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Abstract

This master’s thesis concerns aqueous dispersions of synthetic fluorohec-
torite clay nanoplatelets containing charge stabilizing intercalated cations of
respectively sodium (Na+), lithium (Li+), iron (Fe3+) and nickel (Ni2+), and
a corresponding chloride salt. The monovalently intercalated fluorohectorite
dispersions develop birefringent textures when initially isotropic suspensions
are allowed to settle under the action of gravity. Furthermore, the mono-
valently intercalated clay dispersions display volume swelling and gelling;
these characteristic behaviors are not observed in the di- and trivalently
intercalated clays, which are neither seen to phase separate. Partially evap-
orated and gravitationally phase separated Na-fluorohectorite dispersions
held in 1 mm and 2 mm in diameter cylindrical glass capillaries are investi-
gated optically between crossed polarizers and by small- and intermediate-
angle x-ray scattering. It is shown that evaporating and partially settled
Na-fluorohectorite dispersions develop a new kind of nematic order not pre-
viously observed, where extended regions show a uniaxial configuration of
face-down platelets where the nematic order parameter S2 attains values of
between 0.77 and 0.91, that are considerably and consistently higher than
those previously found for Na-fluorohectorite dispersions. The order pa-
rameter is obtained by fitting the azimuthal intensity profiles of an evap-
orated sample with a Maier-Saupe type distribution. Peaks in the small-
angle scattering from partially evaporated Na-fluorohectorite dispersions are
found to correspond with scattering between platelet faces. The magnetic
Fréedericksz transition is investigated in an aged Na-fluorohectorite capillary
sample through birefringence observations and x-ray scattering. Evidence
is presented based on the Frank-Oseen equation and observed experimen-
tal features, arguing that the initially standing Na-fluorohectorite platelets
undergo a splay-and-bend distortion and reorient in selected sample regions
to the face-down configuration. Previous results concerning the stacking
polydispersity of Na-fluorohectorite platelets are revisited, presenting data
opening for a possibly larger variance in particle sizes.
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tion. It is important to keep in mind that these estimates are rough and can
only be thought to reflect on a very broad basis the qualitative behavior of
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Chapter 1

Introduction

The current report concerns aqueous dispersions of colloidal clay nanoplatelets.
The investigated clay mineral species are different cation-intercalated fluo-
rohectorites. Clay-water dispersions of the montmorillonite/smectite family
such as bentonite [38, 24], nontronite [49], and more recently also synthetic
fluorohectorite [12, 20, 18] and laponite [39, 24], have been studied for sev-
eral years due to their range of practically useful and scientifically interesting
characteristics, that range from the water-intercalating properties of smec-
tite clays, to the anisotropic liquid crystalline states observed in dispersions
of clay particles due to their anisotropic shapes. Still, the nano-scale struc-
tures and physical processes responsible for several characterizing properties
of clay dispersions are not well understood. The structural configuration
of the ubiquitous clay gels for instance, has to this date not been deter-
mined, despite of fairly extensive studies [23]. The current report is mainly
concerned with features observed in an ordered phase of the investigated
clay-water dispersions known as the nematic; it’s presence is confirmed and
explored through optical birefringence observations and anisotropic x-ray
scattering images.

The use of clay-water mixtures by human beings date back many hun-
dreds of years due to the ability of high clay content mixes to be easily shaped
by hand yet subsequently hardened into ceramics during heat treatment and
drying. Clays are geologically abundant, and play important roles in large
scale natural phenomena like landslides and in the sedimentary build-up of
estuary deposits [78]. When clay-carrying waterways are subject to chang-
ing salinity conditions, the initially dispersed clay particles present in for in-
stance riverwater, will undergo flocculation and sediment as they encounter
the salty waters of the sea. This behavior points towards two important
characteristics of clay minerals, namely their small size, which allows them
to stay dispersed in water, and their sensitivity to changing electrolyte con-
ditions. Both features are determining for the behavior of colloidal clay
dispersions. Landslides containing fine-sized particles like clays or silts are
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generally termed earthflows, and the occurrence of such earthflows is caused
by another important characteristic of certain clay minerals, namely their
swelling capacity. A typical clay particle consists of atomic-scale unit layers
carrying net negative surface charges, that are stacked through the sharing
of intercalated positive ions. Due to their polar nature, water molecules can
enter the interlayer space, leading to crystalline swelling of the clay stacks.
Soils high in swelling clay content thus undergo volume changes in response
to dry or wet weather, giving rise to common instabilities in clay-rich soils.

A fourth characterizing parameter of clays are their large surface-to-
volume ratios, that allow for extensive adsorption of various chemical or ionic
species. Within the context of physical colloidal science however, the per-
haps most important characteristic of several clay minerals are their plate-
like morphology, that opens for the possibility of colloidal clay dispersions
undergoing phase transitions to ordered states in response to increases in the
clay concentration. In 1938, Langmuir published a later much quoted paper
[38], reporting observations of isotropic-nematic transitions in aqueous dis-
persions of bentonite clay – Langmuir himself did however note that he could
not reproduce this clear phase separation due to gelling of the clay-water
dispersions. More recently, the presence of nematic or nematic-like ordering
in several clay systems have been reported [12, 39, 49, 24], co-existing with
the gelled phase.

A large portion of the colloidal clay samples investigated in this project
display interesting phase behaviors. When newly prepared Na-fluorohectorite
dispersions are left to sediment in the earth’s gravitational field, several
strata of phases develop over the course of days, weeks and months. These
phases are visible to the naked eye and some of them strongly birefringent
when viewed between crossed polarizers. The characteristic optical behavior
of these samples indicate their liquid crystalline character. Because liquid
crystals have found widespread use in optical display technology and in
other areas were controlled variability of optical properties is desirable, the
liquid crystalline phase behavior of colloidal clay samples is an interesting
research topic. Yet liquid crystals have properties that go beyond their op-
tical birefringence. The science of self-organized structures is today a hot
research topic promoted by the emerging field of nanoscience, and within
this context, clays feature as environmentally friendly and inexpensive nano-
materials that are naturally abundant and widely available.
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Chapter 2

Theory

2.1 Clay nanoplatelets

As already introduced in the previous chapter, clays1 are layered minerals
that exist either as stacked structures forming lamellar particles, or as single
layers exfoliated in a solvent. The single unit clay layers are of either 1:1
or 2:1 type, consisting of respectively two or three structural sheets bound
through the sharing of oxygen atoms [78]. There are two kinds of such
sheets, called respectively tetrahedral or octahedral. The tetrahedral sheets
are generally made of silicon (Si4+) and aluminum (Al3+) tetrahedrally co-
ordinated by oxygen (O2−), whereas the octahedral sheets typically consists
of aluminum (Al3+), lithium (Li+), magnesium (Mg2+) or iron (Fe3+/Fe2+)
coordinated by oxygens (two in 1:1 and four in 2:1 clays) and hydroxyl
groups (OH−, four in 1:1 and two in 2:1 clays) [47], or in synthetic clays
also by fluorine (F−). 1:1 clays are made up of unit layers where one tetra-
hedral sheet is bound with its apical oxygens facing an octahedral sheet,
whereas 2:1 clays are made up of an octahedral sheet sandwiched between
two tetrahedral sheets whose apical oxygens point towards the sandwiched
sheet [9].

A single unit clay layer consists of several atomic planes that, in contrast
to the layers themselves, are strongly bound and do not separate. 1:1 clays
have five ionic planes made up of respectively 1) the basal oxygens of the
silicate sheet, 2) the tetrahedrally coordinated cations, 3) the apical oxygens
of the silicate sheet, corresponding with one of the planes of oxygen and hy-
droxyl groups of the octahedral sheet, 4) the cations of the octahedral sheet
and 5) the second plane of oxygens and hydroxyl groups of the octahedral
sheet [47]. 2:1 clays have seven ionic planes. The first four, equal to the four

1The nineteenth century definition of clays was based on the at-the-time optical mi-
croscopy resolution limit, defining clays as consisting of grains less than 2 µm in diameter,
with less regard to the then unknown chemical composition of the particles [77]. For a
review of current opinions on what constitutes clays, clay minerals and clay rocks, see [3].
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first ionic planes of a 1:1 clay, are followed by 5) the second plane of oxy-
gens and hydroxyl groups of the octahedral sheet, corresponding with the
plane of the apical oxygens of the second silicate sheet, 6) the tetrahedrally
coordinated cations of the second silicate sheet and 7) the basal oxygens of
the second silicate sheet [47]. Due to this regular structure, both along the
stacking direction for a lamellar clay particle, and more noticeably within
a single layer, clays are considered as partially crystalline and thus can be
characterized by a unit cell. The unit cell of 1:1 clays contains four tetra-
hedral and six octahedral cation sites, whereas eight tetrahedral and again
six octahedral cation sites are contained in the unit cell of a 2:1 clay [3].

Clays can be either dioctahedral or trioctahedral, depending respectively
on whether only four or all six of the octahedral unit cell sites are occupied.
The 2:1 octahedral sheets contain both cis- and trans-octahedra, where the
cis-octahedra have their two hydroxyl groups on side linked corners whereas
trans-octahedra have them on diagonally linked corners [3]. The free octa-
hedral sheet side of a 1:1 unit layer has only hydroxyl groups. Substitution
of tetravalent silicon with trivalent aluminum in the tetrahedral sheet or
substitutions of tri- or divalent cations with di- or monovalent cations in the
octahedral sheet cause a net negative unit layer charge for certain 2:1 clays.
This negative charge is compensated for by cations intercalated between the
unit layers of stacked 2:1 structures. In the dry state of a trioctahedral 2:1
clay, the interlayer cations are found situated in the hexagonal cavities of
the silicate sheets that are also the locations of the non-bonded hydroxyl
groups of the octahedral sheet. Individual clay layers of both the 1:1 or
the 2:1 type can stack together to form lamellar clay particles, which may
again form aggregated structures. The layer thickness of a 1:1 clay is typ-
ically around 0.7 nm [78], whereas for the 2:1 clays the periodicity along
the stacking direction for a lamellar clay particle may be highly affected by
intercalated species, and can vary from around 0.91 nm to more than 1.5 nm
[3].

There are several classes of clays. A common 1:1 type dioctahedral
clay is kaolinite. Kaolinite unit layers exist as roughly hexagonal platelets,
and these can stack because hydrogen bonds form between the hydroxyl
groups of the octahedral sheet belonging to one unit layer and the oxygens
of a silicate sheet belonging to another unit layer [3]. Kaolinite is amongst
other things used in porcelain and is added to magazine paper to make it
glossy. Halloysite is a hydrated polymorph of kaolinite, meaning that it has
the same chemical composition as the latter, but the individual halloysite
clay particles are usually tubules [3] with an average diameter of 30 nm
and lengths between 0.5 and 10 µm. Water intercalates between the unit
layers of halloysite, in part causing the tubule structure, but only to a very
moderate degree, or not at all, in between kaolinite layers.

A common and important class of clay minerals are the montmoril-
lonite/smectites. These 2:1 clays are composed of an octahedral sheet sand-
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Figure 2.1: Typical clay coordination of oxygen and hydroxyl groups around
central cations. The figure shows one tetrahedron (top) and three octahedra
(bottom). The octahedra are of respectively cis-, cis- and trans-type (left to
right).

wiched between two tetrahedral silicate sheets and because the montmoril-
lonite/smectite unit layers carry a slight to moderate negative surface charge
at the layer faces due to ionic substitutions or vacancies, these unit layers
stack to form lamellar particles by sharing cations. Water and other polar
molecules easily intercalate between the unit layers and cause the montmo-
rillonite/smectites to display crystalline swelling [3]. Common applications
of the montmorillonite/smectites span the area between drilling muds and
cosmetic powders, and in 2003 an article in Science [29] presented data
showing that montmorillonite could accelerate the spontaneous conversion
of lipid micelles into vesicles2. Some clay particles would become trapped
inside these vesicles and if the clay particles, known to catalyze the poly-
merization of RNA from activated ribonucleotides, carried RNA on their
surfaces, these RNA strands would also become trapped inside the vesicles.
These results were found to indicate that montmorillonite or other minerals
with negative surface charges might have been crucial in the early stages of
development of life on earth.

2Micelles and vesicles are formed by amphiphilic molecules consisting of polar, water-
loving head groups and non-polar, water-hating fatty acid tails. When dispersions of
amphiphilic molecules in water reach a certain concentration level, micelles can form. A
micelle is typically a spherical aggregate of amphiphilic molecules with the water-loving
head groups facing outwards, shielding the non-polar tails in the center of the micelle.
Vesicles can be envisioned as double-layered micelles or shells where the water-loving head
groups are on the inner as well as the outer shell surfaces. This double-layered organization
of amphiphilic lipids is known as a lipid bilayer. Cell walls and the walls of entities inside
cells are lipid bilayers, and hence vesicle formation and behavior are crucial investigation
topics concerning the origin of life on earth.
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2.1.1 Fluorohectorite

The clay investigated in the current report is a synthetically produced tri-
octahedral clay known as fluorohectorite, that has a half unit cell formula
X0.6/v(Mg2.4Li0.6)Si4O10F2 [17] and belongs to the montmorillonite/smectite
group. The chemical formula informs that an average of 1.2 Mg2+ cations
per unit cell in the octahedral sheet have been replaced by monovalent Li+,
leading to a positive charge deficiency of 1.2 unit charges per unit cell, that
is compensated for by the interlayer cation species Xv. Here v is a positive
real number representing the valency of the interlayer cation. The half unit
cell formula also demonstrates that in fluorohectorite the usual hydroxyl
groups of natural hectorites have been replaced by fluorine, making this
clay somewhat heavier relative to natural hectorites.

Natural hectorites have a positive charge deficiency of 0.23 charges per
unit cell, leading to a surface charge density of −0.076 C/m2 [3]. Assuming
synthetic fluorohectorite has a unit cell with surface dimensions comparable
to those of natural hectorite, this would by comparison yield a fluorohectorite
surface charge density of approximately −0.40 C/m2. Slade [64] references
[28] on the unit cell surface area of the exposed basal oxygen planes of smec-
tites, citing a value of 48.5 Å2. Dividing the fluorohectorite unit cell charge
of 1.2e− by this area again yields a surface charge density of −0.40 C/m2

for fluorohectorite. In comparison, the surface charge density of montmo-
rillonite and vermiculite with respectively 0.4e− and 0.8e− per unit cell is
−0.14 C/m2 and −0.26 C/m2 [3]. The high surface charge density of flu-
orohectorite is caused by the extensive substitutions of Mg2+ with Li+ in
the octahedral sheet. In comparison with for example synthetic laponite,
which has a surface charge density of 0.4e− per unit cell and is known to
exfoliate into single unit layers in aqueous suspensions, fluorohectorite has
been reported from x-ray data to retain a stacked structure of lamellar par-
ticles composed of between 20 and 100 unit layers when dispersed in water
[12]. Fluorohectorite, like other smectite clays, has the ability to intercalate
a variable amount of water between the unit layers of the stacked structure,
and for Na-fluorohectorite three stable hydration states with respectively
zero, one or two intercalated water layers have been identified with repeti-
tion distances in the stacking direction of respectively 1.0 nm, 1.2 nm and
1.5 nm [9]. Because of the water content, the density of a smectite clay
changes with the hydration state. Table 2.1 list the mass density of fluoro-
hectorite as a function of intercalated water content.

Fluorohectorites in water suspensions

Aqueous suspensions of Na-intercalated fluorohectorites have been found to
undergo transitions to orientationally anisotropic, or so-called liquid crys-
talline states upon setteling in the earth’s gravitational field [12, 20]. The
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Table 2.1: Mass densities ρm of Na-fluorohectorites with variable amounts
of intercalated water. Data retrieved from [37]. The mass density of pure
water is also included for reference.

Particle ρ
[ g/cm3]

H2O 1.0
NaFht 2.80
NaFht × 1 wl H2O 2.31
NaFht × 2 wl H2O 2.02

formation of ordered phases in dispersions of anisotropic particles was the-
oretically explained by Onsager in the 1940s for hard, i.e. short range re-
pulsive rods [55]. Onsager showed how the gain in translational entropy
upon going from the isotropic to the nematic state outweighs the simultane-
ous loss of orientational entropy, thus making the transition thermodynam-
ically favorable. More recent computer simulations have demonstrated the
same phenomenon in suspensions of disc-like particles, where the platelets
are however often modeled as thin or infinitely thin cylinders interacting
through hard-core potentials [76, 15]. However, in clay dispersions obser-
vations of the isotropic-nematic Onsager transition frequently is hindered
by gelation [75]. Synchrotron x-ray experiments [20] as well as optical in-
vestigations [59] have demonstrated the presence of anisotropic regions per-
meating both the presumed gel and sol regimes of gravitationally settled
Na-fluorohectorite dispersions3. Recent magnetic resonance imaging (MRI)
studies [10], also combined with synchrotron investigations [18, 31, 30],
show that Na-fluorohectorite platelets adopt three main orientations in the
anisotropic regions. Close to polar glass walls the platelets have been ob-
served to align with their face normals perpendicular to the wall [10], i.e.
in homeotropic anchoring. Homeotropic-like anchoring has also newly been
observed at the interface between isotropic and ordered phases [31], where
the clay platelets are seen to lie with their face normals perpendicular to
the interface plane. In the main anisotropic region however, commonly re-
ferred to as the nematic phase but also designated as anti-nematic4, the Na-

3The definition of a gelled phase in this context is a qualitative one, referring to the
higher viscosity parts of an aqueous clay dispersion. The structure of clay gels has not
yet been positively identified and, as briefly discussed in [18], regions of higher viscosity
in aqueous clay dispersions may also be designated as glassy phases.

4It can be argued that the standing anisotropic phase of Na-fluorohectorite dispersions
is not a conventional nematic, as the commonly adopted orientation of greatest order is
perpendicular to the clay platelet faces. Some authors, notably Méheust et al. [48], have
opted to address this phase as anti-nematic. In the current work, the conventional nematic
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fluorohectorite platelets display a commonly preferred direction of greatest
order that is perpendicular to the face normals and parallel with the gravita-
tional force. Thus the particles in this oriented phase are effectively standing
up. Results from MRI investigations [10] have indicated that the projections
of the face normals in this standing phase onto the horizontal plane are ran-
domly distributed on macroscopic scales (≈ mm), except for close to polar
container walls were homeotropic anchoring prevails even in strong magnetic
fields [10] of around 2 T. The distributing effects of the walls are thought to
be more determining in smaller sample containers [18], so that in such cases
the randomness of the face normals in the standing nematic is lost5. When a
magnetic field of 2 T was applied to the approximately 1 cm diameter tubes
in the MRI experiment [10], the Na-fluorohectorite particles far enough from
the walls were seen to align parallel with the field, resulting in an ordered
state more correctly resembling that of a conventional nematic.

2.2 Colloidal dispersions

Suspensions of finely dispersed but insoluble particles in a solvent are called
colloidal when the dispersed particles have at least one spatial dimension in
the 1 nm to 1 µm range. Colloidal dispersions are abundant and make up
natural substances such as milk or fog, and man-made systems like paints
or ferrofluids. Clay particles in salt water form colloidal dispersions where
the role of the ionic species is to shield the Coulombic repulsion between the
negatively charges clay particles. The phase behavior of colloidal disper-
sions can be rich and is dependent on the shape of the dispersed particles.
In particular, as discussed in the case of fluorohectorites in section 2.1.1,
colloidal dispersions of anisotropic particles can form lyotropic liquid crys-
talline phases. A colloidal lyotropic liquid crystal is a dispersion whose phase
behavior depends on the concentration of the colloidal species. The phases
discussed in this context are defined by the presence within the dispersions
of orientational and possible also translational order. Lyotropic liquid crys-
talline phase transitions in colloidal systems are promoted by changes in
the concentration of the colloidal species. Such concentration changes are
produced during evaporation of the solvent [24, 49] or when gravity or cen-
trifugal forces induce a concentration gradient in the colloidal samples, often

designation is reserved for oriented domains where the average direction of the platelet
normals coincide with the commonly preferred direction of greatest order, so that in the
limiting case of perfect order, rotation about the director axis does not change the platelet
orientation (assuming a disc-like morphology). The term standing nematic will be used for
the commonly observed orientationally anisotropic phase seen in the Na-fluorohectorite
dispersions, which by Méheust et al. is referred to as the anti-nematic.

5Some ambiguity seems to exist in the literature with regards to the orientation of the
platelets’ face normals in the standing nematic. Notably, Fonseca et al. [18] present a
picture where the standing nematic is a conventional, homeotropically anchored nematic
whose variations in the director are directly caused by the curvature of the capillary walls.
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without evaporation occurring [74, 73, 12]. When phase changes are pro-
moted by gravity, a single sample container can contain several strata of
coexisting phases [17, 73]. The following section will take a closer look at
the effects which gravity exerts on polydisperse colloidal suspensions.

2.2.1 Gravitational sedimentation in polydisperse suspen-
sions

In order for gravity to affect a colloidal dispersion, causing sedimentation,
the mass density of the colloidal species must exceed the mass density of
the solvent. The forces due to buoyancy and gravity acting on an object of
mass density ρm,o and volume Vo submerged in an incompressible fluid of
mass density ρm,s at standard gravity g is given by:

Fb + Fg = gρm,sVo − gρm,oVo = gVo (ρm,s − ρm,o) (2.1)

Here the positive direction is defined to be upwards, i.e. in the direc-
tion opposite to the gravitational force. For a 80 nm thick clay-like disc
with a diameter of 1 µm and a mass density of 2.02 g/cm3 submerged in
water with a mass density of 0.998 g/cm3 at 20 ◦C, this force will be ap-
proximately −0.63 pN, meaning the particle will sink. However, a particle
moving through a fluid will also experience a drag. This drag can be ex-
pressed through the Stokes friction force as Ff = 6πηvR [69], where η is
the dynamic viscosity coefficient of the solvent, v the particle velocity and
R the Stokes equivalent spherical radius of the particle. When the net force
F = Fb+Fg+Ff due to buoyancy, gravity and drag equals zero, the sinking
colloidal particle will reach a terminal velocity vt which can be expressed as:

vt =
gVo (ρm,o − ρm,s)

6πηR
(2.2)

The equivalent expression for a disc of radius R and height d setteling broad-
side on is given in [53] as:

vt =
gπRd (ρm,o − ρm,s)

12η
(2.3)

According to this expression, valid when the ratio d/R� 1, the terminal ve-
locity for the 80 nm thick disc described above would be of around 105 nm/s
in water with a viscosity of η = 1.002 · 10−3 Ns/m2 at 20 ◦C, equivalent to
about 0.377 mm/h. It would thus take about 265 h for the particle to settle
within a distance of 10 cm in water at standard gravity. This does however
require a dilute suspension, so that inter-particle interactions are negligible
compared with the effects of buoyancy, gravity and Stokes drag. Whalley
and Mullins [81] present an expression for the terminal velocity of a clay par-
ticle modelled as an oblate ellipsoid of thickness d and radius R, deduced
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from Galily and Cohen’s treatise on aerosol particles [25];

vt =
πgRd (ρm,o − ρm,s)

96η
(5− cos [2θ]) (2.4)

Here θ is the angle between the short ellipsoid axis and the direction of
the gravitational force. For an ellipsoid with a thickness d = 80 nm and
a radius R = 0.5 µm falling with its short axis parallel with the gravita-
tional field, this expression yields a terminal velocity vt of approximately
52 nm/s, whereas when the same ellipsoid falls with its short axis perpen-
dicular to the gravitational field, vt takes a value of approximately 79 nm/s.
Because the terminal velocity is proportional to the gravitational accelera-
tion g, sedimentation velocities can be dramatically increased if the colloidal
dispersions are placed in a centrifuge. Polydisperse colloidal gibbsite sus-
pensions centrifuged at 900g for approximately 24 h have been found to
undergo phase transitions to a hexagonal columnar phase at the bottom
of the containers[71], a phase which at standard gravity only developed on
timescales of a year or more. The high centrifugal acceleration was found to
cause size fractionation with the larger gibbsite platelets forming the bot-
tom parts of the columnar structure. It is however important to note that
when colloidal samples are size fractionated in a centrifuge as opposed to in
the gravitational field, the acceleration is no longer uniform over the sample
height [70].

A further point can be made based on the setteling velocity expression
of Equation 2.4. Whalley and Mullins [81], starting out from the hypothesis
that the maximum kinetic energy Eo available for orientation is given by
the difference in kinetic energy between setteling perpendicular to or par-
allel with the short ellipsoid axis of the modelled clay, finds the following
expression for Eo:

Eo =
40πR2dρm,o

3

[
πgRd (ρm,o − ρm,s)

96η

]2

(2.5)

Further equating this with an energy term of kBT/2 attributable to the
orientational degree of freedom, according to Marshall [44] yields a transition
point that in the present discussion is given by:

R4d3ρm,o (ρm,o − ρm,s)2

T
= 1.606 · 10−30 (2.6)

Random sedimentation is expected when the left side of Equation 2.6 is
smaller than the right side. In the opposite case one expects oriented sedi-
mentation, with the ellipsoids’ short axis oriented parallel with the gravita-
tional field. Again using the illustrative example of a 80 nm thick platelet
with a diameter of 1 µm, sedimenting in water at a temperature of 20 ◦C,
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it becomes apparent that sedimentation in this case would be decidedly
random.

In the above discussion the possible Brownian motion of the colloidal
particles has not been explicitly taken into account, but it is obvious that
for small enough colloids this factor will be an important or even decisive
factor in the overall behavior of the particle. The self-diffusivity coefficient
Ds, specifying the mean squared displacement of a diffusing colloidal particle
per unit time in a solvent at temperature T through the relation

〈
|~r|2 (t)

〉
=

6Dst, is given as [69]:

Ds =
kBT

6πηR
(2.7)

For a particle with a Stokes equivalent radius of 0.5 µm in water at 20 ◦C,
the self-diffusivity coefficient takes a value of 0.43 µm2/s. Because the mean
square displacement scales as 1/R whereas the terminal velocity for a Stokes
equivalent sphere of radius R scales as V/R ∝ R2 according to Equation
2.2, or alternately as Rd for an ellipsoid or disc-like particle according to
equations 2.3 and 2.4, it becomes apparent that the Brownian motion of a
colloidal particle quickly becomes increasingly important as it’s volume de-
creases. However, the real world behavior of sedimenting dispersions is ex-
pected to be complex and for less dilute suspensions also dependent upon the
modes of interaction between the individual particles. The following section
will address such interactions in dispersions of a certain electrolyte strength,
deriving several key features that critically effect the stability against coag-
ulation and aggregation and thus also the sedimentational behavior of col-
loidal suspensions. For a review of the more complex effects of gravity and
Brownian motion coupled with inter-particle forces such as those discussed
in the next section, see [14].

2.2.2 DLVO-theory

Insoluble particles in a solvent form colloidal dispersions when forces are
present to prevent the aggregation and subsequent sedimentational fall-out
of the colloidal species. According to the classical DLVO-theory simultane-
ously developed in the 1940s by Russian scientists Derjaguin and Landau
[11] and Dutch scientists Verwey and Overbeek [79], colloidal stability is
achieved when the colloidal species is trapped in a local minimum of the po-
tential energy contributed to by respectively attractive van der Waals forces
and repulsive double layer interactions, or when the repulsive interactions
permanently prevent flocculation. Figure 2.2 illustrates the typical shape of
the DLVO-potential, with the shallow secondary minimum separated from
the much deeper primary minimum by a potential barrier. If the kinetic
energy of the colloidal particles is comparatively low relative to the barrier
height when it is approached from the right, the primary minimum is effec-
tively rendered inaccessible and the colloidal particles will be trapped in a

11



state of kinetic stability against coagulation – at the secondary minimum
if the energy is small compared with its depth. The primary minimum is
of finite depth due to excluded volume interactions that arise because the
electron orbitals of the atoms of the colloidal particles cannot overlap. This
feature is not always included in the DLVO-potential itself, but should be
kept in mind.

Figure 2.2: Classical illustration of the DLVO-potential, with the bottom
inset showing the effect of an increasing electrolyte concentration. Retrieved
from Israelachvili [33].

The traditional DLVO-potential takes into account two important modes
of interaction between colloidal particles, namely van der Waals and double
layer interactions. London-van der Waals interactions arise when fluctua-
tions in the electron density of a particle induce a temporary state of po-
larization which interacts with the same time varying polarization states of
other particles [58]. Other interactions, such as the attractive forces between
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an ion or a permanent dipole and neutral particles are also attractive van
der Waals forces. Double layer interactions in the present context arise when
the surfaces of the colloidal particles carry permanent charges so that the
ions present in the solvent experience a net electric potential giving rise to
increased concentrations of one of the ionic species near the charged colloidal
surfaces. Beyond a characteristic length scale known as the Debye length,
these ions will effectively screen the repulsive electrostatic forces between
the colloidal particles. The following section introduces the Debye screening
length as a constant factor in the solution of a differential equation based on
the Poisson equation, known from electrostatics, combined with a suitable
Boltzmann distribution for the ionic concentration.

