users belonging to a institution but connecting from an outside network than
the ones registered in the ACL we propose using Feide. The problem here are that
this solution are constrained to public institutions only in collaborating countries.
This can be solved by connecting user accounts in the system to companies/institu-
tions.

3.11 Preliminary study conclusions

The group picked scrum for this project. The two major reasons for this was getting
the system up and running early in the development process and a process that better
supported change in system requirements due to continuous customer feedback.

PHP was the programming language of choice. We decided to build the store
from scratch instead of relying on an existing solution that needed customization.
The reason for this was that a lot of the team members weren't that familiar with
any website scripting language but PHP seemed the one that seemed closest to
our competence (See table 3.1). To prevent too much coding a framework was
chosen. Here we picked one that was familiar to one of our group members and that
supported MVC: Zend Framework.

SVN was chosen as revision control for the project code. We chose this solution
based on group experience; by using MVC, Zend uses nested folders, we knew that
we needed something that supported recursive adding (CVS out of the picture) but
weren't too advanced (git out of the picture).

49

CHAPTER 3. PRELIMINARY STUDY

To prevent piracy but to maintain fair use and o�ering a user friendly solution
we decided on a lightweight DRM: Digital Watermarking

The payment solution chosen was PayEx. We chose this solution for their SMS
support and because the customer already used them in their online bookstore.

One of the requirements early on from the customer was content �ltering using IP
addresses. We chose a solution based upon ACL: customers linked with IP addresses,
IP �ltering. For users belonging to an ACL but connected from outside IP addresses
of the ones given in the ACL, ex. Professor from NTNU on business trip to Haag,
Feide was proposed as a solution.

50

3.11. PRELIMINARY STUDY CONCLUSIONS

51

CHAPTER 4

Requirements Speci�cation

52

Purpose

The requirement speci�cation describes the wanted e�ects of the new system. The
purpose of the requirement speci�cation is to �gure out how the new system should
be and what the system should be able to do. This chapter starts with user stories
and use cases, which is how the system will look like from the point of view of the
potential users of the system. The product backlog and the requirements work as a
contract of what the customer wants and what the team should focus on delivering.

Scope

This chapter covers what the new system should be like. Everything is looked
upon from the users point of view, the details of implementation will be dealt with
in later chapters. In a waterfall development model the requirement chapter will
contain more information about the actual implementation of the system, working as
a blueprint before the implementation phase. This could for example be a data �ow
diagram of the information system, class diagrams etc. As this project is carried out
using scrum, we only needed the product backlog, which is the basis of the sprints.
Architectural decisions, documented as DFDs and class diagrams, will be added in
the sprint chapters. We decided to add the requirement list in this chapter, as the
customer felt it could be bene�cial to give the project team a clear understanding of
what was wanted. The requirement list will not be as static as in a waterfall project,
and possible changes will be discussed in the upcoming chapters for each sprint.

Chapter overview

This chapter contains the following sections:

∙ Chapter 4.1 Functional requirements (product backlog)
This section lists the items in the product backlog, which is the functional
requirements as seen from the users' perspective.

∙ Chapter 4.1.1 Use cases
This section lists the use cases based on the items in the product backlog.

∙ Chapter 4.1.2 Detailed product backlog
This section lists the decided functional requirements in detail.

∙ Chapter 4.2 Non functional requirements
This section lists the decided non functional requirements in detail.

53

CHAPTER 4. REQUIREMENTS SPECIFICATION

4.1 Functional requirements (product backlog)

The product backlog is the main list of all wanted functionality in the system, as
seen from the user perspective. The product backlog is a dynamic list, which is
allowed to grow or shrink during the sprints. If for example in the �rst sprint, a new
wanted functionality is discovered, it will be added to the product backlog and can
be added into the next sprint backlog. In other words, the product backlog is not
a �xed document, but may change as the project progress and new ideas and needs
are discovered.

We decided to make user stories as the backbone of our product backlog. The user
stories states what kind of goals a user has for the web system - what functionality
the user wants to have. User stories are used early in the project. The idea is that
you write short notes about what the di�erent users would like to do. They di�er
from typical requirement speci�cations in that they focus on user needs and not how
the system is implemented. By looking at a user story the developer should make
an estimate about how much time it will take to implement, that is the estimated
complexity of the implementation.

Our whole group sat together and wrote the user stories on post-it notes. To-
gether with the customer we estimated the time needed to implement the function-
ality of a user story, and gave a priority for each of the stories. The priorities we
used were:

∙ High: These stories are critical for the projects success and must be imple-
mented.

∙ Medium: These stories determines the success of the project and should be
implemented.

∙ Low: These stories contain the features that we hope to have time to imple-
ment.

System users

∙ Administrator - The administrator can do typical tasks as seen from the em-
ployees point of view, such as uploading new �les, managing groups of prod-
ucts, get sale information etc.

∙ Customer - This user is the one who browses through the content and purchases
products. People who are just visiting the site, meaning potential customers,
are also a part of this category.

On the next page are the items of the product backlog, written as a user story with
a time estimate and a priority. The user stories are written: As a 'user' I want to
'goal' so that 'reason'. The time is estimated based on complexity; high, medium
or low. In the sprints we will break down a product backlog item into smaller tasks
in order to give a real time estimate of how long it takes to complete the task.

54

4.1. FUNCTIONAL REQUIREMENTS (PRODUCT BACKLOG)

1. Customer browsing products
As a customer I want to browse through all the products so that I can easily
select the products that I want.
Time complexity: Medium
Priority: High

2. Customer registers account
As a customer I want to be able to register and use an account so that I don't
have to write my details many times.
Time complexity: Medium
Priority: High

3. Customer searches for products
As a customer I want to search for products so that I can easly �nd the
products that I want.
Time complexity: Low
Priority: High

4. Admin uploads products
As an admin I want to upload new products so that I can sell new products
on the site.
Time complexity: Medium
Priority: High

5. Admin changes product attributes
As an admin I want to administrate the attributes of the products so that the
customer can see all the attributes they need.
Time complexity: High
Priority: High

6. Admin changes IP range
As an admin I want to administrate IP ranges for institutions so that we can
give priveleged access to institutions.
Time complexity: High
Priority: High

7. System admin controls access of users
As an system admin I want to control the access of all the users of the system
so that we can give priveleged access to those who wish to pay for it.
Time complexity: High
Priority: High

8. Admin manages groups of products
As an system admin I want to manage groups of products so that I can control
large groups of products.
Time complexity: High
Priority: High

55

CHAPTER 4. REQUIREMENTS SPECIFICATION

9. Admin views statistics
As an administrator I want to see statistics for the website so that I can judge
if the project is worth the e�ort and optimize sales on the site.
Time complexity: High
Priority: Medium

10. Customer purchases product
As a customer I want to be able to purchase products.
Time complexity: High
Priority: High

11. Customer subscribes to journals
As a registered customer I want to be able to subscribe to journals so they I
can read every issue.
Time complexity: Medium
Priority: High

12. Admin watermarks �le
As an admin I want the products to be watermarked to prevent illegal copying
so that I don't lose money.
Time complexity: Low
Priority: Medium

13. Customer shopping cart
As a customer I want to be able to collect products in a shopping cart so that
I can pay for many product at once.
Time complexity: Low
Priority: Medium

14. Admin gives discounts
As an administrator I want to give discounts so that some customers buy
products more frequently.
Time complexity: Low
Priority: Low

15. Customer makes compendiums
As a customer I want to be able to make compendiums so that my student
can buy a collection of articles that I want as curriculum for a course.
Time complexity: High/Medium
Priority: Low

16. Customer order history
As a registered customer I want to se my order history so that I can keep track
of how much money I have spent on the site.
Time complexity: Medium
Priority: Low

56

4.1. FUNCTIONAL REQUIREMENTS (PRODUCT BACKLOG)

4.1.1 Use cases

From the user stories we made three use cases, that try to give a feel of how the
new net store will work. The following use cases are made the same way, and the
�elds have the same meaning, as the use cases in Chapter 3.2. The three scenarios
given here are the ones we feel are the most important and cover "user registration",
"product upload" and "product purchase". Use cases for each item in the product
backlog will be given at a later point in the project.

Use case name Customer browsing products

Backlog ID 1

Participating Customer
Net store

Flow of events 1. Customer enters the net store
2. Customer selects "Browse all documents"
3. Customer clicks on interesting article
4. Customer reads about article
5. Customer clicks buy article
6. Websites gives feedback that article is added to shopping
cart
7. Customer proceeds to checkout

Extensions 2a. Customer selects subcategory. Returns to step 3
5a. Customer �nds article useless and clicks back to continue
browsing. Returns to step 3
7a. Customer hasn't selected any documents and exits the
website

Entry conditions Customer wants to browse products to �nd articles with spe-
ci�c content

Exit conditions Customer �nds documents and proceeds to checkout
Customer can't �nd any documents and exits website

Quality require-
ments

None

Table 4.1: Customer browsing products

57

CHAPTER 4. REQUIREMENTS SPECIFICATION

Use case name Customer user account registration

Backlog ID 2

Participating Customer
Net store

Flow of events 1. Customer enters the net store
2. Customer use the "register new account" function on the
net store
3. Customer enters his wanted username
4. Customer enters his wanted password twice
5. Customer enters personal details
6. Customer con�rms the registration
7. The customer is automatically logged in with his new

username
8. The net store sends a con�rmation email to the email

address speci�ed

Extensions 2a. If customer is already logged in, he has to log out be-
fore creating a new account
5a. Personal details may be optional, then proceed to

event 6
8a. Only done if an email was registered

Entry conditions Customer wanting a user account on the website

Exit conditions Customer has a user account

Quality require-
ments

None

Table 4.2: Customer user account registration

58

4.1. FUNCTIONAL REQUIREMENTS (PRODUCT BACKLOG)

Use case name Customer searches for product

Backlog ID 3

Participating Customer
Net store

Flow of events 1. Customer enters the net store
2. Customer clicks on search �eld
3. Customer enters search criteria
4. Customer presses enter or clicks search
5. Website displays search results
6. Customer clicks on article
7. Customer �nds article useful and clicks buy
8. Website con�rms purchase added to shopping cart
9. Customer proceeds to checkout

Extensions 2.a Customer decides to browse for document. Customer ex-
its this use case and enters use case "Customer browsing for
product".
5a. Website returns 0 results or none of the results are rele-
vant.
5a1. Customer decides to change search criteria, returns to 3
5a2. Customer exits website
5a3. Customer decides to browse for articles. Customer ex-
its this use case and enters use case "Customer browsing for
products"
9a. Customer wants to continue browsing through search re-
sults and clicks back, returns to 6.

Entry conditions Customer wants to search for articles containing speci�c cri-
teria

Exit conditions Customer �nds document(s) and proceed to checkout
Customer can't �nd any documents and exits website

Quality require-
ments

None

Table 4.3: Customer searches for product

59

CHAPTER 4. REQUIREMENTS SPECIFICATION

Use case name Admin uploads product

Backlog ID 4

Participating Administrator
Net store

Flow of events 1. The administrator logs onto the administrator interface
with his/her username and password
2. The administrator selects the product to upload from local
machine or intranet
3. The administrator �lls in all the needed details about the
product
4. The administrator then chooses "Upload and publish" in
the interface
5. The administrator con�rms all the details, products and
settings for this product
6. The upload is �nished, and the log contains information
about what have been done

Extensions 1a. The administrator has forgotten his/her password, and
needs to reset it and get it sent by email
4a. The administrator has put in some illegal details that
needs to be corrected, repeat step 4-5
4b. The administrator doesn't want to publish yet, and
chooses "just upload"
5a. If multiple are to be uploaded, repeat step 3-6

Entry conditions Net store available online

Exit conditions Net store con�rms the upload to the server
Net store publishes the upload

Quality require-
ments

The upload takes reasonable time to �nish

Table 4.4: Admin uploads new product

60

4.1. FUNCTIONAL REQUIREMENTS (PRODUCT BACKLOG)

Use case name Admin change product attributes

Backlog ID 5

Participating Administrator
Net store

Flow of events 1. The administrator logs onto the administrator interface
with his/her username and password
2. The administrator selects the product that needs change
3. The administrator changes the attributes in question
4. The administrator clicks the apply changes button
5. Net store shows the changes to the administrator and asks
for con�rmation on the changes
6. Administrator clicks the con�rmation button
7. Net store con�rms changes

Extensions 1a. The administrator has forgotten his/her password, and
needs to reset it and get new password sent by email
4a. The administrator has entered illegal attribute values,
returns to 3
5a. The administrator has entered wrong values clicks back
and returns to 3

Entry conditions Net store available online
Administrator wants to change attributes of product

Exit conditions Product has new attributes

Quality require-
ments

None

Table 4.5: Admin change product attributes

61

CHAPTER 4. REQUIREMENTS SPECIFICATION

Use case name Admin changes IP range

Backlog ID 6

Participating Admin

Flow of events 1. Admin goes to the page of the web site where the IP ranges
are
2. Admin selects the institute he wants to administer
3. The IP ranges of the chosen institute is displayed
4. Admin does the changes he/she would like. This is done
by adding or removing intervals of IP adress
5. Admin presses the save button
6. The web page in 1 is displayed

Entry conditions Admin is logged in and wants to administer the IP ranges

Exit conditions The IP ranges of the institutions are updated

Quality require-
ments

The forms to edit IP ranges should be user friendly

Table 4.6: Admin changes IP range

Use case name System admin controls access of users

Backlog ID 7

Participating System admin, admin

Flow of events 1. System admin enters the page where user accounts are
displayed
2. System selects a user account to edit
3. System admin sets the user accounts rights to be admin
4. System admin clicks on the save button
5. The page in 1 is displayed

Extensions 3a. System admin is editing an admin account and sets this
accounts rights to normal user

Entry conditions System admin is logged in
A user account that should become an admin is created

Exit conditions Admin is granted the accesses he should have

Table 4.7: System admin controls access of users

62

4.1. FUNCTIONAL REQUIREMENTS (PRODUCT BACKLOG)

Use case name Admin manages groups of products

Backlog ID 8

Participating Admin

Flow of events 1. Admin �nds a product he wants to add to a group
2. Admin �nds the group he would like the product to be in
3. Admin adds the selected product to the wanted group

Extensions 1a. He wants to remove the product from a group
2a. If the product already has a group the admin is noticed
about that

Entry conditions Admin is logged in and wants to manage groups of products

Exit conditions A group of products are updated

Quality require-
ments

None

Table 4.8: Admin manages groups of products

Use case name Admin views statistics

Backlog ID 9

Participating Administrator

Flow of events 1. Administrator logs in with his username and password
2. Administrator chooses the statistics link in his administra-
tor interface
3. Administrator chooses between the available statistics
4. Administrator �nds the statistics in interest and can see it
in the interface

Extensions 1a. If administrator is logged in, go to step 2
1b. Administrator has forgot his password and needs to get
it sent, then go to step 1

Entry conditions Administrator wants to see statistics for the website

Exit conditions Administrator has seen the statistics

Quality require-
ments

None

Table 4.9: Admin views statistics

63

CHAPTER 4. REQUIREMENTS SPECIFICATION

Use case name Customer purchase product

Backlog ID 10

Participating Customer, Net store, 3rd party payment solution

Flow of events 1. Customer searches for the article he wants to purchase
2. Customer open the detailed page of the article
3. Customer presses the "add to shopping cart" button
4. The website gives feedback to the customer that the article
has been put in the shopping cart and presents the customer
with an option to continue shopping or proceed to checkout
5. The customer select the go immediately to checkout
6. The customer looks over the price and personal info
7. The website redirects the customer to the 3rd party pay-
ment solutions payment site
8. The customer provide his payment details to the 3rd party
payment solution
9. The 3rd party payment site redirect the user back to the
website
10. The 3rd party payment solution sends data to the website
with information about the payment
11. The website gives the user con�rmation of the purchase
and presents the customer with �le on the website and sends
an email with URL to where the user can download the �le
12. The customer downloads the �le

Extensions 2a. The customer does not �nd the article
11a. The data from the 3rd party payment solution indicates
that the transaction was not completed. The customer gets
a message from the website about this and is o�ered to try
again
13a. The customer tries to download the �le after the 3 hours
limit

Entry conditions Customer at the net store, wants to buy an article

Exit conditions Customer has a watermarked PDF copy of the article

Quality require-
ments

The search should only �nd relevant results
The customer should never have to wait more than 2 seconds
for response on the website or the 3rd party payment website

Table 4.10: Customer purchase product

64

4.1. FUNCTIONAL REQUIREMENTS (PRODUCT BACKLOG)

Use case name Customer subscribes to journal

Backlog ID 11

Participating Customer

Flow of events 1. Customer logs in with username and password
2. Customer searches for product
3. Customer puts product in shopping cart
4. Customer chooses to check out
5. Customer chooses the subscribe button
6. Customer chooses to get noti�cations on email when a new
article is published
7. Customer enters payment details
8. Customer is sent through the third-party payment solution
provider
9. Customer gets con�rmation of the purchase
10. Customer gets email when a new article is available for
download

Extensions 1a. Customer chooses to skip logging in, go to step 2
2b. Customer has forgot password, gets it sent by email, go
to step 1
3a. If customer wants to buy more products, repeat step 2
and 3
4a. If customer is not logged in, log in
7a. Customer can choose a saved payment card in his account
10a. If step 6 is performed

Entry conditions Customer wants to subscribe to product(s)

Exit conditions Customer is subscribing to product(s)

Quality require-
ments

None

Table 4.11: Customer subscribes to journal

65

CHAPTER 4. REQUIREMENTS SPECIFICATION

Use case name Admin watermarks �le

Backlog ID 12

Participating Administrator

Flow of events 1. Administrator logs in
2. Administrator chooses product upload
3. Administrator chooses a �le to upload
4. Administrator �lls in the attributes for this �le 5. Admin-
istrator chooses the Watermark option in the admin interface
6. Administrator chooses upload �le(s)
7. The system adds a digital watermark, visible or non-visible
to the �le, and uploads it

Extensions 1a. Administrator forgot his password, gets it sent by email
6a. Administrator wants to add more products before upload-
ing, repeat step 3 to 5

Entry conditions Administrator wants to add watermarked �le(s)

Exit conditions Digitally watermarked �le(s) is uploaded

Table 4.12: Administrator watermarks �le

Use case name Administrator gives discounts

Backlog ID 14

Participating Administrator, Net store

Flow of events 1. Admin logs in on the web page
2. Admin �nds a product or customer that he wants to put a
discount on
3. Admin goes to the information page for a given customer
or product group
4. Admin edits the discount for the customer or product group
5. The new discount is updated on the web page

Extensions 2a. The discount can also be set to a speci�c amount, for
example you could get 10% discount if you buy for 1000 NOK

Entry conditions Admin wants to give a discount to customers or on products

Exit conditions The customer or products has been updated with a discount

Quality req. The web site should be updated withing 60 seconds

Table 4.13: Administrator sets a discount

66

4.1. FUNCTIONAL REQUIREMENTS (PRODUCT BACKLOG)

Use case name Customer using shopping cart

Backlog ID 13

Participating Customer, Net store

Flow of events 1. Customer enters the net store
2. Customer �nds a product he wants to buy
3. Customer press the "buy" button or "add to shopping

cart" button
4. The product is added to the shopping cart
5. The customer is asked if he wants to continue shopping or

proceed to checkout
6. The customer proceeds to checkout
7. All the items in the shopping cart are listed
8. The customer proceeds to payment solution
9. The customer pays and may download the products.

