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Chapter 1

Introduction

Very brief explanation of project.

Rochelle salt long history of study, but still unsolved problems

Motivation? What happens in the transition from para-electric to ferroelectric phase

Short breakdown of report content chapter for chapter
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Chapter 2

The crystalline state

The crystalline state are ordered solids with a repeating structure in 3 di-
mensions. Structures on the nanomenter scale, and the way in which they
are arranged determine many of the electric, mechanical and magnetic prop-
erties that we can observe on the macroscopic scale.

The basic unit of crystalline materials are often referred to as the asymmetric
unit. By operating on this unit with a combination of symmetry axes one
can obtain several equivalent representations oriented about a point in space.
In nature symmetries generated this way are plentiful, such as the petals of
a flower, the symmetric wings of a butterfly or the regular patterns on the
sea urchin.

Using one or a combination of rotation- and inversion axes through a point
one can express all symmetries about a point[8]. The inversion axes in
contrast to pure rotations includes an inversion through some point on the
axis. Collecting all the equivalent asymmetric units we form a basis which
is repeated by translations to make up the crystal structure. The family of
these operations can be deduced and described by point groups.

2.1 The point groups

The family of point groups enumerates all the operations which leaves the
origin fixed, that is, non-translational symmetry. Rotations and inversion
obviously satisfies this requirement. In principle any rotation about an axis
is possible, but in crystals repetition in space is fundamental. It can be
shown[8] that this requires rotational angles ϕ = 2π/n where the fold num-
ber n is 1, 2, 3, 4 or 6. This crystallographics restriction means we only use
a subset of the infinite number of point groups. This subset is dubbed the
crystallographic point groups.
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Figure 2.1: Demonstrating that m ≡ 2 — A twofold rotation followed by in-
version through the origin. The rotation inverts the coordinates
parallell to the mirroring plane while the inversion restores them
leaving only the component normal to the plane.

In the notation of the International system it is usual to use mirror planes in
addition to symmetry axes to describe point groups. Looking at figure 2.1
we see how a mirror plane, m, can be described by a two-fold axis 2 normal
to the plane. The bar above the number denotes that the rotation is followed
by inversion through the center, also called rotoinversion. Similarily, point
groups with a centre of symmetry is equivalent to having an 1 axis.

The proper and improper rotations are represented by the symbols 1, 2, 3,
4, 6 and 1, 2, 3, 4, 6 respectively, whereas mirror planes are written as m.
For combination of axes one writes n

m for an n-fold rotation axis with a
perpendicular mirror plane or nm for an n-fold rotation with a parallel mir-
ror plane. The combination n

m is equivalent to a rotation and an improper
rotation n× n about a common axis.

To derive the different point groups one has to combine symmetry axes in a
systematic way. Defining two axes automaticly generates the third, so one
can either have one symmetry axis n,n,n × n or a consistent set of three
axes. For three axes there must be an even number of rotoinversion axes,
i.e. they must be on the form RRR, RII, IRI or IIR. Finally, two rotations
of same order must both be either R or I. A complete treatment[8] with
these rules will lead to 32 unique point groups. They cover all the possible
symmetries about one point in space and can be classified into 7 crystal
systems as outlined in table 2.1 according to the order of its symmetry axes.

To realise the crystal the basis formed by the asymmetric unit must be
repeated in space. We do this by assigning it to points in a lattice. The
different arrangements of infinite, regular lattices were studied and correctly
deduced by Bravais by the end of the 1840s [3].
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Crystal system A B C Lattice systems

Triclinic 1 1 1 Triclinic
Monoclinic 1 2 1 Monoclinic
Orthorhombic 2 2 2 Orthorhombic
Trigonal 2 2 3 Rhombohedral, Hexagonal
Tetragonal 2 2 4 Tetragonal
Hexagonal 2 2 6 Hexagonal

Cubic { 2 3 3
Cubic

2 3 4

Table 2.1: Crystal systems according to rotation order of symmetry axes
A,B and C. Compatible lattice systems must include the same
essential symmetry.

2.2 The Bravais lattices

The primitive Bravais lattices can be generated in three steps. First a prim-
itive translation vector a is chosen and lattice points are repeated at a fixed
period given by a. If we allow the 1 dimensional line of points to repeat by
another vector b which is not parallel to a, we end up with a plane of lat-
tice points. A third non-coplanar vector c fills the entire space with lattice
points. There can be many choices for primitive vectors, but they are usu-
ally chosen to be as short as possible, and with highest possible symmetry,
which allows one to express any lattice point by an integer number of trans-
lation operations. It is customary to define the set of primitive translation
vectors a, b and c in a right-handed system so that

|a| = a, 6 (b, c) = α

|b| = b, 6 (a, c) = β

|c| = c, 6 (a,b) = γ.

Every lattice point can then be written as R = n1a + n2b + n3c.