The Debye-Hückel screening length

A rigid body, such as a clay particle, with fixed surface charges in an ionic
solvent will attract ions of the opposite charge to its surface so that a so-
called double layer of charges is formed6. The surface charge density of the
rigid body is σs, measured in charges per area, and the resulting electric
potential in the solvent at the boundary with the charged surface is ϕs.
Denoting the concentration of ions i of valency zi at a position x in the
solution as ci,x, the total density of charges ρc,x at this position can be
written as:

ρc,x = e
∑
i

zici,x (2.8)

Here e is one elementary unit of positive electrical charge, or the charge of
a positron. The charges of the double layer set up an electrical field ~E and
a corresponding electric potential ϕ that according to electrostatical theory
must obey Poisson’s equation:

−∇ ~E = ∇2ϕ =
−ρc,x
εrε0

=
−e
∑

i zici,x
εrε0

(2.9)

Here εr is the dielectric constant of the solvent and ε0 the vacuum electric
constant. Equation 2.9 can be re-written using the following Boltzmann
distribution, where ci,∞ is the concentration of ions of type i in regions
where the electric potential ϕ = 0, taken to be the potential far from the
charged surface (the notation stems from far away being taken as infinitely
far away) [36]:

ci,x = ci,∞ exp [−eziϕ/kBT ] (2.10)

Combining equations 2.9 and 2.10 results in the following Poisson-Boltzmann
equation for the electric potential:

∇2ϕ =
−e
εrε0

∑
i

zici,∞ exp [−eziϕ/kBT ] (2.11)

6More sophisticated models of the double layer and its internal structure are presented
later on.
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This differential equation must be supplemented with appropriate boundary
conditions as well as a charge conservation law, and is in general difficult to
solve. However, some simplifying conditions allow for analytical solutions.
In the special case of a monovalent electrolyte so that zc = 1, za = −1 and
cc,∞ = ca,∞ = c∞, where c and a denotes properties of the cations and
anions respectively, the Poisson-Boltzmann equation can be written in the
following form:

∇2ϕ =
−e
εrε0

∑
i

zici,∞ exp [−eziϕ/kBT ]

=
−ec∞
εrε0

(exp [−eϕ/kBT ]− exp [eϕ/kBT ])

=
2ec∞
εrε0

sinh
(
eϕ

kBT

)
(2.12)

In the Debye-Hückel approximation, valid for strong electrolytes where ϕ <
kBT/e so that sinh (eϕ/kBT ) ≈ eϕ/kBT and linearization is possible7,
Equation 2.12 can be further simplified:

∇2ϕ =
2ec∞
εrε0

sinh
(
eϕ

kBT

)
≈ 2ec∞

εrε0

(
eϕ

kBT

)
=

ϕ

λ2
D

(2.13)

The electric potential is a function of position so that ϕ = ϕ(~r). With
the simplifying assumption of a one-dimensional problem so that ϕ = ϕ (x)
with x = 0 at the surface of the rigid charged body, Equation 2.13 has the
following simple solution:

ϕ (x) = A exp [x/λD] +B exp [−x/λD] (2.14)

The electric potential goes to zero as x goes to infinity, so the constant A
must equal zero. At the boundary with the charged surface where x = 0
the electric potential has a constant value ϕs. This means that the constant
B = ϕs, yielding the final solution for the electric potential:

ϕ (x) = ϕs exp [−x/λD] (2.15)

λD is known as the Debye-Hückel screening length, or the Debye length, and
can be expressed in the general case as [36]:

λD =
[

εrε0kBT

e2
∑

i ci,∞z
2
i

]1/2

(2.16)

7The Debye-Hückel approximation becomes better the smaller ϕ is compared with
kBT/e, since the closer x is to zero, the more alike sinh (x) becomes to the linear function
f (x) = x. At a temperature of 20 ◦C, the quantity kBT/e = 25 mV.
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The Debye length describes the length beyond which the electric potential
has fallen by more than about 60 % relative to the potential at the charged
surface. For the 1:1 electrolyte treated above, the quantity

∑
i ci,∞z

2
i = 2c∞

so that in this case the Debye length is:

λD =
[
εrε0kBT

2e2c∞

]1/2

(2.17)

As en example, a 10−3 M solution of the 1:1 electrolyte NaCl in water at
20 ◦C = 293.15 K has a Debye length that can be calculated from Equation
2.17, yielding a value of 9.6 nm. It is worth noting that the Debye length
is exclusively a property of the solvent and as such does not depend on
the surface charge density nor any other property of the dispersed colloidal
particles.

The double layer potential and its relation to the surface charge
density

The above treatment of the Poisson-Boltzmann equation, Equation 2.11, in
the Debye-Hückel regime assumed the surface charge σs of the rigid body
was small compared with the electrolyte strength of the solvent so that
linearization was possible. A more sophisticated treatment of Equation 2.11
yields the following expression for the electric potential [33, 36]:

ϕ (x) =
2kBT
e

ln
[

1 + tanh [eϕs/4kBT ] exp [−x/λD]
1− tanh [eϕs/4kBT ] exp [−x/λD]

]
≈ 4kBT

e
tanh [eϕs/4kBT ] exp [−x/λD] (2.18)

The approximation is valid when tanh [eϕs/4kBT ] exp [−x/λD] � 18. The
linear Debye-Hückel regime is retrieved when eϕs/4kBT � 1 so that
tanh [eϕs/4kBT ] ≈ eϕs/4kBT . In the Gouy-Chapman regime on the other
hand, where the surface potential is high relative to the electrolyte strength
so that eϕs/4kBT � 1 and tanh [eϕs/4kBT ] ≈ 19, Equation 2.18 can be
written as:

ϕ (x) ≈ 4kBT
e

exp [−x/λD] (2.19)

It is apparent that the potential ϕs at the boundary between the sol-
vent and the rigid body, which is dependent both on the surface density
of charges σs and the electrolyte strength, is an important quantity that
amongst other things determines the type of approximations that can be

8The approximation of Equation 2.18 is based on the fact that for y � 1 the expression
ln [(1 + y) / (1− y)] ≈ 2y.

9The approximation that tanh [eϕs/4kBT ] ≈ 1 is fairly good already at eϕs/4kBT = 3
where tanh [eϕs/4kBT ] = 0.995.
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made to the Poisson-Boltzmann equation. Starting from the ion concen-
tration at the boundary, the relation between surface charge density and
surface potential can be deduced. The concentration of ions ci,s at the
boundary between the charged surface and the solvent is described by the
previously defined Boltzmann distribution of Equation 2.10. This equation
can be derivated with respect to x to yield the following:

dci,x
dx

= ci,∞
−ezi
kBT

exp [−eziϕ/kBT ]
dϕ

dx
(2.20)

Summing over all ion species i and comparing the result with the Poisson-
Boltzmann equation, Equation 2.11, further results in:∑

i

dci,x
dx

=
∑
i

ci,∞
−ezi
kBT

exp [−eziϕ/kBT ]
dϕ

dx

=
εrε0
kBT

(
d2ϕ

dx2

)
dϕ

dx

=
εrε0

2kBT
d

dx

(
dϕ

dx

)2

(2.21)

This equation can now be integrated to yield an expression for the additional
concentration of ions at position x relative to the bulk concentration:∑

i

ci,x −
∑
i

ci,∞ =
∫ x

∞

∑
i

dci,x

=
∫ x

∞

εrε0
2kBT

d

(
dϕ

dx

)2

=
εrε0

2kBT

(
dϕ

dx

)2

x

− εrε0
2kBT

(
dϕ

dx

)2

∞

=
εrε0

2kBT

(
dϕ

dx

)2

(2.22)

Rearranging and setting x = 0 so that all properties are calculated at the
boundary between the solvent and the charged surface, this further becomes:∑

i

ci,s =
∑
i

ci,∞ +
εrε0

2kBT

(
dϕs
dx

)2

(2.23)

The electrical field at the boundary has a magnitude Es = σs/εrε0 [33], and
in general E = dϕ/dx, so Equation 2.23 can be written as:∑

i

ci,s =
∑
i

ci,∞ +
εrε0

2kBT

(
σs
εrε0

)2

=
∑
i

ci,∞ +
σ2
s

2εrε0kBT
(2.24)
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This important result connects the concentration of ions at the boundary
with the surface charge density σs. The surface potential ϕs can now be
related to σs by rearranging Equation 2.24 and inserting the Boltzmann
distribution for ci,s:

σ2
s = 2εrε0kBT

(∑
i

ci,s −
∑
i

ci,∞

)
= 2εrε0kBT

∑
i

ci,∞ (exp [−eziϕs/kBT ]− 1) (2.25)

For a 1:1 electrolyte where the anion concentration equals the cation con-
centration so that cc,∞ = ca,∞ = c∞, this becomes:

σs = (2εrε0kBTc∞ (exp [−eϕ/kBT ] + exp [eϕ/kBT ]− 2))1/2

= (4εrε0kBTc∞ (cosh [eϕs/kBT ]− 1))1/2

= (8εrε0kBTc∞)1/2 sinh [eϕs/2kBT ] (2.26)

The transition to the last line makes use of the fact that 1 = cosh2 y−sinh2 y
and that cosh 2y = cosh2 y + sinh2 y. The result of Equation 2.26 can be
rearranged to yield the following expression for the boundary potential ϕs
as a function of the surface charge density σs for a 1:1 electrolyte:

ϕs =
2kBT
e

sinh−1
[
σs/ (8εrε0kBTc∞)1/2

]
(2.27)

For electrolytes with other compositions the boundary potential has to be
deduced directly from Equation 2.25. Table 2.2 list the surface potential as
a function of electrolyte strength for particles with a given surface charge
density of −0.40 C/m, corresponding with the presumed surface charge den-
sity of fluorohectorite platelets as discussed in section 2.1.1. Values of the
Debye length for 1:1, 2:1 and 3:1 electrolytes at different salt concentrations
are also included.

Double layer interactions between two charged colloidal platelets

According to [33], the repulsive pressure P (x′) between two planar surfaces
of equal charge densities separated by a variable distance x′ in an ionic
solvent can be written as:

P
(
x′
)

= kBT

(∑
i

ci,D
(
x′
)
−
∑
i

ci,∞

)
(2.28)

Here ci,D denotes the concentration of ions i at the midplane D between the
two platelets as a function of their separation x′. The previously defined
quantity ci,∞ corresponds with the bulk ionic concentration. In general,
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Table 2.2: Overview of the effects of salt concentration, in number of formula
units per volume unit, on the Debye length and surface potential for colloidal
solutions of platelets with a fixed surface charge density of −0.40 C/m in
water at 20 ◦C. The Debye length was calculated according to equations
2.16 and 2.17, and the surface potential according to Equation 2.27 for the
1:1 electrolyte solutions.

Salt type Bulk salt concentration Debye length Surface potential
zc:za c∞ λD ϕs

[ M] [ nm] [ mV]
1:1 1.0 · 10−4 30.4 330
1:1 1.0 · 10−3 9.64 271
1:1 3.0 · 10−3 5.56 244
1:1 6.0 · 10−3 3.93 226
2:1 1.0 · 10−5 55.6 –
2:1 1.0 · 10−4 17.6 –
2:1 1.0 · 10−3 5.56 –
3:1 1.0 · 10−5 39.3 –
3:1 1.0 · 10−4 12.4 –
3:1 1.0 · 10−3 3.93 –

the ion concentrations at the midplane can be written in the form of the
Boltzmann distribution presented in Equation 2.10, where ϕD is the total
electric potential at the midplane:

ci,D = ci,∞ exp [−eziϕD/kBT ] (2.29)

Under the assumption of a 1:1 monovalent electrolyte, equations 2.28 and
2.29 can now be combined to yield the following expression for the pressure:

P
(
x′
)

= c∞kBT
∑
i

(exp [−eziϕD/kBT ]− 1)

= c∞kBT (exp [−eϕD/kBT ] + exp [eϕD/kBT ]− 2)

≈
c∞e

2ϕ2
D

kBT
(2.30)

The approximation in the last line arises through a series expansion of the
exponential terms10, and is valid when the midplane potential ϕD is small.

10The approximation in Equation 2.30 was made using the following series expansion
of exp [x], valid when x2 <∞:

exp [x] =
∞∑
0

xn

n!
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Assuming the midplane potential can be taken as the sum of the previously
defined potentials ϕ (x) from the two respective double layers at the mid-
plane where x = x′/2 [33], the pressure between the two platelets can be
expressed as:

P (x′) ≈
c∞e

2ϕ2
D

kBT
≈ 4c∞e2ϕ2 (x′/2)

kBT
(2.31)

Based on this result, the interaction free energy or what will be referred to
as the double layer potential energy between the two platelets, can be found
through integrating Equation 2.31, bringing the platelets in from infinity to
a separation x′:

Vdl = −
∫ x′

∞
P (x′)dx′

= −4c∞e2

kBT

∫ x′

∞
ϕ2
(
x′/2

)
dx′ (2.32)

Inserting the expression for the electric potential derived in Equation 2.18,
this becomes:

Vdl = −4c∞e2

kBT

∫ x′

∞

16 (kBT )2

e2
tanh2 [eϕs/4kBT ] exp

[
−x′/λD

]
dx′

= 64c∞kBT tanh2 [eϕs/4kBT ]λD exp
[
−x′/λD

]
(2.33)

In the linear Debye-Hückel regime, where the electric potential of one platelet
in a strong electrolyte is given by Equation 2.15 under the approximation
that tanh [eϕs/4kBT ] ≈ eϕs/4kBT , the double layer potential between the
two platelets becomes:

Vdl =
4c∞e2ϕ2

sλD
kBT

exp[−x′/λD] (2.34)

When the surface charge of the platelets is high relative to the electrolyte
strength so that the electric potential of one platelet is described through
Equation 2.19 with the approximation that tanh [eϕs/4kBT ] ≈ 1, the double
layer potential between the two platelets can be expressed as:

Vdl = 64c∞kBTλD exp
[
−x′/λD

]
(2.35)

Neglecting terms of order (±eϕD/kBT )4 or higher and noting that the odd powers of
(±eϕD/kBT ) cancel each other out, this results in:

P
(
x′
)
≈ c∞kBT

(
1 +

(−eϕD/kBT )2

2!
+ 1 +

(eϕD/kBT )2

2!
− 2

)
=
c∞e

2ϕ2
D

kBT

This approximation is valid when (±eϕD/kBT )4

4!
� (±eϕD/kBT )2

2!
. At a midplane potential

of 25 mV, (±eϕD/kBT )4

4!
/ (±eϕD/kBT )2

2!
≈ 0.083.
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The van der Waals potential between two colloidal platelets

The van der Waals potential VvdW between two colloidal particles with mass
densities ρm,1 and ρm,2 occupying volumes V1 and V2 can be written as
follows, assuming that individual interactions between temporary dipoles at
~r1 and ~r2 can be added pairwise and that the subsequent summation can be
replaced with an integration [36]:

VvdW = −
∫
V1

dV1

∫
V2

dV2
C12ρm,1ρm,2

|~r1 − ~r2|6
(2.36)

The replacing of the summation with integration is justified if the two col-
loidal particles have constant densities with an average number of con-
stituent atomic species per volume unit. The constant C12, determining
the strength of the interactions, is chosen to be geometry independent, so
that it can be moved outside the integral along with ρm,1 and ρm,2:

VvdW = −C12ρm,1ρm,2

∫
V1

dV1

∫
V2

dV2
1

|~r1 − ~r2|6

=
−A12

π2

∫
V1

dV1

∫
V2

dV2
1

|~r1 − ~r2|6
(2.37)

A12 = π2C12ρm,1ρm,2 is called the Hamaker constant and is measured in
units of energy. The above expression does not take into account the fi-
nite speed of electromagnetic waves nor possible distortions to the pair-
wise interactions that might arise from the presence of nearby atoms and
molecules. When the colloidal particles of equations 2.36 and 2.37 are two
equal platelets of thickness d and mass density ρm separated by a distance
x′ � d, the van der Waals potential between them can be written as follows
[36]:

VvdW =
−πCd2ρ2

m

2x′4
=
−A12d

2

2πx′4
(2.38)

In the opposite case where x′ < d, the expression reads [36]:

VvdW =
−πCρ2

m

2x′2
=
−A12

2πx′2
(2.39)

The full DLVO-potential

The combined DLVO-potential as a function of the separation distance be-
tween two charged colloidal platelets can now be written through the expres-
sions derived in equations 2.33, 2.34, 2.35, 2.38 and 2.39. For a 1:1 electrolyte
the combination of the full double layer interaction potential with the van
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der Waals contribution yields:

VDLV O
(
x′ � d

)
= 64c∞kBT tanh2 [eϕs/4kBT ]λD exp

[
−x′/λD

]
−A12d

2

2πx′4
(2.40)

VDLV O
(
x′ < d

)
= 64c∞kBT tanh2 [eϕs/4kBT ]λD exp

[
−x′/λD

]
− A12

2πx′2
(2.41)

The following section will address the subject of colloidal stability in the
specific case where the colloidal particles are fluorohectorite platelets.

Colloidal stability of fluorohectorite dispersions in the DLVO-regime

It section 2.1.1, it was determined that fluorohectorite clay platelets have
a surface charge density of approximately −0.40 C/m. Consider an exam-
ple where such platelets are dispersed in a 10−3 M 1:1 electrolyte like NaCl
at a temperature of 20 ◦C = 293.15 K. This is an approximation to the
typical water-salt solutions utilized in this project for dispersing Na- or Li-
fluorohectorite platelets. At this temperature, a 10−3 M 1:1 electrolyte has
a Debye length of 9.6 nm according to Equation 2.17, and if one assumes
the platelets are clay particles, the Hamaker constant will have a value
of around 10−19 J [33]. From the relationship between the surface charge
density and surface potential found in Equation 2.27, the surface potential
for the platelets in this system will be 271 mV, which is about ten times
higher than the low potential limit of 25 mV. This means that the expres-
sion of Equation 2.35 should be used to describe the double layer potential
energy between the two platelets. Alternately, one can also use the non-
approximated expression of Equation 2.33.

Previous studies [12] have indicated that fluorohectorite particles in wa-
ter exist as stacked structures comprised of between 20 and 100 unit layers.
Since the 2wl repetition along the stacking direction for Na-fluorohectorite
is 1.5 nm, this corresponds with particle thicknesses ranging between 30 nm
and 150 nm. In this thickness regime, the expression of Equation 2.39 can
be used for the van der Waals contribution to the DLVO-potential, which
hence becomes independent of particle thickness. The results of combining
Equation 2.33 with Equation 2.39 to form the full DLVO-potential for fluoro-
hectorite platelets in aqueous solutions of electrolyte strengths of 1 · 10−3 M
and 3 · 10−3 M, respectively, are shown in Figure 2.3. The potentials ob-
tained by considering single unit layer platelets are also included, where the
platelet thicknesses have been set to a value of d = 1 nm. From the inset of
Figure 2.3, potential minima are visible at platelet separations of 36 nm and
73 nm for respectively the 3 · 10−3 M and 1 · 10−3 M solutions – the graphs
are valid when the platelet thicknesses are larger than the involved inter-
platelet separations. For the thin platelets the DLVO-potentials featuring
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the given parameters are well approximated as being overall repulsive for all
separations beyond the primary minimum.

Figure 2.3: DLVO-potentials for platelets with a Hamaker constant of
10−19 J and a surface charge of −0.40 C/m2 in electrolyte solutions. In
the inset the axes have been scaled relative to the background figure, and
illustrate the presence of potential minima.

Extended DLVO theory, and other models for the interaction be-
tween colloidal platelets

The DLVO-theory in its simple form described in the previous sections have
found numerous uses in the field of colloid science. Modifications to this the-
ory account for more subtle features of the ion distributions around charged
surfaces in electrolyte solvents. One such feature is the reduced mobility of
the counter-ions relatively close to the charged particle surface, in the so-
called diffuse double layer, and the near complete fixation of the ions even
closer to the surface, characterized as belonging to the Stern or Helmholtz
layer [33]. This view of the double layer is commonly referred to as Stern
layer theory [77]. Some authors [65, 45] are however, clearly critical to-
wards the classical DLVO-theory and argue that simpler explanations which
account equally well or better for the experimentally observed features of
colloidal dispersions have been proposed. Sogami, Ise and Smalley [65] for
istance, absolutely refute the DLVO-theory, and present in its stead a theory
known as the Coulombic attraction theory, featuring long-range attractive
forces of electromagnetic origin between like-charge colloids in electrolyte
suspensions. McBride and Baveye [46] argue that a range of experimental
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features of colloidal dispersion are today known not to be compatible with
the DLVO-theory. Sogami and Ise [66] point out that the DLVO-theory only
considers interactions between colloidal particle pairs, and that it is there-
fore only valid in highly diluted systems. Experimental results possibly
supporting this [46], were presented by Crocker and Grier [8] in studies on
like-charge spherical colloids suspended in water. Crocker and Grier found
that, for large water volumes, the sphere interaction potential was overall
repulsive whereas when the spheres were confined to a smaller volume, the
appearance of an apparently attractive potential minimum was observed at
spheres separations of around 2− 3 µm. McBride and Baveye [46] argue
that the effect of confining walls in the Crocker and Grier study [8] might
represent effects that could be expected to occur also from the presence of
other colloidal particles. The results of the Crocker and Grier study does
however support that the DLVO-theory is not fundamentally incorrect, but
that it is misused when applied to non-dilute dispersions.

2.2.3 Hydration forces

In section 2.2.2 the DLVO-theory was presented as a means of predicting or
understanding the stability of a colloidal dispersion at varying electrolyte
concentrations. A closer look at the DLVO-potentials discussed in that sec-
tion, reveals that there are important features of dispersions of lamellar
water-intercalating colloids that the continuous medium DLVO-theory does
not explain. It is well established that for smectite and vermiculite clay
platelets the repetition distance d along the stacking direction of the unit lay-
ers varies with the amount of intercalated water, and for Na-fluorohectorite
stable hydration states have been identified with d-values of 1.0 nm, 1.2 nm
and 1.5 nm [9]. The DLVO-potential (which has a maximum barrier height
at a separation distances larger than 2.5 nm in a 10−3 M 1:1 electrolyte for
all the cases discussed in Figure 2.3 – a result that should however be used
with caution due to the large uncertainties in critical parameters such as the
Hamaker constant), cannot account for the three stable hydration states,
and especially so because the clay also hydrates at humid atmospheric con-
ditions [9]. It becomes apparent that the DLVO-theory does not account
for the hydration and crystalline swelling properties of lamellar clay parti-
cles in aqueous suspensions and it is necessary to address so-called hydration
forces, arising in the present discussion between hydrophilic surfaces in water
at small separations, in order to understand the water intercalating proper-
ties of clay platelets and other layered structures. Hydration forces are not
as well theoretically described as the DLVO-forces, but are well experimen-
tally verified. Israelachvili and Pashley [34], measuring the hydration force
between mica surfaces, concluded that although this force was found to be
overall repulsive for separation distances below about 4 nm it did not decay
monotonically but rather, for separations smaller than about 1.5 nm, showed
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oscillatory variations with a mean periodicity of 0.25± 0.03 nm. This pe-
riodicity length is roughly equal to the diameter of a water molecule. Is-
raelachvili [33] summarizes that potential minima at negative energies, i.e.
attractive minima, were identified in the case of the mica platelets for sep-
arations of approximately 0, 0.28 and 0.56 nm, which correspond fairly well
with the observed interlayer separations for the stable hydration states of
Na-fluorohectorite described above when the individual unit layers have a
thickness of around 1 nm. The convention is thus to consider these hydra-
tion states as containing respectively 0, 1 or 2 water layers [9]. Aalerud
[1] reports on four stable hydration states observed in Ni-fluorohectorite, at
repeat distances of respectively 1.1 nm, 1.4 nm, 1.6 nm and 1.8 nm. The
smaller separations between successive hydration states observed for Ni-
relative to Na-fluorohectorite could be related to the way in which these
different clays hydrate. This possibility is further discussed in the following
section.

The structure of clay water layers

Several papers have been dedicated to determining the structure of clay
water contents. It is seen that the nature of the intercalated charge balancing
cation as well as the origin, position and density of the layer charges are
determining parameters in this discussion [63]. The water molecules can
coordinate via ion-dipole bonds to the intercalated cations or via dipole-
dipole bonds to the clay layer surfaces, whereas the cation can form so-
called inner sphere or outer sphere complexes [63], depending on whether it
is bound directly via ion-dipole bonds to the clay surface or via ion-dipole
bonds to a complete shell of water molecules that via dipole-dipole bonds
are associated with one or both opposing clay unit layers. It is seen that the
swelling properties11 of clays are critically dependent upon the intercalated
cation valency and the ability of the cation to solvate in water. Odom [54]
and more recently Skipper et al. [63] summarize that upon hydration the
monovalently intercalated Li- and Na-smectites exhibit in general extensive
colloidal swelling whereas the often more naturally common smectites with
a large portion of intercalated divalent Ca2+ and Mg2+ [54], or monovalent
K+ [63], show practically no colloidal swelling even when fully hydrated.

Ducker and Pashley [13] have investigated the effect that divalent cations
in a water solution exerts upon the force between mica platelets. These au-
thors found that divalent rod-shaped diamine cations absorbed unto the
mica surfaces so strongly as to almost completely neutralize the surface

11In general, the swelling of smectite clays with increasing water content happens in
two stages. Crystalline swelling, governed by hydration forces, corresponds with the in-
tercalation of defined layers of water between the platelet surfaces whereas colloidal or
osmotic swelling results as the stacked particles delaminate into single unit clay layers and
approach the regime described by the DLVO-theory.
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charges, leading to a disappearance of the repulsive electrostatic forces and
the appearance of a strong adhesive potential minimum at a plates separa-
tion distance of around 0.8− 0.9 nm. The same charge neutralizing effect
was to a more moderate degree observed when the mica plates were im-
mersed in a CaCl2 solution. Skipper [63] argues that outer-sphere forming
divalent cations act as charge balancing pillars between adjacent unit layers,
precluding the colloidal swelling seen in monovalently intercalated Li- and
Na-smectites. The lack of swelling properties in K-smectites is explained by
the tendency for K+-ions to form inner sphere complexes both to tetrahe-
dral and octahedral charge sites. In contrast, Li+-ions are seen to form outer
sphere complexes, whereas Na+-ions are thought to form inner sphere com-
plexes to tetrahedral charge sites and outer sphere complexes to the deeper
octahedral charge sites [63] that are found in for instance fluorohectorites.
Israelachvili [33] summarizes, based on results obtained by Kjellander et al.
[35], Marra [43] and others, that so-called ion-correlation effects between
strongly negatively charged surfaces in CaCl2 solutions, have been shown
to effectively cause the appearance of attractive short-range forces. Accord-
ing to Israelachvili, these results could explain the observed non-swelling
characteristics of negatively charged clay surfaces in the presence of divalent
cations [33].

2.3 Colloidal liquid crystals

The possibility of order arising in colloidal dispersions due to shape anisotropies
in the colloidal species was introduced already in section 2.1.1, and briefly
explained in that section based on the thermodynamic considerations of On-
sager [55]. The analytical results obtained for hard-rod colloids are however
not directly transferable to fluorohectorite systems, as the colloidal species
in this case consist of platelet-like particles that are both irregularly shaped
and highly polydisperse. Furthermore, fluorohectorite platelets as well as
other charged particles are not hard, i.e. short-range repulsive only, but are
also affected by long-range repulsive forces, according to the DLVO-theory,
or possibly also by long-range attractive forces, according to the Columbic
attraction theory [65]. Computer simulations taking into account hard-core
interacting platelets [15, 76], have shown that liquid crystalline phases do
form in suspensions of platelet-shaped colloids. As the formation of ordered
phases in systems also affected by long-range forces is a well documented
experimental fact, the current section will not delve further into the ther-
modynamic or other origins of liquid crystalline order in colloidal systems.
Rather the focus in the present discussion will be on the characterization of
the uniaxial nematic via a quantity known as the order parameter, and on
the aligning and deforming effects which external factors such as container
walls or applied fields can exert on this phase. At the end of this section
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the issue of light propagation in anisotropic media will be addressed. This
topic is relevant for the observation of liquid crystalline samples between
crossed polarizers, which is an extensively used first method for identifying
anisotropic phases through their birefringent properties. Presently however,
the nematic order parameter will be deduced along with the introduction of
the so-called director, which is also later discussed in connection with light
propagation.

2.3.1 The director field and the nematic order parameter

The current section deals with properties of a liquid crystalline phase known
as the nematic. The presence of nematic order in fluorohectorite dispersions
was already discussed in section 2.1.1. As shown in Figure 2.4, nematic
order is present in a colloidal dispersions when the colloidal species show a
preferential orientation. The director ~n is a unit vector specifying the aver-

Figure 2.4: Illustration of the orientational order of a nematic. The platelets’
face normals, corresponding with their optical axes, are illustrated by the red
arrows. The average direction of the red arrows gives the nematic director.

age orientation of the nematogens within a volume of the nematic phase. It
is common to define the director so that it coincides with the average orien-
tation of the optical axes. The meaning of the term optical axis is discussed
in section 2.3.3 for uniaxial nematics. In most cases the director orientation
is however not uniform throughout the extent of the nematic phase, but is a
function of position and can be written as a director field ~n (~r) = ~n (x, y, z).
For a given local director orientation, there is a distribution of orientations
of the nematogens around this average value. Choosing a coordinate system
so that the local director points along the angular coordinate θ, the fraction
of nematogens oriented with their optical axis within the solid angle dθdφ
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around the direction (θ, φ) can be written as:

ω (θ, φ) sin θdθdφ (2.42)

Because for a given domain of a nematic phase there are two equivalent
choices for the director orientation, i.e. either ~n or −~n, the distribution
function has the property ω (θ, φ) = ω (π − θ, φ). Normalization furthermore
requires that:

1 =
∫ 2π

0

∫ π

0
ω (θ, φ) sin θdθdφ (2.43)

In the case of uniaxial symmetry where the distribution function is indepen-
dent on φ, this condition of normalization can be rewritten as:

1 = 2π
∫ π

0
ω (θ) sin θdθ =

∫ π

0
ω′ (θ) sin θdθ (2.44)

The new orientational distribution function ω′ (θ) = 2πω (θ) can be ex-
panded as a series of Legendre polynomials in cos θ [69]:

ω′ (θ) =
∞∑
0

2l + 1
2

SlPl (cos θ) (2.45)

Here Pl are the Legendre polynomials of degree l accompanied by the series
coefficients Sl. The first few Legendre polynomials in cos θ are listed in
Table 2.3.