Extensions 5a. Step 2-5 are repeated if more products are added
8a. The customer may chose just to store his shopping cart
8b. The customer can decide to share his cart with other
people, by getting an url that leads to the cart and other
users may buy them themselves.

Entry conditions Customer wants to put a product in the shopping cart

Exit conditions Customer has one or many products in the shopping cart

Table 4.14: Customer using shopping cart

67

CHAPTER 4. REQUIREMENTS SPECIFICATION

Use case name Customer makes compendium

Backlog ID 15

Participating Customer
Net store

Flow of events 1. Customer enters the net store
2. Customer clicks on "make a new compendium"
3. Customer �nds articles that he wants to have in the com-
pendium
4. The articles found are merged together
5. The customer can share his compendium to other people

Extensions 4a. A possibility is that articles are just combined to a zip,
or that multiple pdfs can be concatenated

Entry conditions Customer wants to make a compendium of multiple articles

Exit conditions Compendium is made, and can possibly be shared with others

Table 4.15: Customer puts together a compendium

Use case name Customer order history

Backlog ID 16

Participating Customer
Net store

Flow of events 1. Customer enters the net store
2. Customer logs into his account
3. Customer enters his "personal information" page
4. Customer clicks on "order history"
5. Former order history is provided
6. The customer can get detailed information for each order

Entry conditions Customer is already registered

Exit conditions Customer has received information about his order history

Quality require-
ments

None

Table 4.16: Customer order history

68

4.1. FUNCTIONAL REQUIREMENTS (PRODUCT BACKLOG)

4.1.2 Detailed description of product backlog

Our customer wanted a formal requirement speci�cation early in the project. Typ-
ically in a project using scrum a formal list of the requirement speci�cation would
not have been made so early in the project, but as we created this requirement
speci�cation we decided to add it as a detailed description of the product backlog.

Below are the functional requirements categorized after feature. The non-functional
requirements are given in the last part of this section.

Product administration

1. It should be possible to publish documents in the form of journals and articles
on the website The website should primarily support the PDF �le format

(a) The website should be constructed so that it can easly be extended to
support other types of products like mp3-, �ash-, php-/html- and video
�les.

(b) It should be possible to add, edit and delete product-parameters like
abstract, writer, price etc. through an administrator web interface.

(c) The �les should be uploaded via the admin web interface (not ftp, ssh
etc.)

2. The �les should be visible on the website when choosing to publish the product.
This should be a checkbox option in the admin interface.

3. It should be possible to tag products with keyword to increase search engine
optimization

4. Each �le should have an unique �le-nr (�le-id).

5. Administration of attribute/parameters

(a) It should be a default set of attributes for each �le type e.g. pdf.

(b) This set of attributes should me able to alter for each �le.

(c) It should be possible to add, edit and delete attributes for each �le using
box.

(d) There should be a possibility to group �les where some attributes would
be the same for the entire group, e.g. price, who has access etc since most
subscribers will have access to a multitude of �les through the periodicals.

(e) Which attributes are common for the group should be possible to specify
when creating the group and alter later.

(f) It should be possible to add and remove �les from groups.

(g) There should be an option to place an entire group as part of a group,
resulting in the parent group controlling the attribute speci�ed, and the
child group controlling the attributes speci�ed in the child group and not
in the parent group.

69

CHAPTER 4. REQUIREMENTS SPECIFICATION

(h) It should be possible to override the attributes for a �le, but if this is
done there should be an alert box visible in this �les admin page.

(i) Each group should have an admin page.

(j) Each �le should have an admin page.

(k) Visible at each admin page for groups and �les should be an info box
listing the �les attributes, dependencies of groups, date uploaded, and
user who uploaded it.

6. Administration of categories

(a) It should be possible to add, edit and delete categories

(b) There are two types of categories

i. Content type e.g. chemistry, mathematics, computer science etc.

ii. Product type e.g. articles, journal articles, journals etc.

7. Journals

(a) It should be possible to add and edit each issue of a journal

(b) It should be possible to add, edit and delete all the articles in each issue
in a journal

(c) Administrators should be able to view, add, edit and delete all the sub-
scribers for each journal

8. The system should be able to share a shopping cart on facebook, twitter, direct
link, email etc. to accommodate the use of several articles as part of a course.

9. There should be a concatenation option making several pdf's into one pdf.

(a) There should be taken into account that we might want to sell printed
concatenated pdf's at a later stage, and the software should therefor be
customizable to this. The speci�cs of this should be investigated and
documented.

(b) Provide a direct link to the compendium

Product browsing

1. A paging system should be used when browsing products so that only a limited
amount of products are shown at the same time

2. It should be possible to search for products on the website

(a) The search �eld should be a pure text search in all parameters by default.

(b) There should be a advanced option for specifying parameters to search
within.

3. It should be possible to view products in a speci�c category

70

4.1. FUNCTIONAL REQUIREMENTS (PRODUCT BACKLOG)

4. There should be a public page per �le that have been checked "published" in
the admin interface.

(a) Each �le type should have a default set of parameters being displayed at
the �les public page.

i. PDF: Title, ISSN/ISBN, Authors, Date published (in periodical or
book), Abstract, keywords, bibtex-link, endnote-link

(b) Each public �le page should have a set of links making it possible to share
the link on a set of social websites e.g. facebook, twitter.

(c) Each public �le page should have a small form to "Tip a friend" where
one inputs the readers email, the friends email, and a short message.

Access control

1. The website should support IP Filtering for giving privileged access to products
to speci�c IP ranges

(a) Add, edit and delete IP ranges

(b) Assign IP ranges to speci�c products, categories and all products

(c) IP range �ltering down to 10 clients must be supported

2. Third party identity providers like Feide

(a) Add, edit and delete institutions

(b) Assign institutions to speci�c products, categories and all product

Customer accounts

1. Customers should be able to register

2. Login / Logout

3. The customer should be able to recover access to their account if they have
lost their password

4. The website should store customers history

5. Customer should be able to view their purchases and order history

6. Customers should be able to receive noti�cations for new products

7. Customers should be able to administer their subscriptions on journals when
logged on the website

8. It should not be necessary to create an account if just want to by a few articles

9. If the user has a IP which is in the range of an institution with privileged
access, the user should be noti�ed

71

CHAPTER 4. REQUIREMENTS SPECIFICATION

Purchase process

1. Customers should be able to add products in a shopping cart

2. There should be a concatenation option regarding pdf's where the customer
can add several �les to a single pdf.

3. There should be a possibility of making a rule-base for pricing �les, where one
e.g. can get a discount of 10% when purchasing 10 articles, or that there is
a price roof on the periodicals as one can subscribe to the entire set within a
title for ca. 300NOK. This could be connected to the �le groups in the admin
interface.

4. The website should have a checkout section where the user can view all the
products in the cart and the total price

5. The website should be integrated with a 3rd party payment solution

6. A watermark should be added to PDF documents before they are downloaded

(a) This watermark should consist of a brief text explaining that Tapir have
the copy right for the material, the name/email of the person or institu-
tion

7. Accounting should receive an email with transaction details for each order

(a) Only one summary email per day should be sent at maximum

8. The customer must receive a digital receipt after payment

9. The customer can check a checkbox to get a receipt by email.

10. The customer should be able to download the product in�nite many times 3
hours after the purchase.

11. The customer should get a link to where he can download the product(s) in
an email after purchase as well as been o�ered to download the �les right after
the payment is complete

Site administration

1. counting and other administrators should be able to view transaction and
order details

2. User administration

(a) Existing administrators should be able to add, edit and delete users

(b) Administrators should be able to give certain users access to parts of the
site administration interface

(c) Administrators should be to give certain users free access to speci�c prod-
uct or group of products

72

4.1. FUNCTIONAL REQUIREMENTS (PRODUCT BACKLOG)

(d) There should be two di�erent admin-permissions read and read-write,
where only the read-write permission will be able to alter the parameters
in the admin section.

(e) The read-users should be able to view statistics and alter the views in
the statistics page.

3. Statistics

(a) Administrators should view site tra�c statistics

(b) Administrators should be able to view detailed sales statistics for all
product

(c) There should be available statistics and analysis in the admin interface.

(d) There should be an admin page displaying interesting parameters on the
successfulness of the service:

i. Nr of downloads

ii. Visits (pageloads)

iii. Sales and left shopping carts sorted by date group and by �le

(e) It should be possible to navigate the statistics parameters to display
di�erent granularity regarding �les, dates, and groups.

(f) There should be a �nite set of prede�ned statistics views easily accessible:

i. Downloads per month

ii. Downloads per week

iii. Visits per download per week

iv. Visits per �le (Top 10)

v. Downloads per �le (Top 10)

vi. Sales per �le (Top 10)

(g) There should be a detailed log of what is done in the admin interface
writing out one line of textual description per action with time stamp
and user.

i. Example: "19.10.2009 - 14.15: Testuser changed the price of �lenr.
14, "TestdocumentTitle", from 14kr to 19kr.

4. Administrators should be able to set the current VAT to be used

Security

1. Password quality conform to these minimum requirements

(a) At least 8 characters

(b) Both upper and lower case letter

2. The password should be encrypted with the SHA algorithm when stored in
the database

3. Documents must include protection from software piracy

73

CHAPTER 4. REQUIREMENTS SPECIFICATION

(a) The system must support DRM and Watermarking.

4. User information is not to be shared with third parts

5. The products that are not free should only be accessible for those who have
paid for them

6. All the �les stored on the web server must have proper �le permissions so that
none of the �les are readable for others than apache and the development team

4.2 Non-functional requirements

1. The site should be available in both English and Norwegian

2. The website should be written in PHP, HTML and CSS.

3. The website should be optimized for search engine crawlers, and the process
documented.

4. The code should be documented in line properly

5. The system must be highly modular so it will be easy to modify it later

(a) The parts that should be possible to exchange with relative ease is:

i. Public GUI

ii. Admin GUI

iii. Admin logic

iv. File handling (CMS, Mediabank)

v. Payment module

6. The online store must be available to international markets

7. The service must o�er easy administration for the customer

8. The web site must look similar to the other Tapir pages http://www.tapirforlag.no/

9. The website should work properly in all the major web browsers

10. The GUI and interaction design should be as e�ective as possible, with as
few clicks as possible to achieve goals, and screens should not contain more
information than necessary.

11. It should be as easy as possible to add new IP ranges

74

4.2. NON-FUNCTIONAL REQUIREMENTS

75

CHAPTER 5

Sprint 1

76

Sprint duration: 21st September - 4th October (14 days)

This chapter documents the work done and the artifacts created throughout this
sprint. This is the �rst of three sprints, and its purpose is to get started on the
design and implementation of the system. The main objective for the project group
in this period is to get a clear understanding of the architecture of the system, and
implement some simple features of the system.

All the sprint chapters have the same generic structure. First of all the goals are
given, as described in the sprint backlog. The main section of the chapter is the
documentation of the work that was performed. As for sprint one, we have an own
section for the design of the software architecture, and a section describing what
was implemented. The last part of each sprint chapter gives a summary of what
was done, including some comments about how we can improve our work process.

Chapter overview

The chapter of the �rst sprint contains the following sections:

∙ Chapter 5.1 Sprint plan
This section describes the planned work for the sprint.

∙ Chapter 5.2 Sprint backlog
This section gives the goals for this sprint that was decided at the planning
meeting.

∙ Chapter 5.3 Design - Software architecture
This section has detailed descriptions of the design documents of the software
architecture.

∙ Chapter 5.4 Implementation - Graphical User Interface
This section contains the paper prototype and some pictures of what was
implemented.

∙ Chapter 5.5 Tests and results
A summary of the sprint; what tasks were completed and what was postponed.

∙ Chapter 5.6 Sprint evaluation
A retrospective of what went good and bad in the sprint and what can be done
to improve the process.

77

CHAPTER 5. SPRINT 1

5.1 Sprint plan

Sprint 1 starts after the customer meeting the 21. of September and ends the 4. of
October, after a duration of two weeks. In this sprint we have put 248 hours. We
will have a meeting with the customer in the middle of the sprint, in addition he
also want to come to campus to see how we are working.

In this �rst sprint we aim to get more familiar with the programming language and
the development framework we are going to use. This will make us more e�ective
in later sprints even though we have to use some time on this now. Creating some
early models of the system will also take place in this sprint, which we will do in
communication with the customer to assure that we have the right understanding
of the system. We need to de�ne what modules to include in the system, as it will
be implemented in parts.

Because we are not experienced with the development tools we are going to use, we
have not put much implementing tasks in this sprint. Still we will create a graphical
user interface to have something visual to show the customers at the end of the
sprint. With this we will include some minor basic functionality. This way those at
Tapir he do not read code can see we are getting somewhere too.

78

5.2. SPRINT BACKLOG

5.2 Sprint backlog

The sprint planning meeting was held with the customer present on the �rst day of
the sprint, September the 21st. The product backlog, made at an earlier point and
described in chapter 4, was the basis of this meeting.

At �rst we discussed how much time we had available for the sprint as a whole.
An agreement was made that this sprint should not have too many tasks and items
from the product backlog, as the majority of the group members are neither expe-
rienced with the PHP language nor the Zend framework. The time it will take to
learn the programming languages and tools is a big uncertainty in this project, and
this makes it di�cult to set a time estimate for how much time it takes to implement
something.

It was decided that user story 2 and 4 from the product backlog was the most
important ones to implement �rst. In addition, we added item "0", which is to
do the intial setup, plan the architecture and plan how the graphical user inter-
fance(GUI) should look like. In total we had three tasks. These tasks were divided
into smaller subtasks, which we then could estimate an implementation time for.
These tasks are listed in table 5.1.

The estimated time in total is 248 hours. In addition to attending lectures, super-
visor meetings, customer meetings and report writing, this estimate is quite high.
The reason for it being so high is that we have given each task a relatively big time
estimate, as we are unsure about how much time it will take to learn things in the
�rst place. The time it takes to implement the �rst backlog item will be high, but
then we estimate each task after that to take less time when everything is already up
and running. The majority of the items in the product backlog will be implemented
in sprint two and three.

Table 5.1: Sprint 1 backlog

79

CHAPTER 5. SPRINT 1

5.3 Design - Software architecture

5.3.1 Introduction

In the pre-study chapter we decided to use Zend Framework for developing the
website and in this section we will explain how we have planned the architecture of
the website.

5.3.2 Model View Controller Pattern

As explained in the pre-study chapter, Zend Framework is based on the MVC(Model
View Controller) design pattern. With this pattern we get a clean seperation of
the code in three di�erent parts: models, views and controllers. Here is a short
explenation of the di�erent parts:

∙ Model: Represents data.

∙ View: Presents the data. On a website the views are usually written in HTML
and CSS.

∙ Controller: The controllers handles events and their e�ect on the data in the
models and the way they are represented in the views.

The �gure below displays how the MVC pattern works.

Figure 5.1: MVC pattern [4]

80

5.3. DESIGN - SOFTWARE ARCHITECTURE

5.3.3 Modules

We decided to split up our website into di�erent modules. Modules are di�erent
parts of a system that provide di�erent functionality and could easily be added,
modi�ed and removed from the system. The reason why we decided to use this
architecture is because the customer has ideas about expanding and changing parts
of the system after we have made it. By using modules we insure that we have a
better seperation of the code with respect to what functionality the code actually
gives. So if the customer wants to change just the payment system after we are
done, he just needs to change/replace one module. The following are the modules
in our system:

Product

The product module handles the management of products for the administrators,
the browsing and viewing functionality of the products for the customers as well as
the group hierarchy and attribute system.

This is the largest and probably the most important module. The group and
attribute system could have been put in their own seperate modules, but we think
that this would have resulted in a very high coupling between these modules and
therefor we kept everything in this product module.

Account

This module basicly contains the account system. It provides basic functionality as
login, logout, forgot password and registration as well as more advanced features
like access control using account roles and IP ranges.

Order

The order module contains all the functionality tied to purchasing products i.e.
creating an order.

Journal

The journal module contains functionality for creating journals, and new issues in
existing journals.

Compendium

The compendium module contains the functionality of creating and sharing a coll-
cetion of articles which we call a compendium.

Statistics

The statistics module contains the functionality of viewing detailed statistics of sales
and the usage of the website.

81

CHAPTER 5. SPRINT 1

5.3.4 UML Model Diagram

A class diagram of the most important classes in our system is given in Figure 5.2.
Standard UML notation is used, where each class has a name, some attributes and
some methods. All classes follow the same naming convention. First the module
name is given, for example "product" or "journal". Then every class in this �gure is
named "Model", related to the MVC pattern described in the start of this section.
The third part of the class name is the more typical identi�cation of a class, for
example "Account" and "AccountRole".

Figure 5.2: Class diagram of important classes

82

5.3. DESIGN - SOFTWARE ARCHITECTURE

5.3.5 Database model

From all of the user stories and requirements we have collected, we made a complete
database structure. An ER(entity relation) diagram of this structure is given below
5.3. The diagram is using the Crows foot notation, de�ned in [34]. Fields with a
yellow key to the left are primary keys and those with a red star are foreign keys.

Figure 5.3: ER diagram of our database

83

CHAPTER 5. SPRINT 1

5.4 Implementation - Graphical User Interface

The �rst thing we did in the sprint was to make a paper prototype of how the
web site should look like. There were several reasons for making a prototype of the
system before starting to implement. First of all we used the paper prototype to
discuss with the customer, both during the process of making the paper prototype,
but also afterwards. Secondly the prototype was a way for everyone to get the same
"mental model" of the website. Just reading text about how the system should look
like can easily lead to people having di�erent ideas of how it looks like. A third
reason was to have the prototype to look at while implementing, saving time when
actually implementing.