The volume spanned by a set of primitive translation vectors is referred to
as the primitive unit cell. The magnitude of the volume is given by

V = |a · (b× c)|

Due to its infinite extent the Bravais lattices look the same at every point —
they are invariant under translations expressed by R. The set of translations
to cover all lattice points in the lattice form a translation group. Bravais
correctly classified these translation groups, or Bravais lattices into 14 lattice
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Lattice system Lengths Angles

Triclinic a 6= b 6= c , α 6= β 6= γ
Monoclinic a 6= b 6= c , α = γ = 90◦, β 6= 90◦

Orthorhombic a 6= b 6= c , α = β = γ = 90◦

Tetragonal a = b 6= c , α = β = γ = 90◦

Rhombohedral a = b = c , α = β = γ 6= 90◦

Hexagonal a = b 6= c , α = β = 90◦, γ = 120◦

Cubic a = b = c , α = β = γ = 90◦

Table 2.2: The lattice systems of Bravais lattices. Angles and lengths of a,
b and c are given for their unit cells

Symbol lattice points (a,b, c)

A—face (0, 12b,
1
2c)

B—face (12a, 0,
1
2c)

C—face (12a,
1
2b, 0)

I (12a,
1
2b,

1
2c)

F—face (0, 12b,
1
2c)

(12a, 0,
1
2c)

(12a,
1
2b, 0)

Table 2.3: Coordinates of centered lattice points in non-primitive Bravais
lattices. The primitive Bravais lattices are given the symbol P.

systems. Table 2.2 lists the different lengths and angles of their primitive
translation vectors.

There are several ways of choosing unit cells, but one usually picks the
ones which are more symmetric or closer to cubic. The primitive unit cells
typically share one lattice point at each corner of the cell, so that the total
number of lattice points in any cell is unity. For unit cells associated with
the monoclinic, orthorhombic, tetragonal and cubic crystal systems the more
symmetric unit cells can include 2, 3 or even 4 lattice points. An overview
of these cells are given in figure 2.2. In this case the extra lattice points will
not have integer coordinates, since they lie within or on the unit cell’s faces.
Table 2.3 lists the coordinates of centered lattice points.

Up till this point we have only considered the symmetyr of the unit cell in
isolation. However, the repeating nature of the crystal allows new kinds of
symmetry within the unit cells which are not from pure point operations.
We can imagine a set of operations such that instead of returning to the
original point in the unit cell one would end up at the equivalent point in
a neighbouring unit cell. In this way order is still preserved in the crystal,
and it is in fact a common feature of crystals. We will now see how this
works for rotation axes and mirror planes.
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Figure 2.2: Depiction of the 7 lattice systems and 14 Bravais lattices using
Pearson notation. The first letter assigns lattice systems cubic
(c), trigonal (t), orthorhombic (o), monoclinic (m) and triclinic
(a) — The rhombohedral lattice hR has been combined with
the hexagonal lattice hP into a larger hexagonal family. The
centering of the lattice is given by the second, capitalised letter
as defined in table 2.3.
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2.3 Screw axes

For rotation axes we can introduce a translation parallel to the axis; in this
way the generated motifs looks the same when viewed along the axis. The
screw axis operation then would be a combined rotation and translation. For
an n-fold rotation axis there would be n rotations and translations within
one period. If the axis is aligned along a one should translate a multiple of
this distance after a full revolution

t = a
m

n
. (2.1)

In addition to the rotation order n one must also specify the translation m
to be applied as a subscript. For instance the screw axis 32 will do a three-
fold rotation followed by a 2

3a translation up the rotation axis as given by
the right-hand rule. The available screw axes are 31; 41; 61; 62, their mirror
images 32; 43; 64; 65 and 21; 42; 63 which have no handedness.

The screw axes look equivalent to rotational axes when looking at bulk
symmetry, but result in some specific systematic absences in the diffraction
patterns. The winding down the screw axis also makes the crystal optically
active.

2.4 Glide planes

A glide plane is the combination of a mirror plane and translation. Points
are mirrored and then translated parallel to the mirroring plane. The glide
planes a,b and c involve one half translation along the respective axes while
the n-glide is half a unit cell along two axial directions, a diagonal. More
rarely a diamond glide plane can occur in which the translation is one fourth
along two axial directions or for cubic and tetragonal system, the unit cell
space diagonal.

With this we have covered the different symmetry elements available in crys-
tals: point groups, space lattices, screw axes and glide planes. Combining
all these operations leads to a full decsription of the symmetry of the crystal
throughout space, the space groups.

2.5 Space groups

The space groups can be found by combining every possible symmetry of the
unit cell with each Bravais lattice of same order. To generate all the possible
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Figure 2.3: [10] (a) A unit cell with an a-glide plane. (b) The 21 screw axis
operation. (c) 31 and 32 screw axes.

symmetries of the unit cell one systematically replaces rotation axes with
screw axes and mirror planes with glide planes. This results in 230 distinct
space groups as shown in table 2.4.

In the International system the notation of space groups starts with the
centering of the Bravais lattice used1 followed by high symmetry axes from
the point group, or any screw axes and glide planes if present. The space
group P312 for instance has no centering in the lattice, one 31 screw axis on
the major axis and a 2 symmetry axis. Looking in table 2.1 we can deduce
that the crystal system is trigonal.

1See table 2.3
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Crystal system Point Space Bravais Lattice system
groups groups lattices

Triclinic 2 2 1 Triclinic
Monoclinic 3 13 2 Monoclinic

Orthorhombic 3 59 4 Orthorhombic
Tetragonal 7 68 2 Tetragonal

Trigonal 5
7 1 Rhombohedral
18

1 Hexagonal
Hexagonal 7 27

Cubic 5 36 3 Cubic

7 32 230 14 7

Table 2.4: The distribution of space groups over Bravais lattices, point and
space groups. Point groups and Bravais lattices are categorised
into crystal and lattice systems respectively. The trigonal crys-
tal system combines with both the rhombohedral and hexagonal
lattice systems.
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Chapter 3

X-ray Diffraction

- diffraction: the combined effect when waves are scattered and interfere
with each other.