Table 2.3: The first four Legendre polynomials in cos θ.

l Pl
0 1
1 cos θ
2 (1/2)

(
3 cos2 θ − 1

)
3 (1/2)

(
5 cos3 θ − 3 cos θ

)

The Legendre polynomials are orthogonal to each other [69]:∫ π

0
Pl (cos θ)Pk (cos θ) sin θdθ =

2
2l + 1

δlk (2.46)

Because of this orthogonality, the series coefficients Sl can be found by
multiplying each side of Equation 2.45 with Pk (cos θ) and integrating over
θ: ∫ π

0
Pk (cos θ)ω′ (θ) sin θdθ =

∞∑
0

2l + 1
2

Sl

∫ π

0
Pl (cos θ)Pk (cos θ) sin θdθ

(2.47)
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The only non-zero contribution of the sum comes from the term where l = k:∫ π

0
Pk (cos θ)ω′ (θ) sin θdθ =

2l + 1
2

Sk
2

2l + 1
(2.48)

Hence the series coefficients are given through the following relation:

Sl =
∫ π

0
Pl (cos θ)ω′ (θ) sin θdθ = 〈Pl〉 (2.49)

For the first Legendre polynomial where l = 0, the right side of Equation
2.49 reduces to the normalization integral so that S0 ≡ 1. When l = 1
the integral equals the expectation value of the even function cos θ in the
interval from 0 to π, yielding S1 ≡ 0. The first non-zero series coefficient Sl
after the constant S0 ≡ 1 is hence the S2 term, expressed through Equation
2.49 as:

S2 =
∫ π

0
P2 (cos θ)ω′ (θ) sin θdθ =

〈
3 cos2 θ − 1

2

〉
(2.50)

S2 is characteristic of the degree of order and is known as the nematic
order parameter [69]. In the theoretical case of a perfectly aligned nematic
so that all the nematogens are oriented at θ = 0, the expectation value〈
3 cos2 θ − 1

〉
= 2 and so the order parameter S2 = 1. In the isotropic

phase where all orientations are equally likely, the orientational distribution
function ω′ (θ) uniformly weights all angles and can hence be placed outside
the integral yielding the following expression for the order parameter in the
isotropic state:

SI2 = ω′ (θ)
∫ π

0

(
3 cos2 θ − 1

2

)
sin θdθ

= ω′ (θ)
[

cos θ sin2 θ

2

]π
0

= ω′ (θ) [0] = 0 (2.51)

It can be proved [69] that the difference ∆n = n‖− n⊥ in refractive indexes
responsible for the birefringent properties of a nematic phase is proportional
to the nematic order parameter S2. The birefringence of a liquid crystalline
sample therefore indicates the order.

2.3.2 Deformations of the liquid crystalline nematic in ex-
ternal fields

The director field of a typical liquid crystal in its nematic phase, as in-
troduced in the previous section, is usually not uniform throughout the
extent of the phase unless specific measures are taken to ensure it. There
are mainly three ways by which manipulation of the director field can be
achieved. These include field, flow and wall induced alignments. The for-
mer and latter will be further treated in the following sections, and will
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be connected in a discussion on the so-called Fréedericksz transition in Na-
fluorohectorite dispersions later on. Flow induced alignment is a well known
feature of dispersions of shape-anisotropic colloids, where an increased local
ordering of the colloidal species occurs when the suspensions for instance
are contained between walls, and the movement of one wall along with the
no-slip condition at the wall boundary induce a shear [36]. The subject of
hydrodynamics is an involved one from the startout, and for suspensions
containing shape-anisotropic colloids, the director field features in as a new
hydrodynamic variable. In the current discussion, it will be sufficient to con-
sider flow induced birefringence as a qualitative feature that indicates the
presence of shape-anisotropic colloids. Flow birefringence in clay-water sus-
pensions have been observed for instance in the case of bentonite [24]; here
the presence of flow-induced birefringence was found to be indicative of the
possibility for the at-rest isotropic suspensions undergoing phase transitions
to liquid crystalline states when the colloid concentration was increased.

The role of aligning walls

Liquid crystalline colloidal particles are seen to align with container walls in
two distinguishable fashions. Planar wall anchoring describes the case where
the director is oriented parallel with the aligning wall, whereas homeotropic
anchoring is achieved when the director is oriented perpendicular to the
aligning wall. The two configurations are illustrated in Figure 2.5.

Figure 2.5: Illustration of homeotropic anchoring (left) and planar wall an-
choring (right) of disc-like nematogens.

Azevedo et al. [10] have shown that the standing nematic phase of
Na-fluorohectorite clay platelets in saline solutions is strongly anchored
homeotropically to common glass walls, and that this anchoring close to
the walls persist even when a magnetic field of 2 T favoring re-orientation is
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applied to the phase. Wall anchoring is an important phenomenon in both
practical applications of liquid crystals and in the study of defects, whose
character can be used to distinguish different liquid crystalline phases from
each other. Liquid crystal displays utilize wall anchoring by placing rod-like
nematogens between two surface modified or grafted plates that favor direc-
tor alignments at right angles to each other, causing a continuous twist of
the phase in the volume between the two plates [7]. Polarizers with their
axes oriented along the imposed director orientation are placed outside the
grafted plates and when incident white light encounters one of the polariz-
ers, the component with a polarization compatible with the polarizer axis is
transmitted and allowed to enter the nematic phase. As this plane-polarized
light traverses the twisted nematic it will have its polarization axis rotated in
response to the rotating director field so that when it encounters the second
polarizer it will be polarized along this polarizer’s axis and therefore trans-
mitted [7]. An electrical field can be applied to this setup via electrodes
placed parallel with the polarizers and grafted plates. At sufficient field
strengths the nematogens will orient with the field and the twist imposed
by the grafted plates will be lost as a uniform director field develops. In
this state the nematic phase no longer changes the polarization of the light
transmitted by the first polarizer and it is hence blocked by the second.

Particle anisotropies and field induced alignment

In the previous section on wall alignment, the possibility of orienting a ne-
matic phase via the application of an external field was briefly introduced.
The reason for this orientational response to external fields is rooted in the
anisotropy of the nematogens. As discussed, shape anisotropy is a prereq-
uisite for liquid crystalline order due to competing effects between orien-
tational and translational entropy as functions of the nematogen density.
Likewise, anisotropy in the electrical permittivity or magnetic permeability
of a material is required in order for the material to orient in response to
applied electric or magnetic fields. These anisotropies are usually expressed
as follows, where ∆ε denotes the dielectric permittivity and ∆χ the diamag-
netic susceptibility anisotropy:

∆ε = ε‖ − ε⊥ (2.52)
∆χ = χ‖ − χ⊥ (2.53)

The ‖ subscript denotes the electric permittivity and magnetic susceptibility
for fields ~E ‖ ~n and ~B ‖ ~n, whereas the ⊥ subscript denotes the same
parameters for fields ~E ⊥ ~n and ~B ⊥ ~n, respectively. The director ~n will
be further discussed in section 2.3.3, dealing with the propagation of light
in anisotropic media. The current section provides a background for that
discussion, as well as for the discussion of section 2.3.2 on the Fréedericksz
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transition. A common background of electromagnetism can be found for
reference in Appendix A.

The orientational response of a dielectrically or diamagnetically anisotropic
particle in an electric or magnetic field can be found through minimizing the
electric or magnetic free energy. The free energy densities f ~E and f ~B, at-
tributable respectively to the presence of an electric or magnetic field, can
be written for linear media as [22, 26]:

f ~E = −1
2
~E · ~D (2.54)

f ~B = −1
2
~B · ~H (2.55)

Because ~B = µ̄ ~H, an expression can be found for the magnetic free energy
density as a function of ~H and of the orientation of the nematic director
~n with respects to ~H. The electric case will not be further treated in the
present discussion. The field ~H can be decomposed into two components,
one parallel and one perpendicular to the director, so that the magnetic field
~B can be expressed as:

~B = µ0
~H + µ0χ ~H

= µ0
~H + µ0χ‖ ~H‖ + µ0χ⊥ ~H⊥

= µ0
~H + µ0χ‖

(
~n · ~H

)
~n+ µ0χ⊥ ~H − µ0χ⊥

(
~n · ~H

)
~n

= µ0
~H + µ0χ⊥ ~H + µ0∆χ

(
~n · ~H

)
~n (2.56)

The expression for the magnetic free energy density can then be written as:

f ~H = −1
2

[
µ0H

2 + µ0χ⊥H
2 + µ0∆χ

(
~n · ~H

)2
]

(2.57)

It is worth noting that only the last term of this equation depends on the
relative orientation of the director with respects to the field. Minimization of
this term will therefore determine the most energetically favorable orienta-
tion of the director in response to the applied field. Because (~n · ~H)2 reaches
it’s maximum when ~n ‖ ~H, it will be favorable for nematogens of positive
susceptibility anisotropy ∆χ > 0 to orient with their director parallel with
the field ~H. The minimum of (~n · ~H)2 on the other hand occurs when ~n ⊥ ~H,
so that nematogens of negative susceptibility anisotropy ∆χ < 0 will orient
with their director perpendicular to the field ~H.

Free energy minimization for discotic nematics subjected to mag-
netic fields

As seen in the two previous sections concerning the aligning effects of walls
and external fields, the orientation of a nematic phase can be made to vary.
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When an initially aligned nematic phase with a homogeneous director field
is subjected to a sufficiently strong force favoring another director orienta-
tion, the director field becomes distorted and the free energy of the phase
changes as the system now is able to do work through the action of restor-
ing elastic forces. The change ∆F in the Helmholtz free energy F resulting
from director field distortions can be expressed as a volume integral of the
corresponding change ∆f in the free energy density f [57]:

∆F =
∫

∆fdV (2.58)

If a |∇~n| � 1, i.e. the director field ~n varies little over the extent of a where
a is a typical nematogenic distance, the change in the free energy density
can be expressed as a power series in ∇~n [57]. Oseen [56] and Frank [21], as
well as Zocher [83], found that three surviving terms in the series expansion
of ∆f correspond to three basic modes of distortion of the director field for
uniaxial nematics, each contributing an independent term to the Helmholtz
free energy F of the system. The three distortions modes are respectively
called splaying, twisting and bending, and are illustrated in Figure 2.6. The
second order approximation to the increase ∆f in the Helmholtz free energy
density of a nematic phase due to director field distortions can thus be
written in the form of the Frank-Oseen equation [56, 21, 36]:

∆f123 =
1
2

[
K11 ([∇ ·~n])2 +K22 (~n · [∇× ~n])2 +K33 (|~n× [∇× ~n] |)2

]
(2.59)

Here the series coefficients K11, K22 and K33 are bulk elastic constants called
Frank moduli, related respectively to splay, twist and bend deformations.
The Frank moduli are measured in units of force. For disc-like nematogens,
experimental as well as theoretical studies have found that generally K22 ≥
K11 > K33 [80, 67].

A fourth elasticity term writes out as [68];

f24 =
−K24

2
∇ (~n · (∇ ·~n) + ~n× (∇× ~n)) (2.60)

K24 is called the saddle-splay constant [68]. Because the contribution from
f24 to the volume integral of Equation 2.58 can be transformed into an
integral over the surfaces of the phase [68], the K24 elasticity constant is
termed a surface contribution.

The free energy density has one further surface term which arises due
to the interaction of the director field with boundaries. This term can be
expressed as [68]:

fs =
C

2

(
1− (~n ·~ns)2

)
(2.61)
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Figure 2.6: Illustration of splay, twist and bend distortions (left to right)
for rod-like nematogens. If the long cylindrical axis is shortened, the figure
illustrates the same distortion modes for discs. The red arrows indicate the
local director. Figure retrieved from [50] and slightly modified.

Here C > 0 is a constant and ~ns the preferred orientation of the director at
the boundary. From this expression it is seen that the local free energy close
to the boundary, in the absence of other forces influencing the director field,
is minimized when ~n ·~ns = 1, so that the angle between ~n and ~ns equals 0◦

and the two vectors are parallel.
One last contribution to the Helmholtz free energy density of a nematic

phase will be considered. This contribution arises when the phase is affected
by an auxhilary magnetic field ~H. According to the discussion of section
??, the contribution to the free energy density due to an applied magnetic
field can be written as:

f ~H = −1
2

[
µ0H

2 + µ0χ⊥H
2 + µ0∆χ

(
~n · ~H

)2
]

(2.62)

The Fréedericksz transition in fluorohectorite dispersions

The previous sections have introduced three different forms of director field
distortions, as well as a theoretical background for evaluating the free energy
of a deformed uniaxial nematic. The present section deals with a special
form of director field distortions known as a Fréedericksz transition. The
Fréedericksz transition in nematics occur when a reorienting field is applied
to an aligned phase. In the present discussion only magnetic fields will be
dealt with. Below a certain threshold value, this applied field is too weak to
affect the aligned phase and no director field distortions are seen. However,
above the threshold the field becomes strong enough to induce distortions as
it becomes favorable for the nematogens to align with the field. According
to the discussion of the previous section, two different types of alignment are
seen. For nematogens of positive ∆χ, the stable configuration for sufficient
field strengths is achieved when ~n ‖ ~H, whereas for nematogens of negative
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∆χ the stable configuration occurs when ~n ⊥ ~H. From Azevedo et al. [10]
it is known that Na-fluorohectorite platelets have a negative diamagnetic
susceptibility anisotropy ∆χ < 0. The current section will thus address the
Fréedericksz transition for disc-like nematogens of negative ∆χ.

Consider a magnetically aligned standing nematic of disc-like nemato-
gens of negative ∆χ where the average platelet face orientation is parallel
with the xz-plane of a right handed cartesian coordinate system due to long
term exposure of the phase to a magnetic field of sufficient field strength
pointing along x, so that a stable state has been reached. The conventional
nematic director in this case points in the y or −y directions. It is impor-
tant to note that this picture is a simplification. It’s validity will be fur-
ther discussed in the subsequent paragraphs and also in the results section.
Presently however, the aligned phase is rotated by 90◦ so that the average
platelet face orientation now is parallel with the yz-plane and the director
~n points along x or −x, parallel with the field ~H. Reorientation back to the
stable ~n ⊥ ~H configuration can now proceed via four independent pathways,
characterized by rotation either counterclockwise or clockwise around the z-
axis, or the y-axis. Of course, combinations of these might also occur so
that the stable state might consist of platelets that are tilted. All the stable
states are however, characterized by ~n ⊥ ~H. The situation is illustrated in
Figure 2.7, showing the stable vertical and a tilted stable orientation for a
field pointing along x.

Figure 2.7: Two stable fluorohectorite platelet orientations in a magnetic
field pointing along x. In both cases, the director or optical axis of the
platelets are perpendicular to the field.

Blake et al. [4] have investigated the Fréedericksz transition for rod-like
nematogens of positive ∆χ from the point of view of bifurcation theory.
In their study, parallel wall alignment between two opposing plates was
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used to produce an overall oriented phase to which a magnetic field was
applied perpendicularly or at a slight angle to the plates. In analogy to the
present discussion, for sufficient field strengths the transition to the stable
state could proceed via either counterclockwise or clockwise rotation of the
nematogens. The bifurcation in the study by Blake et al. [4] thus occurred
when the field strength became strong enough to produce realignment, as
the original symmetry of the problem was broken and the system could
proceed via two different pathways towards the realigned state.

It is apparent that there are some differences between a nematic fluoro-
hectorite dispersion and the system studied by Blake et al. in [4]. Firstly,
the diamagnetic susceptibility anisotropy ∆χ for the rod-like nematogens
of the Blake study was positive, leading to a stable state above the field
threshold characterized by ~n ‖ ~H, whereas in a Na-fluorohectorite disper-
sion the stable state above the threshold is reached when ~n ⊥ ~H because of
the platelets’ negative ∆χ. Furthermore it is seen that, in the case where
the field was applied parallel to the aligning plates, Blake et al.’s system
undergoes a so-called pitchfork bifurcation where the two possible pathways
of counterclockwise or clockwise rotations are equally likely. In the standing
nematic phase of Na-fluorohectorite platelets on the other hand, there are
four possible pathways, of which rotations around the axes y or z introduced
above, are not necessarily equally likely since, at least initially, the y rotation
corresponds with a splay distortion combined with a bend distortion, relative
to the initial director field, whereas the z rotation corresponds with a splay
and twist distortion. For nematics that display large enough anisotropies in
elasticity, it may be energetically favorable to combine different distortion
modes [57]. This is known to cause periodic structures associated with the
Fréedericksz transition.

The last and perhaps most fundamental difference between the Blake
study and the currently discussed fluorohectorite system, pertains to the
competing forces which produce the director field distortions in the two
cases. In the study by Blake et al. the competing forces of alignment
were the parallel wall anchoring imposed by the opposing plates and the
response of the rod-like nematogens to the magnetic field. In the case of Na-
fluorohectorite dispersions on the other hand, three different aligning forces
feature. These are respectively the homeotropic wall alignment produced
by wall interactions [10], as well as the preferred orientations imposed by
the initial and final fields, which are at 90◦ to each other with respects
to a coordinate system in which the sample capillary remains stationary.
The Na-fluorohectorite system is thus the more complex both with respects
to the possible reorientation pathways and with respects to their origin.
Furthermore, the fact that the Na-fluorohectorite dispersions are contained
in capillaries of circular morphologies, presents even the initial magnetically
aligned phase with distorted boundaries.

Figure 2.8 shows a splayed and bent director field which can be imag-
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Figure 2.8: A splay and bend distorted director field. For a magnetic field
pointing along x and into the page, all depicted orientations fullfill the ~n ⊥ ~H
requirement.

ined as a vertical cut through a Na-fluorohectorite capillary sample having
the illustrated director field configurations, if the effects of the walls are
neglected. All the orientations shown fullfill the magnetic stability require-
ment that each platelet’s optical axis should be oriented perpendicular to a
magnetic field pointing into the page. Assuming the field that now points
into the page previously was pointing from the left to the right side of Fig-
ure 2.8, parallel with the image plane and the y-axis, the midsection of the
illustrated director field shows a local director configuration which could
have arisen from a platelet rotation around z; correspondingly the top and
bottom sections show director configurations that could originate from ro-
tations around y. Since the Frank elasticity constants for the nematic phase
of aqueous fluorohectorite dispersions are not known, any true predictions
concerning the effects of subjecting a Na-fluorohectorite capillary sample to
magnetic forces cannot be made at present. As mentioned, it is however
known that in general the Frank moduli for disc-like nematogens obey the
relation that K22 ≥ K11 > K33 [80, 67]. If this is valid also for fluorohec-
torite platelets, then it is seen that the earlier discussed rotation around the
y-axis, corresponding to a distortion with respects to the presumed initial
director field involving the splay and bend constants K11 and K33, con-
tributes a smaller addition to the free energy than the rotation around z,
that involves K11 and K22. Since free energy minimization is a general prin-
ciple, used for determining the pathways a system follows, it is seen that the
reorientation towards the stable state is more likely to proceed via rotations
around the y-axis.

The thread started in the current section will be picked up in section 4.4,
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where optical birefringence observations and x-ray scattering data from a
Na-fluorohectorite dispersion subjected to magnetic fields are presented. It is
also worth mentioning that measurements of the field strengths required for
inducing a Fréedericksz transition in initially aligned nematics can be used
to determine the relationship between the Frank constants and the strength
of the wall anchoring [36, 57]. This does however require an experimental
setup which assures that only known distortion modes contribute; since
this is far from true, at least initially, in the case of the fluorohectorite
dispersions investigated in the current project, such quantitative values can
not be obtained in the present discussion.

2.3.3 Light propagation in a liquid crystalline colloid

As discussed in section 2.3.2, a nematic phase is per definition anisotropic
both with regards to the shape of the nematogens as well as with respect
to their orientational distribution. The behavior of electromagnetic waves
traversing such anisotropic phases differs from the behavior of waves propa-
gating in isotropic media. This feature is extensively used in optical investi-
gations of liquid crystals. The current section will thus address the theme of
light propagation in anisotropic media, starting with a very brief introduc-
tion to electromagnetic waves12. A general background for this section can
be found in Appendix A, which deals with the basics of classical, Maxwellian
electromagnetism.

Figure 2.9: The visible spectrum of electromagnetic waves.

Electromagnetic waves are characterized by their wavelength, their elec-
tric and magnetic field amplitudes and the plane in which the electrical field
amplitude oscillates at any given instance. Perfect linearly polarized light
has one specific plane in which the electrical field amplitude oscillates, where
the direction of polarization corresponds with the direction of oscillation of
the electric field. Circularly polarized light on the other hand can be thought
of as a superposition of two linearly polarized waves oscillating with equal
amplitudes at right angles to each other, but with a relative phase shift
of π/2 radians. If the electrical field amplitudes of the two linearly polar-
ized waves are unequal or the phase shift is different from π/2, the light

12The current section mainly deals with light as electromagnetic waves, whereas in sec-
tion 2.4 on x-ray scattering, electromagnetic radiation is considered also from the quantum
mechanical perspective.
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resulting from their combination is elliptically polarized. Humans are not
in general able to distinguish polarized from non-polarized light. This is
however a truth with modifications, as an optical effect in the human eye
known as Haidinger’s brushes causes the central field of vision to appear as
a diffuse cross of yellow and blue lobes when the incident light is linearly
polarized [5]13. The visible spectrum for human beings spans a small region
of wavelengths ranging from around 400 nm to 700 nmeter [7], see Figure
2.9.

Light in anisotropic media

Light propagation in an anisotropic medium differs from propagation in an
isotropic medium. Figure 2.10 illustrates the changes occurring when going
from a dielectrically isotropic to a dielectrically anisotropic medium. The
electric flux density ~D in the anisotropic case now oscillates at an angle with
the electric field ~E [36], and thus the direction of propagation ~k ∝ ~D × ~H
of the wave phase no longer coincides with the direction of energy transfer,
defined through the Poynting vector ~S = ~E × ~H.

Figure 2.10: Light propagation in a dielectrically isotropic medium (left)
and in a dielectrically anisotropic medium (right).

As is the case for isotropic media, the relation between the velocity c
of light in vacuum and the phase velocity υ of light in a linear, anisotropic
medium is given by the expression N = c/υ, where N is the medium’s effec-
tive refractive index. In uniaxial anisotropic media the electric permittivity
tensor has two independent components ε‖ and ε⊥ [36, 62], denoting respec-
tively the dielectric permittivity for fields oscillating along the director ~n or

13Interestingly, this effect is quite easily observed if a polarizer plate is held up towards
white and bright skies. The direction of the yellow lobes observed is perpendicular with
the polarization of the electrical field. The brushes are also relatively easy too see in a
white page displayed on an LCD screen that emits plane polarized light.
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perpendicular to it. In this case the Fresnel equation, known from optical
theory, takes the following simplified form [36]:(

N2 − ε⊥
) (
ε‖N

2
z + ε⊥

(
N2
x +N2

y

)
− ε‖ε⊥

)
= 0 (2.63)

Here z is chosen to lie along the uniaxial medium’s director ~n. Nz denotes
the absolute value of the z-component of ~N , and Nx and Ny the same
values along the x- and y-directions of a cartesian coordinate system. This
equation has two solutions, obtained by setting either the first or second
factor to zero;

1 =
N2

ε⊥
(2.64)

1 =
N2
z

ε⊥
+
N2
x +N2

y

ε‖
(2.65)

These two solutions define respectively a sphere and an oblate or prolate
ellipsoid that intersect at Nx = Ny = 0 and Nz = ±√ε⊥. The uniaxial
medium’s optical axis is defined as the vector between these two points
[36, 62], which for conventional nematics on average corresponds with the
director ~n.

From this discussion, it becomes apparent that two special directions of
propagation can be distinguished in a uniaxial material. The ordinary wave,
propagating with a wave vector ~k oriented along the uniaxial director ~n will
experience an index of refraction n⊥ =

√
ε⊥. The so-called extraordinary

wave on the other hand propagates with ~k oriented at an angle θ relative to
the director ~n. Noting that N2

z = N2 cos2 θ and that N2
x + N2

y = N2 sin2 θ
14, the ellipsoidal solution of Equation 2.63 can be written as:

1 =
N2 cos2 θ

ε⊥
+
N2 sin2 θ

ε‖
(2.66)

Rearranging this expression yields the following solution for the refractive
index as a function of the angle θ:

N (θ) =
n‖n⊥√

n2
‖ cos2 θ + n2

⊥ sin2 θ
(2.67)

14A general cartesian coordinate (x, y, z) can be written in spherical coordinates as
(r cosφ sin θ, r sinφ sin θ, r cos θ). Based on this, the refractive index component along z is
given as Nz = N cos θ. Furthermore, the expression N2

x +N2
y can be written as:

N2
x +N2

y = N2 cos2 φ sin2 θ +N2 sin2 φ sin2 θ

= N2 sin2 θ
(
cos2 φ+ sin2 φ

)
= N2 sin2 θ
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Propagation along the director so that θ = 0◦ retrieves the previous result
that N (0◦) = n⊥. Propagation perpendicular to the director so that θ = 90◦

yields N (90◦) = n‖. Disc-like nematogens, such as clay platelets, usually
form an optically negative nematic phase characterized by an extraordinary
index of refraction n‖ that is smaller than the ordinary index of refraction
n⊥ [36], so that ∆n = n‖ − n⊥ < 0. It the present discussion, effects that
might arise due to the discrete nature of the anisotropic phase (i.e. the clay
platelets) are not considered.

Optical observations between crossed polarizers

The observation of a liquid crystalline sample between crossed polarizers is
an important and relatively straightforward investigation technique that is
widely employed. The following discussion illustrates what happens when
incoming white, unpolarized light passes through a crossed polarizer setup
with a nematic phase inserted between the polarizer plates. Consider a
cartesian coordinate system in which a polarizer is placed at y = a parallel
with the xz-plane and with its axis oriented along the z-direction. When
incident light propagating in the y-direction strikes this polarizer, per defini-
tion only the component polarized along z will be transmitted. This linearly
polarized light then travels through a nematic phase of uniform director ori-
entation ~n placed between y = b and y = c. This light can be decomposed
into two components, one polarized parallel with and one perpendicular to
~n, traveling respectively with phase velocities v‖ = c/n‖ and v⊥ = c/n⊥. Be-
cause these velocities are different, the two components will get out of phase
and the combined light, whose polarization is determined by the phase dif-
ference between the two components, thus becomes in general elliptically
polarized. A second polarizer, commonly known as the analyzer, is placed
parallel with the xz-plane on the opposite side of the nematic phase at y = d.
This analyzer has its axis parallel with the x-direction. As the elliptically
polarized light emerging from the nematic phase strikes the analyzer, the
component polarized along x will be transmitted. If the nematic phase had
not been present, the light transmitted by the first polarizer would have
been extinguished by the analyzer.

The intensity I of the light emerging from a setup of crossed polarizers
can be written as [62]:

I =
I0

2
sin2 [2α] sin2 [π∆n (λ) l/λ] (2.68)

Here I0 is the initial intensity, α the angle the director ~n makes with the
polarizer axis, ∆n = n‖ − n⊥ the effective birefringence, λ the wavelength
of the light and l the thickness of the sample along the ordinary beam path.
The product ∆nl is commonly referred to as the retardation. This equation
is valid when the wavevector ~k of the incident light is perpendicular to the
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director ~n. A slightly more complicated expression based on the deduced
index of refraction of Equation 2.67 is valid in the general case, where θ
denotes the angle between the the wavevector ~k of the incident light and the
director ~n:

I =
I0

2
sin2 [2α] sin2

πl
λ

 n‖(λ)n⊥(λ)√
n‖(λ)2 cos2 θ + n⊥(λ)2 sin2 θ

− n⊥(λ)

(2.69)

Dividing Equation 2.68 by I0 yields an expression for the relative transmis-
sion:

T =
1
2

sin2 [2α] sin2 [π∆n (λ) l/λ] (2.70)

For a given retardation ∆nl, maximum transmission is achieved when
sin2 [2α] = 1 so that α = π/4 + Nπ/2 where N = 0,±1,±2..., whereas
extinction (zero transmission) occurs when sin2 [2α] = 0, i.e. when α =
Nπ/2. A liquid crystal thus appears dark between crossed polarizers when
the director is oriented parallel with either the polarizer or analyzer axis,
or perpendicular to both – the latter case being valid from considerations
of Equation 2.69. In the opposite case, a liquid crystal appears brightest
when the director lies in the plane of the crossed polarizers at an angle of
45◦ with the polarizer axes. For a given α, the transmission is at maximum
when sin2 [π∆n (λ) l/λ] = 1 so that the retardation ∆nl = (1/2 +N)λ.
Extinction occurs when this expression equates to zero, i.e. when ∆nl = Nλ.
It is apparent from Equation 2.70 that the relative transmission for different
wavelengths (i.e. different colors) is dependent on the retardation. A plot of
the relative transmission as a function of light wavelength for four different
retardations can be found in Figure 2.11.