All the scenarios made were related to the customer's use cases. We plan on design-
ing the web page for the administrators in sprint 2. The paper prototype of the front
page is given in �gure 5.4. It is in Norwegian as we prioritized the Norwegian version
of the web site in this sprint. The important part of the �gure is the structure. On
the top is the Tapir logo, a "contact us" button and a button to change to English.
In the top left margin is the customer log in. Below that is shortcuts to journals,
eBooks etc. In the top right margin is the shopping cart, and below that is room for
advertisements. The middle of the has a search �eld, and then a list of the newest
articles and journals. The yellow note in the corner is just used for comments on
the prototype, and will not be implemented.

Figure 5.4: An early sketch of how the frontpage should look like

84

5.4. IMPLEMENTATION - GRAPHICAL USER INTERFACE

In total we made 6 �gures of typical pages that the user might encounter. These
sketches can be found in the appendix. The plan is that the top header, and the
margins on the left and right side will be similar on all pages, and that only the
center section of the page will change. All pages will have the search �eld except
the page for a speci�c article, given in �gure 5.7.
Figure 5.5 shows the site you will come to if you click on "more...scienti�c publi-
cations". The articles will be listed, with �elds for title, date, journal, author and
price. Initially the articles will be sorted on date, but the user can sort the articles
on any �eld.

85

CHAPTER 5. SPRINT 1

GUI implementation

Figure 5.10 up until 5.15 are screenshots of how the web site looks after sprint 1.
As can be seen, only a small part of the web site is implemented. Still, the tasks in
the backlog for this sprint are successfully implemented. One example is the user
registration. When you register, the information is saved in the database and you
can use the new account to log in on the page with the email and password that you
decided. The registration form has a check that you provide a proper email, if the
password has a length of at least 6 letters and that you provide all the mandatory
information.

Figure 5.5: The front page of the web site

Figure 5.6: Website registration form

86

5.4. IMPLEMENTATION - GRAPHICAL USER INTERFACE

Figure 5.7: Registration complete

Figure 5.8: Logged in at the web page

87

CHAPTER 5. SPRINT 1

Figure 5.9: Web site when you forget the password

Figure 5.10: Administrator uploading new �le

88

5.5. TESTS AND RESULTS

5.5 Tests and results

Due to the kind of implementing we have not done much testing in this sprint. Test-
ing was done on the form that while we where designing the web site we checked
what it looked like in the most common browsers. We also registered users and
tested to log in and out. On the product uploading area we tested by uploading
di�erent types of �les.

The sprint ended on October the 4th. The demonstration of the product was per-
formed at the customer meeting on Monday the 5th. The three tasks we had in the
sprint backlog were completed and we will not have to transfer any tasks to the next
sprint. The materials presented to the customer were the database model, the class
diagram, the paper prototype and the demonstration of the web site.

89

CHAPTER 5. SPRINT 1

5.6 Sprint evaluation

We completed the tasks in the sprint backlog, using 10 hours less than planned.
Table 5.2 is the same table as in the Sprint Backlog chapter, but not with the actual
time used for each task. The most noticable was the framework that took a lot more
time than planned. Because of di�erent hardware and operating systems, we had to
make some changes for the web site to work on all the computers.

Table 5.2: Sprint 1 backlog with used time

The burndown chart is given in �gure 5.11. As can be seen, we managed to
work a little bit each day, except day 6 and 7, which was the �rst weekend. Day 10
and 11, before the second weekend, were very productive, leaving us with just some
hours of work left before the weekend. Table 5.3 on the next page is the table used
to make the burndown chart, where you can see the remaining time for each task in
the sprint backlog.

Figure 5.11: Sprint 1 burndown graph

90

5.6. SPRINT EVALUATION

Table 5.3: Sprint 1 burndown table

Positive experiences

∙ We have had a good dialogue with the customer

∙ The daily meetings eases the implementing

Negative experiences

∙ We had to go back in the report and add references and glossary

Ideas for improvement

∙ Put more hours into the project early in the sprint to avoid accumulation
before the sprint deadline

∙ Get better at updating the hours used (for the burndown chart)

91

CHAPTER 6

Sprint 2

92

Sprint duration: 5th October - 18th October(14 days)

This chapter documents the work done and the artifacts created throughout this
sprint. This is the second of three sprints, and its purpose is to further implement
functionality in the system.

Chapter overview

The chapter of the second sprint contains the following sections:

∙ Section 6.1 Sprint plan
This section describes the planned work process of this sprint.

∙ Section 6.2 Sprint backlog
This section gives the goals for this sprint that was decided at the planning
meeting.

∙ Section 6.3 Design
This section contains the updated database model.

∙ Section 6.4 Implementation
This section contains all the implemented functionality of the system.

� Section 6.4.1 Products and groups
This section describes the group system used for products.

� Section 6.4.2 Product search and browsing
This section describes how we implemented product browsing and search-
ing.

� Section 6.4.3 Admin interface
This section describes how we implemented the administration interface
and setting account access.

� Section 6.4.4 IP range for institutions
This section describes the use of IP �ltering to recognize users that are
using computers on an institution with speci�c IP ranges/subnets.

∙ Section 6.5 Tests and results
A summary of the sprint; what tasks were completed and what was postponed.

∙ Section 6.6 Sprint evaluation
A retrospective of what went good and bad in the sprint and what can be done
to improve the process.

93

CHAPTER 6. SPRINT 2

6.1 Sprint plan

Sprint 2 starts with the planning meeting on October 5th and end with the sprint
review on October 19th, a total of 14 days. The number of days in the sprint is
the same as the other sprints, which equals a budget of 240 hours for the group in
total. During this period a regular customer meeting is scheduled in the middle of
the sprint, and email will be used for minor questions and issues.

What is di�erent from the �rst sprint is that group members have more obligations
in other classes and activities in the weekends. We will take this into account while
planning, in addition to the usual risk factor of people getting sick. Nevertheless,
we still plan on working at least the same amount of hours as the �rst sprint. If
worst case scenario happens, we will have to transfer the tasks we can't �nish to the
next sprint.

This sprint will have a lot more implementation tasks than the �rst. We plan to sit
together as a group and work as much as possible, as it will ease communication and
motivation while implementing. The plan is to have one group member responsible
for each task in the sprint backlog. That person will do most of the implementation
of that speci�c task and will have the responsibility of writing about it in the report
afterwards. We plan to get everyone in the group involved in the programming,
instead of just having a few persons implementing and the others writing the report.

94

6.2. SPRINT BACKLOG

6.2 Sprint backlog

In sprint 1 we completed two out of sixteen items in the product backlog. A lot
of time was used on just getting things started; learning the Zend framework and
getting the programming environment up and running on each group member's PC.
This sprint we plan on completing seven more items, as can be seen in table 6.1,
with time estimate for each item. These items were picked from the product back-
log according to the priorities given by the customer. Thought was given to which
items are smarter to implement before others, as some product items have a strong
connection to others.

We estimate that the total time needed for all the items in this sprint backlog is 236
hours. This is quite a lot, considering we will have to attend meetings and write
in the report as well. We do, however, feel that the estimate re�ects the amount
of work we need to put into this sprint, which is a lot. We predict that the time
estimate can vary a lot, as most group members still have little experience with the
programming language and this making it harder to get good estimates.

Table 6.1: Sprint 2 backlog

95

CHAPTER 6. SPRINT 2

6.3 Design

The database model was changed during sprint 2. The major change was the added
tables to support attribute types, namely short text, text, int and date. Another
change was the added table of "IP subnet", which we needed when implementing
the IP �ltering. In addition to these two major changes, some �elds in the tables
were added.

Figure 6.1: The updated database

96

6.4. IMPLEMENTATION

6.4 Implementation

6.4.1 Products and groups

This was one of the major tasks in this sprint. We needed to implement the slighty
complex attribute system togheter with the group system. The reason why this was
such a complex tasks was because products and groups should be able to inherit
attributes from parent groups, and on top of that a child should be able to override
a parent group's attribute.

The way this system is built up is that there is one attribute table which is a
list of all the available attributes and an assigned_attribute table which is a list of
all the attributes assigned to di�erent �les and groups with a speci�c value. Since
we have di�erent types of values, currently ShortText, Text, Integer and Date, we
store the values themselves in seperate tables, but they have the same primary key
as the entry in assigned_attribute. This solution was a little bit di�erent from what
we had planned to implement in the start. The major di�erence is that now the
website de�nes the attributes instead of the user. This made the implementation
much simpler and the usability of the system much higher as it became simpler to
use. Below is a screenshot of the product overview. This overview gives the admin a
list of the published and unpublished products as well a search box to �nd products.

Figure 6.2: Product overview

Figure 6.3 on the next page is a screenshot of a products details. This page
shows all the attributes that a �le has, which group it is part of. It also presents
options for publishing/depublishing �les as well as adding, deleting and editing
attributes. Figure 6.4 is a screenshot of the group details page. It shows which
�les and attributes the group has and presents the administrator with options for
adding, editing and deleting both attributes and �les. Figure 6.5 is a screenshot of
the group overview which shows the group hierarchy and options to add new groups
and subgroups.

97

CHAPTER 6. SPRINT 2

Figure 6.3: Products details

Figure 6.4: Group overview

Figure 6.5: Group details

98

6.4. IMPLEMENTATION

6.4.2 Product search and browsing

This task was to implement functionality for browsing through the products on the
web site. The user clicks on a category in the left menu and in the content column
in the middle the products should appear in a reasonable way. First a list should
appear of products. Then the user can click on a product to get a page with more
information of the clicked product.

When the products is showed to the user, which �le type the product is must be
taken into consideration. Therefore di�erent views for each �le type are used for the
products. The customer gave requirements on exactly which attributes was relevant
for which �le types. The sound �les should present their length in hours, minutes
and seconds, while an e-book chapter(s) should display its page interval. This way
only relevant attributes are displayed.

Figure 6.6: Sprint 2 backlog

99

CHAPTER 6. SPRINT 2

Attributes are typically set by administrators when the product is uploaded. He
then writes in information in a form of attributes where he �nds it necessary. To
prevent empty attributes from being brought to screen, a check that the attribute
is not empty was done. If the attribute was empty, it is skipped and the next is
checked.

Standard functionality for browsing was implemented. Some of these things are
pagination, link for downloading/buying the product

Later we will add pictures to the product for a more interesting appearance. Func-
tionality regarding the buying of the products will be implemented in sprint 3.

Figure 6.7: View of an article

100

6.4. IMPLEMENTATION

Searching is executed by doing SELECT statements in the database. A plain, simple
search �eld will be in the left margin, and an advanced search will be on its own
page. In the advanced search it will be possible to search on a speci�c �le type or a
speci�c parameter, like author, or both at the same time. Normally the search will
return the most relevant hits �rst, but it will also be possible to sort alphabetically.
We use "pattern matching" which counts the number of hits a word gets in a text.
The pattern matching does not search for words that are only three characters or less.

Figure 6.8: Advanced search

101

CHAPTER 6. SPRINT 2

6.4.3 Admin interface

This section documents how the administrator interface was implemented and how
it is connected to the account module. It belongs to User Story 7: "As a system
admin I want to control the access of all the users of the system" from the sprint 2
backlog.

Acccess to the administrator sites

The account object that is fetched from the database when a user logs on to the
site, contains an attribute that is called account_role_id. This tells us wether the
person logging on is a regular customer, an admin or an institution. By having this
attribute we can separate between the di�erent roles, and adjust the menu when
users with di�erent roles logs on. When an admin logs in he gets an additional
menu in the left bar. There the admin can choose to get an overview of the users in
the system, or add users to the system.

The user overview

Figure 6.9: Overview of users

The site with overview of the users contains a table of the users, with the most
important attributes listed. For every user in the table two links are created per
row, one for editing the users information, and one for deleting the user. So the
admin has control over the most important aspects of managing the users directly
from this page. Typical tasks for the admin can be to set the roles for a user. Since
only the admin can change roles for other users, new admins must be "approved" by
an existing admin to get access to admin sites. This will also work as extra security
for the system.

102

6.4. IMPLEMENTATION

Adding a new user

Figure 6.10: Adding a new user

When the admin follows the "add user" link from the overview page, he is di-
rected to the page seen in the picture. Here he can �ll in information for the new
user, and choose which role the user should have. Equal to the user registration
page, some �elds are required and some is not. We need a basic information pool
about the customer, but then again the customer should not feel that he or she has
to �ll out an endless form of information. When saving the user into the database,
the admin is redirected to the user overview page. If the role chosen is "Institution",
he will be redirected to a page for specifying the IP range. More information about
this will come in the following section called "IP range for institutions".

103

CHAPTER 6. SPRINT 2

Editing existing users

If an admin clicks on the edit user link in the table row for a user, he is redirected
to the edit user page, which gives the admin the possibility to change personal
information, role and IP ranges of users. Here we have the same form as for adding
new users, but the form is �lled out with the data currently exisiting for this user,
by sending the account_id attribute with the redirect. So if the admin only wants
to edit one attribute for the user, this should be a fairly quick task when not having
to specify everything all over again. When it comes to redirecting here, the same
goes as for the add user page.

Figure 6.11: Editing an existing user

104

6.4. IMPLEMENTATION

6.4.4 IP range for institution

This part implements user story 6: As a system admin I want to administrate IP
ranges for institutions. When a new user or existing user is added/edited with role
as instituion, we have a special redirecting for these accounts. The admin will, when
saving personal information, be redirected to the IP range page for instituions, by
redirecting with the account_id attribute. The �ltering supports 2 formats. One can

Figure 6.12: IP �ltering overview for instituion

either specify the starting subnet address accompanied by the subnets netmask or
the administrator can specify the network range by entering the starting and ending
IP address. The functionality supports multiple subnets and ranges per institution.

Figure 6.13: IP Subnet for instituion

Customer access control

Each time a new client accesses the site their IP is checked against entries in the
IP range and IP subnet table. If the address is located in one of those the client is
recognized as coming from this speci�c institution. The system sets a session variable
that follows the client. The session variable is used when checking against product
pricing (ex free for all customers connected from an institution) and checkout. This
is done because the customer wants to keep track of the transaction history for both
user (if logged in) and institution.

105

CHAPTER 6. SPRINT 2

6.5 Tests and results

The testing of sprint 2 was mainly unit testing that was performed while imple-
menting. This is called white box testing, where the tester has access to the internal
data structures and the code that implement it. The unit testing is testing speci�c
small parts of the system. An example is the search function. The testing of it was
performed with di�erent search words and the output was compared to what was
expected.

The demonstration of the sprint results was held on Monday the 19th of October.
The group member responsible for each backlog item showed the customer how it
was implemented. The delivery was everything put together and uploaded on a site
that the customer could access. By doing this, the employees at Tapir had a chance
to look at the site, and can give feedback which in turn can be used to tweak and
improve the site at the next sprint.

The tasks that were �nished in the sprint were:

∙ 1: As a customer I want to browse through all the products

∙ 3: As a customer I want to search for products

∙ 5: As a system admin I want to administrate the attributes of the products

∙ 6: As a system admin I want to administrate IP ranges for institutions

∙ 7: As a system admin I want to control the access of all the users of the system

∙ 8: As a system admin I want to manage groups of products

The task not started was:

∙ 11: As a registered customer I want to be able to subscribe to journals

106

6.6. SPRINT EVALUATION

6.6 Sprint evaluation

We had a lot of work planned for this sprint, and we ran into some time trouble. In
the end we �nished 6 out of 7 items from the sprint backlog, and we are satis�ed with
that. As can be seen in the table 6.2 we managed to do almost as much as planned,
with some extra hours used on the report and meetings that are not included in the
table. We used a little more time in general on each task, so we ended up running
out of time in the end of the sprint.

Table 6.2: The sprint backlog with hours used

As can be seen on the burndown chart on the next page, we managed to work
steady throughout the sprint, putting in some hours each day. We could have worked
some more the �rst week, but it is expected to have some variation in the time each
member can work. This is due to other classes and arrangements that need an extra
e�ort some weeks. As the burndown chart shows, we had about 35 hours left of
working, which is the last item in the backlog and some �ne tuning on the other
tasks.

107

CHAPTER 6. SPRINT 2

Figure 6.14: The burndown chart of this sprint

Positive experiences

∙ Managed to do most of the tasks, it felt like we had good progress with the
project

∙ Still have a very good group chemistry, everyone is contributing

∙ The contact with the customer feels very good

Negative experiences

∙ Could have worked more in the start of the sprint, 4 out of 5 group members
had under the 24 hours which should be the aim for a week

∙ We could improve the documentation done while implementing to ease the
writing of the report when the sprint is �nished

Ideas for impovement

∙ Use more hours on the sprint

∙ Document as we implement

108

6.6. SPRINT EVALUATION

109

CHAPTER 7

Sprint 3

110

Sprint duration: 19th October - 1th November(14 days)

This chapter documents the work done and the artifacts created throughout this
sprint. This is the third sprint, and its purpose is to implement the remaining
functionality.

Chapter overview

The chapter of the third sprint contains the following sections:

∙ Chapter 7.1 Sprint plan
This section describes the planned work process of this sprint.

∙ Chapter 7.2 Sprint backlog
This section gives the goals for this sprint that was decided at the planning
meeting.

∙ Chapter 7.3 Design
This section contains the updated database model.

∙ Chapter 7.4 Implementation
This chapter contains all the implemented functionality of the system.

� Chapter 7.4.1 My account interface
This section describes the customers account page with personal infor-
mation and order history.

� Chapter 7.4.2 Journals
This section describes the use of journals and how customers can sub-
scribe to journals.

� Chapter 7.4.3 Discounts
This section describes how discounts can be set on �les or on total costs
of a shopping cart.

� Chapter 7.4.4 Watermarking of PDF �les
This section describes how watermarking of PDF �les was implemented.

� Chapter 7.4.5 Checkout process and PayEx integration
This section describes the checkout process and the payment process with
PayEx.

� Chapter 7.4.6 Statistics
This section describes implementation of tra�c and sales statistics.

∙ Chapter 7.5 Tests and results
A summary of the sprint; what tasks were completed and what was postponed.

∙ Chapter 7.6 Sprint evaluation
A retrospective of what went good and bad in the sprint and what can be done
to improve the process.

111

CHAPTER 7. SPRINT 3

7.1 Sprint plan

Sprint 3 started with the planning meeting on Monday the 19th of October and
will end with the sprint review on November the 2nd. The duration is, as before, 2
weeks with a budget of roughly 240 hours.

This was supposed to be the last sprint, but we decided to add a fourth sprint
lasting one week after this one. At the start of the project, we thought the project
report would have to be handed in some time before the �nal demonstration, for
example one week before. This turned out to not be the case, and that's why we
feel we will have some extra time after sprint 3 is �nished. This will increase the
value of the product for the customer, which is one of the major goals of this project.