- common to all these fenomena is that significant effects only presents them-
selves when the wavelength of the wave is comparable to the repetition dis-
tance in the scattering geometry. Typical interatomic distance is of the order
of 1Å with repeating units every 10Å or so.

In the following sections we will briefly deduce the scattering of X-rays by
electrons leading to the diffraction from crystals. We will assume a kine-
matical model for the scattering with X-rays only interacting with weakly
bound electrons.

Figures and presentation follows that of Woolfson[10] unless stated otherwise
— We invite the reader to consult his chapter on scattering if more detail is
required.

3.1 Scattering of X-rays

X-rays, due to their electromagnetic nature, interact most strongly with elec-
tons. In general we can think of the scattering interaction as an absorption
followed by re-transmission in all directions[10]. The spatial distribution of
energy of the scattered radiation depends on the specific scattering process,
but there are many common features. We start by looking at the scattering
of a wave from a single point in space, and progress to the scattering from
a collection of points. Finally we consider the specific effects of electrons on
X-ray scattering.
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3.1.1 Scattering from single point

Figure 3.1: [10] Incident radiation scattered from point scatterer at O.

Consider the situation in figure 3.1. The incident radiation consists of a
bundle of parallel, monochromatic rays propagating towards the scatterer
at point O. The intensity at a point in the cylinder can be defined as the
energy per unit time passing through a unit cross-section perpendicular to
the direction of propagation.

At the point of the scatterer the power of the incident beam is scattered
with a spherical distribution about O. The intensity is scattered over an
ever-expanding sphere, so it will fall off as 1

D2 since the area covered goes
as D2. D is the distance OP in figure 3.1.

For interference we need to consider the displacements of the wave as it
is being scattered. We define the displacement yi of the monochromatic,
incident wave at O as

yi = A cos(2πνt). (3.1)

The frequency of the incident radiation is given by ν and its intensity I0
is given by the square the displacement amplitude A. The displacement at
point P will have the following modifications[10]:

1. Phase retardation −2πD/λ due to traversing the distance OP ≡ D

2. Scattering phase shift αs due to the scattering process at O.

3. Amplitude fall-off 1/D since intensity of scattered radiation falls of as
1/D2 and I ∼ A2.

4. The factor f2θ dependent on scattering angle 2θ. This encapsulates
the spatial distribution of the scattering process and is refered to as

11



the scattering length [10] due to its dimension.

Combined these factors give the following equation for the displacement at
point P

y(2θ,D, t) = f2θ
A

D
cos(2πν(t−D/c)− αs) (3.2)

where the relation c = ν · λ has been used. It is more convenient to put 3.2
in complex form

y(2θ,D, t) = f2θ
A

D
exp(2πiν(t−D/c)− iαs) (3.3)

where the real part still gives the displacement and their ratio (imagi-
nary/real part) give the tangent of the phase difference from O. Let now
the amplitude at P be denoted by

η(2θ), D) = f2θ
A

D
(3.4)

and the phase retardation

αOP = 2πνD/c+ αs. (3.5)

The intensity of the scattered radiation per unit solid angle is then given by

I2θ =K[η(2θ,D)]2 ×D2 = f22θKA
2

I2θ =f22θI0 (3.6)

independent of distance D as requried by energy conservation.

3.1.2 Scattering from two points

Consider now two scatterers at points O1 and O2. In figure 3.2 they are
shown joined by the vector r making some angle with the incident radiation
ŝ0. We want to find the displacement at P from the radiation scattered of
O1 and O2. The distance D ≡ O1P to a detector should be much greater
than the typical distance |r| between scatterers in a crystal, so the scattering
angles from O1 and O2 are effectively identical.

12



ŝ0

ŝ

B

C

O1

O2

2θ

r

Figure 3.2: [10]Incident radiation on scatterers at O1 and O2. The scattered
radiation converges to point P off-figure along ŝ

If we also assume identical scatterers (αs0 = αs1) the phase difference be-
tween the two paths is then

zαO1O2 =
−2π

λ
(CO2 +O2B). (3.7)

From the figure we see that

CO2 = r · ŝ0 , O2B = r · ŝ. (3.8)

So using only vectors

αO1O2 = 2πr · (̂s− ŝ0) (3.9)

Let the scattering vector be given by

s =
ŝ− ŝ0
λ

. (3.10)

The phase difference 3.7 is then simply

αO1O2 = 2πr · s. (3.11)

The simple geometry of the scattering vector can be seen in figure 3.3. The
unit vectors are by definition of equal length. It follows that s is perpen-
dicular to the line bisecting the scattering angle and hence its magnitude is
given by

13



s = (2 sin θ)/λ. (3.12)

ŝ0/λ

ŝ/λ

s
θ

Figure 3.3: [10]The scattering vector and its relation to scattering angle 2θ.