For small retardations, no visible wavelengths are extinct or close to
extinct, and the transmitted light from the uniaxial material between crossed
polarizers appears white or neutrally gray [62]. As the retardation increases,
the first extinct wavelength will be in the short wavelength range of the
visible spectrum, corresponding to violet and blue colors. The transmitted
intensity will therefore be a combination of red, yellow and green. For larger
retardations, the low wavelengths will again be strongly transmitted while
the longer wavelengths go extinct. Figure 2.12 shows a so-called Michel-
Lévy chart which displays the expected color of the transmitted light as a
function of the retardation.
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Figure 2.11: Plot of the relative transmitted intensity I/I0 of Equation 2.70
as a function of wavelength for retardations ∆nl of respectively 200 nm,
400 nm, 600 nm and 800 nm, for α = 45◦.

Figure 2.12: Michel-Lévy chart, retrieved from a Carl Zeiss information
brochure at [51]. The topmost axis lists values of the birefringence ∆n and
the left axis the sample thickness l in µm. The bottom axis gives values of
the retardation ∆nl corresponding with the displayed colors, in nm. The
three red dots show the positions (left to right) or respectively 1st, 2nd and
3rd order magneta.
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2.4 X-ray scattering

Scattering techniques are today an integral part of the natural sciences which
deal with the structure of matter on the length scales of atoms and molecules.
There are three types of radiation used in modern scattering facilities. These
comprise scattering of neutrons, of electrons or of photons, also known as
electromagnetic waves. In essence a scattering experiment is designed to
probe the structure of matter by recording the radiation transmitted or
reflected from the material. The spatial intensity profile of the scattered ra-
diation will be dependent on the material structure, or more specifically, on
the interaction potential distribution of the material as seen by the incident
radiation. For a given material, the potential seen will be dependent upon
the type of radiation. Neutrons interact with matter mainly via nuclear
forces and hence sees the scattering potential of the material’s neutrons and
protons, comprising the very small atomic cores. Electrons interact with
matter via the electromagnetic force and thus experience the potential set
up by the material’s charges, i.e. it’s electrons and protons. When elec-
tromagnetic radiation hits a material it can undergo a series of different
interactions that are critically dependent upon the radiation energy. Elec-
tromagnetic radiation falling within the x-ray spectrum is used for structural
analyses. The next sections will thus in more detail address the specifics of
x-ray scattering, first from a fundamental viewpoint and then within the
context of modern materials science.

Some central concepts of scattering theory are however common for all
types of radiation. Two of these basic concepts are the scattering cross
section, usually denoted as σ, and the related differential scattering cross
section dσ/dΩ which defines the amount of radiation scattered into the solid
angle element dΩ per unit time. The defining expression for the differential
scattering cross section can be written as [2]:

dσ

dΩ
=

Is,∆Ω

I0N∆Ω
(2.71)

Here Is,∆Ω is the number of radiation quanta scattered into a solid angle ∆Ω
per second, I0 the number of radiation quanta incident on the illuminated
sample area per second, and N the number of scatterers in the illuminated
sample volume. The differential scattering cross section is thus a measure
of how strongly a given scatterer in a sample scatters incident radiation into
the solid angle element dΩ.

2.4.1 The interaction of x-rays with matter

As already mentioned, x-rays are commonly used for structural studies. X-
rays are a type of electromagnetic radiation characterized by having a wave-
length roughly on the order of 1 Å [2]. It is common practice to consider x-
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rays, as well as all other parts of the electromagnetic spectrum, as both clas-
sical electromagnetic waves and quantum mechanical photons. Each quan-
tum mechanical photon is described as having an energy E = hν = ~ω = ~ck
where h is Planck’s constant, ~ it’s reduced version, ν and ω the photon’s
spatial and radial frequencies, respectively, and k the length of the wavevec-
tor ~k. The photon momentum is given as ~p = ~~k. The so-called pho-
ton wavelength λ, which corresponds with the classical wavelength within
Maxwellian electromagnetism, is related to the wavenumber k via the rela-
tion λ = 2π/k. In the classical picture, the equation for the electric field of
a plane electromagnetic wave, E (~r, t) = E0 exp

[
i~k ·~r − iωt

]
~o, incorporates

the same quantities which are used to characterize the quantum mechanical
photon.

X-ray scattering on free electrons and the Thomson cross section

The primary interaction of x-rays with matter takes place on the mate-
rial’s electrons [2]. Classicly this interaction is described via the ability of
the electrical radiation field to induce an oscillatory motion of the mate-
rial’s electrons. Because an oscillating electron is an electrical charge which
continuously accelerates and de-accelerates, such an electron will emit elec-
tromagnetic radiation.

Quantum mechanically, scattering as well as photon absorption are de-
scribed via perturbation theory. In Appendix B the differential Thomson
scattering cross section is derived for the interaction of a photon of wavevec-
tor ~k and polarization ~o with a free electron initially at rest. It is required
that the photon energies involved are much smaller than the rest mass en-
ergy of the electron, ~kc � mec

2 where ~kc is the photon energy, so that
the system can be treated non-relativisticly. The contribution to the Hamil-
tonian of the combined system quadratic in the vector potential ~A serves
to annihilate the initial photon, while the scattered photon of wavevector ~k′

and polarization ~o′ is created and the electron receives momentum. How-
ever, it is seen that the non-relativistic treatment leads to an approximation
which dictates the scattering to be elastic. It is possible to choose the two
independent polarizations of the photons so that these are oriented either
parallel with or perpendicular to the scattering plane containing ~k and ~k′,
but with the parallel polarization of the final photon making an angle θ
with the parallel polarization of the initial photon. The differential scat-
tering cross section for photon-electron interactions leading to a scattered
photon detectable within the solid angle element dΩ, is found to be de-
pendent upon the polarization of the incoming photon. For an incoming
photon that with certainty was polarized in the scattering plane, the dif-
ferential scattering cross section is dσ/dΩ‖, whereas for an initial photon
polarized perpendicular to the plane, the differential scattering cross section
is dσ/dΩ⊥. From the discussion of Appendix B, these two differential cross
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sections are expressed as:

dσ

dΩ‖
= r2

0 cos2 θ (2.72)

dσ

dΩ⊥
= r2

0 (2.73)

Here r0 = e2/4πε0mec
2 = 2.818 fm is the Thomson scattering length, that

represents the distance for which the Coulomb energy between two elec-
trons equals the electron rest mass energy. Now, the unpolarized differential
Thomson cross section is the weighted sum of the polarized contributions:

dσ

dΩ
=

1
2
r2

0

(
1 + cos2 θ

)
(2.74)

The total scattering cross section is found through multiplying Equation
2.74 by the solid angle element dΩ and integrating:

σ =
8π
3
r2

0 = 665 mb (2.75)

This scattering cross section, as well as the differential cross sections, are
energy independent. A more sophisticated treatment, taking into account
relativistic effects, results in the so-called differential Klein-Nishina cross
section:

dσ

dΩ
=

1
2
r2

0

(
f (~kc, θ)− f (~kc, θ)2 sin2 θ + f (~kc, θ)3

)
(2.76)

Here the quantity f (~kc, θ) is given as:

f(~kc, θ) =
1

1 + ((~kc/mec2) (1− cos θ))
(2.77)

In the non-relativistic limit where ~kc � mec
2, f (~kc, θ) ≈ 1, and the

result of Equation 2.74 is retrieved because 1 − sin2 θ + 1 = 1 + cos2 θ.
Because the rest mass energy of an electron is mec

2 = 511 keV, whereas
the energy of a typical x-ray photon of wavelength 1 Å is ~kc = 12.4 keV,
the non-relativistic expressions of equations 2.74 and 2.75 are valid for x-ray
scattering, which thus can be considered elastic.

Momentum transfer and the scattering vector

A much used quantity within the field of scattering theory and experiment,
is the so-called scattering vector ~q, and it’s length q. It is derived by consid-
ering the relation for momentum transfer in a scattering event, which writes
out as:

~~k′ + ~~q = ~~k (2.78)
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Figure 2.13: Momentum transfer in a scattering event.

The situation is illustrated in Figure 2.13. Now, since the scattering is
elastic, k′ = k, and the length of the scattering vector ~q is by geometrical
considerations given by:

sin θ =
q/2
k

(2.79)

Since k = 2π/λ, this can be re-written in terms of the photon wavelength
λ, yielding the following commonly encountered expression for the length of
the scattering vector:

q =
4π sin θ
λ

(2.80)

Now there seems to be a discrepancy between this momentum transfer and
the fact that the scattering is elastic. This discrepancy arises because the
electron was initially at rest. Any change in momentum direction for an
electron initially at rest implies a gain in kinetic energy, incompatible with
elastic photon scattering. If the electron initially was not at rest, this would
not be a problem. However, recall that the elastic scattering limit arose out
of an approximation, that was based on the electron rest mass mec

2 being
much larger than the initial photon energy ~kc. Within this approximation,
the momentum transferred to the electron would result in a kinetic energy
increase negligible with respects to other energies involved.

Photoelectric absorption

In addition to photon scattering, two other processes are generally distin-
guished as interaction mechanisms between an electron and the electromag-
netic radiation field [40]. These two interactions are called pair production
and photoelectric absorption. Pair production involves the annihilation of
the incident photon in the vicinity of a heavy body such as an atom, along
with the creation of an electron-positron pair [40]. But because the rest
mass energy of the electron-positron pair is 2 · 511 keV = 1.022 MeV, the
incident photon needs to be at least this energetic for pair production to
occur, in order not to violate energy conservation. A 1.022 MeV photon
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has a wavelength of 1.022 MeV/hc = 0.01213 Å, which is much smaller
than the wavelengths of around 1 Å encountered in x-ray experiments. Pair
production is therefore irrelevant for the present discussion. Photoelectric
absorption on the other hand, is the dominant interaction of relatively low
energy photons with matter. In this interaction process, the initial photon
is annihilated and it’s energy transferred to an atomic electron which thus
is excited into a continuum state [40]. The resulting hole in the electron’s
original orbital can be filled either when an electron from a higher orbital
falls down into the hole or when the atom de-excites by emitting a so-called
Auger electron. In the former case, the energy difference between the higher
orbital and the hole state is emitted in the form of a photon.

Because several electron binding energies are in the x-ray range, photo-
electric absorption is an important factor in the field of x-ray science [2]. This
process cannot be explained classically, so a quantum mechanical treatment
is required in order to arrive at the photoelectric absorption cross section.
In analogy to the scattering treatment of Appendix B, the photoelectric ab-
sorption cross section is calculated from time-dependent perturbation the-
ory. The contribution to the Hamiltonian of the combined system linear
in the vector potential ~A serves to annihilate the initial photon, while the
electron is transferred from it’s orbital state into a final continuum state.
This final electron state can be approximated as a free particle state when
the electron’s kinetic energy is high enough, whereas when the kinetic elec-
tron energy is lower, the potential energy term arising from the Coulomb
interaction between the electron and the emitting atom must also be taken
into account [32].

The differential cross section for photoelectric absorption of a photon of
energy ~ω on the 1s electron orbital, also known as the K-shell, according
to [32] can be expressed as:

dσ

dΩ
=
√

32α4Z5r2
0

(
mec

2

~ω

)7/2

sin2 θ cos2 φ
(

1 +
v

c
cos θ

)
(2.81)

Here α = e2/4πε0~c ≈ 1/137 is the fine structure constant, θ the angle
between the initial photon wavevector ~k and the momentum ~p of the freed
electron, and φ the angle between ~p and the polarization vector of the incom-
ing photon. The expression of Equation 2.81 was deduced non-relativisticly,
and is valid when the binding energy of the orbital electron is much smaller
than the other energies involved. The total cross section is found by inte-
grating over the solid angle element dΩ:

σ =
16
√

2π
3

α4Z5r2
0

(
mec

2

~ω

)7/2

(2.82)

It is seen that according to this treatment, the cross section for photoelectric
absorption is proportional to Z5 (~ω)−7/2, where Z is the number of protons
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in the core of the ejecting atom. However, Lilley [40] reports this proportion-
ality factor for the absorption of photons of a few hundred keV, an energy
range which is substantially higher than the energy of around 10 keV of-
ten encountered in x-ray scattering experiments. In the x-ray range, the
proportionality according to Als-Nielsen and McMorrow [2] is more closely
described by a factor Z4 (~ω)−3. The difference is caused by the inclusion in
the derivation of the latter proportionality factor of the Coulomb potential
between the electron and the atom it escapes from.

Due to effects such as shielding of the core potential by the inner or-
bitals, tabulated values of the photoelectric absorption cross section should
be used in experimental studies [2]. In scattering experiments, photoelec-
tric absorption is a limiting factor which serves to removes flux from the
beam. In the field of x-ray imaging on the other hand, it is the contrast in
absorption cross section for different Z, i.e. different elements, as well as the
tunable penetration depth, which renders this technique immensely useful.

2.4.2 Kinematical scattering theory

As a beam of x-rays hits a sample, flux is removed from the incident direc-
tion by two processes. These are the scattering and absorption interactions
described in the previous section. Within kinematical scattering theory, the
possibility that a photon created in a scattering event might itself undergo
further scattering interactions is neglected. For this approximation to be
valid the scattering must in some sense be weak.

Within the Born approximation, valid in this limit, it is found that
the scattering amplitude F (~q) for x-rays incident on a material sample is
proportional to the Fourier transform of the material’s real space electron
density distribution ρ (~r) [61, 2]:

F (~q) =
∫
ρ (~r) exp [i~q ·~r] d3r = F [ρ (~r)] (2.83)

The differential scattering cross section dσ/dΩ is proportional to the abso-
lute square of the scattering amplitude [32]:

dσ

dΩ
∝ |F (~q)|2 (2.84)

Now, the observable intensity I (θ, φ) of the scattered radiation is propor-
tional to the differential cross section dσ/dΩ. It is therefore the absolute
square of the Fourier transform of ρ (~r) which is directly measured in a
scattering experiment. Transforming |F (~q)|2 back into real space yields the
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so-called correlation function P (~r) [61]:

P (~r) = F−1
[
|F (~q)|2

]
= F−1 [F ∗ (~q) ·F (~q)]
= F−1 [F ∗ (~q)] (∗)F−1 [F (~q)]
= ρ (−~r) (∗) ρ (~r) (2.85)

The second line was arrived at by writing the absolute square |F (~q)|2 of the
scattering amplitude as the product of F (~q) with it’s complex conjugate
F ∗ (~q), factored in from the left. The transition to the second last line
makes use of the fact that the Fourier transform of the convolution of two
functions g and h equals the product of their respective stand-alone Fourier
transforms:

F [g (∗)h] = F [g]F [h] (2.86)

This identity is of fundamental importance within the field of scattering
theory. It allows the total distribution ρ (~r) of scattering ability of a material
to be written as a convolution of simpler functions, whose Fourier transforms
are much easier to find than the Fourier transform of ρ (~r) taken as a whole.

The splitting of ρ (~r) into a convolution of simpler functions

The current section considers how the scattering amplitude F (~q) can be
written as a product of a set of Fourier transformed functions whose con-
volution in real space equals the total distribution ρ (~r) of electrons of the
material considered. Now, as discussed, the most basic scattering elements
of a material are the electrons, whose total distribution within the material
is written as ρ (~r). The time dependence of this distribution is neglected in
the current discussion15. Since a material does consist of spatial units larger
than electrons, such as atoms and molecules, ρ (~r) can be split into the con-
volution of at least two functions, those being the distribution of electrons
within an atom, and the distribution of atoms within the material. For
spatially periodic structures, the latter can be further broken down into a
convolution of functions that reflect respectively the arrangements of atoms
within the so-called unit cell, and the arrangement of unit cells throughout
the material. The concept of the unit cell is explained in a later section.
Presently, the Fourier transform of the real space distribution of electrons
within an atom will be considered. This function is known as the atomic
form factor.

15The main purpose of the current section is to illustrate how the scattered intensity from
a structured material can be successively built up by considering the spatially repeating
features of ρ (~r). The time-dependent features of the electron distribution, leading to
for instance the inclusion of the Debye-Waller factor in the expression for the scattered
intensity, are not treated because the results and discussions section will never attempt to
extract information from the exact values of the measured intensities; only their relative
variations for different q will be treated.
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The atomic form factor

Quantum mechanically, an atom is an object that consists of a very small
core of Z protons and N neutrons, surrounded by Z orbiting electrons oc-
cupying bound states that can be characterized by wavefunctions ψn (~r).
According to the Copenhagen interpretation of quantum mechanics, which
is widely accepted, the absolute square |ψn (~r)|2 of the wavefunction yields
the spatial probability distribution for the position of the electron [32]. For
a many-electron system, the electron density distribution is a function of
the contribution from each occupied orbital. If for a given atom the total
electron density from all the occupied orbitals is written as a function Ψ (~r),
then the atomic form factor for this atom can be expressed as:

f =
∫
|Ψ (~r)|2 exp [i~q ·~r] d3r (2.87)

Values of the atomic form factor for the different elements are tabulated in
the International Tables of Crystallography.

The unit cell structure factor and the interference function

Structurally periodic materials are characterized by possessing translational
symmetries. For a three-dimensional lattice, the lattice positions in real
space are denoted via the vector ~Ruvw as a sum over the lattice vectors ~a, ~b
and ~c multiplied by a set of scalars u, v and w:

~Ruvw = u~a+ v~b+ w~c (2.88)

These scalars are integers, so that the possible values of ~Ruvw are a sum
over integer multiples of the lattice vectors. There are seven possible sets of
lattice vectors which are compatible with the space filling requirement of a
three dimensional lattice. These are listed in Table 2.4.

Any three dimensional crystalline material belongs to one of the seven
crystal systems. It’s structure is arrived at by adding a so-called basis to
each lattice site ~Ruvw. The basis consists of j atoms, whose positions with
respects to the lattice point ~Ruvw are described by the vectors

∑
j ~rj . The

positions of all the atoms in a three-dimensional crystalline material are thus
given by: ∑

uvw

~Ruvw +
∑
j

~rj

 =
∑
uvw

∑
j

(
~Ruvw + ~rj

)
(2.89)

Now, the electron density distribution of a material can be written as a
convolution between the density of electrons in an atom, the positions of
these atoms in the basis, and the positions of the lattice sites:

ρ (~r) =
∑
j

(
|Ψ (~r)|2 (∗) δ (~r − ~rj)

)
(∗)
∑
uvw

(
δ
(
~r − ~Ruvw

))
(2.90)

50



Table 2.4: The seven crystal systems compatible with three-dimensional
translations in real space.

crystal system length relations angular relations
triclinic a 6= b 6= c α 6= β 6= γ
monoclinic a 6= b 6= c α = β 6= γ
orthorhombic a 6= b 6= c α = β = γ = 90◦

tetragonal a = b 6= c α = β = γ = 90◦

trigonal a = b 6= c α = β = 90◦, γ = 120◦

a = b = c 90◦ 6= α = β = γ 6= 120◦

hexagonal a = b 6= c α = β = 90◦, γ = 120◦

cubic a = b = c α = β = γ = 90◦

The Fourier transform of this yields the scattering amplitude:

F (~q) =

∑
j

fjF [δ (~r − ~rj)]

 · (∑
uvw

F
[
δ
(
~r − ~Ruvw

)])
(2.91)

The first factor of this expression is known as the unit cell structure factor
Fhkl (~q), or simply the structure factor. It reflects the distribution of atoms
in the basis which each lattice site is decorated with. The second factor
is the so-called interference function S (~q), which introduces the structural
periodicity. The hkl index of the unit cell structure factor will be explained
in the following. First the explicit expressions for the transforms of Equation
2.91 can be written out. The structure factor can be expressed as follows:

Fhkl (~q) =
∑
j

fjF [δ (~r − ~rj)]

=
∑
j

fj

∫
δ (~r − ~rj) exp [i~q ·~r] d3r

=
∑
j

fj exp [i~q ·~rj ] (2.92)

The interference function is slightly more complicated. By performing the
Fourier transform incorporated in the last factor of Equation 2.91, it is
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initially given by:

S (~q) =
∑
uvw

F
[
δ
(
~r − ~Ruvw

)]
=

∑
uvw

∫
δ
(
~r − ~Ruvw

)
exp [i~q ·~r] d3r

=
∑
uvw

exp
[
i~q · ~Ruvw

]
(2.93)

Now for uvw large, this sum is found to be finite only when ~q · ~Ruvw equals
integer multiples of 2π [61]. This is the Laue condition for diffraction. All ~q
fulfilling this requirement are given by the so-called reciprocal lattice vector
~Ghkl which, just as ~Ruvw represents all real space lattice points, represents
all lattice points in reciprocal space. The expression for this vector writes
out as:

Ghkl = h~a∗ + k~b∗ + l~c∗ (2.94)

Here ~a∗, ~b∗ and ~c∗ are the reciprocal space equivalents of the real space
lattice vectors. The relationship between these two sets of vectors are given
as [61]:

~a∗ = 2π
(
~b× ~c

)
/
(
~a ·
(
~b× ~c

))
(2.95)

~b∗ = 2π (~c× ~a) /
(
~a ·
(
~b× ~c

))
(2.96)

~c∗ = 2π
(
~a×~b

)
/
(
~a ·
(
~b× ~c

))
(2.97)

Now the product of ~Ghkl with ~Ruvw reads:

~Ghkl · ~Ruvw = hu (~a ·~a∗) + kv
(
~b ·~b∗

)
+ lw (~c ·~c∗)

= 2π (hu+ kv + lw) (2.98)

Now back to the interference function of Equation 2.93. In the case of an
extended, three-dimensional crystalline structure so that the uvw integers
go towards infinity (in reality, they are simply very large), the interference
function can be written as [61]:

S (~q) =
(2π)3

~a ·
(
~b× ~c

)∑
hkl

(
δ
(
~q − ~Ghkl

))
(2.99)

The transition to the last line is based on the following general rule for
Fourier transformation of a sum of delta functions, in the limit that N →∞
[61]:

F

[
N→∞∑
u=1

δ (r − ua)

]
=

2π
a

∑
h

δ (q − 2πh/a) (2.100)
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When N can not be approximated as going towards infinity, this expression
writes out as [61]:

F

[
N∑
u=1

δ (r − ua)

]
=

sin (qaN/2)
sin (qaN)

exp [iqa (N − 1) /2] (2.101)

Because the observable intensity is proportional to the absolute square of
this expression, the phase factor can be neglected. It is common to allow
for the scattering vector to deviate slightly from the Laue condition, so that
in the one-dimensional case q = (h+ s) 2π/a, where s� 1. From Equation
2.101 the expression for the interference function in one dimension then
becomes:

S (q) =
sin (Nπ (h+ s))
sin (π (h+ s))

(2.102)

Now, for a three-dimensional lattice the scattering amplitude can be
expressed as the product of the results of equations 2.92 and 2.99, yielding
the following:

F (~q) = S (~q)Fhkl (~q)

=
(2π)3

~a ·
(
~b× ~c

)∑
hkl

∑
j

fjδ
(
~q − ~Ghkl

)
exp [i~q ·~rj ]

=
(2π)3

~a ·
(
~b× ~c

)∑
hkl

∑
j

fj exp
[
i ~Ghkl ·~rj

]
(2.103)

It is common to write the atomic positions rj as a sum over fractional lattice
vectors xj~a, yj~b and zj~c. The previous expression then simplifies to:

F (~q) =
(2π)3

~a ·
(
~b× ~c

)∑
hkl

∑
j

fj exp [2πi (hxj + kyj + lzj)] (2.104)

From this expression it is seen that the unit cell structure factor can be
written in a simpler form than that presented in Equation 2.92, so that it’s
expression now reads:

Fhkl (~q) =
∑
j

fj exp [2πi (hxj + kyj + lzj)] (2.105)

For a one-dimensional lattice the scattering amplitude is the product of this
expression with Equation 2.102.

Scattering from a stack of planes

Now, in a real material made up of many grains or particles displaying
one-dimensional stacked structures, the number of lattice points N in the
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stacking direction is normally not constant but varies say, between an Nmin

and an Nmax. The distribution of different N ’s over this range can be
written as a function g (N). The effect of this non-sharp distribution is that
the interference function from a real, one-dimensionally stacked material is
a weighted sum over the contributions attributable to each given N [19]:

S (~q, g (N)) =
Nmax∑

N=Nmin

g (N)
sin (Nπ (h+ s))
sin (π (h+ s))

(2.106)

The FWHM-value of the main scattering peak from a one-dimensional struc-
ture as a function of the scattering vector, is approximately proportional to
1/Nav, where Nav is the average number of lattice positions [2, 19]. The
real space stacking distance d, corresponding with the length of the vec-
tor ~Ruvw between neighboring lattice points, might also vary slightly for
a one-dimensional stacked structure, such as for instance a clay platelet.
According to da Silva et al. [9], both the average number of stacks Nav

and the so-called strain ∆d/d, can be arrived at by plotting the widths
ΩL ≈ 2π/Navd+ ∆dq/d of a range of (00l) Bragg peaks as functions of the
scattering vector at peak maxima and interpolating. This procedure does
however require prior knowledge of to the so-called instrumental width ΩG,
whose contribution to the observed peak widths is not attributable to the
sample itself but to the experimental setup.

The scattered intensity at small angles

The previous sections have treated the scattering from one- and three-
dimensionally repeated structures. The former is a representation of a clay
platelet, for which the number of unit layers in a given particle represents
the number of lattice sites present in the stacking direction. However, it is
apparent that colloidal clay dispersions have structural variations that go
beyond the unit layer stacks, as the clay particles themselves are embedded
in water. This leads to a new kind of scattering contrast, now occurring
between the clay particles and their presumed continuous aqueous environ-
ment. Because observed first order reciprocal scattering vector lengths are
inversely proportional to corresponding repetition distances d in real space,
it becomes apparent that the scattering resulting from contrasts between col-
loidal particles and their environment will be present at small q and hence
observable only for low values of the scattering angle.

The form factor for flat discs

Within the field of small angle scattering from colloidal clay dispersion it is
common to treat clay platelets as discs [39, 18]; this is an approximation since
real clay particles are irregularly shaped. The form factor for a flattened
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cylinder of radius R and thickness t/2 is given as [27];

Y (q, α) = 2C
sin (q (t/2) cosα)
q (t/2) cosα

J1 (qR sinα)
qR sinα

(2.107)

Here C = ρV is a constant, equal to the total number of electrons of the flat
cylinder, where V is the particle volume and ρ the average electron density;
α is the angle between the cylinder normal ~n and the scattering vector ~q,
and J1 the first order Bessel function of first kind, which can be expressed
for an argument x as [6]:

J1 (x) =
x

2Γ (2)

(
1− x2

8
+

x4

192
− ...

)
(2.108)

Figure 2.14: Scattering geometries where x-rays of wavevector ~k are incident
on clay platelets oriented with their optical axes ~n either perpendicular to
or parallel with ~k, as shown respectively in the top and bottom images.
Because of the small scattering angle 2θ, the topmost image corresponds
with a scattering geometry where ~q is approximately parallel with ~n, whereas
the bottom image has ~q approximately perpendicular to ~n.

For fluorohectorite platelets the cylinder normal ~n corresponds with the
optical axis. The scattered intensity from a colloidal dispersion of flattened
cylinders will be proportional to the absolute square of the cylinder form
factor. By considering Equation 2.107, it is seen that the scattered intensity
attributable to the contribution from the cylinder form factor will show
a q−2-dependence modulated by the sinusoidal and Bessel functions in q.
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Figure 2.14 shows two illustrations of how clay platelets may be oriented
with respects to the incoming x-ray beam in typical experiments on nematic
Na-fluorohectorite dispersions. Now, when the scattering vector ~q ⊥ ~n, the
angle α = 90◦ and the first factor of Equation 2.107 is a sinc-function whose
argument goes to zero; it is therefore equal to one, and the form factor is
independent on the cylinder thickness t and depends only on the radius R;

Y~q⊥~n (q) = 2C
J1 (qR)
qR

(2.109)

Because the scattered intensity is proportional to the absolute square of the
cylinder form factor, it follows that for a scattering geometry where ~q ⊥ ~n
the contribution to the intensity attributable to the cylinder form factor
is proportional to q−2 modulated by the Bessel function J1 (qR). In the
opposite case where the scattering vector ~q ‖ ~n and α = 0◦, the second
factor in the expression for the cylinder form factor equals the right side of
Equation 2.108 divided by x, where x = qR sinα goes to zero; this factor
thus writes out as 1/2Γ (2) = 1/2. The cylinder form factor for ~q ‖ ~n then
is dependent only on the cylinder thickness t:

Y~q‖~n (q) = C
sin (q (t/2))
q (t/2)

(2.110)

Again the scattered intensity will be proportional to the absolute square of
this expression, and hence proportional to q−2 modulated by the absolute
square of the sin (q (t/2)) term. Figure 2.15 shows plots of the absolute
square of the cylinder form factor as expressed through equations 2.109 and
2.110. It is seen that when ~q ⊥ ~n the locations of the maxima of the absolute
square of the cylinder form factor will be located on a line proportional to
q−3 when qR >≈ 2, whereas in the ~q ‖ ~n scattering geometry the maxima
will lie on a line falling off as q−2 for qt/2 >≈ 1.5, i.e. when qt >≈ 3.
These plots were made on the assumption of a monodisperse system. For
polydisperse systems characterized by a distribution in particle thicknesses
and radii, the oscillations in the absolute square of the form factor will even
out and approach the illustrated power laws.