The main purpose of this sprint is to �nalize the web system we have been working
on. This means that whatever functionality not implemented in the end of this
sprint, will not be delivered in the �nal product. The purpose of the fourth sprint
will be to "�ne tune" the web site, and especially the appearance of it. There is a lot
to do this sprint, but we feel we are working faster now as well, primarily because
everyone in the group has learned more about the Zend framework we are using.

112

7.2. SPRINT BACKLOG

7.2 Sprint backlog

From sprint 2 we had one backlog item that we did not have time to implement -
customer subscribing to journals. In sum there are 8 items remaining in the product
backlog. We have decided to include all these 8 items in the sprint 3 backlog. As
can be seen in table 7.1, the estimated time to implement everything is about 290
hours. It is very likely that we will not be able to �nish all the sprint items, but in
agreement with the customer we decided to include all these items for this sprint and
see how much we get done. Table 7.1 has the backlog items ranked by priority, with
the highest priority listed �rst. We are at this point unsure about how accurate the
time estimates are, and that is why we think it is best to include all the remaining
to the sprint backlog, just in case some parts go faster than expected. The current
situation is that if we work about 290 hours in this sprint we should be able to
�nish all the items in the sprint backlog.

Table 7.1: Sprint 3 backlog

113

CHAPTER 7. SPRINT 3

7.3 Design

In �gure 7.1 is the updated database model. Some tables and �elds were added
during this sprint. A log table is added for the new functionality for logging and
statistics. Due to the shopping cart implementation, the table named "order" has
new �elds. The same goes for the journal table, where 16 di�erent prices need to be
given for each journal.

Figure 7.1: Updated database model

114

7.4. IMPLEMENTATION

7.4 Implementation

7.4.1 My Account Interface

This section documents the "My Account" interface creation. It belongs to User
Story 16: "As a registered customer I want to see my order history" from the sprint
3 backlog.

Access to the sites

To access these sites the user can follow the two links displayed in the left account
bar. There exists one link for personal details and one for order history. For each
of the interfaces made for "My Account" there is an access check. There are two
ways to get access to the sites. Either the account id for the requested details and
the currently logged in id have to match, or the currently logged in account role
must be set to admin. If this check doesn't give a positive response no details will
be fetched from the database. This is for preventing that a user tries to brute-force
url's to get access to information. If the access check gives a positive response the
customer can check and edit his personal details and see complete order history and
details, and the administrator can get access to customers order history and details.

Personal details

Figure 7.2: Personal details

This site is made so that the user can check his personal information. If the user
wants to edit his information or change his password this can be done by pressing
the link under the table. He will then be routed to the user edit page with his
account id that is used to �ll out the form basis.

115

CHAPTER 7. SPRINT 3

User edit

Figure 7.3: User edit page

Here the form is �lled out, and the user can edit the details that he wants to
change. If the password �eld is left open the password will stay the same. If the
user wants to change password he can write a new password in the password �eld.
When the user saves the changes he is routed back to the personal details page with
his account id.

Order history

In this interface the user can see a complete history of orders. The page displays
two tables, one for �le orders and one for subscriptions, both active and non-active.
Only the basic attributes for the �le orders are displayed to keep the page clean.
The attributes present are order id, date for purchase and total price. If the user
wants to see more details he can press the link displayed in the back of each row.
The subscription table displays order id, date, name of journal, subscription price
and the active attribute, which tells if the subscription is currently active.

116

7.4. IMPLEMENTATION

Figure 7.4: Order history

Order details

The link from the �le order table routes the user to this page. Here the user can see
more details about which �les the order contains. The attributes displayed are �le
id, �le name, price without vat and price with vat. If the user has gotten discount
for this order, it is displayed and subtracted under the �le rows. The discount
information given are a short description of why the discount is given, and the total
discount given for this order. The bottom row displays the total price for this order
with the VAT included and the discount subtracted. Each �le name is displayed as
a link that routes the user to a page displaying the product details for this �le.

Figure 7.5: Order details

117

CHAPTER 7. SPRINT 3

7.4.2 Journals

This part of the sprint is about both the admin part and the user part of the journal.
The admin part is to let admin publish and administer journals. A customer should
be able to subscribe and unsubscribe to a journal by using our system.

A journal consists of issues which again consist of articles. Because of this
inheriting the group system with its attributes that we de�ned in the previous sprint
is well suited for this representation. When a user wants to subscribe to a journal it
should be easy to do this. We have two forms with check-boxes and then one where
personal information is sent by email to Tapir together with the earlier selected
alternatives. The choices the user makes will determine the products chosen and
price and the price displayed to the user at the end of the subscription process. If
the customer is an institution, a text area displays together with the other personal
info text boxes, where the customer can enter IP ranges.

The admin part is quite similar to admin part for products. First is a menu
where he can add a completely new journal, or click in on an existing journal. Then
comes di�erent issues of the chosen journal.Here he can both add a new issue, and
add a new article to an already added issue.

Figure 7.6: The user interface for a given journal

Figure 7.7: The form for subscribing to a journal

118

7.4. IMPLEMENTATION

7.4.3 Discounts

This section documents the implementation of discounts that belong to User Story
14: "As an administrator I want to give discounts". In the database we added a
discount table with the following �elds:

∙ Id: Each discount has a unique id

∙ Total_price: If a shopping cart's total sum exceeds this integer value, then a
percent discount or an amount discount is given

∙ Amount: An integer value describing how much discount (in NOK) is given if
the shopping cart exceeds the total_price.

∙ Discount_percent: A �oat, e.g. "0.15", that is the percent discount. Either
Amount and Discount_percent can be used at a time, the other has to be
"null".

∙ Account_id: If set, the discount counts only for that speci�c account, for
example a "NTNU customer account". If this �eld is empty the discount
counts for all customers.

∙ Group_id: If set, the discount counts only for �les under a speci�c group. If
empty, the discount counts for all �les.

The discount table is quite complex. In the simplest case a discount is given for the
amount you buy for in a single order. Discounts for this scenario is given in table
7.2. In this simple case, some value is given in the total_price column, called "Ordre
over (kr)" in the table. In addition to this, a value is set in either the amount or
discount_percent column. The discount given to the customer is the highest valid
discount. As an example, if the total cost is 1200 kr, then a 150 kr discount is given.
If the total cost is 1700 kr, 170 kr is given in discount as 10% of the total sum is
higher than the �xed discount of 150 kr.

Table 7.2: Discounts for an order

119

CHAPTER 7. SPRINT 3

7.4.4 Watermarking of PDF �les

Watermarking was implemented by using Zend Frameworks PDF library. With
this library it was fairly easy to write a text on the bottom of every page in the
PDF document. A wrapper, called Tapir_Watermark, was made for making this
watermark and can be found in the Tapir_Library. Below is a screen-shot the
watermark made by the system on a PDF.

Figure 7.8: Watermarked PDF �le

7.4.5 Checkout process and PayEx integration

The checkout process starts after the user has pressed checkout while viewing the
shopping cart. If the user is logged in a summary of the order will be shown, if the
user is not logged in he will be requested to log in or register a new account. See 7.9

When the user has con�rmed that he wishes to proceed with the order by clicking
on a button in the summary. Then the web-server will send an WSDL request to
the payex server and get an URL address in return. Then the user is redirected to
the URL given by payex which contains an order reference. On the website the user
was redirected to, see 7.10, a credit card payment dialog is displayed.

After the user has entered all his credit card credentials he will be redirected
back to our website. Our website will then send another WSDL request to the
payex server and receive information about the payment that was made. Then we
check the amount that was paid and if everything checks out we display the download
dialog were the user can download all the �les within three hours after payment, see
7.11, The user also receives an receipt by email with a link to the download location.

Figure 7.9: Dialog for summary when not logged on

120

7.4. IMPLEMENTATION

Figure 7.10: PayEx payment form

Figure 7.11: Download section

121

CHAPTER 7. SPRINT 3

7.4.6 Statistics

This section documents the implementation of statistics that belong to User Story
9: "As an administrator I want to see statistics for the website". The statistics to
be recorded was site tra�c statistics and sale statistics, as well as a log of important
events and user actions. In the statistics section of the requirement chapter, 4.3, we
had some initial ideas of how the statistic page should look like. Together with the
customer we changed our priorities and decided to use Google analytics as much as
possible. The only thing we log on the site is the number of times a product page has
been visited, and the number of times a �le has been downloaded. In addition we
have two separate logs: one for customer actions and one for administration actions.
The overview of the statistics site is given in �gure 7.12.

Figure 7.12: Statistics main page

In �gure 7.13 each �le is listed together with the amount of downloads and hits
for that �le. The implementation is done by using a "helper" in Zend. Anywhere
in the code you can call this->_helper->logger->incVisits($id) where $id is the �le
id, and it will be updated in the database. There's another function, incDownloads,
that is used to increase the download count by one. As for logging $this->_helper-
>logger->logCustomer($text); and ->logAdmin($text) can be called with a text
string describing what was changed. The logAdmin will automatically check which
admin that performed the change. As for the customer, the customer name should
be sent in the string if it is wanted in the log.

Figure 7.13: File visits and download counter

Figure 7.14: Administration log

122

7.4. IMPLEMENTATION

Figure 7.15: User interface for adding a new customer discount

Figure 7.15 shows the form for making a new discount for some customer. There's
another form for making a discount just for a group of �les as well. An example of
a discount table for customers and groups is given in table 7.3. If the total amount
("Ordre over") is empty, then the discount is applied no matter the value of the
product. The more information is set in a discount row, the more restrictive the
discount is. If both an account and a group is given on the same time, then the
discount is applied for that customer for that speci�c group of products.

Table 7.3: Customer and group discounts

123

CHAPTER 7. SPRINT 3

7.5 Tests and results

Testing was performed as in sprint 2, with the use of unit testing for the smaller
parts of the system. In addition, we performed integration testing, which is testing
of modules put together. It was performed by adding a new functionality one by
one and testing that it did not introduce new errors.

The demonstration of the sprint results was held on Monday the 2nd of October.
The group member responsible for each backlog item showed the customer how it
was implemented. We had a close contact with the customer throughout the whole
sprint, and quite a lot of functionality had already been shown to the customer
before the �nal sprint meeting. The end result was that 4 items was completely
�nished, 3 items had a little work left and 1 item was not started on.

The tasks that were completely �nished in the sprint were (in order of priority):

∙ 10: As a customer I want to be able to purchase products

∙ 9: As an administrator I want to see statistics for the website

∙ 12: As an admin I want the products to be watermarked

∙ 16: As a registered customer I want to see my order history

The tasks not completely �nished were:

∙ 13: As a customer I want to be able to collect products in a shopping cart

∙ 11: As a registered customer I want to be able to subscribe to journals

∙ 14: As an administrator I want to give discounts

The task not started on was:

∙ 15: As a customer I want to be able to make compendiums

The tasks not completely �nished just needs a little extra work, which will be done
in sprint four.

124

7.6. SPRINT EVALUATION

7.6 Sprint evaluation

As was somewhat expected, we did not have time to implement all of the user stories
in the sprint backlog. Table 8.3 lists the hours used for each of the backlog items.
Watermarking of PDF �les took less time than expected, mainly because we did not
really know what we needed to do when we estimated the hours for it. The second
backlog item that took less time than expected was statistics. The sole reason for
this was the use of Google analytics instead of implementing all the statistics ourself,
including graphs for displaying the results. Implementing the shopping cart and the
journal system took more time than expected, and still needs a little more work to
be completely �nished.

In total we worked just above 200 hours for the sprint. When adding time used
for meetings and report writing, it ends up close to the budget estimate of 240
hours. The downside was that we did not manage to completely �nish all the tasks.
As can be seen in the burndown chart on the next page, �gure 8.13, we still have
about 43 hours left. If we add the 43 hours we believe we have left to the 202
hours used, we end up with 245 hours in total, which is 45 hours less than initially
predicted. We were worried that the estimates could be way o� compared to the
actual implementation time, but a rough 15% di�erence is, in our opinion, not too
bad for such a short-lived project.

Table 7.4: The sprint backlog with hours used

125

CHAPTER 7. SPRINT 3

Figure 7.16: The burndown chart of this sprint

Positive experiences

∙ Managed to do most of the tasks, it felt like we had good progress with the
project

∙ Group work sessions are used a lot and makes implementation easier

∙ We did not do any "shortcut" implementations just because we are coming
close to the project ending

Negative experiences

∙ Only half the product items were completely �nished

∙ The hours put into this sprint was in the lower scale of what should be accept-
able

∙ We should have updated the risk table more frequently

Ideas for improvement

∙ Use more hours working on the sprint

∙ Make more reasonable time estimates for each task

∙ Update risk table when new risks are de�ned

126

7.6. SPRINT EVALUATION

127

CHAPTER 8

Sprint 4

128

Sprint duration: 2th November - 8 November(7 days)

This chapter documents the work done and the artifacts created throughout this
sprint. This is the fourth, and last, sprint. This sprint lasts for one week, and the
main goal in this sprint is to �nish the product: add the remaining functionality,
remove code errors and improve the appearance of the web site.

Chapter overview

The chapter of the third sprint contains the following sections:

∙ Chapter 8.1 Sprint plan
This section describes the planned work process of this sprint.

∙ Chapter 8.2 Sprint backlog
This section gives the goals for this sprint that was decided at the planning
meeting.

∙ Chapter 8.3 Design
This section contains the updated database model.

∙ Chapter 8.4 Implementation
This chapter contains the implementation of this sprint.

� Chapter 8.4.1 The front page
This section describes the changes we did to the front page.

� Chapter 8.4.2 Journals
This section describes the remaining functionality we implemented in the
"Journals" module

� Chapter 8.4.3 Managing subscriptions
This section describes how we added a way for administrators to manage
subscriptions

� Chapter 8.4.4 Shopping cart
This section describes the integration of discounts with the shopping cart

� Chapter 8.4.5 Discounts
This section describes the integration of discounts with the shopping cart

∙ Chapter 8.5 Acceptance testing
The testing performed with the customer at the end of the sprint.

∙ Chapter 8.6 Results
A summary of the sprint; what tasks were completed and what was postponed.

∙ Chapter 8.7 Sprint evaluation
A retrospective of what went good and bad in the sprint and what can be done
to improve the process.

129

CHAPTER 8. SPRINT 4

8.1 Sprint plan

Sprint 4 will last one week, from November 2nd to November 9th. This leaves us
with 10 days from the end of sprint 4 to the �nal presentation. The purpose of this
sprint will be to �nalize the product. We have almost all the functionality in the
system already, so this week will be used to a) �nalize the leftovers from sprint 3,
b) integrate every module together and perform system testing, c) �nd and remove
logical errors and bugs, and d) improve the appearance of the site.

In the early stages of the project, we planned to only have three sprints. This
would lead to a planned �nish of the web site at the 2nd of November, meaning we
would have a lot of time left to work on the report and the �nal presentation. In the
start of sprint 3, however, we noticed that we would not need that much time for
the report, while we could still use some more time for implementation and testing.
Making changes to a plan is often looked upon in a negative way, but we feel that
the bene�ts of a fourth sprint will outweigh the costs. The costs in this case, is
having less time for writing the report and preparing for the demonstration.

We plan to work the same way as before, with many group sessions where everyone
is working together, and everyone taking part in every activity: design, implemen-
tation, testing and report writing.

130

8.2. SPRINT BACKLOG

8.2 Sprint backlog

Sprint 3 had three backlog items that were not completely �nished, which are listed
in table 8.1. The remaining discount implementation can only be done after the
shopping cart is implemented. The total time estimated for the remaining items
is about 29 hours. In addition to the three items, we have added a task called
"�nalizing the web site". This will be our last work on the web site, so whatever
we do not have time to �x will be listed in a "future work" section later in this report.

Finalizing the web site is estimated to about 70 hours. This is basically the amount
of time we think we will work, after the three backlog items are �nished. We wish
to perform an acceptance test with the customer to get some feedback on possible
improvements. In addition, we want to upload the product to the server it will run
on in the future, to test if everything is working as planned.

Table 8.1: Sprint 4 backlog

131

CHAPTER 8. SPRINT 4

8.3 Design

The database model was updated in sprint 4, and now has 30 entities. All the
tables are shown in �gure 8.1, but the attributes are hidden in order to increase
readability. A table called "lastdownloads" was added to keep track of which �les
were last downloaded, which is used in the "top 10 downloads" on the front page.
Two more entities, "attribute_category" and "product_category" so that a �le can
belong to a category like mathematics, physics, ethics or any other category.

Figure 8.1: Database model

132

8.4. IMPLEMENTATION

8.4 Implementation

8.4.1 The front page

The front page is the �rst page the customer will see. It has to make the customer
want to browse the rest of the page. The products should be accessible with few
clicks. At the top of the page the customer can search through all the published
products. We have also added a link to advanced searching for those who want that.
The main focus is anyway on the basic search �eld. Under we have added a text
that describes what the customer can expect from the system. Under we have added
tables that should give an overview of �les that other users have liked. The �rst
tables contains the ten most popular products. In a technical sense the most popular
�les are the most downloaded products, de�ned by a counter in the database. The
next table contains the ten last published products. In case the customer have
waited for a product to be published, he can �nd it here. The third table contains
the ten last bought products, and the fourth table the ten last downloaded products.
These two latest tables gives the customer an insight into which products that other
customers are currently buying. At the bottom of the page we have a table that
contains links to the existing journals, and the latest publications from these.

Figure 8.2: Front page part 1

133

CHAPTER 8. SPRINT 4

Figure 8.3: Front page part 2

8.4.2 Journals

Because the journal part did not �nish in sprint 3 this was added in the fourth and
last sprint. Most of the work that remained were small �xes. Like the format of
the email sent to Tapir with the subscription order from the forms. Some of the
logic behind the schemes that also remained was added. Displaying details about a
chosen journal was implemented. This allows the user to view the meta data of a
journal before subscribing to it. This matches the displaying of other products on
the web site.

The user story of journals also included to let a customer unsubscribe from a
journal. To do this, the customer sends an email to the sta� at Tapir, and they do
the managing. The customer is informed about this on the main page for journals
at the web site.

134

8.4. IMPLEMENTATION

8.4.3 Managing subscriptions

An administration GUI for managing subscriptions was made in this sprint. In this
GUI an admin user can view, add, edit and delete subscriptions. A subscription
is linked to a speci�c user account and a group to which the user should get free
access to through the subscription. A subscription also has a ending date, which is
the date when the subscription cease to be valid.