If we let the incident displacement be described by 3.1 the displacement at
P due to scattering at O1 is still given by 3.3. The displacement at P is
thus given by

y(2θ,D, t) = f2θ
A

D
exp(2πiν(t−D/c)− iαs)

+ f2θ
A

D
exp(2πiν(t−D/c)− iαs + 2πir · s).

and collecting common terms

y(2θ,D, t) = f2θ
A

D
exp(2πiν(t−D/c)− iαs)[1 + exp(2πir · s)]. (3.13)

The combined amplitude becomes

η2(2θ,D) = f2θ
A

D
[1 + exp(2πir · s)]

= η(2θ,D)[1 + exp(2πir · s)] (3.14)

where η(2θ,D) was the amplitude 3.4 we found for a single scatterer. This
can be interpreted using a phase-vector diagram as in figure 3.4a where the
vectors AB and BC have the same magnitude η(2θ,D) and their angle is
the phase difference 2πr · s. The resultant amplitude AC has magnitude
η2(2θ,D) and phase difference given by angle φ with respect to radiation at
O1.

Here we have measured phases with respect to the scatterer at O1, but
we are free to measure the phase difference with respect to an arbitrary
point O. This situation is shown in 3.4b where the two scatterers are given

14



coordinates r1 and r2 relative to some fixed scattering point O. Equation
3.14 then becomes

η2(2θ,D) = η(2θ,D)[exp(2πir1 · s) + exp(2πir2 · s)]. (3.15)

A
B

C

2θ

r

(a)
O

O2

2θ

r1

r2

(b)

Figure 3.4: [10]Phase-vector diagram for two scatterers with (a) O1 as origin
and (b) O1 at r1 and O2 at r2.

3.1.3 Scattering from a collection of points

Having found the magnitude and phase of two scatterers relative to a point
we are ready to generalize to a distribution of scattering points. Adding
more scatterers to equation 3.15 we have

ηn(2θ,D) =
n∑
j=1

η(2θ,D) exp(2πirj · s). (3.16)

For identical scatterers we can write the single amplitude outside the sum

ηn(2θ,D) = η(2θ,D)
n∑
j=1

exp(2πirj · s) (3.17)

while in general for non-identical scatterers the scattering amplitudes [η(2θ,D)]j
must be taken inside the sum
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ηn(2θ,D) =
n∑
j=1

[η(2θ,D)]j exp(2πirj · s)

=
A

D

n∑
j=1

(f2θ)j exp(2πirj · s). (3.18)

The scattering lengths of the different scatterers are now within the sum
accounting for a general distribution of scatterers. We will now look closer
at the mechanisms responsible for the different scattering lengths f2θ.

3.1.4 Coherent scattering

From classical electrodynamics[4] we know that x-rays are a form of electro-
magnetic radiation where harmonically accelerating electric and magnetic
fields interact to propagate themselves in space. The basic interaction with
electric charges can be summed up quite simply: Electric fields accelerate
electric charges, and accelerating charges induces accelerating fields which
themselves radiate energy in all directions.

J.J Thomson studied and formulated the theory of scattering of free (i.e. not
bound or restrained) electrons and can be thought of as the absorption and
re-emission of radiation in all directions. If the incident radiation is coherent
and monochromatic we should expect a fixed phase relationship between
incident and scattered radiation — the scattered radiation is coherent with
respect to the incident radiation. For this system of free electrons the phase
shift αs is equal to π . The frequency, or wavelength of the radiation should
obviously be the same as that associated with the oscillating electron.

Let us consider a harmonically oscillating electron at O as in figure 3.5, with
mass me,charge e and acceleration amplitude a. The scattered radiation
propagates along OP at an angle φ relative to the acceleration vector. The
amplitude of the resulting electric field is given in [10] as

E =
ea sin(φ)

4πε0rc2
(3.19)

at distance r perpendicular to OP.

In the next figure (3.6) we see the incident radiation decomposed into E⊥
and E‖ respectively perpendicular and parallel to the plane OXP . The
acceleration experienced by an electron in these fields is

16



Figure 3.5: [10]The relationship of the electric vector for scattered radiation
to the acceleration vector of an electron at O. Both vectors are
in the plane of the page.

a⊥ =
eE⊥
me

a‖ =
eE‖

me
. (3.20)

Figure 3.6: [10]The relationship of the electric vector for scattered radiation
to the acceleration vector of an electron at O. Both vectors are
in the plane of the page.

Applying the acceleration to equation 3.19 one finds the electric vector com-
ponents

17



E′⊥ = (
e2

4πε0c2me
)
1

r
E⊥

E′‖ = (
e2

4πε0c2me
)
cos(2θ)

r
E‖ (3.21)

for the scattered wave at point P . The expression in parentheses is known
in classical electrodynamics as the electron radius.

In equation 3.21 the electric field was calculated for a simple monochromatic
wave polarized in some direction. Using the principle of superposition the
response of arbitrary incident radiation can be found by summing up the
contributions from their simple components.