2.4.3 X-ray sources for structural research

The current section will present a brief overview of modern sources of x-rays,
where the main focus will be on the basic physical processes involved. A
voluminous literature on the technical features of x-ray sources exists. These
topics will not be treated in the present discussion. Important parameters
in the current discussion are however the x-ray wavelengths, intensities and
origins. As already mentioned, x-rays used in structural scattering studies
have a wavelength on the order of 1 Å; this length reflects approximate
inter-atomic distances, and a wavelength of exactly 1.00 Å corresponds with
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Figure 2.15: Plots of the absolute square of the cylinder form factors of
equations 2.109 for ~q ⊥ ~n (top) and 2.110 for ~q ‖ ~n (bottom), where both
squared equations have been divided by the factor C squared, so that for
q = 0 both plots take a value of one.
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a photon energy of 12.4 keV. Now, typical energy differences between certain
atomic orbitals are in this range, and this fact is what forms the basis of
traditional x-ray sources based on Cu-anodes. Synchrotron sources on the
other hand are based on the radiation emitted by accelerating, relativistic
electrons.

Cu-anode based x-ray sources

In a traditional Cu-anode based x-ray source, a voltage is applied across
a filament, known as the cathode, and a variable current allowed to pass
through the filament [19]. When the electrons constituting this current are
energetic enough, filament electrons will be knocked free of the material and
into the vacuum space surrounding the cathode. Now, in this vacuum cham-
ber there is also a Cu-anode connected by a high voltage to the cathode. The
electrons that escape the cathode filament will therefore be accelerated to-
wards the Cu-anode, emitting some electromagnetic radiation. At the anode,
the electrons will quickly slow down and emit a continuous Bremsstrahlung
background upon which is superimposed discrete x-ray peaks. These peaks
originate from electron interactions with the Cu-atoms, where typically a
K-shell electron is knocked free of it’s orbital. Following such an event, the
atom de-excites when a higher orbital electron falls into the hole state orbital
[40]. The energy difference between the higher and lower orbital states is
emitted in the form of an x-ray photon of a defined energy. The CuKα-line
at a photon wavelength of 1.5418 Å, originating from electron transitions
between the L- and K-shells, is used in many x-ray generators.

Synchrotron radiation

Synchrotron radiation arises when relativistic electrons are forced to travel
in a segmented, polygonal path by so-called bending magnets. The elec-
trons are first accelerated in a linear accelerator, transferred to a booster
ring where they are further accelerated, and then finally injected into the
synchrotron storage ring, where the x-rays used for research are generated
through the action of the mentioned bending magnets on the electron beam.
Typical synchrotrons operate with electron energies in the storage ring of
a few GeV. The rest mass energy of an electron is mec

2 = 511 keV, and
so electrons of for instance 2.5 GeV, which is the energy used at the PAL
synchrotron, are relativistic, traveling at around 91% the speed of light.

The Lorentz force law relates the electric and magnetic field amplitudes
to the force an electromagnetic field exerts on an electron of charge −e and
velocity ~v [26]:

~F = −e
(
~E + ~v × ~B

)
(2.111)

This force law is invariant under coordinate transformations [82], and can
therefore also be applied to relativistic charged particles. The path integral
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over this force yields the change in the particle’s kinetic energy K due to
the electromagnetic field [82];

∆K = −e
(∫

~E · d~s+
∫ (

~v × ~B
)
·~vdt

)
= −e

(∫
~E · d~s

)
(2.112)

In the integral depending on ~B, d~s has been replaced by ~vdt and, since
(~v × ~B) ·~v ≡ 0, it is seen that the magnetic field does not contribute to
change the particle’s kinetic energy. It does however, contribute to the
change ∆~p =

∫
~Fdt in the particle momentum, and because the magnetic

field is coupled to the particle velocity via a cross-product, the momentum
change will be perpendicular to both ~v and ~B.

Now, when any charged particle accelerates, it will induce electromag-
netic radiation. The Liénard-generalized Larmor formula expresses the power
radiated by a point charge (in the current discussion, an electron) whose in-
stantaneous acceleration is given by the vector ~a [26]:

P =
µ0e

2γ6

6πc

(
a2 −

∣∣∣∣~v × ~ac
∣∣∣∣2
)

(2.113)

Here γ is the relativity factor:

γ =
1√

1− (v/c)2
(2.114)

From Equation 2.113 it is seen that the radiated power of a an accelerating
point charge increases massively as v approaches the speed of light. When
the acceleration vector ~a is perpendicular to the velocity vector ~v, which
is valid for electrons traveling in a approximated circular path in a storage
ring, the total radiated power is given as [26]:

P =
µ0e

2a2γ4

6πc
(2.115)

Utilizing a cartesian coordinate system where ~v ‖ z and ~a ‖ x so that the
polar angle is θ and the azimuthal angle denoted by φ, the fractional amount
of power dP emitted into a solid angle element dΩ is given as [26]:

dP

dΩ
=
µ0e

2a2

16π2c

(
(1− β cos θ)2 −

(
1− β2

)
sin2 θ cos2 φ

(1− β cos θ)5

)
(2.116)

Here β = v/c. For relativistic particles this parameter approaches one, and
the radiation is increasingly focused around the forward direction along the
instantaneous velocity vector ~v. From this discussion, it is seen that by using
relativistic electrons as x-ray sources, one obtains considerable radiation
intensity and collimation, both highly desirable in structural studies.
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Chapter 3

Experimental

3.1 Samples and sedimentation photography

The present chapter will deal with factors directly related to the experimen-
tal studies performed in the current project; these factors comprise sam-
ple preparation, optical photography and x-ray scattering studies, and data
analyses. Sample preparation will be addressed first. Five different batches
of fluorohectorite powder were utilized in this project, of which two consisted
of Na-fluorohectorite, one of Li-fluorohectorite, one of Fe-fluorohectorite and
one of Ni-fluorohectorite. The two batches of Na-fluorohectorite are distin-
guished as apr and nov powders, whereas the Li-, Fe- and Ni-fluorohectorite
batches are known as respectively li, fe and ni. The powders were purchased
from Corning Inc. in the form of Li-fluorohectorite and ion exchanged prior
to the work of this master thesis.

To prepare the colloidal clay-water samples the Na- and Li-fluorohectorite
powders were mixed with solutions of 10−3 M NaCl and LiCl in water, re-
spectively. The effect of salt concentration on Na-fluorohectorite samples
has been thoroughly examined by Ringdal [59] and by Fonseca [16]. The
phase behavior of Li-fluorohectorite has not been previously investigated by
the COMPLEX group. Because LiCl has the same 1:1 valency as NaCl, the
Li-fluorohectorite clay powder was also mixed with a 10−3 M salt solution.
The colloidal samples were prepared by weighing in first half the amount
of salt solution in a glass container, then by weighing in the clay powder,
followed by weighing in the rest of the salt solution. The different mixed
sample batches are listed in Table 3.1, which also contains information with
regards to the mixed Fe- and Ni-fluorohectorite batches.

All samples were mixed in large glass containers of diameters of either
1.5 cm or 3.0 cm. These were shaken for an hour or more in a mechanical
shaker before being drawn into a syringe and filled into smaller cylindrical
Mark tube sample holders. The Mark tube capillaries were purchased from
Hilgenberg, had diameters of respectively 1 mm or 2 mm, a wall thickness

60



of approximately 10 µm and were made of borosilicate glass. A few samples
were also placed in larger, flat rectangular capillaries. These are shown in
Figure 3.1. Optical images between crossed polarizers were taken of the
samples during sedimentation. The setup used for sample photography was
thoroughly described by Ringdal in [59]. Some images were also taken with
a Stemi 2000-C microscope and a PixeLINK camera. In this setup, the
sample was illuminated by a linear-polarized lightsource. It was found that
the microscope setup only was capable of imaging the center of the Mark
tube capillaries; it is therefore important to note that the visible birefringent
regions in microscope photographs do not extend to the capillary edges.

Figure 3.1: Sample holders. A flat rectangular capillary, plus 2 mm and
1 mm Mark tubes.
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Table 3.1: The different batches of prepared samples. Each sealed capillary
or other means of containment was named starting with the mix number
(no. parameter) which it was drawn from. Samples 17 and 18 were mixed in
distilled water with no added salt. Note that the distilled water is assumed
to have a pH of 7 so that the ion concentration of H3O+ and OH− is of
around 10−7 M.

no. powder salt mix
type batch weight type molarity weight w/w% date

[ g] [ M] [ g]
1 NaFht nov 0.12 NaCl 1.0 · 10−3 4 3.0 15jan08
2 NaFht nov 0.1028 NaCl 1.0 · 10−3 4.0155 2.5 18jan08
3 NaFht nov 0.1245 NaCl 1.0 · 10−3 4.0214 3.0 22jan08
4 NaFht nov 0.0817 NaCl 1.0 · 10−3 4.0075 2.0 28jan08
5 NaFht nov 0.3718 NaCl 1.0 · 10−3 12.0105 3.0 29jan08
6 NaFht nov 0.6179 NaCl 1.0 · 10−3 19.9996 3.0 30jan08
7 NaFht nov n/a NaCl 1.0 · 10−3 n/a 3.0 23feb08
8 NiFht ni 0.2469 NiCl2 5.0 · 10−4 8.0182 3.0 2mar08
9 FeFht fe 0.2412 FeCl3 3.3 · 10−4 8.0091 3.0 2mar08
10 FeFht fe hc 0.1243 FeCl3 3.3 · 10−4 4.0602 3.0 2mar08
11 NiFht ni hc 0.1236 NiCl2 5.0 · 10−4 4.0137 3.0 2mar08
12 LiFht li hc 0.1231 LiCl 1.0 · 10−3 4.0098 3.0 3mar08
13 LiFht li hc 0.1243 LiCl 1.0 · 10−3 4.0257 3.0 3mar08
14 NaFht apr hc 0.7471 NaCl 1.0 · 10−3 24.0487 3.0 3mar08
15 NaFht apr hc 0.7441 NaCl 1.0 · 10−3 24.0269 3.0 3mar08
16 LiFht li hc 0.4177 LiCl 1.0 · 10−3 10.0803 4.0 5mar08
17 FeFht fe hc 0.1250 no salt ≈ 10−7 4.0202 3.0 5mar08
18 NiFht ni hc 0.1267 no salt ≈ 10−7 4.0350 3.0 5mar08
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3.2 X-ray investigations

Some of the 1 mm and 2 mm Mark tube capillaries of this project were
investigated by x-ray scattering. The following sections will briefly address
the x-ray facilities of respectively the NTNU lab in Trondheim, Norway
and the PLS synchrotron facility in Pohang, South Korea. Certain details
pertaining to the analysis of the recorded synchrotron scattering data will
also be discussed. Finally an overview is given of the fitting procedures
applied for analyzing scattering data in relation to the current project.

3.2.1 Bruker NanoStar SAXS – in-house x-ray facilities

The NTNU COMPLEX lab has a Bruker Nanostar SAXS apparatus, de-
livering CuKα radiation, that was used in the current project for studies
of the scattering at small angles from the aqueous clay dispersions held in
1 mm Mark tubes. Experimental parameters relevant for the in-house x-ray
scattering experiments are listed in Table 3.2.

Table 3.2: Parameters relevant for the x-ray experiments conducted at the
NTNU lab.

parameter value
x-ray wavelength 1.5418 Å
detector size 512× 512 pixels
detector active area diameter 11.5 cm
sample-to-detector distance 106 mm
max reciprocal range 0.19 nm−1–3.8 nm−1

max real space range 1.7 nm–33 nm

3.2.2 PLS synchrotron scattering

A four weeks stay at the PLS synchrotron in Pohang, South-Korea featured
as a part of the current project. The PLS synchrotron is a third generation
synchrotron, running since year 2000 at 2.5 GeV. The beamline used was the
GIST owned 5C2, a beamline used for diverse experiments by both students
and researches and that thus required a certain amount of preparations and
adjustment before being operable. Experimental parameters relevant for the
PLS synchrotron scattering experiments are listed in Table 3.3.
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Table 3.3: Parameters relevant for the x-ray experiments conducted at the
PAL synchrotron.

parameter value value
1st set 2nd set

x-ray wavelength 1.243769 Å 1.243769 Å
detector size 1024× 1024 pixels 1024× 1024 pixels
beam center 395× 345 pixels 383× 195 pixels
pixel size 13 µm 13 µm
sample-to-detector distance 83 mm 107 mm
max reciprocal range 0.94 nm−1–4.7 nm−1 0.62 nm−1–4.5 nm−1

max real space range 1.3 nm–6.7 nm 1.4 nm–10 nm

Complications with non-centered, extended beamstops

The detector used for recording scattered radiation at the 5C2 beamline in
relation to the current project had, as shown in Table 3.3, a high resolution
determined by an array of 1024 × 1024 13 µm sized pixels. The detector
size however was thus only 1.3× 1.3 cm, and so the detector had to be
placed close to the sample in order to cover a large enough solid angle to
allow for observation of the Bragg scattered radiation from stacked clay unit
layers. In order to avoid the most severe complications of placing the flat
detector very close to the sample, a compromise was made between this
distance and the usual procedure of having the non-obscured beam hitting
the detector center. As shown in Figure 3.2, the detector was placed so as
to record as much as possible of the 2wl (001) Bragg ring, by translating
it a distance away from the centered position, without having to move it
too close to the sample. Figure 3.2 also shows how a normal, non-caked
integration procedure in fit2d would be carried out on the recorded data.
Performing such an integration on the scattering data from PLS were seen
to produce artificial intensity cut-offs, that might easily be mistaken for
features attributable to the sample studied. All integrations in this report
were hence performed over a limited interval of the detector pixels, defined
so as to avoid integrating over regions obscured by either the beamstop or
by the walls. This reduced the range of available q-lengths relative to those
listed in Table 3.3, both on the high and low q ends of the recorded scattering
profiles. It also restricted the azimuthal range to less than 180◦.
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Figure 3.2: Illustration of how a normal fit2d integration procedure on the
given scattering data could be thought to produce artificial intensity profile
features when the azimuthal angle moves outside of the detector area.

Peak broadening due to sample widths

A possible problem encountered with the use of samples that extend a cer-
tain distance along the beam path, especially when the detector is close to
the sample, is peak broadening. The situation is illustrated in Figure 3.3.
For simplicity, only scattered rays from the two extremities of the sam-
ple along the beam path are considered. Now, the relationship between
the scattering angle 2θ, which according to Bragg’s law is given as 2θ =
2 sin−1 (nλ/2d), and the length parameters defined in the leftmost illustra-
tion of Figure 3.3, is given by:

tan (2θ) =
r

l
(3.1)

tan (2θ) =
r + ∆r
l + ∆l

(3.2)

From these expressions the detection radii for rays scattered at 2θ respec-
tively from the front or back of the sample can be written as:

r = (l) tan (2θ) (3.3)
r + ∆r = (l + ∆l) tan (2θ) (3.4)

Now, in the rightmost picture of Figure 3.3, the relationship between the
assumed scattering angles 2θ′ and 2θ′+∆2θ′ for the rays detected at respec-
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Figure 3.3: Peak broadening due to finite path length of beam through
sample. The left figure illustrates the actual experimental setup, whereas the
figure to the right shows the geometry of the model in which data analyses
are performed.

tively r and r + ∆r, and the associated length parameters, reads:

tan
(
2θ′
)

=
r

l + ∆l/2
(3.5)

tan
(
2θ′ + ∆2θ′

)
=

r + ∆r
l + ∆l/2

(3.6)

The corresponding q-values are then given as:

q
(
2θ′
)

=
4π
λ

sin
(

1
2

tan−1

(
r

l + ∆l/2

))
(3.7)

q
(
2θ′ + ∆2θ′

)
=

4π
λ

sin
(

1
2

tan−1

(
r + ∆r
l + ∆l/2

))
(3.8)

By inserting the expression for r and r + ∆r, this becomes:

q
(
2θ′
)

=
4π
λ

sin
(

1
2

tan−1

(
(l) tan (2θ)
l + ∆l/2

))
(3.9)

q
(
2θ′ + ∆2θ′

)
=

4π
λ

sin
(

1
2

tan−1

(
(l + ∆l) tan (2θ)

l + ∆l/2

))
(3.10)

Now, the (001) interlayer Bragg peak of 2wl hydrated Na-fluorohectorite
has a 2θ value of 0.083 rad, given the experimental parameters of Table
3.3. Assume ∆l = 2 mm. According to the above calculations, this would
yield a q (2θ′) = 4.14 nm−1 and a q (2θ′ + ∆2θ′) = 4.24 nm−1, or a q (2θ′) =
4.15 nm−1 and a q (2θ′ + ∆2θ′) = 4.23 nm−1, for respectively the first and
second experimental sets of Table 3.3. In both cases it is seen that, at this
scattering angle, the reciprocal space broadening attributable to the finite
beam path through the sample is on the order of 0.1 nm−1. For ∆l = 1 mm
the broadening is on the order of 0.05 nm−1.
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A weakness of this technique for the assessment of peak broadening, lies
however in its dependence upon the determined sample-to-detector distance.
Because this distance commonly is arrived at by fitting reciprocal peak cen-
tra with the known q-values of selected (hkl) peaks, it’s determined value
is dependent upon the peak broadening or, more precisely, on the peak in-
tensity distribution as a function of 2θ. This distribution, which affects the
apparent center of a peak, might depend on the broadening. It is possible
that the choice of the mid-sample plane at l + ∆l/2 as an approximation
to the determined sample-to-detector distance is not the optimal one. Al-
though for a round capillary sample this plane theoretically does contain the
largest number of scatterers, the beam attenuation might serve to shift the
plane of maximal scattering events further towards the beam source. Under
the assumption that the experimentally determined sample-to-detector dis-
tance corresponds with the distance to the plane of maximal scattering, a
shift of the latter closer to the beam source, would decrease the broadening
relative to that determined for the mid-plane case, as the difference between
2θ′ and 2θ′ + ∆2θ′ in such a geometry becomes smaller. The reverse would
be true should the determined sample-to-detector distance corresponds with
a scattering plane closer to the detector than the sample mid-plane.

3.3 Software, data analysis and image processing

Mainly two kinds of software were utilized in this project. Image Magick,
Microsoft Paint, Adobe PDF and Ghostscript as well as Blaze Media Pro,
Windows Movie Maker and Zoom Browser were used for image and film
processing. Yorick, MatLab, Origin Pro, fit2d, Bruker SAXS software and
a group of Perl scripts and MatLab functions written by Yvés Méheust [48]
and modified and extended by Henrik Hemmen [30] for inferring the order
of nematic phases from x-ray data, were used in the analysis of the obtained
scattering images. A few short comments on the practical uses of Image
Magick and Yorick are presented in Appendix C. The theory behind the
fitting scripts by Méheust and Hemmen are well documented in [48]. The
following section will present a brief overview of this theory.

Script fitting procedures and the nematic order parameter

The current discussion is based on the paper [48] by Méheust et al. and
concerns methods for inferring the order of nematics from scattering data.
Figure 3.4 shows the geometries of the model presented in [48]. A scatterer,
in the current discussion a lamellar fluorohectorite particle, is situated at
the origin O of a cartesian coordinate system defined by the mutually per-
pendicular x, y and z axes. The x-ray beam is fittingly incident along the
x-axis and, in the absence of obstructions in the beam path, strikes a detec-
tor parallel with the yz-plane in O′ on the x-axis, as shown in Figure 3.4.

67



The fluorohectorite particle is oriented so that it’s optical axis ~n is oriented
at an angle with respects to a reference orientation ~n0, equal to the director
for a uniaxial nematic. The angle between ~n (~n0) and the yz-plane is de-
noted by the angular coordinate Θ (Θ0). The angle between the projection
of ~n (~n0) onto the yz-plane and the z-axis, is the azimuthal angle Φ (Φ0).
Scattered radiation from the fluorohectorite particle strikes the detector in
M . The angle between the vector from O′ to M and the z-axis is the az-
imuthal angle φ. The vector between O and M makes an angle 2θ with the
x-axis.

Figure 3.4: Illustration of the geometry of the model used to obtain the
nematic order parameter from scattering data, retrieved from [48].

Now, as discussed in section 2.3.1, the orientational distribution func-
tion f for the optical axes ~n around the commonly preferred direction ~n0

for a uniaxial nematic is dependent only upon the angular coordinate α be-
tween any given ~n and the reference direction ~n0. The α corresponding with
2θ-scattered radiation observable at an M which is also described by the
azimuthal φ, is given as [48]:

α2θ (φ) = arccos (sin θ sin Θ0 + cos θ cos Θ0 cos (φ− Φ0)) (3.11)

The orientational distribution function f for uniaxial nematics is expected
to be well described by a so-called Maier-Saupe function of α [48, 41, 42]:

f (α) ∝ exp
(
m cos2 α

)
(3.12)

The order parameter is then given by the expression derived in Equation
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2.50, in section 2.3.11:

S2 =
∫ π

0

3 cos2 α− 1
2

f (α) sinαdα (3.13)

As already mentioned, a series of Perl scripts and MatLab functions, as well
as a generated fit2d macro, have been developed by Meheust and Hemmen
with for the purpose of quickly and consistently determining the order of
nematics studied by x-ray scattering. This collective routine was used on
portions of the scattering data acquired in the current project. However,
as evidenced by the preliminary scattering image presented in Figure 3.2,
the scattering in the full 2wl Bragg ring cannot be recorded by the small
detector used at the 5C2 beamline at the PAL synchrotron. A consequence
of this is that the Φ-dependence of the orientational distribution function
cannot be probed. The fitting procedure for the data of the current project
therefore neglects this parameter and assumes an intensity profile that is
symmetrical in φ. Modifications to the fitting scripts that account for this
were added by Méheust and Hemmen.

1Note that the symbols have changed somewhat in the current description relative to
that of section 2.3.1, where θ denoted the present α. The current description was chosen
to match that of the model presented in [48].
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Chapter 4

Results and Discussion

4.1 Preparation and phase separation in the grav-
itational field

Fluorohectorite samples in aqueous suspensions with cations of Na, Li, Fe or
Ni as the intercalated species have been investigated in this project with the
intent of describing the phase behavior of these samples during settling in
the gravitational field. Already upon mixing the different clay powders with
distilled water in large sample containers certain distinguishing features be-
come readily observable. Figure 4.1 shows four newly prepared samples of
Na- and Ni-fluorohectorite in distilled water, photographed before the con-
tainers were shaken to evenly disperse the clay. The Na-fluorohectorite sam-
ples show marked swelling and the formation of a membrane like layer of clay
powder suspended at the air-water interface. The Ni-fluorohectorite sam-
ples on the other hand are shown to have formed a sediment at the bottom
of the containers with little membrane formation and no apparent volume
swelling. The same experiments performed on Li- and Fe-fluorohectorite
showed that the Li-fluorohectorite samples behave in a manner similar to Na-
fluorohectorite whereas Fe-fluorohectorite samples display the non-swelling
characteristics of Ni-fluorohectorite. Note that non-swelling in this case
refers to macroscopic behavior and not to water intercalation and crystalline
swelling.

The same behavior documented through Figure 4.1 was also observed
when the different cation intercalated fluorohectorite powders were mixed
with water containing a chloride salt of the intercalated species. From sec-
tion 2.2.2 it is known that di- and trivalent electrolytes present DLVO-
regimes which differ from those of monovalent electrolytes such as NaCl and
LiCl. Calculated from Equation 2.16 the Debye length of a 1:1 electrolyte
at a salt concentration of 10−3 M is 9.6 nm whereas the same parameter
takes a value of 7.9 nm for a 2:1 electrolyte at the same cation concentra-
tion. A more detailed picture was described in section 2.2.3, demonstrating
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Figure 4.1: Four samples of respectively Na-fluorohectorite and Ni-
fluorohectorite in distilled water. The two samples to the left are of Na-
fluorohectorite photographed approximately 5 min and 30 min after the clay
powder was sprinkled onto the distilled water surface. The macroscopic
swelling properties of this clay is clearly demonstrated. The two samples
to the right are of Ni-fluorohectorite photographed approximately 30 min
and 5 min after the clay powder was added to the distilled water in the
glass containers. These clay samples show little swelling and do not form
the same membrane like clay layer at the air-water interface as does the
Na-fluorohectorite samples. All samples contained approximately the same
amount by volume of clay powder.
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how di- or trivalent electrolytes are thought to dramatically increase the
screening of surface potentials, thus promoting flocculation and aggregation
which again leads to faster sedimentation rates. In the above case however,
the Na- and Ni-fluorohectorite powders were also mixed with distilled wa-
ter which should contain only a very small amount of ionic species. Unless
the dialysis of the clay powders was incomplete upon drying it is therefore
unlikely that any valency dependent features of the aqueous solvent should
account for the striking dissimilarities between the different clay powders
seen in Figure 4.1. Dialysis performed on the Fe- and Ni-fluorohectorite
powder batches used in this experiment showed no traces of remnant Cl−

ions. It can however be envisioned that the presence of the intercalated
species on the exposed fluorohectorite surfaces is sufficiently strong so as to
markedly increase potential screening for di- and trivalent cations relative
to monovalent ones.

It is well known, also from the discussions of section 2.2.3, that the na-
ture of the intercalated ion significantly affects the swelling capacity of a
given clay powder. Odom [54] and more recently Skipper et al. [63] summa-
rize that upon hydration Na-smectites exhibit in general extensive swelling
whereas the often more naturally common smectites with a large portion
of intercalated Ca and Mg [54] or K [63] show practically no swelling even
when fully hydrated. The most common ionic forms of Ca and Mg are the
divalent Ca2+ and Mg2+ ions, whereas K occurs as monovalent K+. Salles et
al. [60] have investigated the hydration of monovalently intercalated mont-
morillonites, finding that hydration of the intercalated cations is the main
driving force during hydration of the swelling Na- and Li-montmorillonites
whereas for the non-swelling K-, Rb- and Cs-montmorillonites hydration of
the silicate layers becomes increasingly important. As discussed in section
2.2.3, many studies have been devoted to determining the nature of the wa-
ter layers in hydrated clays, finding that both intercalated cation valencies,
radii and hydration enthalpies, as well as the types and locations of the
layer charges are important parameters. Altogether, the behaviors observed
in the current discussion for respectively mono- and di- or trivalently inter-
calated fluorohectorites, even if not fully understood, still match the results
obtained for other montomorillonite/smectites [46, 54, 60, 63].

Further obvious differences were however observed between respectively
the Na- and Li-fluorohectorite and the Fe- and Ni-fluorohectorite samples
investigated in this project. Na- and Li-fluorohectorite samples were seen to
remain dispersed after mixing, forming moderate, true sediments only during
the first few hours after preparation, after which the much slower phase sep-
aration occurred on timescales of weeks and months in the large containers.
Over the course of a few days to several weeks the Li-fluorohectorite capillary
samples investigated were observed to undergo phase transitions relatively
similar to previous and to current observations on the phase separation of
Na-fluorohectorite in the gravitational field. This is further discussed in a
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later section. No clear phase separations however were observed for neither
the Fe- nor especially the Ni-fluorohectorite samples prepared in this project.
Even at relatively low di- or trivalent salt concentrations of about 10−4 M
the Fe- and Ni-fluorohectorite samples were seen to form flocs after the con-
tainers were shaken, which grew in size on timescales of a few seconds. If
left alone, these samples sedimented and formed a clear-cut boundary to a
transparent, colorless upper phase with presumably little to no dispersed
clay in it in a matter of an hour or so. However, it was found that shak-
ing the Fe- and Ni-fluorohectorite containers easily re-dispersed the clay.
Based on these preliminary investigations, Fe- and Ni-fluorohectorite sam-
ples mixed with distilled water were subjected to ultrasonic treatment for
several hours. These treated samples no longer showed naked-eye observable
flocculation but rather formed loose, seemingly non-flocculated sediments.
The Ni-fluorohectorite samples again were seen to develop a clear-cut bound-
ary between the loose sediment and a transparent, colorless upper phase
whereas in the Fe-fluorohectorite samples the upper, less dense phase was
seen to contain dispersed clay that after more than two months still had not
settled out of suspension. When these observations are taken together with
the discussion of section 2.2.1 on gravitational sedimentation, it seems likely
that the reason for the originally fast sedimentation seen in the Fe- and Ni-
fluorohectorite samples might have been the presence of larger aggregated
structures, present either in the original powders or created as flocs upon
contact with water. The ultrasonic treatment likely destroyed some of these
presumed aggregates, leading to the slower sedimentation rates, something
which argues in favor of the hypothesis that a certain amount of aggregates
were present already in the powdered Fe- and Ni-fluorohectorite samples. It
can however also be envisioned that the presence of the intercalated cation
species on the exposed platelets surfaces is sufficient to cause the observed
flocculation in the case of Fe- and Ni-fluorohectorite samples.

The following sections further describe the gravitationally induced phase
separation observed in Na- and Li-fluorohectorite samples; a brief view is
also presented with regards to a sedimenting Ni-fluorohectorite capillary
sample.

4.1.1 Na-fluorohectorite

When newly prepared Na-fluorohectorite dispersions are left to sediment in
the earth’s gravitational field, several strata of visible phases develop over the
course of days, weeks and months [12, 59]. This sedimentation behavior is at
once highly reproducible, as illustrated in Figure 4.2, but also dependent on
the geometry of the sample container. The following section will address the
gravitational phase separation of aqueous Na-fluorohectorite dispersions.
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Figure 4.2: Two Na-fluorohectorite samples of the apr batch in 10−3 M NaCl
solutions demonstrate that their gravitationally induced phase separation is
highly reproducible.