Below is a screen-shot of the overview of all subscriptions, divided in active and
inactive subscriptions.

Figure 8.4: Personal details

Below is a screen-shot of the form for adding new subscriptions. When specifying
account name and group name an Ajax auto-complete helper searches through the
database and gives a list of suggestions below the text-box to help the user �nd
and select items in the database. The ending date �eld also has an ajax helper for
selecting a valid date. The way this work is that when you select the date �eld with
your cursor a calendar pops up which you can select a date with. All this Ajax
functionality is implemented with the ZendX jQuery library.

Figure 8.5: Adding a subscription

135

CHAPTER 8. SPRINT 4

8.4.4 Shopping cart

Since the shopping cart took quite a bit longer than expected to �nish we had to
add this section to the sprint 4 chapter.

Design

The starting point of the implementation is based on the cart implementation in
[35], which is based upon the principle fat model skinny controller where most of
the code is put into the model.

The �rst time the shopping cart is invoked a mechanism to create a unique
session that is based upon the model class is used. The session holds a list with the
items in the cart. When a new product is added/removed the cart session variable
is called and the list is updated accordingly.

Products added to the cart are "intelligent" objects that calculate their own price
according to the set conditions. ex. calculates their own discount. This is done by
creating a new cart item resource which basically is an object containing variables
and methods for getting/setting the necessary values.

Shopping cart GUI

On the store pages right menubar on the cart summary is shown. This informs
about how many items there is in the cart and the total price including VAT. When
the shopping cart is not empty a link to the cart view is shown. This is supposed
to be the main entrypoint for the purchasing process.

Figure 8.6: Shopping cart summary

The shopping cart index lists all the items the user have added. The individual
product prices are shown including possible discounts. The total price is shown.
The shopping cart model receives data from each shoppingcart item and calculates
total price, total VAT and subtotal.

136

8.4. IMPLEMENTATION

Figure 8.7: The shopping cart index

As seen from Figure 8.7 there are two options for manipulating the cart. The
user can delete the whole cart at once or remove individual items by using the
checkboxes and the update button. The changes are re�ected in the cart summary
menu.

If there are items in the cart a checkout button will appear. By clicking this
the system checks if the user is logged into the site. If this is not the case a form
is displayed prompting the user to log in or register. On the other hand if the
user is logged in he/she is redirected to and the buying process takes over. After a
successful purchase the cart is emptied.

The user has an option to save the shopping cart for later when he/she is in
the shopping cart overview. See Figure 8.7. Since the session is lost after a pre-
determined time this means the cart is lost also By o�ering a service like this the user
gets the opportunity to access the cart later or even in di�erent browsers/computers.

If there exists a shopping cart in the database the user can access it by going
from the link in either the shopping cart index (Figure 8.7) or from the left user
menu on the page (Figure 8.8). The user is then presented with a list with the
previously saved carts named after the date the user saved it (Figure 8.9). Here
the user can either load a cart or delete it. If a user loads a saved cart the currently
cart session data is deleted and replaced with the items in the saved cart.

Figure 8.8: The user can enter saved shopping carts from the user menu

137

CHAPTER 8. SPRINT 4

Figure 8.9: Overview over saved shopping carts

Adding items to the shopping cart

Each product not beeing o�ered for free has a buy form attached which consists of
a button. The buy button �res a method in the controller which add the item to
the cart. The system then gives the user feedback by displaying a message and the
cart summary in the right menu is updated to re�ect the changes.

Figure 8.10: Product summary with buy button

Since this is digital distribution there is no need to have a quantity option for
each product; therefore it is not possible to add the same item more than once in
the cart. A user trying to do this will be informed adding a product more than once
is not possible.

138

8.4. IMPLEMENTATION

8.4.5 Discounts

The remaining part of the discount functionality was to integrate it with the shop-
ping cart and the order process. Figure 8.11 shows a shopping cart with three
products. The two last products have a discount because they belong to a certain
group that has a discount, in this case group 14 with a discount of 25%. In addi-
tion, there's a "big buyers discount". This is a discount given when the value of the
shopping cart exceeds a set value. For this example, a NOK 20 discount is given
when the order sum is over NOK 200.

Figure 8.11: Shopping cart showing an order with multiple discounts

The customer can watch his former order history. Figure 8.12 shows the order details
for the shopping cart of �gure 8.11. We made a choice to just save one value for
the discount amount, which is the sum of all discounts. This is done because the
discount is saved in the "Order" table in the database. In addition, a text string is
made explaining the discounts so that is possible to keep track of why the discount
was given.

Figure 8.12: The order history showing order with multiple discounts

139

CHAPTER 8. SPRINT 4

8.5 Acceptance testing

Usability test with test persons from Tapir Academic Press

Test speci�cation

The user test was conducted at Tapir Academic Press' facilities at Nardo. Four
persons were tested using a set of tasks covering a broad selection of the functional
requirements. The test persons were:

∙ Yngve Syrtveit � Editor and developer of digital learning facilities and cus-
tomer contact in this project.

∙ Anne Dahle � Publishing consultant

∙ Vebjørn Andreassen � Editor for the social sciences

∙ Tina Skjærvik - Language consultant and responsible for the periodicals.

At the end of the test the test person was given the opportunity to give a general
feedback on the usability and usefulness of the system. The test took from 15
minutes to 40 minutes depending on the users speed when performing the tasks and
the users willingness to comment on the system during testing, and the amount of
feedback given by the user at the end of the test. During the test, notes where made
from the users comments and actions.

Tasks

Task 1 � Customer role

1. Register in the system and log in.

2. Find a scienti�c paper which is �Lederen� in the last edition of the periodical
�FoU i praksis� without using the search functionality.

3. Add this paper to the shopping cart.

4. Find the article with the title �Er det å forske på praksis viktig for praksisfel-
tet?� by using the search functionality.

5. Download this paper.

6. Check that this paper was watermarked with a text at the bottom of each
page describing who bought it and Tapirs ownership to the material.

7. Subscribe to �Etikk i praksis�

140

8.5. ACCEPTANCE TESTING

Task 2 � Administrator

1. Log in using the following account: Email: test@tapir.no; Password: 123123

2. Check which previous purchases this user have made.

3. Edit the network area of the institution NTNU. Set the startadress to 0.0.0.1.

4. Upload a �le from your computer onto the system and register at least 2
attributes.

5. Find the uploaded product and edit one of the attributes you entered.

6. Add this product to the group �Supergruppe�.

7. Give the user you made in Task 1 a 10% discount on all products, and grant
the user administrator rights.

8. Check the statistics of how many times �Er det å forske på praksis viktig for
praksisfeltet?� have been visited.

Correspondence between the tasks in the usability test and the functional
requirements in the product backlog:

Task in the usability test Product Backlog Item

1.1 2

1.2 1

1.3 10, 13

1.4 3

1.5

1.6 12

1.7 11

2.1

2.2 16

2.3 6

2.4 4

2.5 5

2.6 8

2.7 7, 14

2.8 9

Table 8.2: Correspondence between tests and backlog items

Not covered by the test because of missing implementation: 15

141

CHAPTER 8. SPRINT 4

General feedback:

Some of the test persons commented that some of the functionality should be ac-
cessible from more than one place. This was pointed out after they tried to access
for instance discount from the user menu or subscription from product menu.
Three out of four test persons also commented that the page looked un�nished.
This was partly due to missing information in some of the pages, and partly that
few products were uploaded.

Feedback for task 1 - Customer role

1. Only Anne had problems with this task, mainly because she wrote the wrong
information in the registration process and was prompted by the system to
enter valid information. She concluded that she had written the wrong infor-
mation because she had forgotten her glasses.

2. All the test persons �rst click the FoU-link under periodicals. They �nd it in
the product section after looking there.

3. All users managed this without errors.

4. All users managed this without errors.

5. Two of the users have trouble as their computer won't let them open the pdf
in adobe reader. They download the �le and manage to read it. Old version
of IE is probably the reason for this. The same two comment on the �lename
of the paper which should be the title of the paper, not a random text string.

6. All the test persons comment that Norwegian characters are not supported.

7. Two of the test persons comment that when you click �Subscribe this period-
ical� from the info page of a periodical, one should not have to specify which
periodical in the ordering sequence. They also miss the con�rmation email.
One test person commented that there should be an extra �Name� �eld for
each address in case the addressee is not the same person ordering the sub-
scription. The same person wanted some more information on the subscription
and English text.

142

8.5. ACCEPTANCE TESTING

Feedback for task 2 - Administrator

1. All users managed this without errors.

2. Two of the users entered the Account section before they found the informa-
tion at the Order History section.

3. Two of the users commented that the users should be sorted by name, not
registration date. One of them also mentioned the need for a search function
when the number of users becomes high.

4. Two of the test persons thought the unpublished �les in the systems was on
the local computer. They discovered that this was not the case by them selves,
but it took some time of looking for the �upload a new �le� link.

5. One of the test persons tried to search for the uploaded �le to edit the at-
tributes. Uploaded �les are not open to the search functionality, and the test
facilitator had to tell her this.

6. All but one of the test persons had problems with this. They �rst had prob-
lems understanding that groups was a way of organizing the products in the
system, and after they where told what the mission of the group system was
two of the test persons had trouble �nding the correct link to add a product to
a group. They both looked in the �Edit attribute� part of the product before
�nding the right link elsewhere.

7. This task was a problem for all the test persons. The discount section requires
the user to remember the name of the user correctly with no possibilities to
look up users without leaving the discount section. It also requires the test
person to know the id of the group which is only visible if you have database
access. Three of the test persons also entered the percentage wrong, and had
to try again. Granting administrator rights to a user didn't involve any prob-
lems for the test-persons.

8. Only one test person had trouble with this because she read the statistics of
the �Leder� rather than the speci�ed �le.

143

CHAPTER 8. SPRINT 4

Quality of the test:

The set of tasks was constructed to cover a broad selection of functional require-
ments. In practice the tasks involves all but one functional requirement, but does
not cover the entire span functionality of each task. Constructing a test covering the
systems entire functionality would yield a vast amount of time both for the group
and the test persons at Tapir, and was therefore not an option. As long as we are
aware that the test only covers a selection of functionality it has limited validity risk
and is valuable to us.
The reliability of the test involves how general the test is, and whether the feedback
from the users can be believed to have relevance also for other users. Since the great
majority of feedback came from more than one person, these errors should be seen
as a general problem.
The value of using the customer contact as a test person was limited as he had good
insight in the system, and had used the system before. He did however encounter
some problems which gives the test person some value for the test.

Conclusion:

The test persons mainly discovered the same usability �aws which is an argument for
correcting the most common feedbacks. The feedback was concrete and often came
with suggestions on how to improve the functionality, which makes the feedback
more useful.
The test persons are the people who will be involved in the use of the system, and
their feedback must therefore be regarded as useful and important.

144

8.6. RESULTS

8.6 Results

The sprint ended with the demonstration meeting on Monday the 9th of October.
The customer got to see how the web page looked after the sprint, and was informed
about what could be improved in further work.

The tasks that were �nished in the sprint:

∙ 11: As a registered customer I want to be able to subscribe to journals

∙ 13: As a customer I want to be able to collect items in a shopping cart

∙ 14: As an administrator I want to give discounts

The remaining functionality was completed. Fixing small issues and known bugs,
improving the appearance of the page and performing testing was done as well. The
only thing missing, was uploading the code to the server it will run on in the future.
A list of improvements that could be implemented was used throughout the sprint,
and was shared with the customer. The downside is that there is still many of the
improvements that were not completed in this sprint. In addition, the testing with
the customer showed some more issues that should be resolved before the web site
is taken into use. These remaining improvements will be listed in the further work
section later in the report.

145

CHAPTER 8. SPRINT 4

8.7 Sprint evaluation

This sprint only lasted for one week. Because of that, it was easier to make good
estimates for how much time we would use. As can be seen in table 8.3 we estimated
99 hours and and used 92 hours. The most signi�cant part of this sprint was im-
proving graphical user interface. In former sprints when we focused on functionality,
some of the extra work of putting the di�erent modules together was transferred to
the next sprint.

In this sprint we have managed to put in as many hours as we wanted. Still, there
is quite a lot of small improvements left. For this product we tried to implement
as much as the functionality as the customer wanted. As it turned out, only the
backlog item with using compendiums was left out. However, to make a net store
with a lot of functionality both for customers and administrators takes a lot of time.

Table 8.3: The sprint backlog with hours used

146

8.7. SPRINT EVALUATION

Figure 8.13: The burndown chart of this sprint

Positive experiences

∙ In addition to the bigger tasks we managed to �x a lot of bugs and �x the
layout of the page

∙ We felt that we worked e�ciently with the tasks in this sprint

∙ We saw that the page is beginning to take form and is useful for the customer

Negative experiences

∙ We still had some �xes to do when the sprint was over

∙ Since everybody were working on di�erent bugs it could be messy at times

∙ We should have estimated more hours for �xes and layout issues

Ideas for improvement

∙ Communicate better about what we are working on

∙ Make better time estimates

147

CHAPTER 9

Overview of system structure

148

Chapter overview

This chapter is meant to give an overall explanation of the system and goes more
into technical details than the sprint chapters.
The chapter contains the following sections:

∙ Section 9.1 System design
This section gives a general overview of how the di�erent parts of the system
and how it is built up.

∙ Section 9.2 Structure
This section de�nes the structure of the website, i.e. where the di�erent �les
of code are located etc. and how this �le structure is logically built.

∙ Section 9.3 Modules
This section lists all the modules in our system and explains how the di�erent
features in the modules are implemented.

∙ Section 9.4 Database
This section displays how the entire database is built up.

∙ Section 9.5 Security
This section explains how the di�erent security issues such as protection of the
product �les and access control are handled in the system.

149

CHAPTER 9. OVERVIEW OF SYSTEM STRUCTURE

9.1 System structure

Figure 9.1 shows the entire system and how all of the parts interact together. The
user interacts against two websites, Tapir's website and PayEx payment website,
used only for paying for products. Tapir's website has two main layers: The appli-
cation layer is upper layer which de�nes this website in general. This layer contains
all of the modules of the website. Then we have the bottom layer which is called
the library. This library contains code which can be used by the entire applica-
tion and works like a common codebase. The Zend library de�nes the framework
that the website is using, see [19] for more detailed information on this framework.
This framework has several packages or modules. Though only three are listed in
the �gure, Zend framework has many more. The system uses the DB module as
an abstraction layer for accessing the database, see [36]. So all the communication
between the database goes through this module. The Tapir library contains code
written by the group, which is general code not entirely speci�c to this project,
and available to the entire application. And the PayEx library contains code and
WSDL documents used for communicating with PayEx's web services for managing
payments.

Figure 9.1: Diagram of the entire system

150

9.1. SYSTEM STRUCTURE

In the websites root folder there are �ve main folders. Below is a �gure of how
the �le structure in the project folder is.

Figure 9.2: Filestructure

151

CHAPTER 9. OVERVIEW OF SYSTEM STRUCTURE

Application

The application folder contains all of our own written code, this is code related to
this speci�c website. Inside this folder you will �nd several other folders. There
are two special �les in this folder. One called Bootstrap.php and the other is called
routes.ini. The bootstrap �le is used by the system in the startup of a request and
initiates things like routes, layouts etc. The routes �le de�ne routes which does not
belong to any module like the front page and the contact page.

In the con�guration folder there is an application.ini �le which contains all the
settings of the website. Settings like the database connection information is stored
here. It is important that this �le is protected from any other users, since the
database password is written in plain text in this �le.

In the layouts folder we have a folder called scripts which contains view �les
which de�nes the looks which are present on all subsites, like header, footer and
sidebars.

The modules folder contains all the modules. Every module is in its own subfolder
with the name of the module. In each module subfolder there are a controllers,
forms, models and views folders which contain controllers, form objects, models and
views respectively. Each module also has a Bootstrap.php and routes.ini �le. These
module bootstrap �les can be used to initiate some functionality that the module
needs. The routes �le de�nes all the routes that belongs to the module and its
controllers.

We have a controllers, models and views folders also in the application folder
which de�ne the pages that does not belong to any module. These are pages like
the contact page and the front page.

Languages

In this folder language �les de�ning translations of the website are stored.

Library

The library folder contains common code that can be used by the entire application.
In the library folder we have four folders:

∙ Zend: Contains all of the Zend Framework code

∙ ZendX: Contains optional Zend wrappers for other libraries. The system uses
the ZendX jQuery javascript library in this folder

∙ Tapir: Contains code written by the group that is common for the entire
application

∙ PayEx: Code supplied by PayEx for the integration of the payment system
with a PayEx wrapper

152

9.2. MODULES

Public

The public folder contains all the �les that should be available through the web
browser. This includes the index.php �le which all requests are sent to, images, CSS
and javascript.

This folder also contains another folder called upload. This is where all the
product �les are stored, as well as the product images. This folder and all the
subfolders has to be readable and writable by the web server.

Tests

In this folder unit tests are stored.

9.2 Modules

The system has six di�erent modules as well as a common codebase for all the
modules called the library. In this section a documentation of all the modules is
presented.

9.2.1 Account

Description

The account module handles everything related to an account on the website. There
are three di�erent types of accounts in the system and they are de�ned in the
database entity account_role. The three di�erent types are:

∙ Customer. This is a regular customer and is the default role. Users who
register manually on the site get this role.

∙ Institution. This role can have a set of IP ranges connected to it, and is usually
used for institutions who pay for having a part or all the products available to
their members through IP ranges.

∙ Administrator. This is mainly the role of the employees at Tapir who has
privileged access to the administration part of the website.

The account database entity de�nes an account and also has a class associated
with it called Account_Model_Account. This class represents an account and has
two important methods:

∙ createNewPasswordRequest(). Sends a new password request to the users
email and stores the requests in a separate database entity called new_password_request

∙ hasAccessTo(�le). Checks if this user has free access to the given �le through
a subscription

This module has three controllers:

∙ Account: Handles all the events related to account except the tasks that are
administrator tasks

153

CHAPTER 9. OVERVIEW OF SYSTEM STRUCTURE

∙ Admin: Handles all the events related to the administration of accounts

∙ IpFiltering: Handles everything related to managing IP �ltering for institution
users

Authentication system

Zend_Auth is used for implementing the authentication system, i.e. the login sys-
tem. Details on the Zend_Auth package can be found at [37]. A custom authenti-
cation adapter was made and is located in library/Tapir/Auth/Adapter.php. This
adapter takes in an email and a password to the constructor and will authenticate
the user and store the authenticated account in a php session.