In the case of unpolarized radiation we expect equal magnitudes averaged
over time

|E2
⊥| = |E2

‖ | ∝
1

2
I0

=
1

2
CI0 (3.22)

for some C where I0 is the intensity of incident radiation. The intensity as
power per unit solid angle at 2θ is then

I2θ =
1

C
r2(|E′⊥|

2
+ |E′‖|

2
)

=
1

C
r2(

e2

4πε0c2me
)2[1 + cos2(2θ)] · 1

2
CI0

=
1

2
r2(

e2

4πε0c2me
)2[1 + cos2(2θ)]I0. (3.23)

The factor 1/m2
e shows clearly why the heavier protons aren’t effective scat-

terers. To calculate the total power P scattered on an electron we use the
relation

dP = IγdΩ

= Iγ2π sin(γ)dγ

Using equation 3.23 and integrating over γ = 0 . . . π one find the total power
scattered by a single electron is

P =
8π

3
(

e2

4πε0c2me
)2I0. (3.24)

18



For a material with n electrons per unit volume exposed to an incident beam
of cross-sectional area β the total power scattered per unit path through the
material is

Pl = P · βn. (3.25)

The ratio

σ =
Pl
βI0

=
nP

I0
=

8π

3
(

e2

4πε0c2me
)2 (3.26)

of scattered power Pl to the power in the incident beam βI0, is called the
scattering power and is a measure of the fraction of incident radiation which
is scattered per unit length. If one assumes as Woolfson[10] that all electrons
in a material are free and a typical density 3×1029 electrons per m−2 σ ≈ 20.
Diffraction samples, which are typically thinner than 1 mm, will then scatter
only 2% or less of the incident X-ray beam.

Experiments show that the majority of scattered radation is indeed coherent
Thomson scattering, but a fraction of the scattered radation is found to have
a longer wavelength compared to the incident radiation which is dependent
on the scattering angle. This contribution can be described as the classical
collision of a photon with the electron, coined compton scattering.

3.1.5 Compton scattering

We can imagine the process of compton scattering as a photon colliding
elastically and imparting momentum to a free electron at rest. If the photon
originally had an energy of E = hc

λ conservation of energy requires that

hc

λ
=

hc

λ+ dλ
+

1

2
mev

2 (3.27)

where dλ is the change in wavelength for the photon and v is the resulting
velocity of the recoiling electron. The first order approximation for small dλ
is

hc

λ2
dλ =

1

2
mev

2. (3.28)

In addition linear momentum must be conserved. If the scattered photon
forms an angle 2θ with the incident radiation the condition can be written[10]
as

1

2
mev =

h

λ
sin θ. (3.29)
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Combining equation 3.28 and 3.29

dλ =
h

mec
sin2 θ

or dλ =
h

mec
(1− cos 2θ). (3.30)

Replacing physical constants

dλ = 0.024Å(1− cos 2θ). (3.31)

Maximal change in wavelength is thus obtained for back-scattering photons
(2θ = π)

dλ = 2
h

mec
' 0.048Å (3.32)

which while not very large, can be significant in comparison with X-rays
having wavelengths around 1Å. Being incoherent the scattered compton
radiation provides a background intensity as one sums up the incoherent ra-
diation from different scatterers by their intensities and not their amplitudes
([10],p52).

Looking at thomson and compton scattering we treated incident radiation
as waves and particles respectively. This is an example of the wave-particle
duality of quantum mehcanics which we need in order to describe the scat-
tering of electrons bound to an atom.

3.1.6 Scattering from an atom

The electrons in an atom are bound in discrete energy states. Compton
scattering then, need to completely eject an outer electron or transfer it to
another bound state, whereas thomson scattering must leave the electron
in a state with same energy. A quantum mechanical treatment shows that
the electron is not localised at any point but distributed about the atom.
The electron is described by a complex function Ψ whose solution gives the
charge distribution

ρ = |Ψ|2 (3.33)

in units of electron charge per unit volume. From this the coherent compo-
nent can be found ([10],p47). Additionally the total scattered intensity due
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to thomson and compton scattering is found to coincide with Thomson’s
formula 3.23.

To derive the amplitude of the coherently scattered radiation we start by
considering the scattering amplitude for a collection of scatterers that we
found in equation 3.18. Instead of considering discrete scattering points we
now look at the contribution from a charge dq in the small volume element
dV . The equivalent integral should then be

ηs = Cs

∫
dV

dq · exp(2πir · s) (3.34)

where Cvecs is some constant (possibly including the scattering vector s)
and r is the position of the volume element being integrated. The integral
should cover all of space and shows that the resulting scattering is a standard
fourier transform of the electron charge distribution.

If we assume that the electron charge density is symmetric about the origin
we have in sperhical coordinates

dq = ρ(r) dV

or dq = ρ(r) r2 dΩ

= ρ(r) r2 sin(2θ) dϕ d(2θ). (3.35)

Here 2θ is the same scattering angle as defined in previous sections, thus

ηs = Cs

∫ ∞
r=0

∫ π

θ=0

∫ 2π

ϕ=0
ρ(r)r2 exp(2πir · s) sin θ dϕ dθ (3.36)

and
r · s = rs cos(2θ).