Sedimentation behavior in 1 mm and 2 mm Mark tubes

Figure 4.3 shows the sedimentation behavior of a 3w/w% Na-fluorohectorite
sample held in a 2 mm Mark tube. A brownish-white sediment becomes
visible to the naked eye during the first few hours of sedimentation, and
during the first days, speckles that appear faintly bright between crossed
polarizers appear in the middle of the capillaries. During the first week of
sedimentation a second, gel-like and cloudy phase immediately above the
sediment becomes visible to the naked eye while the birefringent speckles
grow brighter. There are extensive dynamics in the birefringent region as
the speckles sediment and in a matter of one to two weeks form a well-
defined layer on top of the isotropic gel-like region and the sediment. The
ordered character of this birefringent phase has been previously demon-
strated also through anisotropic x-ray scattering patterns [18] and by dif-
fusion MRI imaging [10], showing how the clay platelets of this phase are
standing with their face normals oriented on average perpendiucular to the
gravitiational force. Above the birefringent phase there exists a cloudy re-
gion that disappears on timescales of approximately two weeks. The upper
part of the samples are cloudy right after preparation but after a few hours
become clear to naked eye observations and dark between crossed polarizers,
indicating an isotropic state. About three weeks after sample preparation,
a second birefringent layer precipitates out of this isotropic phase to form
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a new phase atop the standing nematic. This new, more slowly forming
phase is visibly different from the first birefringent phase both to the naked
eye and especially when viewed between crossed polarizers with the polar-
izer and analyzer axes at respectively −45◦ and 45◦ with the vertical. A
narrow boundary layer between the two birefringent phases is in most cases
visible and some investigations indicate that the particles in this layer are
lying with their face normals parallel with the gravitational field [31, 59].
It is believed that phase boundaries act in much the same way as a wall,
imposing homeotropic alignment of the clay platelets with respects to the
interface plane – a feature that has also been observed in dispersions of
gibbsite platelets suspended in toluene [72]. In many of the 2 mm samples
however, the boundary layer between the two birefringent phases is either
isotropic or appears to have a slanted orientation.

Figure 4.3: Picture series taken between crossed polarizers of a typical sed-
imentation process in a 3w/w% Na-fluorohectorite sample in 10−3 M NaCl
solution. The sample was number 7.5 held in a 2 mm Mark tube.
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Boundaries

As already mentioned, the presence of boundary layers between the stand-
ing nematic and the isotropic gel immediately below it have recently been
observed in fluorohectorite dispersions [31, 30]; similar phenomena have
also been observed by van der Beek et al. in [72] for suspensions of gib-
biste platelets in toluene. Figure 4.4 shows the presence of a corresponding
boundary region between the second nematic and upper isotropic phases
in the 1 mm Na-fluorohectorite Mark tube sample m.1. The birefringence
from the boundary layer is extinguished when the polarizers are in the 90◦

position with respects to the long capillary axis, whereas it is very bright
when the polarizers are in the 45◦ position. From the discussion of section
2.3.3, this indicates that the particles in the boundary layer are standing up
or lying down. Because the appearance of the boundary layer was found to
change little when the sample was rotated around it’s long capillary axis, it
is shown that the face down configuration is the correct one. It is thus illus-
trated that the homeotropic-like orientation with respects to a phase bound-
ary observed in [31, 30, 72] can occur also between the second nematic phase
of fluorohectorite dispersions and the isotropic phase immediately above it.

Figure 4.4: Photographs of sample m.1 between crossed polarizers. In the
rightmost image the polarizers’ axes make an angle of approximately 45◦

with the long capillary axis and a narrow boundary region between the
second nematic and isotropic phases is clearly visible.

Figure 4.5 shows images taken between 90◦ crossed polarizers of aged
Na-fluorohectorite dispersions held in 1 cm diameter glass capillaries. In
addition to prominent birefringent textures, it is seen that at a given depth,
all the photographed samples transitions from a clear to a cloudy state. The
transition was also visible when the samples were viewed without crossed
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polarizers. It is interesting to note that the prominent and colored birefrin-
gent textures carry over from the clear to the cloudy regions in a fashion
seemingly undisrupted by this change in optical properties. In order to in-
vestigate the thixotropic behavior of the samples, one of them were tilted
upside down, and observed as a relatively large air bubble present in the
upper parts of the sealed capillaries rose against gravity through the phases
present. All observed phases were thus determined to be of a more viscous
nature than pure water samples, and an especially slow movement of the air
bubble was seen through the cloudy regions. With the currently unresolved
status of clay gels in mind, it is interesting to note that even highly vis-
cous phases of Na-fluorohectorite platelets display a marked birefringence.
Whether the birefringence in clay gels really reflects a true Onsager-like
transition to the nematic state, is however unclear [24].

Figure 4.5: Images between 90◦ crossed polarizers of aged and strongly gelled
Na-fluorohectorite dispersions held in thick glass capillaries approximately
1 cm in diameter. The samples were prepared by D.M. Fonseca more than a
year before the images were taken. In all three images a marked transition
from a clear to cloudy appearance is seen. Interestingly, the nematic struc-
ture carries through from the clear to the cloudy regions in a continuous
fashion.
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4.1.2 Li-fluorohectorite

Figure 4.6 shows a set of images taken between crossed polarizers of sam-
ple 16.v. Already in the first image, taken approximately 5 min after the
dispersion was filled into the flat rectangular sample holder, the sample is
markedly birefringent and has a grainy texture, indicating that ordered re-
gions likely grow by a so-called nucleation and growth process. After two
hours the upper parts of the dispersion is less birefringent and faint ver-
tical striped features are visible, similar to those observed by Ringdal [59]
in Na-fluorohectorite dispersions. After twelve hours a marked horizontal
boundary exists between the sedimented regions and the upper regions from
which fall-out is still seen to occur. After about five days, markedly bire-
fringent regions are present above the large sedimented bottom phase. After
eight days, tactoids from the upper parts of the sample are still sedimenting
and contributing to the growth of the smaller domain dominated nematic
phase.

4.1.3 Ni-fluorohectorite

Figure 4.7 shows a picture series of the sedimentation behavior of a 2 mm
Ni-fluorohectorite Mark tube sample. The sample is visible between crossed
polarizers, but does not show any birefringent textures or grains. It is likely
that diffuse light scattering similar to that seen from the sedimented regions
of normal Na-fluorohectorite samples, is the reason why this sample is visible
between crossed polarizers. The faintly green hue of the sedimented regions
are due to the color of the Li-fluorohectorite itself, which is lightly sea green,
as seen in Figure 4.1.
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Figure 4.6: Picture series taken between 90◦ crossed polarizers of the sedi-
mentation behavior of Li-fluorohectorite sample 16.v.
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Figure 4.7: Picture series taken between 90◦ crossed polarizers of the sedi-
mentation behavior of Ni-fluorohectorite sample 18.1.
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4.1.4 Flow birefringence and dynamic boundary effects in
large sample containers

Figures 4.8 and 4.9 shows images of flow birefringence induced in the isotropic
upper phases of large sample containers of 3w/w% Na-fluorohectorite disper-
sions, approximately six weeks old. The sample in the first figure was tilted
over and shows a marked birefringence pattern which decays on timescales
of a few seconds. Interesting boundary effects are visible in the images of

Figure 4.8: Flow birefringence in a large sample container 3 cm in diameter.
The sample was an approximately six weeks old 3w/w% Na-fluorohectorite
dispersion of electrolyte strength 10−3 M. The upper parts of the sample
were originally completely dark between crossed polarizers. As the birefrin-
gence decays, marked bounday effects are visible as vertical and horizontal
black stripes. The times are given in seconds relative to the first frame
shown.

Figure 4.8. It appears that the boundary between the denser, white phase
and the flow birefringent phase, as well as the dispersion-air interface, affect
the orientation of the dispersed platelets in manners similar to the container
walls. Marked dark regions are seen to propagate from these boundaries
inwards. The regions can either be dark because they are isotropic, or they
can be dark due to the specific director orientations imposed by the bound-
aries. If the latter is true, the fluorohectorite particles in the marked dark
regions are either lying flat down or standing up, with their optical axes
oriented in the image plane or perpendicular to it. By comparison with
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the Michel-Lévy chart shown in Figure 2.12, the dominant color of the flow
birefringent region of the tilted sample corresponds with first order gray.
The presence of flow birefringence indicates that after six weeks of gravita-
tional sedimentation, a marked amount of Na-fluorohectorite particles are
still dispersed in the suspension.

Figure 4.9 shows a birefringence pattern induced by relatively vigorous
shaking of an 3 cm in diameter glass tube containing Na-fluorohectorite;
also approximately six weeks old. It is seen that some of the denser phase
has been disturbed by the shaking. In contrast to the images shown in
Figure 4.8, the current sample is highly colorful, and again demonstrates
the presence of dispersed particles. The increased birefringence relative to
that observed in Figure 4.8 might be attributed to the stronger agitating
forces applied to the shaken sample.

Figure 4.9: Strong and colorful flow birefringence induced by shaking of a
3 cm in diameter Na-fluorohectorite sample. The times are given in seconds
relative to the first frame shown.
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4.2 Investigations on phase stabilization

The phase behavior of colloidal clay suspensions in the gravitational field is
of fundamental interest and could have practical analogies to the behavior of
clay deposits subjected to varying salinity conditions. However, with regards
to practical technological applications of liquid crystalline clay suspensions
the issue of phase stability arises. It can easily be imagined that, if for
instance an LCD screen consisted of a strongly sedimenting phase, this would
be problematic. This section therefore concerns attempts at drawing and
isolating separate phases from the gravitationally settled Na-fluorohectorite
samples of one of the larger containers. From a fundamental as well as from
a practical point of view, it is interesting to see if such isolated samples either
show further sedimentation in a manner similar to the original samples, in a
differing manner, or perhaps in some cases show no significant sedimentation
behavior at all. The latter can be thought to occur for samples that for
instance are strongly gelled so that the sedimentation would be hindered by
a possibly partially arrested particle arrangement.

To prepare single phase samples of Na-fluorohectorite, six batches of
1.5 ml each were successively drawn from the top down of the three weeks
old sample 5 and labeled respectively as x5, y5, z5, æ5, ø5 and å5. After
å5 the next attempt at extracting a sample proved difficult to draw into the
syringe, indicating its strongly gelled character, and hence no more samples
were drawn after å5. The different drawn samples were filled into 2 mm
Mark tubes and left standing in the gravitational field for several weeks.
Optical photographs of the samples taken eight weeks after they were placed
in the Mark tubes are shown in figures 4.11 and 4.12. Photographs of the
same samples taken immediately after preparation were completely devoid of
birefringence in the case of the x5, y5 and z5 samples whereas, as illustrated
in Figure 4.10, the samples drawn from the lower phases exhibited strong
flow birefringence.

The Mark tubes containing samples x5, y5 and z5 drawn from the top-
most phase of the (partially) settled sample 5 were completely devoid of
birefringence a few minutes after preparation. However, in the eight weeks
old samples a small region at the very bottom of the Mark tubes has become
bright between crossed polarizers for all these samples, as shown in Figure
4.11. This could be expected in light of the flow birefringent properties dis-
cussed in the previous section, which demonstrated that several weeks old
large container samples still contain significant amounts of dispersed parti-
cles. With regards to texture, the phases observed in samples x5, y5 and
z5 are similar in appearance to the second birefringent phase that is usually
seen to precipitate out of the isotropic phase of the Na-fluorohectorite Mark
tube samples approximately three weeks after preparation. The x5 Mark
tubes stand out by seeming to have less texture which might be indicative
of larger domain formations. A notable feature is the color of the birefrin-
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Figure 4.10: Mark tube samples ø5.III and ø5.VI, drawn from the upper
phase of the three weeks old Na-fluorohectorite sample 5, photographed
immediately after they were filled into the capillaries.
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gent phase of the x5, y5 and z5 samples which appears to be more green
compared with the usually bluish color of the newly formed second birefrin-
gent phase for samples y5 and z5 whereas sample x5 is more yellow. From
the Michel-Lévy chart presented in Figure 2.12, it is seen that the a change
from blue to green to yellow corresponds with the expected color sequence
for retardations ∆nl that correspondingly increase. Under the assumption
that the observed colors for samples x5, y5 and z5 are of first order, the
corresponding retardations would be of between 650 nm and 850 nm, with
reference to the Michel-Lévy chart shown in Figure 2.12. With a sample
thickness of 2.00− 2 · 0.01 mm = 1.98 mm, the corresponding birefringence
∆n obtains values of between 3.3 · 10−4 and 4.3 · 10−4.

Figure 4.11: Mark tube samples, drawn from the upper phase of the
three weeks old Na-fluorohectorite sample 5, photographed eight weeks after
preparation.

A second glance at the DLVO-plots that were presented in Figure 2.3 in
section 2.2.2, could shed some light on the apparently less textured character
of the x5 samples, which were drawn from the topmost parts of the partially
settled original dispersion. From this plot it is seen that clay platelets con-
sisting of relatively fewer stacks are in general expected to be more overall
repulsive than platelets consisting of many unit layers. Because platelets
that are overall repulsive do not show the nucleation and growth processes
which are expected for platelets whose interaction potentials display sec-
ondary minima, the presence of smaller-stack particles in sample x5 could
be the reason for it’s slightly less textured appearance. The presence of such
smaller stacks in the upper parts of a partially sedimented dispersion is sup-
ported by the results of section 2.2.1, where it was shown that particles with
smaller volumes sediment more slowly. It is however important to note that
the hypothesis that smaller particle stacks are present in the topmost regions
of partially settled samples is a tentative one, which is strongly reliant on
the applicability of the results obtained in the DLVO-potential discussion of
section 2.2.2.

Figure 4.12 shows æ5, ø5 and å5 samples eight weeks after preparation.
It is clear, also in comparison with the images of Figure 4.10, that some
sedimentation or setteling has occurred in these samples. However, none
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of the Mark tubes show an actual sediment but rather an isotropic bottom
phase, visible in Figure 4.12 for samples ø5.V and å5.III. It is likely that
this phase corresponds with the isotropic gel-like regions normally observed
in 2 mm Mark tube samples of Na-fluorohectorite right above the sediment.
To explain the lack of an actual sediment it is necessary to try assess what
separates these drawn Mark tube samples from a usual Na-fluorohectorite
sample. The most obvious feature might be related to size fractionation
in the gravitational field; a feature already briefly discussed in relation to
the x5 samples. According to Equation 2.2 the terminal velocity of a par-
ticle in water at standard gravity is proportional to the particle volume
divided by its Stokes equivalent radius. In the gravitational field, particles
of equal mass density hence will be size fractionated because the larger par-
ticles with a larger volume-to-radius ratio will sediment faster. In addition,
Brownian motion further hinders the sedimentation of the smallest parti-
cles. It is likely that by drawing samples from an already (partially) settled
Na-fluorohectorite dispersion, the largest particles present in the original
dispersion are excluded as they remain in the sediment and the lower gelled
phase (which were not included in the drawn samples).

However, this discussion raises the question of whether only the largest
clay particles form true sediments. It can be envisioned that, as gravitational
setteling progresses, the transition to a sedimented phase occurs at a par-
ticle concentration which is higher than the concentration limit for gelling
which again, as seen in for example Figure 4.12, is higher than the critical
concentration for the isotropic to nematic phase transition. This behavior
has essentially been established in phase diagrams for water-dispersed Na-
fluorohectorite in [16]. It might also be possible that the speed of settling
affects the resulting particle arrangement. According to Equation 2.2 the
particles with the largest volume-to-radius ratios have the highest terminal
velocities. This means that setteling into the initial sedimented phase of
the usual Na-fluorohectorite samples happens at a much faster rate than
for example setteling into the second birefringent phase. This effect has
been clearly observed, as for example during the gravitational setteling of
Na-fluorohectorite in 2 mm Mark tubes, see Figure 4.3, where the sediment
forms an approximately 1 cm high region in a matter of hours, whereas
growth into for example the second birefringent phase happens at much
slower rate of only a few mm per month. Because gelling is a time depen-
dent phenomenon, where the arrested gel structure develops over the course
of hours or even days or more, it is possible that the more rapidly setteling
large particles of the usual Na-fluorohectorite dispersions do not have time
to form extended structures as they settle out of solution (provided that ex-
tended structures are indeed a term characterizing the gelled state - this is
currently not known). Later on, gel formation might be prevented when the
particles of the sedimented phase are densely packed so that the degrees of
motional freedom here are fewer than in the dispersed phase and a transition
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Figure 4.12: Mark tube samples, drawn from the lower phases of the
three weeks old Na-fluorohectorite sample 5, photographed eight weeks after
preparation.
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to the gelled state is not possible. This might shed some light on the lack of
sediment formation in the drawn capillary samples because here the largest
particles with the most rapid terminal velocities are no longer present and
thus a gelled phase is seen to form the bottom part of the capillary samples.

4.3 True uniaxial nematic order observed in evap-
orating capillary samples

As briefly discussed in section 2.2, evaporation may be used as a phase shift
inducing factor in colloidal liquid crystal dispersions. Evaporation may occur
in cooperation with a gravity induced concentration gradient or, in samples
where the colloidal species have a density approximately equal to the solvent,
evaporation may be the only contributing factor leading to phase separation.
The samples prepared in this project were not initially intended to undergo
evaporation. Some samples were however less effectively sealed than others,
so that slow evaporation was seen to occur on timescales of several weeks. By
chance, this evaporation led to the discovery of a new birefringent region at
the top of the evaporating samples, exhibiting a strong rainbow-like optical
spectrum between crossed polarizers.

Optical birefringence observations

Figure 4.13 demonstrates the existence of this phase in the 1 mm Mark
tube sample 3.14. When the crossed polarizers are in the 90◦ position with
respect to the long capillary axis, the sample appears similar to usual, non-
evaporated Na-fluorohectorite samples except for the fact that there is no
upper dark isotropic phase present due to the evaporation. But when the
polarizers are rotated to a 45◦ tilt, the upper birefringent phase shows a strik-
ing color spectrum, ranging from red via green and blue to a final purple.
Figure 4.14 demonstrates the presence of the same colored region in sample
3.3 and shows how this phase is at its definite brightest with the polarizers
in the 45◦ position. From the discussion of section 2.3.3 this indicates that
the director is oriented along either the vertical or the horizontal and that
the particles are thus either lying face down or standing. As discussed in
section 2.1.1, previous studies have demonstrated that the majority of Na-
fluorohectorite particles in the main birefringent phase are indeed standing,
but with their face normals (or more correctly the projections of their face
normals) semi-randomly distributed in the horizontal plane, with an orienta-
tional distribution that likely depends upon the distance from the aligning
walls. Because the new nematic phase observed in the evaporated sam-
ples appears considerably brighter and more homogeneous between crossed
polarizers compared with the usually observed standing nematic, it seems
possible that the particles in this region have adopted a face down config-

88



uration, effectively increasing the order since rotation around the nematic
director now no longer changes the platelet orientation. If this is indeed the
case, the colored region of the evaporated samples presents a new form of
extended nematic arrangement in suspensions of Na-fluorohectorite, where
the director now coincides with the platelets’ face normals.

Figure 4.13: Photographs of sample 3.14 after slow evaporation to a little
more than half the original volume had occurred over the course of approx-
imately two months. The orientation of the polarizers with respects to the
long capillary axis is indicated in the figure. The exposure time was signif-
icantly reduced in the images where the polarizers were at a 45◦ tilt with
respect to the long capillary axis, since the striking color variations here
were at their brightest and most well defined. With the crossed polarizers
at 90◦, the color spectrum is hardly visible.

There are two particularly interesting optical characteristics of the col-
ored phase, the first being the colors themselves, which correspond well with
those presented in the Michel-Lévy chart of Figure 2.12 for a retardation
∆nl continuously decreasing with sample depth from a reference position at
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Figure 4.14: Photographs of sample 3.3 after slow evaporation to about
half the original volume had occurred over the course of approximately two
months. In the leftmost image only the analyzer is present, tilted at a 45◦

angle with respects to the long capillary axis. The second picture from the
left shows the similar situation where only the polarizer is present at a 45◦

tilt. The striking colors of the third and fourth images from the left only
appear when the sample is viewed between polarizers. In the two rightmost
pictures, the exposure time was increased and kept at a fixed value for both
the 45◦ and 90◦ orientations.
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the dispersion-air interface1. Since the light path l through the sample is
proportional to the capillary thickness, which can be presumed a constant
function of the height except for at the very top and bottom of the capillary,
a decreasing retardation with sample depth indicates that the birefringence
∆n decreases. A second notable property of the colored phase, especially
noticeable in Figure 4.14, is the curved appearance of any given monochrome
region. This curve could be thought to follow the shape of the dispersion-air
meniscus or even to reflect wall anchoring, but a closer look at Figure 4.14
reveals that this is not the case. A more likely explanation takes into account
the curved shape of the Mark tube capillaries themselves, which causes the
light path through the edges of the sample to be considerably shorter than
that through the center of the capillary. It is seen that the sequence of
colors observed for instance in Figure 4.14 upon going from the center of
the capillary and outwards, corresponds with a decreasing retardation. This
decrease is thus attributable to the diminishing light path encountered as
one moves further and further from the center of the capillary and finally
encounter the capillary edges.

Values of the birefringence ∆n can be obtained from the observed colors
of the evaporated samples. Considering the images of sample 3.3 in Figure
4.14, the first observed color, going from the bottom upwards, is a straw-
yellow hue followed by a dark magneta and blue. Comparing these colors
with the Michel-Lévy chart of Figure 2.12, it is seen that they correspond
with first order retardations ranging from around 250 nm to 600 nm. The
subsequent colors range in a continuous fashion from this first order mag-
neta to third order magneta, and to the green retardation successing it; the
latter has a retardation of about 1800 nm which, under the assumption of
a sample thickness l of 2.00− 2 · 0.01 mm = 1.98 mm, corresponds with a
birefringence ∆n = 9.1 · 10−4. There could be several explanations for the
high birefringence observed close to the dispersion-air interface relative to
that observed at larger sample depths. According to Strobl [69], both the
birefringence ∆n as well as the total diamagnetic susceptibility anisotropy
∆χtot of the dispersion, are proportional to the nematic order parameter
S2 of a uniaxial nematic. This assumes all regions of the nematic phase
consists of nematogens of equal anisotropic properties. The total diamag-
netic susceptibility anisotropy in this case denotes contributions both from
the anisotropy of each individual nematogen platelet as well as the con-
tribution attributable to their relative order with respects to each other.
For polydisperse fluorohectorite dispersions however, it is seen that both an
increase in the order parameter as well as an increase in the diamagnetic
susceptibility for individual Na-fluorohectorite platelets, lead to an increase

1From the Michel-Lévy chart it is seen that a sequence of red-magneta-blue-green-
yellow colors indicates a corresponding increase in retardation, whereas the opposite se-
quence of red-yellow-green-blue-magneta in the same manner indicates a decrease in re-
tardation.
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in ∆χtot. The most likely explanation for the decrease in birefringence with
increasing sample depth relative to the dispersion-air interface, seems to be
that the order decreases. This possibility is further investigated with x-ray
scattering techniques in the following section. An additional contributing
explanation could be that the platelet anisotropies are larger closer to the
dispersion-air interface. That the increased birefringence observed high in
the capillary should be attributable to higher Na-fluorohectorite densities,
seems unlikely in light of previous discussions on the size-selecting properties
of gravity; it is also known from previous studies on gravitationally settled
Na-fluorohectorite dispersions that the clay density increases with increasing
sample depth [59], as would be expected.

Figure 4.15: Photographs of sample 3.7 between 45◦ and 90◦ crossed po-
larizers, as indicated. In the middle and rightmost images the sample was
rotated around it’s long capillary axis relative to it’s position in the leftmost
image. A separate area displaying a tilted color spectrum is clearly visible in
the middle image with the polarizers at 45◦. In the rightmost photograph,
taken between 90◦ crossed polarizers, this area is bright relative to the rest
of the colored phase.
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Figure 4.16: Photographs taken between 90◦ crossed polarizers of only mod-
estly evaporated Na-fluorohectorite samples. It is seen that order grows from
the dispersion-air interface downwards.

In-house SAXS analyses

Figure 4.17 shows the results of a SAXS scan along the long capillary axis
of sample 3.14. Striking anisotropic scattering patterns with lobes fanning
the vertical dominate the first few scans. The positions of these scans along
the capillary axis coincide with the colored region observed between crossed
polarizers in Figure 4.13. The scattering lobe orientation confirms that the
vast majority of Na-fluorohectorite platelets in this phase are indeed lying
face down. This is the first observation of an extended region with true
uniaxial nematic ordering in aqueous suspensions of Na-fluorohectorite.

Figure 4.18 shows the azimuthally integrated intensities of the scatter-
ing images recorded from sample 3.14, as functions of the scattering vector
length q for two ranges of sample depths. The reference depth of 0.00 mm
is the position of the scan recorded closest to the dispersion-air interface. In
this scan, as well as in the subsequent six scans reaching down to a depth
of −6.00 mm, two broad-distribution peaks are clearly visible, at scattering
vectors which vary with sample depth. The non-peaked intensities are seen
to be proportional to q−2, as expected for horizontal platelets from the plots
of Figure 2.15.

Figure 4.19 shows a set of raw scattering images recorded from a vertical
scan of sample 4.13. This sample had undergone further evaporation relative
to sample 3.14. Notably, the scattering patterns from this sample are even
more anisotropic than the patterns from sample 3.14, and especially in the
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Figure 4.17: Raw SAXS data from a vertical scan of sample 3.14 at step
length intervals of 1.0 mm. Each image was recorded with an exposure time
of 1800 s. The image in the upper left corner was recorded close to the
dispersion-air interface and shows a marked anisotropic and slightly tilted
scattering pattern with respects to the image vertical, that is repeated as
almost completely vertical anisotropic patterns in the subsequent six images
ranging down to a depth of −6.00 mm. This vertical distance corresponds
with the extent of the rainbow colored birefringent region shown in Figure
4.13. The subsequent SAXS scans show the usual anisotropic pattern of the
nematic phase where the platelets are standing, followed by isotropic scans
attributable to the gelled phase.
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Figure 4.18: Scattered intensities from sample 3.14 as functions of the scat-
tering vector q, plotted with logarithmic axes. The topmost image shows
the intensities recorded at sample depths between 0.00 mm and −17.0 mm,
whereas the bottom image shows intensities recorded between −18.0 mm
and −22.0 mm. The insets show the raw two-dimensional scattering images
for respectively the first and last scans included in the respective plots. The
fitted line illustrates that the non-peaked intensities are proportional to q−2.
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first image of Figure 4.19, shapes that resemble Bragg scattering rings are
visible. Figures 4.20 and 4.21 show the azimuthally integrated intensities
of these scans for three ranges of sample depths. Intensity peaks whose
q locations vary with sample depth are, in analogy to the peaks observed
in the scattering from sample 3.14, also observed in the plots of figures
4.20 and 4.21. The peaks in the scattering from sample 4.13 are however,
relative to the approximately q−2 shaped background, more intense than
those observed for sample 3.14, and also generally appear at higher values
of the scattering vector q. In order to find the precise peak positions, a q−2-
shaped background was manually subtracted from the intensity profiles. A
representative resulting plot, at the −2.00 mm, is shown in Figure 4.22.
Resulting peak locations are listed in Table 4.1.

Table 4.1: Peak centra obtained from the scattering profiles of sample 4.13.
The 2nd/1st parameter is the location of the 2nd peak divided by the loca-
tion of the 1st.

depth 1st peak 2nd peak 2nd/1st
[ mm] [ nm−1] [ nm−1]
-0.00 1.14 2.34 2.05
-0.50 1.13 2.34 2.07
-1.00 1.10 2.24 2.04
-1.50 1.05 2.12 2.02
-2.00 0.97 2.00 2.06
-2.50 0.90 1.83 2.03
-3.00 0.86 1.78 2.07
-3.50 0.83 1.77 2.13
-4.00 0.82 – –
-4.50 0.78 – –

It is seen that the 2nd peak is located at a q that is well approximated as
the double of the q-location of the 1st peak, indicating that these peaks are
(001) and (002) reflections2. The real-space distances corresponding with
the (001) peak then spans from a value of 5.51 nm at the 0.00 mm depth to a
value of around 7.57 nm at −3.50 mm. These distances reflect characterizing
distances in the studied sample, and are on the order of the Debye-Hückel
screening length. The possible physical meaning of these distances will be
further discussed in the next section, dealing with synchrotron scattering
from sample 4.13.

2The choice of the l-index is justified when it later becomes apparent that the small
angle peaks share the anisotropy of the (001) Bragg scattering from the unit layers.
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Figure 4.19: Raw SAXS data from a vertical scan of the highly evaporated
sample 4.13 at step length intervals of 0.5 mm. Each scattering image was
recorded with an exposure time of 1800 s. The diffractogram in the upper
left corner was recorded immediately below the dispersion-air interface.

97



Figure 4.20: Scattered intensities from sample 4.13 as functions of the scat-
tering vector q, plotted with logarithmic axes. The topmost image shows
the intensities recorded at sample depths between 0.00 mm and −1.50 mm,
whereas the bottom image shows intensities recorded between −2.00 mm
and −5.00 mm. The insets show the raw two-dimensional scattering im-
ages for respectively the first and last scans included in the respective plots.
The fitted line illustrates that the non-peaked parts of the intensities are
approximately proportional to q−2.
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Figure 4.21: Scattered intensities from sample 4.13 as functions of the scat-
tering vector q, plotted with logarithmic axes. The plot shows the intensities
recorded at sample depths between −5.50 mm and −9.50 mm.