You can always retrieve the logged on account by using:

$auth = new Zend_Auth::getInstance();

if($auth->hasIdentity()) {

$account = $auth->getIdentity();

}

New password function

This is used when a user request a new password on the "forgot password" site.
The user supplies the system with the email address which the user has a regis-
tered account with at the website. The system looks up the account by using the
submitted email address. The createNewPasswordRequest method is called on the
account object and a row with a unique hash and the account ID is created in the
new_password_request table in the database, then an email is sent to the email
address given with a link to the website with the unique hash as a parameter in the
URL. When the user goes to this URL he his prompted to write a new password
which is then stored in the database.

IP �ltering

Clients connecting to the web page initiates a new server session variable created
in the init method in the action controller in the Tapir library. This variable stores
the client IP address. Fetching of this address is done through the apache server
calling: $_SERVER['REMOTE_ADDR'] or REMOTE_ADDR depending upon
whether the server has globals enabled or not. Matching against two tables in the
database: ip_range and ip_subnet. If there is a match a new session variable is
created containing the user ID corresponding to the match and the name of the
recognized institution is displayed on the page.

The ip_range table contains rows with starting IP address and the ending IP
address. Here the system checks if the client IP is between (including) these two
�elds.

Each row in the ip_subnet table contains the starting address of a speci�ed
subnet and the corresponding subnet mask. Matching of the client IP against this
table is done by converting the client IP address and the subnet mask �eld in the
ip_subnet table. The binary AND operation is then applied to these two binary

154

9.2. MODULES

strings. The result is converted back to 10base and checked if the result is equal to
the corresponding subnet address in the ip_subnet table.

Both ip_subnet and ip_range tables are in a one-to many relationship to the
user account table. This gives the possibility of one user account to have several
subnets and IP ranges associated with each user.

9.2.2 Product

Description

The product module handles everything concerning the product, i.e. product up-
loading, browsing and managing their attributes and groups. This module does not
include the shopping cart and payment system, these features are part of the order
module.

Product types

The system has support for several di�erent product types. There is built in support
for customizing the display of each product type and which attributes should be
available to the di�erent types. This is implemented in the way that we have an
entity in the database called �le_type which contains a list of all the di�erent
product types. So to add a new product type you have to add a new row to this
table, in this table you also have to specify the name of the view �les which the
system shall use to de�ne the appearance of the product. Each product type has
two view/html �les in the folder views/scripts/product/type/ in the product module.
For instance for the type "Vitenskapelig artikkel", the view �le name is article, so
there are two �les in the folder called article.phtml and article-small.phtml. The
�rst one is used for de�ning the looks of the product when viewing the details of
one speci�c product and the other one is used for de�ning the looks for a product
when browsing a list of products.

To de�ne which attributes should be default to one speci�c product type there
is a table called �le_type_attribute which has two keys one being the �le_type_id
and the other being the attribute_id.

Attribute system

The attribute system is probably the most complex system of this website. It sup-
ports di�erent types of attributes, inheritance and overriding of attributes using
groups to de�ne a hierarchy. The attribute types which are currently in the system
are:

∙ ShortText: Used for small text strings like author and has a limit of 255
characters

∙ Text: Used for large texts like abstract and has no limit in size

∙ Date: Used for de�ning dates like the date an article was published

∙ Integer: Used for numbers like price

155

CHAPTER 9. OVERVIEW OF SYSTEM STRUCTURE

∙ Category: Used for assigning a product or a group to a speci�c product cate-
gory which are all de�ned in the product_category table

∙ Image: For adding an image to products

All of these attribute types are de�ned in the table attribute_type together with
a class name which is the name of the class associated with the type. These classes
all inherits from the abstract super class called Product_Model_AttributeType.
The class diagram in �gure 9.3 displays how these classes relate to each other. All
of the subclasses has to de�ne the function createFormElement() which return a
Zend_Form_Element needed for making the input element in the HTML form for
submitting the attribute value itself. This is needed because the input type varies
for each attribute type.

Figure 9.3: Attribute type class diagram

Since all of the di�erent attribute types also need to be stored in di�erent ways,
all of the attribute types have one entity in the database each, except the image
attribute which store its images on the in the folder public/upload/image/ instead.
The attribute system is built up in the database in the way that there is one entity
called attribute which de�nes all of attributes that are available, like author, price,
abstract etc. These attributes all have a foreign key which de�nes which attribute
type they are. The assignment of a speci�c attribute to speci�c product or group
is stored in the database in the assigned_attribute table. While the value itself is
stored in either one of the di�erent attribute type tables. In �gure 9.4 is an ER
diagram displaying the relations between all the entities in the attribute system and
the entire product module.

The �gure 9.5 shows the way the inheritance of attributes work in a group hi-
erarchy. We see that group 1 de�nes values of two attributes, price and author.
Group 2 and 3 inherits from group 1 indicated by the arrow. Group 2 overrides the
value of price inherited from group 1 and sets it to 1 instead. And group 3 overrides
the value of author. In bottom of the diagram we see that we have several �les
or products. Attributes can also be overrided on the �les themselves as �le 2 and
3 does. Under the �les we see which attribute values the �les get. Note that the
attribute value the �le gets is the de�ned closest to the �le itself.

156

9.2. MODULES

Figure 9.4: ER diagram of the attribute system and product module

Watermarking

The watermarking of PDF �les is implemented in the class called Tapir_Watermark
and uses the Zend_Pdf library for handling the PDF �les. Files are watermarked
when they are requested to be downloaded by a user. The class takes 3 arguments:
the �le path to the PDF, the �le path to store the watermarked PDF, and the string
to watermark the PDF with.

157

CHAPTER 9. OVERVIEW OF SYSTEM STRUCTURE

Figure 9.5: Group

9.2.3 Order

Description

The order module contains all the features belonging to the processes of selecting
which products to buy and the payment and download of these products. This
module also contains functionality for managing subscriptions for administrators,
i.e. giving access to certain product groups to certain users.

This module has four controllers:

∙ CartController handles everything related to the shopping cart

∙ CheckoutController handles everything related to the checkout and payment
process. For more information on the integration of the payment system
PayEx, see 9.4

∙ DownloadController handles the download of products.

∙ SubscriptionController handles the managing of subscriptions for administra-
tors.

Shopping cart

The shopping cart is implemented in the module called order. The Order_Model_Cart
model, which stores the products the user wishes to buy, stores cart items in a session
variable. The cart class implements SeekableIterator, Countable, and ArrayAccess

158

9.2. MODULES

interfaces. These interfaces are de�ned in PHP SPL Library [38] and the reason for
using these is to provide a good way for interacting with the data in the cart.

SeekableIterator interface allows the access to the cart data in the following ways:

∙ iteration over the cart items using foreach: foreach($cart as $item)

∙ seek for an item at a speci�c position: $cart->seek(2)

∙ standard iterate access such as: $cart->rewind(), $cart->next() and $cart-
>current()

Countable interface allows for counting of items in the cart:

∙ count($cart)

ArrayAccess interface allows for access to the cart using:

∙ $cart[3];

There are several methods that the three interfaces require. For more informa-
tion go to [38] or look in Order_Model_Cart.

The Cart model class properties:

∙ $_items: array of the cart items

∙ $_subtotal: : total price of the cart items before VAT

∙ $_total: total price of the cart items including VAT

∙ $_sessionNamespace: session store

Cart model class methods:

∙ init(): called during construct and loads the session data

∙ addItem($product): adds items to the cart and updates it

∙ removeItem($product): removes item from the cart

∙ setSessionNs(Zend_Session_Namespace $ns): sets new session instance to use
for storage

∙ getSessionNs(): gets current session instance

∙ persist(): saves cart to session

∙ loadSession(): loads a stored session

∙ calculateTotals(): calculate total cost

∙ calculateVatTotal(): calculate vat total

∙ getSubTotal(): get total ex. VAT

159

CHAPTER 9. OVERVIEW OF SYSTEM STRUCTURE

∙ getTotal(): get total inc: VAT

∙ getVatTotal(): total VAT

∙ inCart(): checks if a item is in the cart

When adding an item to the cart a new Order_Resource_Cart_Item is created.
The cart resource item implements the values and methods necessary to correctly
calculate it's cost according to properties set by administrator.

The cart controller has the following actions:

∙ add: adding cart item to the cart session

∙ view: view the cart contents

∙ update: update cart contents. Inside this method the code coupling the cart
to the checkout process is located

∙ delete: empty the cart contents

∙ save: save the cart to the database

∙ index: view all carts saved in the database

∙ savedPopulate: empty cart session and load cart from database into cart ses-
sion.

∙ savedDelete: delete a saved cart from the cart database

There are two forms associated with the shopping cart:

∙ Order_Form_Cart_Add: form added to the product view which contains the
buy button

∙ Order_Form_Cart_Table: form displaying a cart item information

The cart view has a cart view helper called Tapir_View_Helper_Cart. This
helper contains code for generating the cart summary, the add form in the products
view and a method for adding one form for each product in the shopping cart to the
cart contents view.

9.2.4 Discount

The discount module is used for setting discounts. A discount can be set on a group
of �les or for a sum of an order. The discount can be speci�ed just for one customer,
or for everyone. Originally it was planned to have this functionality as a part of the
"Order" module, but we decided to have it as a separate module to reduce the size
of the "Order" module.

The discount module has a controller called DiscountController, with actions for
adding, editing and removing discounts. The module has two forms. The �rst form

160

9.2. MODULES

is for adding a new discount connected to the total sum of a shopping cart. The
second form is for giving a discount to a group of �les.

In the database there is a discount table that stores the discounts. When a new
product is added to a shopping cart, a check is done to see if there is any discount
given to this product. If the customer is logged in, discounts that are set to every-
one, meaning account_id in the discount table is set to 0, and discounts just to this
customer are found. The highest discount is then returned. The check for a discount
is performed by the function getFileDiscount in modules/order/models/Resource/-
Cart/Item.php.

A discount can be given based on how much the total sum of the order is. This
check is done by the function getShoppingCartDiscountQuery in modules/order/-
models/Cart.php. All the discounts are summarized to a decimal number and stored
in the "Order" table in the database, together with the reason for the discount.

9.2.5 Statistics

The statistics module contains the code for displaying the administration log, the
user log and the �le statistics. The actual code for logging an action is stored
in Tapir/Controller/Action/Helper/Logger.php. There is one table in the database
that stores all the log items, both for the customer and the user actions. The actions
are distinguished as the account_id of an administrator action is logged, while the
customer's id is not stored explicitly.

Each �le has an integer for how many times the �le page was visited, and how
many times the �le was downloaded. The counter can be incremented by calling in-
cVisits and incDownloads in the Helper/Logger class, such as $tℎis− > _ℎelper− >
logger− > logAdmin($msg);

9.2.6 Journal

Description

The journal module contains the functionality for managing journals, their issues
and the products linked to them. It also contains functionality for letting customer
view a journal and �ll out a form for subscribing to a journal.

The journal module is essentially built on the group system. A journal itself
is stored as a group and each issue is stored as group. A journal also has some
extra �elds related to it, such as description and prices for each of the subscription
types. There is a journal entity in the database which has all of these extra �elds
and a foreign key indicating which group it is linked to. The module only has two
controllers:

∙ JournalController handles all the events related to a journal as well as the
subscription form

∙ IssueController handles all the events related to an issue of a journal

161

CHAPTER 9. OVERVIEW OF SYSTEM STRUCTURE

9.3 Database

The database has a total of 28 entities, which are all needed to implement the func-
tionality of this system. Figure 9.6 has been made using the Crows foot notation [34]
and is made in the MySQL DBMS [39]. Zend's database abstraction layer, [36], is
used exclusively for communicating with the database server. By using this abstrac-
tion switching from one DBMS to another should not be a problem. Each table in the
database has a Zend_Db_Table class related to it. These classes are always found
in the folder models/Table in each module and extends Zend_Db_Table_Abstract.
When these classes are instantiated they work like a representation of the table it-
self and you can then run methods on this object for fetching, inserting, updating
and deleting rows. See [40] for more information on how to use these table objects.
When retrieving rows from the database using this abstraction layer, it returns ob-
jects which have all the �elds of the table as member variables. It is possible to
specify that a row should be returned as a speci�c object which one can de�ne man-
ually. These objects are always located in the models folder of each module and has
to extend Zend_Db_Row_Abstract. These objects will also have all of the �elds
of the table as member variables, but the real advantage of this is that one can also
de�ne methods to operate on these variables.

As we can see on the �gure 9.6, the attribute system has most entities. This is
because every di�erent attribute type has to be stored with di�erent data types.

162

9.3. DATABASE

Figure 9.6: Final ER diagram of the database
163

CHAPTER 9. OVERVIEW OF SYSTEM STRUCTURE

9.4 PayEx integration

PayEx was integrated with our system using the re-direct method as explained in
the preliminary study. The �gure below explains how this re-direct method works
with PayEx and our system.

Figure 9.7: Sequence diagram of payment

1. After the user has con�rmed the order at the checkout, and order is created
in our database and a XML document is sent to PayEx using SOAP. This
document contains information like the order ID in our database, the amount
the user have to pay, our account number at PayEx, return URL etc.

After this is sent, a response is received from PayEx with a status code and
an order reference

2. Using the order reference received from PayEx the system redirects the users
browser to PayEx secure payment site

3. When the user is �nished doing the payment at the PayEx site the user is
redirected back to our website by using the return URL speci�ed in the XML
document in the �rst step.

4. After the user has returned to our website we send a new XML document to
PayEx using SOAP with the order ID and our account number at PayEx. In
response we receive all the details of the transaction. In this step we check
that the transaction status was OK, and that the amount paid is the same as
the amount the customer was instructed to pay. If all of this checks out the

164

9.5. SECURITY

user gets a receipt to his email and is shown a download dialog, where the user
can download all the �les.

A wrapper was made for PayEx source code to ease the integration of the pay-
ment system. The wrapper and all of PayEx source code is located in the library
folder. The wrapper class is called PayEx_Transaction and contains the following
methods:

∙ start(array params) Sets up a new order/transaction at PayEx. I.e. step 1
and 2 in 9.7

∙ validate(orderReference, accountNr) Validates the transaction against the or-
der in our database. I.e. step 4 in 9.7

9.5 Security

9.5.1 File security

The products themselves are stored in the public/upload/�le folder. In this folder
there is a .htaccess �le which is set up to deny any outside requests from the web
server. To actually open and download a �le, a user has to go through the download
controller in the order module.

9.5.2 Account security

Account passwords are stored encrypted in the database using the SHA algorithm,
preventing anyone gaining read access to the database from stealing password to
accounts.

9.5.3 Payment security

When the user is going to pay for an order, the user is redirected to PayEx payment
website. This website uses SSL encryption of the tra�c sent back and forth, hence
encrypting sensitive information like credit card details.

9.5.4 Access control

All the controllers inherits a method called authorize from Tapir_Controller_Action.
This method is used to check that the user is logged on and that the user has the
correct role needed. And if the user has the wrong role he is shown a message saying
"Access denied". If the user is not logged on he is redirected to the login page.

165

CHAPTER 10

Evaluation

166

This chapter contains the evaluation of the project as a whole. The purpose
of this chapter is to describe the working process, the project results and relations
between the stakeholders in the project. A discussion of further improvements on
the product will be given in the end of the chapter, together with an evaluation of
the course.

Chapter overview

The chapter of the �rst sprint contains the following sections:

∙ Chapter 10.1 Work process
Describes the development process and the hours worked on the project

∙ Chapter 10.2 Results
The product and how much of the product backlog was completed

∙ Chapter 10.3 The customer and the project
Information about the customer and the project task

∙ Chapter 10.4 The supervisors
Information about the supervisors for this project

∙ Chapter 10.5 Further work
A discussion of what improvements can be made on the system'

∙ Chapter 10.6 Suggestions for improvements
A discussion of what can be improved in the TDT4290 course

∙ Chapter 10.7 Concluding remarks
A conclusion of the evaluation chapter

167

CHAPTER 10. EVALUATION

10.1 Work process

This section gives an overview of how we worked with the project. This includes
a discussion about the development method we used, how much time was spent on
each phase and the total amount of hours used on the project.

The development process

We used Scrum as our development process model. When we chose to use Scrum we
had multiple reasons for doing so. The �rst was that the requirements were likely to
change as the project progressed. If we had used a sequential software development
process, such as the waterfall model, changes to the requirements would most likely
lead to a lot of extra work. As it turned out, the requirements were fairly stable
after sprint 1, mainly because the customer had a good idea about what he wanted
and that one of the group members had former experience developing similar web
sites.

Another reason for choosing Scrum was that it better suited a student project where
the participants do not have assigned roles, such as designer, programmer or tester.
It was greatly appreciated by everyone in the group to have the possibility to work
with all aspects of the development process. Having assigned development roles for
each group member could lead to more e�cient work, but then we would not have
learned as much from di�erent areas.

We used the roles, the artifacts and the sprint meetings. The most signi�cant
di�erence from the work process of this project and the Scrum methodology was the
use of daily sprints. The schedules of the group members were very di�erent, so it
was di�cult to �nd a time where everyone were present early in the day. Instead,
we had a dedicated group room where we sat together and worked. It worked well
to just keep the project status meetings informal. A reason for why it worked so
well could be that the group were relatively small, 5 people, and nobody were shy
to speak their mind.

The sprint length was two weeks for the three �rst sprints and then one week for
the last sprint. The shorter the sprints, the easier it is to predict how much work
can be done for that sprint, but the deliveries will be small as well. Sprints lasting
two weeks worked very well. It was short enough to keep things simple, but still
long enough to design and implement tasks of some size. Another important point
is that all group members have other subjects as well, and a two week sprint in this
course corresponds to a one week sprint if you worked on a full-time project. To
sum it up; the use of Scrum in this project was a success, and we can recommend it
for this course in the years to come.

168

10.1. WORK PROCESS

Hours spent on each phase

The total amount of hours we used on each phase of the project was a good match to
the estimate. Table 10.1 shows the di�erence between what was planned and what
actually happened. At the start of the project it was di�cult to register the hours
properly, to know what work should be under which phase, especially for the phases
project management, self study, project planning and preliminary study. Once we
started with the sprints it was easy to keep track of the exact hours used for each
phase. The reason the project evaluation is a signi�cantly higher than planned is
that we worked a lot on the report after sprint 4. These hours used on the report
between sprint 4 and the deadline was registered in the the "Project evaluation"
phase.

Table 10.1: Hours used on each phase

The most signi�cant change we made to the project plan was adding a fourth sprint.
We had a lot of time from the end of sprint 3 to the �nal presentation, so by adding
a fourth sprint we had some more time to work on the product. In total we used
756 hours on the sprints, compared to 720 hours as was planned.