Since the distribution is assumed centro-symmetric we can write replace the
exponential factor with cosine when integrating over the sphere[10] so

ηs = Cs

∫ ∞
r=0

∫ π

θ=0

∫ 2π

ϕ=0
ρ(r)r2 cos(2πir · s) sin θ dϕ dθ (3.37)

and integrating

ηs = 4π Cs

∫ ∞
r=0

ρ(r) r2
sin(2πrs)

2πrs
dr. (3.38)
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Let us compare equation 3.38 with the scattering amplitude of an electron
located at the origin. We write the electron density as ρ(r) = δ(r), where
δ(r − a) is the dirac delta function centered at a. By definition[10]

4π

∫ ∞
r=0

r2dr = 1 and lim
r→0

sin(2πrs)

2πrs
= 1. (3.39)

Hence the reference amplitude is

(ηs)0 = Cs. (3.40)

The ratio of scattered amplitude to that of an electron at the origin

ps = 4π

∫ ∞
r=0

ρ(r) r2
sin(2πrs)

2πrs
dr (3.41)

is therefore only dependent on the magnitude of the scattering vector. For
an atom with Z electrons the combined charge density would be ρa(r) =∑

j ρj(r). It follows that the atomic ratio of scattered coherent amplitude
to that of a single electron at the origin is

fa =
∑
j

(ps)j . (3.42)

The ratio fa is referred to as the atomic scattering factor. The eletcron
density in atoms can be approximated through a variety of methods for
deriving the electron wave functions. The Hartree-Fock method, Thomas-
Fermi model or Slater’s analytical orbitals are but some of the existing
ways of obtaining the radial electron density distribution 4πr2 ρ(r). The
distribution for carbon as approximated by Slater’s analytical wave functions
is given in figure3.7 owing to Woolfson[10].

Looking at equation 3.41 we can still see some properties of the coherent
scattering. The factor {

sin(2πrs)

2πrs

}
→ 1 , as s→ 0

so the scattered radiation will be fully coherent in the forward (θ = 0) di-
rection. To see the intensity of the coherently scattered radiation by wave
mechanics we square the atomic scattering factor and scale with the scat-
tering intensity 3.23 Thomson found for a localized electron:

IThomson = (
∑
j

(ps)j)
2 × I2θ. (3.43)
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Figure 3.7: Radial electron density of Carbon.
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In the previous section we noted that the Compton radiation is incoherent
from one scatterer to another. The incoherent part is then the sum of the
individual intensities (1− p2s)

ICompton =
∑
j

(1− (ps)
2
j )× I2θ. (3.44)

When looking at the diffraction from a crystal there are contributions from a
lot of scatterers, even in a thin sample. It should then be clear from equation
3.43 and 3.44 that the coherent contribution will dominate and incoherently
scattered radiation will not be of great interest. For the coherent scattering,
though, we want to look at the influence that the periodic nature of the
scattering atoms have on the scattering amplitude.

3.2 Diffraction from a crystalline material

As discussed in chapter 2, crystalline materials consists of atoms in a three
dimensional periodic pattern. In the last section we noted that the amplitude
of a centrosymmetric distribution of scatterers will be real if the center is
taken as the origin[10]. To start off we assume a single line with an odd
number (n) of scatterers, defined by the translation vector a. For a detector
at a large distance compared to the extent of the line one finds the amplitude

An = fa

1
2
(n−1)∑

q=− 1
2
(n−1)

cos(2πqa · s) (3.45)

where fa is the atomic scattering factor from last section and the scattering
vector s defines the scattering angle per equation 3.12. Again, the ampli-
tude is relative to a point electron located at the origin which after some
manipulation ([10],p54) can be written as

An = fa
sinπna · s
sinπa · s

. (3.46)

The resulting intensity is

(An)2 = f2a
sin2 πna · s
sin2 πa · s

. (3.47)

The sine factor in equation 3.47 is very common when dealing with diffrac-
tion. It has main maximas whenever sin(πa · s) = 0, that is

a · s = h (3.48)
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for some integer h. According to L’Hôpital’s rule

lim
a·s→0

sin2 πna · s
sin2(πa · s)

=
(na · s)2

(a · s)2
= n2 (3.49)

so the main peaks will necessarily have to become sharper as they grow
with more scatterers. Between each main maxima there are n − 1 minima
and n − 2 smaller maxima whose size depends on the magnitude of the
denominator. This is easily seen if sin2(πna · s) and sin2(πa · s) are plotted
next to eachother.

In addition to the previous properties Woolfson[10] notes that the ratio of
main maximas to the secondary maximas increases with n. As we mentioned
in the introduction of this chapter a crystal will typically have unit cells
repeated every 10Å which equates to 106 cells per mm. Except for very
small samples the diffraction intensity will therefore consist of narrow peaks
at the positions given by equation 3.48.

Crystal diffraction is readily generalized to 2 and 3 dimensions. If we follow
the convention of the Bravais lattices from section 2.2 each line of scatterers
will repeat itself along the translation vectors b and c in three dimensions.
The diffraction condition can be decomposed into the three equations

a · s = h

b · s = k

c · s = l (3.50)

collectively known as the Laue equations. Since there is now a direct rela-
tionship between the scattering vector s and the primitive lattice vectors we
can attempt to find a basis for the scattering vectors shkl satisfying 3.50.

3.2.1 The reciprocal lattice

We start by assuming that we can find a basis {a∗,b∗, c∗} so that shkl can
be written on the form

shkl = ha∗ + kb∗ + lc∗. (3.51)

Using matrix notation equation 3.50 take the form a
b
c

 s =

 h
k
l

 (3.52)
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and inserting for shkl a
b
c

 [ a∗ b∗ c∗
]  h

k
l

 =

 h
k
l


or

 aa∗ ab∗ ac∗

ba∗ bb∗ bc∗

ca∗ cb∗ cc∗

  h
k
l

 =

 h
k
l

 . (3.53)

Since this must hold for all hkl we have {a∗,b∗, c∗} defined by the set of
equations

aa∗ = 1, ab∗ = 0, ac∗ = 0
bb∗ = 0, bb∗ = 1, bc∗ = 0
ca∗ = 0, cb∗ = 0, cc∗ = 1.