Figure 4.22: Logarithm of the background subtracted intensity from sample
4.13 at a depth of −2.00 mm.
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Synchrotron studies

Figure 4.23 shows four representative raw scattering images obtained during
a vertical scan of the 1 mm Mark tube sample 4.13 with a beam defining
slit of dimensions 150× 800 µm. Corresponding plots of the integrated in-
tensities as functions of the scattering vector are found in figures 4.24, 4.25
and 4.26. Interestingly, it is seen that the (001) Bragg peak from the unit
layer stacks, appearing at a scattering vector of 4.19 nm, grows considerably
weaker relative to the small angle scattering in the scans taken higher in the
sample. The raw intensity profiles recorded close to the dispersion-air inter-
face are strikingly anisotropic. Another notable observation is the presence

Figure 4.23: Raw scattering images recorded from sample 4.13 at four dif-
ferent depths. The intensity ranges spanned by the color spectrum varied
as shown on the figures. Thus the green color of for instance the upper left
image represents a substantially higher count than that represented by the
green color of the lower right image.
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of moderate speckles in the Bragg ring, in the scans taken at larger depths.
The speckles are visible in the raw scattering image shown in the bottom
right corner of Figure 4.23, and were observed also at neighboring depths.
As previously noted, it is expected from the discussion of section 2.2.1 that
the larger particles present in the initially polydisperse Na-fluorohectorite
dispersions will have sedimented at a significantly higher rate than particles
with smaller volumes. The above results corroborates this, as the speckles
observed in the scans from the lower sample regions might be attributed
to the presence of larger stacked structures. The dominance over the (001)
2wl Bragg ring by small angle scattering in the higher parts of the sample
indicates that the particles in this region are spatially correlated also beyond
the unit layer stacking. It is a possibility that the particles in the higher
sample regions consist of considerably fewer stacked layers, this being either
a feature of the original polydisperse powder itself, or the result of initially
stacked particles having undergone a degree of delamination or colloidal
swelling, leading to new interlayer separations in the range of the observed
small angle scattering. The complete or near-complete delamination of Na-
fluorohectorite particles in water suspensions has been thought not to occur
due to the high layer charge density of fluorohectorites [12]. Previous studies
have reported that Na-fluorohectorite particles exist as stacks of between 20
and 100 unit layers in aqueous suspensions [12]. However, since these studies
were based on Bragg scattering, they are insensitive to the presence of con-
siderably smaller stacks and even more notably, the technique does not at
all see single unit layers, whose presence in the higher sample regions thus
would likely go undetected. It is hence not impossible that the reported
range of between 20 and 100 unit layers represents an upper bound to the
number of stacks N , and that the distribution in N tails off down to the
single layer state. Further investigations into the stacking polydispersity of
Na-fluorohectorite dispersions might thus be prudent, especially in light of
the great differences in swelling capacities observed in section 4.1 for respec-
tively mono- or di- and trivalently intercalated fluorohectorites, which are
all known to intercalate water and undergo crystalline swelling.

From both the two-dimensional scattering data of Figure 4.23 and from
the plots of the integrated intensity profiles of sample 4.13, it is obvious
that changes in the sample structure occur as one moves down from the
dispersion-air interface. The intensities at the depths shown in figures 4.24,
4.25 and 4.26 correspond with the depths at which significant changes are
seen to occur in the intensity profiles. From the obvious wandering of two
broadly distributed small angle peaks with sample depth, similar to those ob-
served with the in-house x-ray equipment, it is apparent that characterizing
distances larger than the interlayer spacing of the traditional 2wl structure
are present in the colored phase of sample 4.13. The most intense of these
peaks is visible only at depths of 0.00 mm and −0.25 mm, and have already
at the latter value peaked outside of the experimental q-range. At the depth
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Figure 4.24: Integrated intensities from the colored phase of the partially
evaporated sample 4.13. The depths are given in mm relative to the posi-
tion of the first scan, which was taken at a depth of 0.00 mm, close to the
dispersion-air interface.
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Figure 4.25: Integrated intensities from the colored phase of the partially
evaporated sample 4.13. The depths are given in mm relative to the posi-
tion of the first scan, which was taken at a depth of 0.00 mm, close to the
dispersion-air interface.
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Figure 4.26: Integrated intensities from the colored phase of the partially
evaporated sample 4.13. The depths are given in mm relative to the posi-
tion of the first scan, which was taken at a depth of 0.00 mm, close to the
dispersion-air interface.
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of the reference scan however, the peak reaches it’s maximum within the ex-
perimental range, at a q-value of 1.7 nm−1. The second, broadly distributed
peak in the integrated intensity profiles from sample 4.13 is visible for a
larger range of depths, and has it’s first clear peak at a depth of −0.25 mm,
where it maxes out at approximately 2.9 nm−1. However, already at a depth
of −1.00 mm this peak has moved considerably and reaches it’s maximum
at a q-value of approximately 1.75 nm−1. At depths of between −0.75 mm
and −1.25 mm a third, very weak peak is also visible. The peak locations
obtained are presented in Table 4.2, which also shows how the 3rd peak is
located at a scattering vector that is approximately 1.5 times that which
the 2nd peak is found at. This indicates that the 2nd and 3rd peaks could
correspond to (002) and (003) order reflections. The fundamental real space
separation responsible for this scattering then is seen to range from around
4.3 nm at the −0.25 mm depth, to a value of between 7.3 nm and 7.6 nm at
−1.25 mm. These distances roughly corresponds with those observed for the
same sample with the in-house x-ray equipment, as discussed earlier. The
fact that the phase close to the air-interface now adopts even smaller particle
separations might be a results of the sample having undergone further evap-
oration in the approximately three weeks that passed between the in-house
and synchrotron scattering recordings. The observed real-space distances
are, if the interpretation of these peaks as (001), (002) and (003) reflections
is correct, considerably below the range of minimal inter-particle separations
expected from the locations of the secondary minima of the DLVO-theory,
as discussed in section 2.2.2. However, it should be recalled that the calcu-
lations of that section were based on rough estimates to critical parameters
such as the Hamaker constant, and it can therefore not be excluded that the
peaks seen in the scattering from sample 4.13 does reflect inter-particle sep-
arations, between the surfaces of either small or larger stacks – rather, this
is the most likely explanation for these peaks. That the small angle inten-
sity peaks originate from scattering between platelet faces is made probable
by the anisotropy of these peaks, which follows the anisotropy of the 2wl
(001) Bragg scattering. From the wandering of the discussed peaks towards
lower q-values with increasing sample depth, it is seen that the real space
correlations responsible for this scattering correspondingly increase as one
moves further away from the dispersion-air interface.

Figure 4.27 shows a range of intensity profiles recorded from sample 4.13
on a log-log plot. From this plot it becomes clear that a marked change
in the sample occurs upon transitioning from the −1.50 mm to −1.75 mm
depth. The scattered intensity drops considerably, but then remains rela-
tively uniform throughout the rest of the scanned series, ranging down to
a depth of −6.50 mm. Figure 4.28 shows peak centra and widths found
from the 2θ-integrated intensity profiles of sample 4.13. The integration
over the scattering angle was limited to the range immediately surrounding
the (001) 2wl Bragg ring, and the intensity profiles fitted with Gaussian dis-
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Figure 4.27: Log-log plot of integrated intensities recorded from sample 4.13
as functions of the scattering vector. Note the marked drop in the intensity
between depths of −1.50 mm and −1.75 mm.
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Table 4.2: Peak centra obtained from the scattering profiles of sample 4.13.
The 3rd/2nd parameter is the location of the 3rd peak divided by the loca-
tion of the 2nd.

depth 1st peak 2nd peak 3rd peak 3rd/2nd
[ mm] [ nm−1] [ nm−1] [ nm−1]
-0.00 1.7 – – –
-0.25 – 2.9 – –
-0.50 – 2.2 – –
-0.75 – 1.9 3.0 1.6
-1.00 – 1.75 2.7 1.5
-1.25 – 1.65 2.6 1.6

tributions. Estimated errors were output by the fitting procedure and are
shown along with the data points. The topmost plot of Figure 4.28 shows
how the scattered intensities at different depths peak at different values of
the azimuthal angle φ. A general tendency of going from a tilted to a more
vertical orientation is clearly visible. The second plot of Figure 4.28 shows
peak widths obtained from the Gaussian fits. These widths might be used
as a first approximation to assessing the order of the investigated sample; it
is thus seen that, with the exception of the 0.00 mm position, the nematic
order decreases with increasing sample depth. However, a more precise eval-
uation of the order was accomplished by fitting the scattering data with a
Maier-Saupe type distribution, described by Méheust in [48]. As described
in section 3.3, this fitting procedure allows for the calculation of the order
parameter S2, that was discussed in section 2.3.1 for a uniaxial nematic.
Values of S2 obtained from the scattering data recorded from sample 4.13
are listed in Table 4.3 and plotted in Figure 4.29. It is seen that close to the
dispersion-air interface the order parameter adopts values between 0.77 and
0.91, that are considerably and consistently higher than the values in the
range from 0.3 to 0.7 previously reported for the standing nematic phase of
Na-fluorohectorite dispersions [30]. Based on Monte Carlo studies of hard
and infinitely thin platelets, Eppenga and Frenkel [15] found that immedi-
ately above the isotropic-nematic transition, their system quickly attains an
order parameter larger than 0.6; however, studies on nematic phases in clay
gels often yields values below this, such as for instance the values of around
0.55 found by Lemaire et al. for laponite gels in [39]. Lemaire et al. com-
pare their results with predicted values for the order parameter of between
0.7 to 0.8, explaining their relatively low value based on the possibility of
topological defects in the laponite gel. Similarly, the values of between 0.3
and 0.7 obtained for Na-fluorohectorite by Hemmen in [30], as well as the
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Table 4.3: Order parameters S2 for sample 4.13 calculated from scattering
data recorded at different depths. The depths are in mm relative to the
position of the dispersion-air interface.

depth S2 depth S2 depth S2

0.00 0.77 -2.25 0.58 -4.50 0.42
-0.25 0.91 -2.50 0.56 -4.75 0.42
-0.50 0.89 -2.75 0.54 -5.00 0.40
-0.75 0.87 -3.00 0.53 -5.25 0.39
-1.00 0.85 -3.25 0.51 -5.50 0.35
-1.25 0.83 -3.50 0.50 -5.75 0.34
-1.50 0.83 -3.75 0.48 -6.00 0.35
-1.75 0.66 -4.00 0.47 -6.25 0.35
-2.00 0.62 -4.25 0.44 -6.50 0.30

lower values obtained for sample 4.13 at depths beyond −1.50 mm, could
be explained by the presence of smaller nematic domains, so that the inci-
dent x-ray beam effectively averages out the actual order parameter, valid
for individual domains, to a lower value. It is interesting in this respect, to
observe from Figure 4.29 that the sudden jump in the order parameter down
to previously reported values between depths of −1.50 mm and −1.75 mm
corresponds with the marked drop in intensity noted between these depths
in Figure 4.27. Because the ordered state of the face-down platelets of the
colored phase correspond with the requirement for observing Bragg scatter-
ing at the detector plane, the drop in intensity with a suddenly decreasing
order parameter is well understood. It is also seen from the φ locations of the
intensity peak centra plotted in Figure 4.28, that between the two depths
of −1.50 mm and −1.75 mm, the continuous clockwise tilting observed in
the scattering data from the dispersion-air interface downwards, suddenly
changes to a counter-clockwise tilt. Note that the decrease in the order pa-
rameter with increasing sample depth could be predicted for the evaporated
samples already in the discussion of their optical properties, where the ob-
served color changes were found to indicate a decreasing birefringence with
sample depth. As mentioned in section 2.3.1, the birefringence ∆n and hence
also the retardation ∆nl of a liquid crystalline phase is proportional to S2.
It is also worth pointing out that, based on the relatively linear relationship
between the Gaussian widths found from the integrated intensities of sample
4.13 and the calculated Maier-Saupe-based order parameter, illustrated in
Figure 4.30, a Gaussian analysis of the azimuthal intensity profiles likely can
present a valid first approximation to the order for uniaxial fluorohectorite
suspensions.
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Figure 4.28: Plots of peak centra (top) and widths (bottom) found from
Gaussian fits to the 2θ integrated diffractograms recorded from sample 4.13
at varying sample depths. The 2θ integration was limited to the 2wl (001)
Bragg peak.
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Figure 4.29: The uniaxial nematic order parameter S2 plotted for the scat-
tering data recorded from Mark tube sample 4.13 as a function of sample
depth.

Figure 4.30: Plot of the Gaussian widths of Figure 4.28 versus the order
parameter shown in Figure 4.29, for the scattering recorded from sample
4.13. The red line shows a linear fit to the data points.
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Based on the discussion of section 2.4, one further point can be made
from the scattering data recorded from sample 4.13, with regards to particle
stacking polydispersities. It was explained in that section how the q-based
peak width attributable to the sample could be approximated by the rela-
tion ΩL ≈ 2π/Navd + ∆dq/d, yielding an estimate for the average number
of stacks contributing to the 2wl Bragg scattering. Unfortunately, no good
calibration samples were available at the PAL synchrotron and hence an es-
timate with regards to the instrumental width was not obtained. However,
based on the scaled intensity plot of Figure 4.31 over the q-range of the
2wl Bragg ring, it seems that some changes in Bragg peak width may have
occurred in response to the changing sample depth at which the profiles
were obtained. Based on this preliminary observation, linear-background
subtracted Bragg profiles were fitted with so-called Pseudo-Voigt functions3

in order to more precisely evaluate the changes in the Bragg peak width.
The fits obtained at depths of respectively −0.25 mm and −6.50 mm are
shown in Figure 4.32. Neglecting both the contributions from the unknown
instrumental width and from the strain ∆dq/d, the obtained FWHM-values
of these two fits correspond with particle thicknesses Navd of respectively
18.3 nm and 22.4 nm, and corresponding average stacking numbers of 12
and 15 unit layers. This is a small difference that only weakly supports
the hypothesis that the higher sample regions contain fewer-stack particles.
Because of the non-negligible uncertainties introduced by overlooking both
the instrumental width and the strain, these results are at best qualitative
and at worst invalid. It is therefore recommended that point-detector based
studies especially designed for investigations into the possible stacking poly-
dispersity in gravitationally settled and partially evaporated samples be un-
dertaken. It is interesting to study the size selection of such fluorohectorite
samples because it has already been shown that the order adopted in the
topmost phase of gravitationally settled and partially evaporated samples is
considerably higher than that usually observed in the standing nematic ob-
tained by gravitational phase separation alone. When it is also recalled that
the peaks observed in the small angle scattering from this highly orienta-
tionally ordered phase could correspond with inter-particle separations, this
phase presents itself as a prime candidate for future studies aimed at observ-
ing phase transitions to smectite or columnar states in Na-fluorohectorite
dispersions.
Figure 4.33 shows the integrated intensities profiles recorded from the partly

3Pseudo-Voigt functions are convolutions of Gaussian and Lorentzian distributions that
are commonly used for evaluating peaks widths in scattering data; the Gaussian width of
the convolved distributions then reflects the instrumental width whereas the Lorentz width
corresponds with the inherent width of the Bragg peak [19]. Due to the unknown instru-
mental width, in the current discussion the Pseudo-Voigt function’s characteristics are not
further treated. An application of Pseudo-Voigt based peak analyses on fluorohectorite
dispersions can be found in [9].
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Figure 4.31: Plot of scaled intensities from sample 4.13 as functions of q; the
scaling was accomplished by requiring that all Bragg peak maxima should
occur at an intensity 100000.

Figure 4.32: Pseudo-Voigt fits to the 2wl (001) Bragg peak in the inten-
sity profiles recorded from sample 4.13 at depths of −0.25 mm (left) and
−6.50 mm (right). The FWHM-values of the full peak profiles were found
to be 0.344 nm−1 and 0.280 nm−1, respectively.
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evaporated sample 3.7 as functions of the scattering vector length q. Similar
profiles are seen at depths between −1.00 mm and −4.00 mm, and between
−6.00 mm and −19.0 mm. A sudden drop in intensity, similar to that ob-
served in sample 4.13, is seen to occur between sample depths of −5.00 mm
and −6.00 mm. Observed for both evaporated samples, it seems possible
that this intensity drop reflects a transition between the nematic phase that
grew from the dispersion-air interface downwards, as was illustrated in Fig-
ure 4.16, and the phase originally developed by sedimenting tactoids. That
the depth of the transition is larger in the current sample relative to sample
4.13, can be explained in light of the more advanced evaporation seen in
sample 4.13, causing all phases to appear compressed relative to those seen
in sample 3.7. Furthermore, sample 4.13 was drawn from a 2w/w% dis-
persion whereas 3.7 originated from a 3w/w% dispersion, which might also
contribute to the smaller phase volumes seen in the former. From Figure

Figure 4.33: Intensity profiles recorded from sample 3.7 at the indicated
depths. The profiles taken at depths of −5.00 mm and −23 mm deviate from
the otherwise relatively smooth trends observed in the other profiles. In the
range of profiles recorded between depths of −6.00 mm and −19.0 mm, the
lowest intensity profiles correspond with the smallest depths - the opposite
is true for the profiles recorded between −1.00 mm and −4.00 mm.

4.33 it is seen that the −5.00 mm profile shows an increased Bragg scat-
tering relative to data recorded closer to the dispersion-air interface. The
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2wl (001) Bragg scattering peak remains notable down to a sample depth
of at least −19.0 mm, with the exception of the 0.00 mm position, where
no Bragg ring is observed. It is seen that the intensity profile obtained
at −23.0 mm has a significantly reduced (001) Bragg intensity relative to
the profiles recorded above it. Unfortunately, it was found that trying to
calculate the order parameter of the scattering data from sample 3.7 likely
would introduce artificial features, due to a marked φ intensity modulation
in the 2wl Bragg ring not compatible with Maier-Saupe fitting – showing for
instance more than two peaks in the azimuthal profiles. Often, it appeared
that shadowing effects from the 2 mm capillary featured in and reduced the
observed intensity in the vertical direction.

Figures 4.34 and 4.35 shows raw data obtained from vertical scans map-
ping the scattering from sample 4.13, so that the scan effectively shows
the orientational distribution of Na-fluorohectorite particles across the short
capillary axis. Previous studies have reported considerable homeotropic wall
anchoring of Na-fluorohectorite particles to polar glass walls [10]. In the
scans across sample 4.13’s short capillary axis however (wall to wall), no
changes in particle orientations are seen to occur at the −2.00 mm depth,
whereas in contrast, remarkable changes are seen in the data recorded close
to the dispersion-air interface, where the scattering goes from a completely
horizontal to an almost completely vertical azimuthal orientation, and back
again. This seems to indicate that the notable changes in the scattering pro-
files close to the dispersion-air interface, are attributable to the dispersion
meniscus and not to wall anchoring. If it were attributable to wall anchor-
ing effects, the changes observed close to the interface should have been seen
also at the −2.00 mm depth. The apparent lack of wall anchoring can be
explained if the anchored regions extended to distances much smaller than
the scan’s resolution. However, in these scans the beam defining slit was
only 30× 50 µm. Another explanation might simply be that the particles in
the colored phase have for some reason not adopted a homeotropic configu-
ration near the capillary walls. If the first explanation is assumed correct,
the presence of only a very narrow homeotropic layer might be explained
in light of the results presented in the previous sections, which were found
to indicate that the phase which the present scan was taken from could
contain on average smaller particle stacks than lower sample regions. The
distributing effects of wall alignment in a phase containing relatively smaller
particles might be thought weaker, so that the region over which distorted
particle orientations are correlated becomes smaller. However, the high or-
der parameters observed close to the dispersion-air interface argues against
this explanation, since the higher the order parameter is, the stronger the
force required to distort the phase. It could be possible that the orient-
ing effects of the dispersion-air interface are so strong relative to the wall
anchoring, that the effects of the former, from a free energy minimization
point of view, overrides wall anchoring. However, this possible explanation
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Figure 4.34: Raw scattering images recorded from a horizontal scan across
sample 4.13 at step intervals of 0.10 mm. The left column shows images
recorded close to the dispersion-air interface at a depth of 0.00 mm. The
right column shows images recorded at a depth of −2.00 mm, whose hori-
zontal locations in the capillary correspond with those in the left column.
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Figure 4.35: Raw scattering images recorded from a horizontal scan across
sample 4.13 at step intervals of 0.10 mm. The left column shows images
recorded close to the dispersion-air interface at a depth of 0.00 mm. The
right column shows images recorded at a depth of −2.00 mm, whose hori-
zontal locations in the capillary correspond with those in the left column.
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for the lack of wall anchoring seen at the −2.00 mm depth is countered by
the apparent curvature of the phase at the interface – this curvature appar-
ently does not distribute down to −2.00 mm. It is therefore not understood
why the there are such marked changes between the horizontally recorded
scattering profiles at the two different depths.

4.4 The Fréedericksz transition for Na-fluorohectorite

The current section will address the effect of magnetic fields on Na-fluorohectorite
dispersions. Figure 4.36 shows optical images of sample m.1 taken between
90◦ crossed polarizers after the sample had been turned 90◦ around it’s long
capillary axis in a magnetic field of 0.97 T. Prior to turning, the sample
had been standing in this field for several days. Because of the general ten-
dency for the sample to darken with time, it is likely that the dark stripes,
especially visible in the first images, represent the stable configuration for
fluorohectorite particles in the field. From section 2.3.2 it is known that
this configuration is achieved when the nematic director ~n is perpendicular
to the field, so that the clay platelets are either lying face down or stand-
ing with their faces oriented parallel with the field (they can also be tilted
over – this configuration is however incompatible with the observed bire-
fringence extinction). As seen from the discussion of section 2.3.3, these
configurations correspond with the requirement for the propagating light to
either experience only the extraordinary or the ordinary index of refraction
of the medium, so that no birefringence is observed. It should be noted
that from the optical images of Figure 4.36 alone, it is not possible to deter-
mine whether the black stripes all originate from face down particles, from
standing particles, or from a mixture of both, either within a single stripe
or between different stripes. There seems to be a tendency for less defined
black regions to grow from within the middle of the larger stripes, that ap-
pear orange in the first images of Figure 4.36. It could be that these black
regions, which develop much more slowly than the defined stripes, represent
one stable configuration while the defined stripes represent the other.

Figure 4.37 shows two images of Fréedericksz transition stripes in sample
m.1. The experiment was as much as possible identical to the one whose
results are depicted in Figure 4.36, but was conducted at a later time. The
leftmost image of Figure 4.37 shows a pattern that is relatively similar to
those shown in Figure 4.36, particularly with respects to the colors of the
transmitted light, which is prominently orange and turquoise. In the right-
most image of Figure 4.37 the sample was turned approximately 45◦ around
it’s long capillary axis before re-photographed. It is seen that the horizontal
black stripes are still present. This indicates that the particles compris-
ing the striped regions likely are lying face down, since a 45◦ rotation of a
uniform standing nematic would turn it off the extinction position.
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Figure 4.36: Optical microscopy images between 90◦ crossed polarizers of
a periodic pattern that has appeared in the 1 mm Mark tube sample m.1
after it was turned 90◦ around it’s long capillary axis in a magnetic field of
0.97 T. The field lies in the image plane. Prior to turning, the sample had
been standing in a field perpendicular to the image plane for several days.
The field was present also while the images were recorded. All images were
recorded with the same exposure time.

Figure 4.37: Microscope images of magnetically induced Fréedericksz transi-
tion stripes in sample m.1. The experimental setup was as much as possible
identical to that described in Figure 4.36. In the rightmost image, the sam-
ple has been turned 45◦ around it’s long capillary axis.
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Figure 4.38 shows a set of intensity profiles obtained by integrating the
scattering data from sample m.1 shown in figures 4.39, 4.40 and 4.41 over
the azimuthal angle φ. The data was obtained at the PAL synchrotron.
The reference depth of 0.00 mm is also in this series taken as the position
of the first scan recorded – however, for the non-evaporated m.1 sample
this reference depth does not correspond with the dispersion-air interface.
The intensity profiles plotted in Figure 4.38, corresponding with the raw
scattering data of figures 4.39, 4.40 and 4.41, are all taken from the second
standing nematic phase of sample m.1. The sample had been standing in
a magnetic field of approximately 1 T for a few days before the scans were
recorded. In the hour and a half before the first scattering image was taken,
the sample was turned 90◦ around it’s long capillary axis while still in the
field. When striped patterns were visible in the second standing nematic
when viewed between crossed polarizers (naked eye observations), the sample
was removed from the magnetic field and the scan series started immediately.
The incident direction of the x-ray beam with respects to the sample was
parallel to the original direction of the magnetic field prior to turning. It
is important to note that, because each scan at a given sample depth is
composed of 55 scattering images and 5 darks recorded over a timespan
of about 23 min, it is possible that time dynamics play a role in this data
series, both between images taken at different depths, as well as within a
single image. This is due to the increased dynamics initially induced by the
magnetic field.

From Figure 4.38 it is seen that, like the previously discussed samples,
also m.1 shows small-angle intensity profiles which approximately scale with
q−2 – however, the power law for a linear fit to the intensities is slightly
below this value (it was found to be close to 1.7). A very notable feature of
these scattering profiles, is the complete absence of the expected 2wl (001)
Bragg ring. No Bragg ring was observed in any of the scans taken from the
second nematic phase of sample m.1. It is possible that this feature could
be an effect of the magnetic field, which might be thought to have aligned
the particles in a fashion not compatible with the requirements for obser-
vations of Bragg interlayer scattering at the detector plane. The shape of
the small-angle scattering from sample m.1 however, does not present any
evidence that supports this hypothesis. In fact, the q−2-shaped small-angle
scattering along with it’s marked azimuthal anisotropy, rather indicates that
a significant amount of the dispersed platelets are oriented with their direc-
tors parallel with the scattering vector ~q, in a configuration that is compat-
ible with the requirement for observing interlayer Bragg scattering at the
detector. It could be thought that a low particle density in the second ne-
matic phase explains the lack of observable 2wl (001) scattering. That the
small-angle profiles have intensities and azimuthal distributions comparable
to those observed in the profiles recorded from sample 4.13 and 3.7, where
interlayer Bragg scattering was visible above the small-angle background,
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Figure 4.38: Scattered intensity profiles recorded from sample m.1.

argues against this explanation. However, as already discussed in earlier
sections, another explanation for the lack of 2wl (001) Bragg scattering,
might be that the particles in the investigated phase were not present as
significantly stacked lamellar structures. It is in this context interesting to
note that sample m.1, prepared by Ringdal for his master thesis [59], was at
the time these scans were recorded more than one year old. On such time-
scales, even relatively small particles present in the initial fluorohectorite
dispersion likely would have had time to settle. It is also worth to point
out that sample m.1 proved much more responsive to magnetic fields than
other investigated samples, which is why it features so prominently in the
current section. Attempts at observing the Fréedericksz transition in the
second standing nematic phase of newer samples were unfruitful. The fact
that previous attempts at aligning the first standing nematic in magnetic
fields also have failed [59], might indicate that particle size is an important
parameter in this context. However, it is also known that the first standing
nematic has a higher viscosity (is less fluid-like [59]) than the second nematic,
which would explain why it is harder to align the former by application of
external fields.

It is now time to pick up the thread which was left off at the end of section
2.3.2, discussing the possible morphologies of Na-fluorohectorite platelets in
the Fréedericksz transition process, described both in that section and in the
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current discussion. The raw scattering images of Figure 4.40 shows that, at
a relatively large range of depths, the small angle scattering is peaked at
azimuthal angles between 40◦ and 50◦, corresponding with platelets tilted
at angles of 50◦ and 40◦ with respects to the long capillary axis – a con-
figuration that does not correspond with the stable alignment relative to
the reorienting field. This platelet orientation does however corresponds
with the intermediate state between the standing configuration, stable and
probable in the initial field, and the face down configuration, that would be
stable in the reorienting field (and in the initial field as well). It is possible
that the scattering images shown in Figure 4.40 correspond with a frozen-in
snapshot of a certain platelet configuration adopted in the reconfiguration
process – that this configuration is relatively time-stable could be explained
due to the important fact that the reorienting field was removed before the
sample was exposed to the x-ray beam and the scattering data recorded.
Once the field is removed, this tilted over orientation is of course no longer
inherently unstable, unless it is disfavored by either the capillary walls or the
surrounding director field. If the latter forces do not work to alter the tilted
configuration as it was at the time the reorienting field was removed, or if
these forces are relatively weak, then it is very possible that the scattering
images of Figure 4.40 do indeed show a frozen-in structure obtained midways
in the reorienting process. It is worth noting that, to an observer regarding
m.1 in a crossed-polarizer setup with the light path oriented parallel with the
x-ray beam, the proposed tilted-over orientation of the Na-fluorohectorite
platelets would present a birefringent and non-extinct sample region. The
scattering images of Figure 4.40 do therefore not present any evidence with
regards to particle orientations in the dark Fréedericksz transition regions
observed optically.