Figure 10.1: Bar chart of the phases

169

CHAPTER 10. EVALUATION

Hours worked in total

The budget for this project was 1560 working hours and we spent 1624 hours. How
much each group member worked with this course is displayed in �gure 10.2. As can
be seen, the work distribution is fairly close for all the group members. Everyone
were within a 20% range of each other, which means that everyone contributed to
the project.

Figure 10.2: The total hours used for each group member

Hours worked per week is given in �gure 10.3. This graph was made using the hours
registered at the status report that was sent to the supervisors each week. Week
47 is missing, which are the last 4 days before the presentation. Most people were
around the expected 24 hours, but there were some variations, as expected, due to
traveling, illness, higher workload in other classes etc.

Figure 10.3: Hours worked per week

170

10.1. WORK PROCESS

Work activity

The activity level in the group can be measured by the commits per day, which is
collected by SVN. Figure 10.4 shows the number of commits just for the web site.
The highest commit activity is on Saturday and Monday. This is likely to be because
all the sprints ended on a Monday, and everything has to be committed before the
sprint review meeting. The second thing that is noticeable is how little work has
been done with the product on Tuesdays. The supervisor meetings was held every
Wednesday. Tuesdays were used as a day to write on the report and writing status
report, agenda and other items for the supervisor meetings. Figure 10.5 shows the
amount of commits on the report, which clearly shows the amount of work done
with the report on Tuesdays.

Figure 10.4: Activity on design and implementation

Figure 10.5: Activity on the report

171

CHAPTER 10. EVALUATION

As most of the group members had no experience developing web pages and with
PHP it was crucial to have group sessions as often as possible. This meant sitting
together and being in range of each other to reduce the e�ort it took to ask questions
regarding the implementation, and to keep up to date on what everyone was working
on. Figure 10.6 shows the commits per hour of the day for the web site. The highest
number of commits are from 12 to 15 each day. Although we usually started working
at 10:15 each day, the commits are only carried out after some changes are made,
thus there is a delay between when you start working and what you have committed.

Figure 10.6: Activity per hour on the implementation

172

10.1. WORK PROCESS

Implementation process

The implementation was a steady process. The �rst lines of code were committed at
the end of sprint 1, at the 4th of October. In �gure 10.7, the most noticeable is the
straight line from Friday 23rd of October to Thursday 29th of October. The week
before, we had focused more on implementation than the report. As a consequence,
we had to make an all-out e�ort to �nish the sprint 2 chapter in the report. After
the 29th we had a steady work �ow where we managed to balance implementation
and report writing.

Figure 10.7: Lines of code on the web page

Table 10.2 shows the lines of code for each group member. We wrote about 11 500
lines of code, although the table says over 14 000 as some libraries were included
in this number. The group member with experience of web development using the
same framework made almost half of the implementation. The good thing is that
everyone took part in the implementation and made at least 10% of the code.

Table 10.2: Lines of code for each group member

173

CHAPTER 10. EVALUATION

10.2 Results

The assignment given by Tapir Academic Press was to develop a prototype of a net
store for distributing electronic articles. After discussions with the customer about
what functionality the net store should have, the product item was �nalized with
16 items. As can be seen in 10.3 all the items except one were �nished. The result
is a complete net store that can run on the speci�ed server, domeneshop.no.

Table 10.3: Items in the product backlog

The product can be used as a stand-alone product, or can be integrated with the
existing book store currently in use, which is also written in PHP. The resulting net
store of this project is highly modular. As such, it is possible to reuse parts of the
code, add new code, or remove some of the code in an easy way if necessary.

174

10.3. THE CUSTOMER AND THE PROJECT

10.3 The customer and the project

Tapir had a dedicated person, Yngve Syrtveit to take care of this project. The
second meeting with him took place at Tapir, where we got to introduced to about
ten of the workers there.

The task was a wide spanning one, so we had a great amount of things to
implement. Even though much of it was not that complex, there was lots of things
to do and we got a challenge of keeping track of the di�erent parts of the project.
If we saw that there were things we would not be able to implement we told the
customer in advance and then we discussed how to handle it. The customer were
understanding and �exible when such issues arise.

We had a meeting with the customer two times every week. This routine quality
assured the dialog with the customer regarding the product. Both parties could also
invite to a discussion by email and get an answer in seldom more than a couple of
hours.

The customer has been willing to help, and has been giving valuable feedback
on both the product and the report.

10.4 The supervisors

Every week we had a meeting with the supervisors, who was Basit A. Kahn and
Bian Wu. This meeting we gave status on the project and the report. Before this
meeting we sent an agenda for the meeting, an updated sprint backlog and a status
report including the amount of hours each group member had worked the previous
week. We also sent the report together with a change log, meeting minutes from
customer and other meetings. All this gave a pressure on working hard. Most often
the message from the supervisors was to write more on the report. This way we
felt the pressure from them regarding the report, and at the same time knowing we
should be doing implementing to satisfy the customer. Even though this situation
could be frustrating during the project, we can now when we are close to the �nal
delivery thank the supervisors for pushing us to get most report work done early.
They also gave us valuable feedback on the report as it was evolving.

175

CHAPTER 10. EVALUATION

10.5 Further work

There are some extensions to the system that can be made in the future. In this
section we present some of the extensions we recommend.

Caching for increased performance

Instead of retrieving and processing the same data each time a user requests it, and
the result of the request is the same every time for every user, one can store the
result and display it to the next user who requests it, without any processing or
data querying. This technique is called caching and increases performance and use
less resources.

For instance the attributes of products will not change often and is therefor ideal
to cache, especially since traversing through the entire group tree of a product to
�nd its attributes is time consuming.

For more information on how to implement this using the Zend framework, see
[41].

Search Engine Optimization

Since most people will probably �nd this site through a search engine by searching
on any of the products, the website would bene�t from a proper search engine
optimization. For example by using more meta tags when displaying product and
have more information in the title of each product page could increase the hit rate
to the website.

Support for multiple languages

Currently the entire website is in Norwegian. Zend framework has support for
translating the static text parts of the website and can easily be implemented with
the site. Basically this is done by putting every static text string on the site through
a translation function. This function looks for a translation and if no translation
is found the input string is used instead. See [42] for more information on how to
implement this functionality.

The translation of the dynamic content, i.e. the content in the database like the
name of the products and all the attributes, is much more complex to implement.
To implement this one would have to create extra �elds in the database to support
multiple languages.

Compendium feature

This was the one user story which we did not have time to implement. But we think
that this feature could be easily implemented by using the already implemented
feature of saving shopping carts. This feature would also need functionality for
setting the order of products, use Zend_Pdf to concatenate the articles and make
the compendium accessible by a speci�c URL.

176

10.6. SUGGESTIONS FOR IMPROVEMENTS

10.6 Suggestions for improvements

This section provides ideas for improving the course.

Group size

The groups that were de�ned before the course started didn't exactly work out
because a lot of students take their fourth year in another country. The course
responsible should have had a list of students actually present and taking the course.
Since there were a lot of students missing the course responsible had to move students
between groups and this led to that some groups got smaller than they should have
been. Our group consist of �ve people, which was ok, but given the workload of this
project it would have been better with 6 or 7 people in each group.

Lectures

The lectures were mostly good, but sometimes we feel that they came at the wrong
time. For example the technical writing seminar were set to the 1st of October. By
that time we had already written a lot in the report. When we got the tips in the
lecture, we had to go back in the report to correct it. If the lecture had been given
earlier we could have saved some hours that could have been used to implementation
or further report work. In addition we think that some of the lectures that took
four hours were too long. We are used to lectures going in a relatively fast speed,
but in this course some of the lectures could have been completed in less than four
hours. Some lectures were dragged on a little too much, as if to just �ll the time
slot of four hours.

Time

We suggest that the kick-o� for this course is held in the start of the semester instead
of waiting for a week. In such a big project we need all the time we can get to satisfy
in delivering a good product and a well-written report. Of course the issue with time
is combined with us being only �ve students.

Supervisor and customer

The supervisor and assistant supervisor did a good job guiding us through this
project. One thing that could have improved our report work were if the supervisors
could have been more consistent with the info booklet when setting requirements.
We also feel that groups with di�erent supervisors had some di�erences to the report
requirements. It would have been better if all the supervisors and the info booklet
were consistent in all areas. When it comes to the customer we were lucky and
got a customer that really cared about our work and contributed with ideas for
improvement throughout the whole project. Some of the other groups might not
have the same experience. It is important that the customer genuinely cares about
the project and takes part in every aspect of it.

177

CHAPTER 10. EVALUATION

10.7 Concluding remarks

This course has been a great experience and extremely informative. Being put to-
gether in a group with people you don't know and work on a project you have no
former experience with, is a nice challenge. It creates a hectic work situation, where
we can put our theoretical knowledge into use. Decision and problem solving, coor-
dination, management, report writing and especially contact with a real customer
will be valuable experiences. The team feels this project has been of a tremendous
educational value, even if the workload at times was high.

We are all satis�ed with the �nal product. It took time to learn the programming
language and the �le structure in Zend framework, and as such little implementation
was done in the �rst sprint. This meant more work for the other sprints, but with
the added fourth sprint we managed to get done all of the product items except one.
The result was a web shop with tailored for electronic articles and journals.

178

10.7. CONCLUDING REMARKS

179

Glossary

180

Glossary

Notation Description

abstract Context:book. Summary of content, 73

acceptance test Here: testing done by the project customer
prior to accepting transfer of ownership, 139

acceptance test See page 20, 20

Access control A system which enables an authority to con-
trol access to areas and resources in a given
computer-based information system, 3

access control list See page 48, 47

accountability what as subject has done in the system, 47

ACL See access control list, 47

adapter a software component that converts transmit-
ted data from one presentation form to an-
other, 153

admin See administrator, 51

administrator Context: Project. See page 54, 51

AJAX asynchronous javascript + XML. A group of
interrelated web development techniques used
on the client-side to create interactive web ap-
plications., 134

apache Apache HTTP server. A popular open source
web server, 37

API Short for application programming interface.
An interface that a software program imple-
ments in order to allow other software to in-
teract with it, 24

attribute a speci�cation that de�nes a property of an
object, element, or �le, 103

181

Glossary

Notation Description

authentication con�rming the identity of a person or system,
47

authorization specifying access rights to resources, 47

backlog a prioritized set of high level requirements of
work to be done, 10

bibtex reference management software for formatting
lists of references, 73

burndown chart a graphical representation of work left to do
versus time, 91

cascading stylesheets a style sheet language used to describe the pre-
sentation semantics of a document written in
a markup language., 76

checkout the location where a transaction occurs, 120

CIDR See classless inter-domain routing, 45

class diagram a type of static structure diagram that de-
scribes the structure of a system by showing
the system's classes, their attributes, and the
relationships between the classes., 82

classless inter-domain routing A methodology of allocating IP addresses and
routing Internet Protocol packets, 45

CMF See Content management framework, 39

CMS See content management system, 39

compendium Here: compilation of scienti�c papers into a
book, 82

concurrent versions system a revision control system for open source and
commercial software development, 29

constructor a special block of code in a class consisting
of statements called when an object is cre-
ated, either when it is declared or when it is
dynamically constructed on the heap through
the keyword new, 153

182

Glossary

Notation Description

content management framework an application programming interface for cre-
ating a customized content management sys-
tem, 39

content management system a collection of procedures used to manage
work �ow in a collaborative environment, 39

controller See page 80, 81

CSS See cascading stylesheets, 76

customer Context:Project. See page 54, 51

CVS See concurrent versions system, 29

Daily scrum meeting See page 26, 25

data-�ow diagram a graphical representation of the �ow of data
through an information system, 30

database management system a set of computer programs that controls the
creation, maintenance, and the use of the
database in a computer platform or of an or-
ganization and its end users, 162

datagram Another name for message. In information
technology a datagram is a discrete package
of data and headers which contain addresses
(which is the basic unit of transmission across
an IP network). People also calls it packet, 46

DBMS See database management system, 162

development methodology See Software development methodology, 24

DFD See data-�ow diagram, 30

digital distribution The practice of providing content in a purely
digital format, which is downloaded via the
internet straight to a consumer's home., 137

Digital watermarking See page 42, 41

DRM Short for Digital Rights Management.
Acronym for technologies which provide
access control for digital media, 3

183

Glossary

Notation Description

e-commerce Electronic commerce. Consists of the buying
and selling of products or services over elec-
tronic systems such as the Internet and other
computer networks, 39

eBook Short for Electronic Book aka digital book., 3

eLearning Short for electronic learning encompasses
technology-enhanced learning or very speci�c
types of technology-enhanced learning such as
online web-based learning, 3

endnote a commercial reference management software
package, used to manage bibliographies and
references when writing essays and articles, 73

entity either a thing in the modeled world or a draw-
ing element in an entity relationship diagram,
154

ER diagram Entity relationship diagram. An abstract and
conceptual representation of data., 84

FEIDE See page 48, 47

framework a re-usable design for a software system. See
software framework, 24

functional requirement may be calculations, technical details, data
manipulation and processing and other spe-
ci�c functionality that de�ne what a system is
supposed to accomplish., 10

Gantt-chart A type of bar chart that illustrates a project
schedule. Gantt charts illustrate the start and
�nish dates of the terminal elements and sum-
mary elements of a project., 10

Gantt-diagram See Gantt-chart, 10

graphical user interface type of user interface item that allows people
to interact with programs in more ways than
typing, 76

184

Glossary

Notation Description

groups Context:Project. See page 97, 98

GUI See graphical user interface, 76

hash function any well-de�ned procedure or mathemati-
cal function which converts a large, possibly
variable-sized amount of data into a small da-
tum, 166

HTML HyperText Markup Language. The predomi-
nant markup language for web pages., 24

HTTP Hypertext transfer protocol. The standard
protocol for retrieving inter-linked resources
on the internet, 44

implementation a realization of a technical speci�cation or al-
gorithm as a program, software component, or
other computer system, 50

institution Context:Project. A special user that can have
several other users connected to it. This spe-
cial user can have a special IP range of sub-
net resulting in users connected from these
networks are granted privileges of this special
user, 106

integration test See page 20, 20

interface A contract declaring that every class extend-
ing this class must implement the prede�ned
rules in the given interface, 153

IP range Series of IP addresses de�ned by a starting
and an ending address, 3

IP-�ltering A mechanism that decides which types of
IP datagrams will be processed normally and
which will be discarded. An IP �lter operates
mainly in layer 2, of the TCP/IP reference
stack, 3

185

Glossary

Notation Description

IPv4 the fourth revision in the development of the
Internet Protocol (IP) and it is the �rst ver-
sion of the protocol to be widely deployed., 45

IPv6 the next-generation Internet Protocol version
designated as the successor to IPv4, 45

ISBN International Standard Book Number is a
unique numeric commercial book identi�er
based upon the 9-digit Standard Book Num-
bering, 73

ISSN International Standard Serial Number is a
unique eight-digit number used to identify a
print or electronic periodical publication, 73

Iteration Context: Scrum. See Sprint, 9

javascript an object-oriented[2] scripting language used
to enable programmatic access to objects
within both the client application and other
applications, 134

journal In context to this project a journal is a com-
pilation of scienti�c papers, following the re-
quirements given for scienti�c papers, pub-
lished regularly, 2

loopback a virtual network interface implemented in
software only and not connected to any hard-
ware, but which is fully integrated into the
computer system's internal network infras-
tructure., 46

model See page 80, 81

model view controller See page 80, 81

Modular Design of a system in parts, 9

module Code put together in one folder/place dividing
the complete system in smaller parts so it is
easier to manage, 154

186

Glossary

Notation Description

module test See page 20, 20

MVC See model view controller, 39

MySQL My Structured Query Language. A relational
database management system, 162

NAT See network address translation, 46

netmask See network mask, 45

network address translation the process of modifying network address in-
formation in datagram packet headers while in
transit across a tra�c routing device for the
purpose of remapping a given address space
into another, 46

network mask a 32-bit mask used to divide an IP address
into subnets and specify the networks avail-
able hosts, 45

non-functional requirement a requirement that speci�es criteria that can
be used to judge the operation of a system,
rather than speci�c behaviors, 10

object any entity that can be manipulated by the
commands of a programming language, such
as a value, variable, function, or data struc-
ture., 103

paper prototype a widely used method in the user-centered de-
sign process, a process that helps developers
to create software that meets the user's expec-
tations and needs - in this case, especially for
designing and testing user interfaces., 85

payex See page 45, 44

PDF See portable document format, 24

PHP Hypertext Preprocessor, is a widely used,
general-purpose scripting language that was
originally designed for web development, to
produce dynamic web pages., 7

187

Glossary

Notation Description

portable document format a �le format created by Adobe Systems in 1993
for document exchange., 24

product Context:Project. Items that are o�ered by the
network store, 51

Product backlog a high-level document for the entire project.
It contains what will be built, backlog items,
10

Product owner See page 15, 15

Project management See. 18, 17

prototype A �rst of preliminary model of something, 2

proxy server a server that acts as an intermediary for
requests from clients seeking resources from
other servers., 47

QA See quality assurance, 19

quality assurance refers to planned and systematic production
processes that provide con�dence in a prod-
uct's suitability for its intended purpose., 19

Requirement speci�cation Software Requirements Speci�cation (SRS) is
a complete description of the behavior of the
system to be developed., 9

revision control system a software implementation of revision control,
the management of changes to documents,
programs, and other information stored as
computer �les, that automates the storing, re-
trieval, logging, identi�cation, and merging of
revisions., 29

Scrum See page 25, 24

Scrum master See page 15, 15

scrum sprint See page 26, 25

search engine Aka web search engine. A tool designed to
search for information on the World Wide
Web. Ex google, 23

188

Glossary

Notation Description

search engine optimization the process of improving the volume or quality
of tra�c to a web site from search engines via
natural or un-paid search results, 23

secure sockets layer cryptographic protocols that provide security
for communications over networks such as the
Internet, 43

SEO See search engine optimization, 23

session a session is a semi-permanent interactive in-
formation interchange, 106

session variable See session, 106

SHA A set of cryptographic hash functions designed
by the National Security Agency, 166

shopping cart a digital counterpart to the physical version,
138

short message service See page 45, 44

SMS See short message service, 44

SOAP Short for Simple Object Access Protocol, is
a protocol speci�cation for exchanging struc-
tured information in the implementation of
Web Services in computer networks., 44

social-website sites where people socialize and interact with
eachother, 73

Software architecture Structure of a program or computing system,
81

Software development methodology The documented collection of policies, pro-
cesses and procedures used by a development
team or organization to practice software en-
gineering, 24

software framework A re-usable design that may include support
programs, code libraries, a scripting language,
or other software to help develop and glue to-
gether the di�erent components of a software
project. Various parts of the framework may
be exposed through an API, 24

189

Glossary

Notation Description

sprint See scrum sprint, 25

Sprint backlog A document containing information about
how the team is going to implement the fea-
tures for the upcoming sprint., 10

Sprint planning meeting See page 26, 25

Sprint review meeting See page 26, 25

SSL See Secure sockets layer, 43

SSL certi�cate an SSL (See SSL) electronic document which
uses a digital signature to bind together a pub-
lic key with an identity, 43

subnet See subnetwork, 45

subnetwork See page 46, 45

subscription Context:Project. Annual payment so the
user(s) can download all the subscribed arti-
cles/journals published, 133

subversion a revision control system for open source and
commercial software development, 29

SVN See subversion, 29

sysadmin See system administrator, 51

system admin See system administrator, 51

system administrator Context:Project. See page 54, 51

system test See page 20, 20

Team members Context Scrum. See 15, 15

UML Uni�ed Modeling Language, an object model-
ing and speci�cation language used in software
engineering, 82

unit test See page 20, 20

UNIX a computer operating system originally devel-
oped in 1969 by a group of AT&T employees
at Bell Labs, 16

190

Glossary

Notation Description

URL Uniform Resource Locator, a subset of the
Uniform Resource Identi�er (URI), 120

usability test See page 20, 20

use case a description of the system behavior as it re-
sponds to a request that originates from out-
side of that system., 33

utf-8 a variable-length character encoding for Uni-
code. It is able to represent any character in
the Unicode standard, yet is backwards com-
patible with ASCII., 16

VAT value added tax, 135

VCS See revision control system, 29

version control See page 29, 28

Version control system See version control, 28

view See page 80, 81

Waterfall model a sequential software development process,
in which progress is seen as �owing steadily
downwards (like a waterfall) through the
phases., 24

watermarking See Digital watermarking, 41

wrapper class wrapper class is any class which encapsulates
the functionality of another class or compo-
nent. These are useful by providing a level
of abstraction from the implementation of the
underlying class or component, 120

WSDL Short for Web Services Description Language.
An XML-based language that provides a
model for describing Web services., 44

XML Extensible Markup Laguage. A set of rules for
encoding documents electronically, 134

191

Glossary

Notation Description

Zend Framework open source, object-oriented web application
framework implemented in PHP 5 and li-
censed under the New BSD License., 16

192

References

[1] Methods and Tools. [online].
www.methodsandtools.com/archive/scrum1.gif, 09.2009.