(3.54)

Just like the primitive translation vectors {a,b, c} defined a lattice for the
crystal’s unit cells so {a∗,b∗, c∗} defines a lattice in reciprocal space for the
allowed scattering vectors. It is called reciprocal since, as we see from the
relation aa∗ = 1, larger distances in the space of the crystal must correspond
to smaller distances in the space of scattering. It can be shown that the set
3.54 leads to the definitions

a∗ =
b× c

a · (b× c)
, b∗ =

c× a

b · (c× a)
, c∗ =

a× b

c · (a× b)
(3.55)

which is uniquely defined for a given lattice {a,b, c}. Having found that the
diffraction peaks lies on a lattice it is time to see which reflections will be
active for a particular orientation of the crystal.

3.2.2 Construction of the Ewald sphere

The Ewald sphere is a way of visualising the scattering vectors in the re-
ciprocal lattice. The trivial scattering vector s = 0 corresponding to the
primary incident ray always satisfies the laue equations. This means we can
always draw the incident radiation vector ŝ0/λ so that it ends in the origin
O originating from some point S in the reciprocal lattice, as we have done
in figure 3.8.

The vector ŝ/λ is of same length and originating at the same point S it
defines a sphere of possible scattering directions. In the figure only point H
simultaneously satisfies the laue equations 3.50 in the plane c∗ = 0 – That
is, only reflections corresponding to lattice points intersecting the Ewald
sphere will be active for a particular crystal orientation. We recognize the
scattering diagram 3.3 as the triangle 4OSH. If we imagine the crystal to
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011
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ŝ0/λ
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s2θ
S

H

O

Figure 3.8: Construction of Ewald’s sphere in the reciprocal lattice. The
crystal is imagined to lie in the center S of a sphere of radius 1/λ
which tangents the origin 000 of the reciprocal lattice. Diffrac-
tion occurs whenever a lattice point H intersects the sphere; The
scattering angle relative to the incident radiation ŝ0 is 2θ.

lie at the center S of Ewald’s sphere and extend ŝ0 and ŝ, the the physical
interpretation is easily seen: Incident radiation enters the crystal and exits at
an angle 2θ towards the lattice point of that particular reflection, hopefully
to be captured somewhere in the experimental setup.

For monochromatic X-rays and perfect crystals the Ewald sphere and recip-
rocal lattice is sharply defined and so there is seldom more than one reflection
active at any configuration. However if the crystal is rotated, the reciprocal
lattice rotates with it and other reciprocal lattice points may intersect the
Ewald sphere and diffract. For some orientations more than one reflection
might occur. This is called multiple scattering and can in some cases lead
to diffraction for an index hkl even though F (hkl) = 0[1]. Note that for any
diffraction to occur the Ewald sphere must have a radius at least as large as
the magnitude of one of the reciprocal lattice vectors {a∗,b∗, c∗}.

3.2.3 Covering the reciprocal lattice

For transmission electron microscopy and γ-rays the large size of the ewald
sphere relative to the reciprocal lattice spacing means that the curvature
of the sphere can become neglegible and multiple scattering becomes the
norm rather than the exception with several reflections showing at the same
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time. Other methods[1] for covering the reciprocal lattice includes the Laue
method, the Debye-Scherrer method and a collection of methods for rotating
and oscillating the sample.

The Laue method consists of using polychromatic or “white” radiation to
cover a larger part of the reciprocal lattice simultaneously. If the radiation is
in the range (1/λmax−1/λmin) we can visualise the diffracting lattice points
as those who fall within the Ewald sphere of radius 1/λmin but outside the
sphere with radius 1/λmax. Using the intense, polychromatic radiation from
a third generation synchrotron it is possible to gather on the order of 1000
reflections in a single bunch of electrons ([1],p162) enabling high temporal
resolution.

In place of changing the area spanned by the Ewald sphere one can irradite
an ensemble of small crystalls, or crystalites, of different orientation. The
Ewald sphere will then contain a superposition of reciprocal lattice points at
different orientations. This is called powder diffraction and, if the crystal-
ites are distributed randomly, it is characterised by continuous rings in the
diffraction pattern from Debye-Scherrer cones formed by each index hkl.

Finally, direct manipulation of the crystal itself will also rotate the recip-
rocal lattice. By scanning or oscillating through an angle it is therefore
possible to bring new lattice points to the surface of the Ewald sphere for
diffraction. Care must be taken when designing a diffraction experiment,
though, to ensure that a sufficient number of unique reflections are included
for data analysis. It follows from the symmetries of the assymetric unit in
the unit cell of chapter 2 that there will be some degree of redundant in-
formation, or symmetry, in the reciprocal lattice as well. In the absence of
anamalous scattering and neglegible absorption the diffraction patterns are
all centrosymmetric and are grouped into Laue classes corresponding to the
11 centrosymmetric point groups.
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3.3 The structure factor

So far we considered the coherent scattering of eletcrons bound to atoms
in a lattice. In a final step we will now consider the effect on scattering
amplitude by the arrangement of atoms in the unit cell. If we follow the
same reasoning as in deriving the atomic scattering factor from equation
3.18 we are led to the expression

Fcell(s) =
∑
j

(fa)j exp(2πirj · s) (3.56)

where we sum over all atoms j with scattering factor (fa)j and position rj
relative to the center of the unit cell. The atoms include the asymmetric
unit and all its equivalent representations as described in chapter 2.