The scattering images shown in figures 4.39 and 4.41, at depths respec-
tively above or below the previous discussed data, are somewhat harder to
interpret, as several particle orientations seem to contribute to a single scat-
tering image. Because of the two-dimensional character of the scattering
data, it is not possible to determine whether these many-featured scattering
profiles result from sample regions that adopt multiple orientations in the
horizontal plane or in the vertical plane, or in both directions simultane-
ously. In the last images of Figure 4.41, it is seen that again one direction
prevails; the scattering here peaks at an azimuthal angle of between 110◦

and 120◦, and can be explained by the same frozen-in reorientation between
standing and face down configurations that was used to illustrate the pos-
sible physical origin of the scattering data shown in Figure 4.40. In the
theoretical discussion of the Fréedericksz transition of section 2.3.2, it was
found that a reorientation from standing to face down platelet orientations
would be preferable over the reorientation pathway involving platelet ro-
tations around the direction of the long capillary axis. This hypothesis is
supported by the scattering data shown in Figures 4.40 and 4.41.
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Figure 4.39: Raw scattering images recorded from sample m.1. The scans
were taken at depths between 0.00 mm (upper left image) and −0.75 mm
(lower right image). Each displayed image was compiled from 55 individual
frames and 5 darks, taken over a timespan of approximately 23 min.
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Figure 4.40: Raw scattering images recorded from sample m.1. The scans
were taken at depths between −0.90 mm (upper left image) and −1.65 mm
(lower right image). Each displayed image was compiled from 55 individual
frames and 5 darks, taken over a timespan of approximately 23 min.
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Figure 4.41: Raw scattering images recorded from sample m.1. The scans
were taken at depths between −1.80 mm (upper left image) and −2.55 mm
(lower right image). Each displayed image was compiled from 55 individual
frames and 5 darks, taken over a timespan of approximately 23 min.
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Chapter 5

Conclusions and suggestions
for future studies

The current chapter will attempt to sum up the results and discussions of the
previous chapter, and offer some hints with regards to topics where further
investigations likely could shed more light on the features observed in the flu-
orohectorite dispersions investigated. In the previous chapter, several, but
never conclusive, results were found to indicate that there is a possibility of
gravity and Brownian motion sorting particles into different sample strata
that are characterized not only by distributions in particle diameters but
also in the number of unit layers contained in each lamellar platelet. The
fact that the sedimentational velocities of colloidal platelets were already
in the theory chapter determined as being proportional to the radius and
diameter factor Rd [81, 53], provides a theoretical background for why it is
expected that platelets polydisperse in both their radii and diameters should
be sorted by gravity into vertical strata, where the larger Rd particles form
the bottom parts of the dispersions. The lack of Bragg scattering observed
in the intensity profiles recorded in the second standing nematic phase of
the Fréedericksz transition sample m.1, as well as the observed peaks in
the small-angle scattering from evaporated samples, points to the possibil-
ity of the existence of larger polydispersities in the number of stacked unit
layers for Na-fluorohectorite then what has been reported previously. It is
also worth pointing out that, in relation to the discussed attempts at phase
stabilization of capillary samples drawn from an already partially settled
Na-fluorohectorite dispersion, it was found that both birefringence colors,
corresponding values of ∆n, and observed textures all indicate that particle
sizes are determining for the type of phases observed. This is also noted
in usual gravitationally settled capillary samples, where consistently two
birefringent phases that are visually different are seen to develop atop each
other. The first phase, referred to as the normal or first standing nematic,
grows by sedimenting tactoids; the second precipitates out of solution later
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on. It is with respects to the discussions presented with regards to the termi-
nal velocities of colloidal particles in the gravitational field, likely that size
parameters determine which particles form sedimenting tactoids and which
form the second nematic phase. In the theory chapter discussions on the
DLVO-potential, it was found that smaller-stacked particles are more overall
repulsive than larger stacked structures, at a given electrolyte concentration.
Larger-stack particles might thus undergo tactoid-forming nucleation-and-
growth processes at a given salt concentration, whereas a portion of the
potentially smaller-stacked particles initially would remain dispersed due to
the effects of Brownian motion and slow sedimentational velocities, and later
on, would be mutually repulsive. Marked discrepancies are however found
between the inter-platelet separations observed from the small-angle peaks
in the scattering profiles of the evaporated samples, and the DLVO-based
arguments. The derived DLVO-potentials are however very uncertain with
regards to their validity, both because of the estimates made to unknown pa-
rameters such as the Hamaker constant for fluorohectorite platelets, and due
to the discussed possibility that the DLVO-interactions only are truly valid
for dilute systems. Scattering studies aimed at determining the stacking
polydispersity of Na-fluorohectorite dispersions over a large range of depths
could be undertaken with the intention of shedding some light on the valid-
ity of the hypothesis that the featuring platelets are polydisperse not only in
the particle diameter but also in the number of stacked unit layers, and that
they are sorted by gravity accordingly. Another investigation method can
be envisioned based on a combination of optical and x-ray based studies. As
discussed, the birefringence ∆n ∝ ∆ε as well as the total diamagnetic sus-
ceptibility anisotropy ∆χtot of fluorohectorite dispersions are proportional
to S2 under the assumption that the extent of the nematic regions probed
contain a spatially invariant distribution in particle anisotropies. A plot of
the calculated optical birefringence ∆n versus values of the order parameter
S2 obtained for the same sample over a range of corresponding depths at a
given time, should then present a linear relationship if the distribution in
particle anisotropies is indeed the same for all the sample regions probed. If
the relationship on the other hand, is found not to be linear, then this indi-
cates that there is a spatial dependence to the distribution of the platelets’
anisotropies. This technique would probe the combined effects of both the
radial and stacking size parameters. From a both theoretical and experi-
mental perspective, it would also be interesting to try glean some insight
into the physical reason for why there is a polydispersity in particle stack
size in the first place; that there is, has already been determined [12].

The magnetic investigations conducted on sample m.1 presented some
interesting scattering profiles. Attempts were made at explaining the more
uniformly tilted azimuthal profiles as being frozen-in snapshots of a certain
point along the reorientation pathway from an initially stable standing con-
figuration to a face down configuration, that would be stable in the reorient-

126



ing field. In the theory chapter, it was determined that such a platelet rota-
tion would correspond to a splay-and-bend distortion of the nematic director,
favorable relative to the pathway featuring splay-and-twist distortions due to
platelet rotations around the long capillary axis, under the assumption that
the general relation K22 ≥ K11 > K33 [80, 67] for the Frank elastic constants
of disc-like nematogens holds true also for fluorohectorite dispersions. Any
definite connections between the optical birefringence photographs of the
Fréedericksz transition and the presented scattering data were not identi-
fied. In future studies, it would be favorable to have an optical birefringence
setup available for sample photography immediately before the scattering
data are recorded. X-ray scattering studies on the Fréedericksz transition
in Na-fluorohectorite dispersions should also preferably be conducted at a
synchrotron beamline delivering intensities high enough to allow for the en-
tire second nematic phase to be investigated within a time frame of no more
than two hours.

In addition to Na-fluorohectorite, aqueous dispersion of Li-, Fe- and Ni-
fluorohectorite were investigated qualitatively in the current project; the
differing behaviors observed with respects to everything from sedimenta-
tional features, gelling, volume swelling and phase separation demonstrate
the complexity of these systems and the likely determining effect the type of
intercalated cation has on the overall dispersion behavior. In order to con-
firm or disprove the striking dissimilarities observed between respectively
the monovalently and di- and trivalently intercalated fluorohectorites inves-
tigated, studies should be conducted on at least two different clay powder
batches for each given clay. It has previously been demonstrated how fea-
tures such as different methods for powder crushing can markedly change
the sedimentational behavior of aqueous Na-fluorohectorite dispersions [59];
it is therefore possible and likely that specific powder preparation proce-
dures might have contributed to the observed features of all the investigated
dispersions of the current project.

As a final conclusion, there are two main themes of the current project
that really merit further investigations. The first one is the observed Fréedericksz
transition, that now has been determined to likely consist of a splay-and-
bend distortion. Further investigations with more suitable sample hold-
ers might ultimately yield quantitative data with regards to wall anchoring
strengths and the Frank moduli. The second main theme is the presence
of true uniaxial nematic order obtained by slowly evaporating samples si-
multaneously setteling by the force of gravity. The high values of the order
parameter as well as the presence of peaks in the small-angle profiles from
these samples, marks them as prime candidates for further investigations on
the liquid crystalline behaviour of Na-fluorohectorite dispersions, perhaps
also beyond the nematic.
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Appendix A

Basic principles of
electromagnetism

The current appendix deals with the basics of electromagnetism from a
classical, Maxwellian viewpoint with the purpose of providing a common
background for the various parts of the current text which deal with elec-
tromagnetic phenomena. Most notably, these parts include sections 2.3.2,
2.3.3 and 2.4. Section 2.3.2 introduced electromagnetic phenomena through
the aligning effects which electric or magnetic fields have on particles with
anisotropic electromagnetic properties. Furthermore, in section 2.3.3, the
effect of such anisotropies on light propagation were investigated. Section
2.4 on the other hand, introduced the concepts of x-ray scattering from the
point of view of quantum mechanics. A rudimentary background for the
quantum mechanical treatment of that section can be found in Appendix
B. Presently, the starting point of the current appendix will be Maxwell’s
equations, written on differential form as follows [26]:

∇× ~E =
−δ ~B
δt

(A.1)

∇ · ~E =
ρ

ε̄
(A.2)

∇× ~B = µ̄ ~J + µ̄ε̄
δ ~E

δt
(A.3)

∇ · ~B = 0 (A.4)

These four equations form the basis of classical electromagnetism. The
involved parameters are defined along with their units in Table A.1. Some
disagreement evidently still exist in the scientific community with regards to
which parameter should be used to define the magnetic field. In the present
discussion, the following general relations will define the roles of the electric
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field ~E, the magnetic field ~B, and the auxiliary fields ~D and ~H:

~D = ε0 ~E + ~P (A.5)

~H =
1
µ0

~B − ~M (A.6)

For linear media the polarization ~P = ε0χe ~E and the magnetization M =
χm ~H, so that these equations can be written [26]:

~D = ε̄ ~E (A.7)

~H =
1
µ̄
~B (A.8)

In general, the electrical permittivity ε̄ = ε0
(
1 + χ̄ ~E

)
as well as the magnetic

permeability µ̄ = µ0

(
1 + χ̄ ~B

)
are not constants, but tensor functions of

the space coordinates and possibly also of time and of the frequency of
the fields. In vacuum or in isotropic, non-dispersive media however, the
permittivity and permeability are indeed constants so that in these special
cases ~D ‖ ~E and a ~H ‖ ~B. For linear dielectric and diamagnetic materials
the permittivity and permeability tensors can be written as follows, where a
coordinate system is chosen so that the director ~n points along the cartesian
z [36]:

ε̄ =

 ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖

 (A.9)

µ̄ =

 µ⊥ 0 0
0 µ⊥ 0
0 0 µ‖

 (A.10)

Commonly, the anisotropies in the permittivity and permeability are ex-
pressed through ∆ε = ε‖ − ε⊥ and ∆µ = µ‖ − µ⊥.

A.1 Electromagnetic waves

The existence of electromagnetic waves can be deduced directly from Maxwell’s
relations by decoupling these first-order, partial differential equations. In
vacuum this will yield the following two second-order equations for the elec-
tric and magnetic fields, respectively [26]:

∇2 ~E = µ0ε0
∂2 ~E

∂t2
(A.11)

∇2 ~B = µ0ε0
∂2 ~B

∂t2
(A.12)
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Table A.1: Overview of the central parameters of electromagnetism and
their SI or SI derived units [52].

parameter symbol units
electric charge e C= sA
electric current J A
electric field ~E V/m= mkg/s3A
electric displacement ~D C/m2= sA/m2

capacitance - F= C/V= s4A2/m2kg
permittivity ε F/m= s4A2/mkg
magnetic flux - Wb= sV= m2kg/s2A
magnetic field ~B T= Wb/m2= kg/s2A
auxiliary field ~H A/m
inductance - H= Wb/A= m2kg/s2A2

permeability µ H/m= mkg/s2A2

Their form are identical to the three-dimensional wave equation, and sup-
ports for instance the propagation of plane waves characterized by the fol-
lowing expressions [26]:

~E (~r, t) = E0 exp
[
i~k ·~r − iωt

]
~o (A.13)

~B (~r, t) = B0 exp
[
i~k ·~r − iωt

]
~k × ~o

=
1
c
~k × ~E (A.14)

Here c = 1/
√
µ0ε0 is the speed of light and ~o the direction of polarization

of the electric field. The transition to the last line is based on the fact that
the amplitude B0 = E0/c [26]. These relations are valid for propagation in
vacuum. When electromagnetic waves travel through matter, the presence
of electric charges and currents affect the propagating fields. In the familiar
case of linear, isotropic media of spatially constant ε and µ, the only mod-
ification to the previous appears as a change in the phase velocity υ of the
waves, now equal not to

√
µ0ε0 but to

√
µε, so that the quantity known as

the index of refraction of the material is defined as n =
√
µε/µ0ε0 = c/υ.

The case of anisotropic media was discussed in section 2.3.3.
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Appendix B

Quantum mechanical x-ray
interactions

The current section will address the interaction of x-rays with matter from a
quantum mechanical perspective. It is in this context convenient to express
the electromagnetic radiation field through the vector potential ~A, which is
quantized, and a scalar potential φ. The conventional electric and magnetic
fields and the vector and scalar potentials are related via the following:

~E = −∇φ− ∂ ~A

∂t
(B.1)

~B = ∇× ~A (B.2)

Within the Coulomb gauge for a pure radiation field, the scalar potential
φ = 0. The quantized vector potential is then expressed as a function of the
creation and annihilation operators a† and a:

~A (~r, t) =
∑
~k,o

~o~k,o

√
~

2ε0V ω~k

(
a~k,o exp

[
i~k ·~r

]
+ a†~k,o

exp
[
−i~k ·~r

])
(B.3)

The radiation field is represented as a vector
∣∣∣n~k1,o1 , n~k2,o2 , ...〉 where n~k,o

denotes the number of photons in a mode of wavevector ~k and polarization
o. The creation and annihilation operators serve to change the occupancy
of a mode by one photon:

a†
∣∣∣n~k,o〉 =

√
n~k,o + 1 exp

[
iω~kt

] ∣∣∣n~k,o + 1
〉

(B.4)

a
∣∣∣n~k,o〉 =

√
n~k,o exp

[
−iω~kt

] ∣∣∣n~k,o − 1
〉

(B.5)

In analogy to the classical picture, photons interact with charged bodies.
The Hamiltonian for a non-relativistic, free particle of mass m and charge q
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is:

Ĥ0 =
~̂p

2

2m
(B.6)

In the presence of a radiation field, represented through the vector potential
~A, the free particle Hamiltonian will be modified to account for the coupling
between the field and particle:

Ĥ =

(
~̂p− q ~A (~r, t)

)2

2m
(B.7)

The contribution from the field can be isolated by subtracting the free par-
ticle Hamiltonian Ĥ0 from Ĥ:

Ĥ ′ = Ĥ − Ĥ0

=

(
~̂p− q ~A (~r, t)

)2

2m
− ~̂p

2

2m

= −q~̂p ·
~A

2m
− q ~A · ~̂p

2m
+

~̂p
2

2m
+
q2 ~A2

2m
− ~̂p

2

2m

= −q
~A · ~̂p
m

+
q2 ~A2

2m
= Ĥ ′1 + Ĥ ′2 (B.8)

The separation of the perturbation Ĥ ′ into Ĥ ′1 and Ĥ ′2 effectively separates
the contribution from the radiation field to the Hamiltonian into components
that are respectively linear or quadratic in ~A.

The Schröedinger equation for the combined system of the charged par-
ticle and radiation field is solved via time-dependent perturbation theory.
The probability for the system to undergo a transition from an initial state
|i〉 to a final state |f〉, is expressed via the relation known as Fermi’s golden
rule:

Wi→f =
2π
~
|Mif |2 ρ (Ef ) (B.9)

Here ρ (Ef ) is the density of states at the energy of the final state |f〉.
The matrix element Mif is the expectation value of the time-dependent
perturbation Ĥ ′ to the time-independent free particle Hamiltonian, and can
be written as:

Mif = 〈f | Ĥ ′ |i〉 (B.10)

B.1 Scattering of x-rays on free electrons

The current section deals with the scattering of a photon on a free electron
initially at rest. It is required that the photon energies involved are much
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smaller than the rest mass energy of the electron, ~kc � mec
2 where ~kc

is the photon energy, so that the system can be treated non-relativisticly.
The electron states before and after the scattering event can be expressed
as [32]:

|ψi〉 =
1√
V

(B.11)

|ψf 〉 =
1√
V

exp
[
i~ke ·~r

]
(B.12)

The initial and final states of the combined system can be written as the
product of the initial and final electron and photon states [32]:

|i〉 = |ψi〉
∣∣∣..., n~k,o, ..., n~k′,o′ , ...〉 (B.13)

|f〉 = |ψf 〉
∣∣∣..., n~k,o − 1, ..., n~k′,o′ + 1, ...

〉
(B.14)

For simplicity, this will be written:

|i〉 = |ψi〉
∣∣∣n~k,o, n~k′,o′〉 (B.15)

|f〉 = |ψf 〉
∣∣∣n~k,o − 1, n~k′,o′ + 1

〉
(B.16)

In the final state the number of photons of wavevector ~k and polarization
o has decreased by one whereas the number of photons of wavevector ~k′

and polarization o′ has increased by one. Because the scattering process
involves both the annihilation of the incoming photon and the creation of the
outgoing photon, the term of the perturbation Ĥ ′ of Equation B.8 quadratic
in ~A is used to calculate the matrix element of Equation B.10:

Mif = 〈f | e
2 ~A2

2me
|i〉 (B.17)

For clarity, it might be convenient to write out the expression for the square
of the vector potential:

~A2 =
∑
~ki,oi

~o~ki,oi

√
~

2ε0V ω~ki

(
a~ki,oi exp

[
i~ki ·~r

]
+ a†~ki,oi

exp
[
−i~ki ·~r

])

·
∑
~kii,oii

~o~ki,oii

√
~

2ε0V ω~kii

(
a~kii,oii exp

[
i~kii ·~r

]
+ a†~kii,oii

exp
[
−i~kii ·~r

])
(B.18)

The first factor of ~A2 will serve to annihilate one photon in the ~k, o mode
when ~ki, oi = ~k, o and will create one photon in the ~k′, o′ mode when ~ki, oi =
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~k′, o′. Similarly, the second factor will annihilate one photon in the ~k, o
mode when ~kii, oii = ~k, o and will create one photon in the ~k′, o′ mode when
~kii, oii = ~k′, o′. The matrix element thus writes out as:

Mif = 2
e2~

4meε0V

1
√
ω~kω~k′

√
n~k,o

(
n~k′,o′ + 1

)
exp

[
i
(
ω~k′ − ω~k

)
t
]

· 〈ψf | exp
[
i
(
~k − ~k′

)
·~r
]
|ψi〉

(
~o~k,o ·~o~k′,o′

)
(B.19)

Here the factor involving the expectation value of exp
[
i
(
~k − ~k′

)
·~r
]

be-
tween the initial and final electron states represents the requirement for
momentum conservation, written as a Krönecker delta δ~k−~k′,~ke

:

〈ψf | exp
[
i
(
~k − ~k′

)
·~r
]
|ψi〉 = δ~k−~k′,~ke

(B.20)

The absolute square of the matrix element thus can be written as:

|Mif |2 = 4
(

e2~
4meε0V

)2 1
ω~kω~k′

(
n~k,o

(
n~k′,o′ + 1

))(
~o~k,o ·~o~k′,o′

)2
δ~k−~k′,~ke

(B.21)

Because the matrix element now is determined, the transition probabil-
ity Wi→f of Equation B.9 can be calculated. The density of states for
the current problem can according to [32] be expressed as a delta-function
δ
(
Ee + ~ω~k′ − ~ω~k

)
, so that the transition probability is:

Wi→f =
2π
~
|Mif |2 δ

(
Ee + ~ω~k′ − ~ω~k

)
(B.22)

Now, the only properties of this expression that pertain to the electron are
the Krönecker delta of Equation B.20, and the delta-function just intro-
duced. They represent respectively the requirements for momentum and
energy conservation. The two factors together might be simplified:

δ
(
Ee + ~ω~k′ − ~ω~k

)
δ~k−~k′,~ke

= δ

(
~
(
~k − ~k′

)2
/2me + ~ck′ − ~ck

)
≈ δ

(
k′ − k

)
/~c (B.23)

Here the ~kc � mec
2 requirement has been invoked. It is seen that within

this non-relativistic approximation the scattering is elastic. Thus the tran-
sition probability now reads:

Wi→f = 4
2π

~2c3

(
e2~

4meε0V

)2 1
kk′

(
n~k,o

(
n~k′,o′ + 1

))(
~o~k,o ·~o~k′,o′

)2
δ
(
k′ − k

)
(B.24)
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The prefactor can be written more compactly by introducing the Thomson
scattering length r0 = e2/4πε0mec

2, representing the distance for which the
Coulomb energy between two electrons equals the electron rest mass energy,
so that the expression for the transition probability becomes:

Wi→f =
8π3c

V 2
r2

0

1
kk′

(
n~k,o

(
n~k′,o′ + 1

))(
~o~k,o ·~o~k′,o′

)2
δ
(
k′ − k

)
(B.25)

From this expression the scattering cross section for photons incident on
an electron initially at rest can be calculated by introducing the density
of final photon states V d3k′/ (2π)3 and integrating over k′. Because the
factor d3k′ = k′2dk′ sin(θ)dθdφ = k′2dk′dΩ, this will effectively yield the
probability for the interaction of the electron with the radiation field to
annihilate an initial photon ~k, o while creating a scattered photon, of any
k′, detectable within the solid angle element dΩ. From Equation B.25 this
probability writes out as:∫

Wi→f
V d3k′

(2π)3 =
c

V
r2

0

(
n~k,o

(
n~k′,o′ + 1

))(
~o~k,o ·~o~k′,o′

)2

·
∫

1
kk′

δ
(
k′ − k

)
k′2dk′dΩ

=
c

V
r2

0

(
n~k,o

(
n~k′,o′ + 1

))(
~o~k,o ·~o~k′,o′

)2
dΩ (B.26)

Now, the differential scattering cross section should reflect the probability for
the interaction of the electron with one single photon to produce a scattered
photon emitted into dΩ. The expression of Equation B.26 therefore must
be divided by the factor n~k,oc/V , i.e. the incident photon flux, in order to
yield the following expression for δσ:

dσ =
V

n~k,oc

∫
Wi→f

V d3k′

(2π)3 = r2
0

(
n~k′,o′ + 1

)(
~o~k,o ·~o~k′,o′

)2
dΩ (B.27)

According to [32], the parameter n~k′,o′ is commonly set to zero, thereby

neglecting the effects of photons already present in the ~k′, o′ mode. The
differential scattering cross section is then found by dividing both sides of
Equation B.27 by the solid angle element dΩ. The resulting quantity is
known as the differential Thomson scattering cross section:

dσ

dΩ
= r2

0

(
~o~k,o ·~o~k′,o′

)2
(B.28)

Now the scalar product between the polarizations of the initial and final
photons must be determined. The two independent polarizations possible
for the initial photon can be taken either parallel with or perpendicular to
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the plane containing ~k and ~k′, i.e. as either ~o‖ or ~o⊥. The same choice, i.e. of
~o′‖ or ~o′⊥, can be made for the two independent polarizations of the scattered
photon, but with the in-plane polarization ~o′‖ making an angle θ with the in-
plane polarization of the initial photon. The scalar product ~o‖ ·~o′‖ of the in-
plane initial polarization with the in-plane final polarization is equal to cos θ,
whereas the two scalar products ~o‖ ·~o′⊥ and ~o⊥ ·~o′‖ both equal zero. However,
the scalar product ~o⊥ ·~o′⊥ of the initial and final perpendicular polarizations
is equal to one. Thus, for an incoming photon that with certainty was
polarized in the scattering plane, the differential scattering cross section is
dσ/dΩ‖, whereas for an initial photon polarized perpendicular to the plane,
the differential scattering cross section is dσ/dΩ⊥:

dσ

dΩ‖
= r2

0 cos2 θ (B.29)

dσ

dΩ⊥
= r2

0 (B.30)

Now, for an unpolarized source the two polarizations of the initial photon
are equally likely. The unpolarized differential cross section is therefore the
weighted sum of the two polarized contributions:

dσ

dΩ
=

1
2
r2

0

(
1 + cos2 θ

)
(B.31)

Finally, the unpolarized total Thomson cross section is found by multiplying
Equation B.31 by the solid angle element dΩ and integrating:

σ =
∫

dσ

dΩ
dΩ

=
1
2
r2

0

∫ 2π

0
dφ

∫ π

0

(
1 + cos2 θ

)
sin θdθ

=
1
2
r2

02π
8
3

=
8π
3
r2

0 (B.32)

With the numerical value of r0 = 2.818 fm inserted, the Thomson cross
section for photons scattering off an electron initially at rest is σ = 665 mb.
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Appendix C

Yorick image extraction and
format conversion with
Image Magick

The current appendix concerns Yorick and later on Image Magick. Yorick
is a C-based, freely distributed analysis software developed at MIT which
is used for image processing by the GIST staff and students at the PAL
synchrotron. However, the binary file formats used to store scattering im-
ages are Yorick specific, and thus data are not immediately accessible to
users unfamiliar with the Yorick language. The current appendix is mainly
intended as a reference for other NTNU students or researchers, who in the
future might wish to tackle GIST based Yorick procedures and thus obtain
their scattering data.

To start Yorick, open a Unix/Linux shell and write:

rlwrap yorick

Rlwrap is the so-called readline feature command line wrapper in Unix/Linux,
which for instance allows arrow-based history scrolling, a feature not in-
cluded in Yorick. Now, to compile a single scattering image from a series of
recorded .imm files, a file called gathermacro.i must be executed. This file
is a simple, GIST developed program which sums up data .imm files and
subtracts darks. This and other Yorick files should be available from either
the COMPLEX group of from GIST. To run gathermacro.i, write:

include, ”gathermacro.i”

It is necessary to edit gathermacro.i in a text editor like Emacs, to tell
the program how many images and darks it should compile into one image.
Now, gathermacro.i on its own includes two other files, namely collectimm.i
and streamfunction.i, which are also GIST developed. It is the collectimm.i
file that controls image processing. In order for collectimm.i to function
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properly, yorick must be wrapped in the folder the .imm files are located in.
If the .imm files are called for instance image 00001.imm, image 00002.imm,
etc, it is essential that the folder they are stored in is called image. This is
due to the manner in which collectimm.i deals with filenames.

After gathermacro.i has run it’s course, it will save the resulting compiled
and background subtracted scattering image as a .dif binary file. To open a
.dif file file.dif in Yorick, write:

b=openb(”file.dif”); get vars(b);

To read the data from this file into a Yorick array variable, write:

data raw=b.Fint; data=int(data raw);

The data can now be either further processed in Yorick, or written to a more
convenient format accessible by other software, like for instance fit2d. First
make sure that there are no negative pixel points in the data array:

neg data=where(data¡0.0); data(neg data)=0.0;

Now the data array can be converted to a very convenient file format, com-
monly known as pnm, although this is really a group of formats. Yorick
knows this, so make use of the pnm write() function:

picture=pnm write(data,”picturefile”,bits=16,noscale=1);

Now, the data is stored in a pnm file called picturefile. So far, so good.
This pnm file can easily be further treated with the use of another freeware
called Image Magick. Say format conversion to .tif is desirable. This is
easily accomplished. In a Unix/Linux shell, simply write:

convert picturefile picturefile.tif

Now this .tif file can for instance, be imported into fit2d and analyzed.
There are many more areas in which Image Magick is immensely useful.

The optical image series of this project for instance, with their at times
hundreds of consecutive captured frames, needed to be individually cropped
and resized for film making as well as for inclusion in this report. Image
Magick is a free software distribution for both Unix and Windows platforms,
run from the command line, that is tailored for batch image processing. As
an example, the following code will produce a series of 400 pixels wide and
800 pixels high images cropped so that their upper left corners coincide with
the pixel point (10,300) of all the original .jpg image files in the current file
folder:

mogrify -crop 400x800+10+300 *.jpg

Another useful example demonstrates how individual .bmp image files can
be adjoined to form a single .png image called combined:
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montage -adjoin -geometry 200x200+0+0 -tile 3x2 *.bmp
combined.png

Here the -geometry option sets the size of each contributing .bmp image
to 200x200 pixels, and the frame around each image to zero pixels, effec-
tively pasting the images edge to edge. The -tile options specifies that com-
bined.png should be three images wide and two images high. If there are
more than 3 · 2 = 6 .bmp images, several sequentially numbered combined
images will be created automatically. The use of Image Magick in handling
graphical files is highly recommended.
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[18] D.M. Fonseca, Y. Méheust, J.O. Fossum, K.D. Knudsen, and K.P.S.
Parmar. The phase diagram of polydisperse na-fluorohectorite-water
suspensions: a synchrotron saxs study. Article not yet submitted.

[19] J.O. Fossum. Lecture notes for ntnu subject: Light-, neutron and x-ray
scattering. From class thought in the Fall semester of 2007.

[20] J.O. Fossum, E. Gudding, D.d.M. Fonseca, Y. Meheust, E. DiMasi,
T. Gog, and C. Venkataraman. Observations of orientational ordering
in aqueous suspensions of a nano-layered silicate. Energy, 30:873–883,
2005.

[21] F.C. Frank. I. liquid crystals. on the theory of liquid crystals. Discuss.
Faraday Soc., 25:19–28, 1958.

[22] B.J. Frisken and P. Palffy-Muhoray. Freedericksz transitions in nematic
liquid crystals: the effects of an in-plane electric field. Phys. Rev. A,
40(10):6099–6102, 1989.

[23] J.C.P. Gabriel and P. Davidson. Mineral liquid crystals from self-
assembly of anisotropic nanosystems. Top. Curr. Chem., 226:119–172,
2003.

141



[24] J.C.P. Gabriel, C. Sanchez, and P. Davidson. Observation of nematic
liquid-crystal textures in aqueous gels of smectite clays. J. Phys. Chem.,
100:11139–11143, 1996.

[25] I. Gallily and A.-H. Cohen. On the stochastic nature of the motion
of nonspherical aerosol particles. 1. The aerodynamic radius concept.
Jounral of Colloid and Interface Science, 56(3), 1976.

[26] D.J. Griffiths. Introduction to Electrodynamics. Prentice Hall Interna-
tional, 1999.

[27] A. Guinier and G. Fournet. Small-angle scattering of x-rays. Structure
of matter series. Wiley, 1955.
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