[2] Connexions Waterfall. [online].
cnx.org/content/m28927/latest/graphics1.png, 09.2009.

[3] Wikipedia Subversion. [online].
en.wikipedia.org/wiki/Subversion_(software), 10.2009.

[4] Enode MVC pattern. [online].
http://www.enode.com/x/markup/tutorial/mvc.html, 10.2009.

[5] Wikipedia Subnetwork. [online].
en.wikipedia.org/wiki/Subnetwork, 10.2009.

[6] Tapir Academic Press. [online].
http://www.tapirforlag.no/, 09.2009.

[7] Wikipedia Scrum. [online].
no.wikipedia.org/wiki/Scrum, 09.2009.

[8] Eric J. Braude. Software Engineering: An Object-oriented Perspective. Wiley,
2000.

[9] Free Software Foundation. [online].
http://www.nongnu.org/cvs/, 09.2009.

[10] Inc. CollabNet. [online].
http://subversion.tigris.org/, 09.2009.

[11] Scott Chacon. [online].
http://git-scm.com/, 09.2009.

[12] PHP Group. [online].
http://www.php.net/, 09.2009.

[13] Microsoft. [online].
http://www.asp.net/, 09.2009.

[14] Python Software Foundation. [online].
http://www.python.org/, 09.2009.

[15] The Perl Foundation. [online].
http://www.perl.org/, 09.2009.

193

www.methodsandtools.com/archive/scrum1.gif
cnx.org/content/m28927/latest/graphics1.png
en.wikipedia.org/wiki/Subversion_(software)
http://www.enode.com/x/markup/tutorial/mvc.html
en.wikipedia.org/wiki/Subnetwork
http://www.tapirforlag.no/
no.wikipedia.org/wiki/Scrum
http://www.nongnu.org/cvs/
http://subversion.tigris.org/
http://git-scm.com/
http://www.php.net/
http://www.asp.net/
http://www.python.org/
http://www.perl.org/

REFERENCES

[16] The World Wide Web Consortium (W3C). [online].
http://www.w3.org/, 09.2009.

[17] Wikipedia Digital Watermarking. [online].
http://en.wikipedia.org/wiki/JavaScript, 09.2009.

[18] Adobe. [online].
http://www.adobe.com/flashplatform/, 09.2009.

[19] Zend. [online].
http://www.php.net/~helly/php/ext/spl/, 10 2009.

[20] Django Software Foundation. [online].
http://www.djangoproject.com/, 09.2009.

[21] Wikipedia Digital Rights Management. [online].
no.wikipedia.org/wiki/Digital_rights_management, 09.2009.

[22] Wikipedia Digital Watermarking. [online].
http://en.wikipedia.org/wiki/Digital_watermarking, 09.2009.

[23] Paragallo AS. [online].
http://paragallo.com/, 09.2009.

[24] DIBS. [online].
http://www.dibs.no, 09.2009.

[25] Payex. [online].
http://payex.no, 09.2009.

[26] Paypal. [online].
http://paypal.com, 09.2009.

[27] Sendega. [online].
http://sendega.com, 09.2009.

[28] Wikipedia Digital Rights Management. [online].
http://en.wikipedia.org/wiki/Classful_network, 09.2009.

[29] Wikipedia Digital Rights Management. [online].
http://en.wikipedia.org/wiki/Network_address_translation, 09.2009.

[30] Inc. Advameg. [online].
http://www.faqs.org/docs/linux_network/x-087-2-firewall.

filtering.html, 09.2009.

[31] Wikipedia Digital Rights Management. [online].
http://en.wikipedia.org/wiki/Proxy_server, 09.2009.

[32] Wikipedia Digital Rights Management. [online].
http://en.wikipedia.org/wiki/Access_control, 09.2009.

194

http://www.w3.org/
http://en.wikipedia.org/wiki/JavaScript
http://www.adobe.com/flashplatform/
http://www.php.net/~helly/php/ext/spl/
http://www.djangoproject.com/
no.wikipedia.org/wiki/Digital_rights_management
http://en.wikipedia.org/wiki/Digital_watermarking
http://paragallo.com/
http://www.dibs.no
http://payex.no
http://paypal.com
http://sendega.com
http://en.wikipedia.org/wiki/Classful_network
http://en.wikipedia.org/wiki/Network_address_translation
http://www.faqs.org/docs/linux_network/x-087-2-firewall.filtering.html
http://www.faqs.org/docs/linux_network/x-087-2-firewall.filtering.html
http://en.wikipedia.org/wiki/Proxy_server
http://en.wikipedia.org/wiki/Access_control

REFERENCES

[33] UNINETT. [online].
http://feide.no/, 09.2009.

[34] Janine Bernat. [online].
http://www2.cs.uregina.ca/~bernatja/crowsfoot.html, 10.2009.

[35] Keith Pope. Zend framework 1.8 web application development, 2009.

[36] Zend. [online].
http://www.framework.zend.com/manual/en/zend.db.html, 11 2009.

[37] Zend. [online].
http://framework.zend.com/manual/en/zend.auth.html, 11 2009.

[38] Zend. [online].
http://www.php.net/~helly/php/ext/spl/, 10.2009.

[39] MySQL. [online].
http://www.mysql.com/, 11 2009.

[40] Zend. [online].
http://www.framework.zend.com/manual/en/zend.db.table.html, 11
2009.

[41] Zend. [online].
http://framework.zend.com/manual/en/zend.cache.html, 11 2009.

[42] Zend. [online].
http://framework.zend.com/manual/en/zend.translate.html, 11 2009.

[43] Cake Software Foundation. [online].
http://cakephp.org/, 09.2009.

[44] Mountaing Goat Software User stories for product backlog. [online].
www.mountaingoatsoftware.com/presentations/

79-user-stories-for-your-product-backlog, 10.2009.

1

http://feide.no/
http://www2.cs.uregina.ca/~bernatja/crowsfoot.html
http://www.framework.zend.com/manual/en/zend.db.html
http://framework.zend.com/manual/en/zend.auth.html
http://www.php.net/~helly/php/ext/spl/
http://www.mysql.com/
http://www.framework.zend.com/manual/en/zend.db.table.html
http://framework.zend.com/manual/en/zend.cache.html
http://framework.zend.com/manual/en/zend.translate.html
http://cakephp.org/
www.mountaingoatsoftware.com/presentations/79-user-stories-for-your-product-backlog
www.mountaingoatsoftware.com/presentations/79-user-stories-for-your-product-backlog

APPENDIX A

Project directive

A.1 Contact information

Figure A.1: Contact list

2

A.2. MEETING NOTICE

A.2 Meeting notice

Figure A.2: Notice of meeting

3

APPENDIX A. PROJECT DIRECTIVE

A.3 Meeting notice - supervisors

Figure A.3: Notice of meeting, supervisor

4

A.4. MEETING MINUTES

A.4 Meeting minutes

Figure A.4: Meeting Minutes

5

APPENDIX A. PROJECT DIRECTIVE

A.5 Weekly status report

Figure A.5: Weekly status report

6

A.5. WEEKLY STATUS REPORT

Figure A.6: Status report, part 2

1

APPENDIX A. PROJECT DIRECTIVE

Figure A.7: Status report, part 3

Figure A.8: Status report, part 4

2

A.5. WEEKLY STATUS REPORT

3

APPENDIX B

Sprint 1

B.1 GUI sketches

Figure B.1: Page listing scienti�c publications

4

B.1. GUI SKETCHES

Figure B.2: Page for a speci�c journal

Figure B.3: Page of a speci�c article

5

APPENDIX B. SPRINT 1

Figure B.4: Customer's personal information page

Figure B.5: Shopping cart checkout

6

APPENDIX C

User manual

7

APPENDIX C. USER MANUAL

This chapter explains the most important functions on the web site. It is a user
manual written for administrators of the site, and not regular customers. In general
the site should be intuitive enough to use without any form of external guidance.
This guide is written to explain the functionality in simple steps and can be used as
needed.

Chapter overview

The user manual contains the following sections:

∙ Section C.2 Log In
This section describes how you log in as an administrator.

∙ Section C.3 Account
This section describes how to edit a users role and an institutions IP-range

∙ Section C.4 Product
This section describes how to add a new �le and add attributes to it.

∙ Section C.5 Groups
This section describes how to add a subgroup to an existing group, change
attributes of a group and add an existing product to a group.

∙ Section C.6 Journal
This section describes how to add an issue to a journal and add an article to
an issue.

∙ Section C.7 Subscription
This section describes how to assign a user subscription.

∙ Section C.8 Statistics and log
This section describes how to access statistics and log for the page.

∙ Section C.9 Discount
This section describes how to add discount for a total shopping price, and add
discount for a group.

8

C.1. LOG IN

C.1 Log in

1. Insert username and password in the text �eld

2. Press "Logg inn" button

After having logged in, the menu that displays is showed in C.6.

Figure C.1: Admin menu

From this point on, we assume that you are logged in.

9

APPENDIX C. USER MANUAL

C.2 Account

Give a user administrator rights

1. Follow the link to accounts

Figure C.2: Admin menu

2. Press edit user

Figure C.3: Choosing edit user

10

C.2. ACCOUNT

3. Choose administrator in the drop-down menu and choose save

Figure C.4: Choosing admin and save

Give customer an IP range

Follow the previous manual. Instead of clicking on edit user, click edit network area.
You will then get this page:

Figure C.5: Ip range page

The you just choose to add an IP-range and you �ll in start- and end-address
and choose save. The IP-range is now saved for this account.

11

APPENDIX C. USER MANUAL

C.3 Product

Click "Produkter" in the admin menu to go to the product menu. The product part
here assumes you are in the product menu when doing these steps.

Figure C.6: Admin menu

Add a new �le for sale

1. Click "Legg til ny �l"

2. Write the name of the �le(will be displayed in views on the page), choose �le
type, choose the �le and click "lagre". The �le is now in the database

3. Give desired attributes. Be aware that all attributes that are set will be shown
on the web site. Press "Lagre" when �nish

4. You can still edit, delete and add attributes to the �le. The �le will not be
displayed on web pages until it is published. Press "Publiser denne �len" to
do this.

12

C.4. GROUPS

Add attributes to a �le

1. Choose the desired �le either by clicking on it in the list or by using the search
�eld on top of page

2. Click "Legg til attributter til denne �len"

3. Choose the wanted attribute and "Fortsett"

4. Repeat number 2-3 for all attributes you want to set

C.4 Groups

The group system is to be found under "Grupper" in the admin menu. Groups are
used to manage �les that belong together or have some common attributes. An
attribute could be the year it was published, the language of the text or even the
price of the �le.

Add a subgroup to an existing group

1. Press "Lag en ny gruppe"

2. Write the name of the group you want to create

3. In the drop down menu, choose the parent group you want your new group to
inherit from

4. Press "Lagre og legg til attributter"

5. The attributes you don't specify here that are set in the parent group will get
the same values as the parent group

Change attributes of a group

1. Click the title of the group you want to edit attributes for

2. Press "Rediger" in the attribute table to the right for the attribute you want
to change

3. Assign the new value and click "Lagre"

Add a existing product to a group

1. Go to the group menu and click the name of the group

2. Click "Legg til en eksisterende �l i denne gruppen"

3. Decide whether the group attributes should overwrite the �le attributes

4. State the name of the product and press "Lagre"

13

APPENDIX C. USER MANUAL

C.5 Journal

The journal part is quite similar to the product part, but some di�erences occur due
to issues (editions).

Figure C.7: Journal admin view

Add an issue to a journal

1. Click the title of the journal the issue belongs to

2. Press "Legg til ny utgave"

3. Write the name of the issue and click either "Lagre og avslutt" or "Lagre og
legg til attributter"

Add an article to an issue

1. Press "Legg til ny �l"

2. Write the name of the article and �nd the �le on your computer by clicking
"Velg"

3. State the attributes you like and press "Lagre"

C.6 Subscription

This is found under "Abonnement" in the admin menu. When a mail is generated
from the subscription forms and sent to Tapir, you want to register the request here.

Assign a user subscription

1. Click the link "Legg til et nytt abonnement"

2. Write the name of the account you will give access

3. State the date the subscription expires

4. Write the name of the group the user should get access to

14

C.7. STATISTICS AND LOG

C.7 Statistics and log

1. Choose the statistics link in the administrator menu. You will then arrive at
a page with four links.

2. The �rst link routes you to a user statistics page. This page displays number
of downloads per �le and number of users that have watched the details page
for a �le.

3. The second link routes to Google Analytics, which is a tool for generating site
statistics. Here you can get a lot of information, like average time on site,
bounce rate and so on. You also get access to other useful information, for
example you can see how many percent of the customers that came directly or
arrived from a search engine. Here is a capture of a Google Analytics report
for the Tapir page:

Figure C.8: Google Analytics

4. The two bottom links give you an administrator log and a user log. The
attributes found in the table are user, date and event.

15

APPENDIX C. USER MANUAL

C.8 Discount

You have possibility to add discounts to customers and groups. To access the dis-
count menu follow the link named "Rabatt" in the left bar. You will then get two
links displayed.

Discount for total shopping price

1. Follow the top link. You will �rst get a table with existing discounts of this
type displayed.

2. To add a new one press the link above the table.

3. You can then �ll in a speci�c user that should get the access, or leave this �eld
open to give the discount to all users.

4. Then you �ll out the total price that should give a discount(every shopping
cart above this total will get the discount).

5. You then choose if you want to give a static discount or a percentage discount
on the total.

6. Press save and check that the discount is correctly displayed in the table

Discount for a group

1. The bottom link routes you to the discount page for groups and �le groups.

2. First you will be displayed existing discounts of this type.

3. To add a new discount press the link above the table.

4. If the customer name �eld is set empty the discount will count for all customers.

5. Then you can de�ne a group id and percentage discount for this group.

6. Press save, and check that the new discount in the table is correct.

16

	Contents
	List of Figures
	List of Tables
	Introduction
	Project name
	Stakeholders
	Customer
	Project background
	Project scope
	Duration
	Report outline

	Project Directive
	Project mandate
	Project plan
	Organization
	Templates and standards
	Project management
	Quality assurance

	Preliminary Study
	Market investigation
	Software development methodology
	Version control system
	Systems now in use at Tapir
	Technologies and programming languages
	Content Management System and Frameworks
	Piracy and copyright
	Paragallo
	Third party payment solutions
	Customer filtering techniques
	Preliminary study conclusions

	Requirements Specification
	Functional requirements (product backlog)
	Use cases
	Detailed description of product backlog

	Non-functional requirements

	Sprint 1
	Sprint plan
	Sprint backlog
	Design - Software architecture
	Introduction
	Model View Controller Pattern
	Modules
	UML Model Diagram
	Database model

	Implementation - Graphical User Interface
	Tests and results
	Sprint evaluation

	Sprint 2
	Sprint plan
	Sprint backlog
	Design
	Implementation
	Products and groups
	Product search and browsing
	Admin interface
	IP range for institution

	Tests and results
	Sprint evaluation

	Sprint 3
	Sprint plan
	Sprint backlog
	Design
	Implementation
	My Account Interface
	Journals
	Discounts
	Watermarking of PDF files
	Checkout process and PayEx integration
	Statistics

	Tests and results
	Sprint evaluation

	Sprint 4
	Sprint plan
	Sprint backlog
	Design
	Implementation
	The front page
	Journals
	Managing subscriptions
	Shopping cart
	Discounts

	Acceptance testing
	Results
	Sprint evaluation

	Overview of system structure
	System structure
	Modules
	Account
	Product
	Order
	Discount
	Statistics
	Journal

	Database
	PayEx integration
	Security
	File security
	Account security
	Payment security
	Access control

	Evaluation
	Work process
	Results
	The customer and the project
	The supervisors
	Further work
	Suggestions for improvements
	Concluding remarks

	Glossary
	References
	Appendices
	Project directive
	Contact information
	Meeting notice
	Meeting notice - supervisors
	Meeting minutes
	Weekly status report

	Sprint 1
	GUI sketches

	User manual
	Log in
	Account
	Product
	Groups
	Journal
	Subscription
	Statistics and log
	Discount