If we express r and s as fractional coordinates in the lattices {a,b, c} and
{a∗,b∗, c∗}

Fcell(s) =
∑
j

(fa)j exp(2πi(xa, yb, zc) · (ha∗, kb∗, lc∗)). (3.57)

and apply the relations 3.50 we end up with the convenient form

Fcell(hkl) =
∑
j

(fa)j exp(2π(xh+ yk + zl)). (3.58)

Just as the atomic scattering factor was the fourier transform of the electron
charge distribution about the nucleus we find that the scattering factor,
known as the structure factor, of the unit cell is the fourier transform of
the distribution ρcell(r) over the unit cell. Since the crystal is generated by
repeating the unit cell along {a,b, c} we can write the density for an infinite
crystal as

ρ∞(r) = ρcell(r) ?

∞∑
u,v,w=−∞

δ(r− ruvw). (3.59)

Convolution with δ(r − a) is equivalent with shitfting the function’s origin
to a, so each term in the sum corresponds to one instance of the unit cell in
the crystal. Using the fact that F{ρcell} = Fcell we can perform the fourier
transform of 3.59 as

F∞(s) =
1

V
Fcell(s)

∑
h,k,l

δ(s− shkl) (3.60)
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where we have emphasized the fact that diffraction only occurs at the recip-
rocal lattice points {h, k, l} on the Ewald sphere in figure 3.8. Equation ??
shows that it is in theory sufficient to find the structure factors for the dif-
ferent reflections {h, k, l} if one wants to derive the structure of the crystal.

In practice real crystals have some factors affecting their structure factors:

1. “Ringing effects” due to finite crystal size. This has the effect of
broadening the diffraction peaks making it necessary to scan about
the peak in reciprocal space to record the full contribution.

2. Truncation of the fourier coefficients due to missing reflections. For
higher scattering angles this effect is luckily small since the atomic
scattering factors fall off pretty quickly (see figure 3.7).

3. Anamalous dispersion of radiation close to absorption edges.

The most significant factor though, is the acquisition of the scattered radi-
ation istelf. Films, CCDs and other imaging devices record only intensities
so the phase of the structure factors are not retained. Moreover, quantum
mechanic fundamentals prohibit any complete measurement to be made.
This is referred to as the crystallographic problem. We will explain briefly
in section ?? how the phases

φhkl =
=m(F (hkl))

<e(F (hkl))
(3.61)

can be at least partially reconstructed from the measured intensities I ∝
|Fo(hkl)|2.

The reflection intensities are usually measured over long periods of time and
for crystals spanning a large number of unit cells. The computed structure
factors will therefore be some spatial and temporal average of the atoms
displacement. Some factors[9] displacing atoms from the position in an
imagined perfect crystal are

1. different energetically ecquivalent positions for atoms in unit cells
(“static disorder”)

2. transitions between energetically ecquivalent positions in the unit cell
itself (“dyanimc disorder”)

3. thermal vibration of atoms

4. lattice defects and vibrations

which all tend to attenuate the coherent diffraction peaks. The combined
effect of these factors are usually captured in the temperature factor due to
Peter Debye and Ivar Waller in a first approximation.
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3.3.1 The temperature factor

The equation given for the structure factor was

F (s) =
1

V

∑
j

(fa)j exp(2πirj · s (3.62)

We now allow the atoms to vibrate by introducing a stochastic variable u
to the atom position

rj =< r > +u (3.63)

where < r > is the time average or mean position of the atom and < u >= 0.
It can be shown[1] that this perturbation leads to two distinct terms for
the averaged intensities. The first term is coherent as usual and falls off
exponentially with the mean squared displacement < u2 >, while the other
increases with < u2 > and depends on the correlation < umun > between
the displacements of atoms. This is found as a diffuse background in the
vicinity of the diffraction peaks and is called thermal diffuse scattering.

The coherent term can be expressed as a modified atomic scattering factor

fa → fa exp(−2π2|s|2 < u2 >). (3.64)

Using equation 3.12

fa → fa exp(−8π2
sin2(θ)

λ
< u2 >) (3.65)

where the factor 8π2 < u2 > is known by the symbol B as the tempera-
ture factor. Contrary to what one might intuitively think the width of the
diffraction peaks remain unchanged by the temperature factor. The tem-
perature factor is usually expressed as a isotropic, gaussian distribution over
the atom position, or if enough data is available as an anisotropic trivariate
gaussian distribution. In the latter case the stochastic variable u can be
described by its covariance matrix

[Uij ] =

 U11 U12 U13

U12 U22 U23

U13 U23 U33

 (3.66)

relative to the reciprocal lattice vectors and the electron density of the atom
can be viewed as ellipsoids. Unfortunately a number of conventions for
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specifying these anisotropic displacements are used — Fortunately Grosse-
Kunstleve and Adams[5] have compiled a summary of those commonly en-
countered when dealing with refinement software.
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Chapter 4

Sources of radiation

Types of radiation use din diffraction experiments.

About the properties, production and application of

Elements of Modern X-ray Physics[2]

4.1 X-rays

4.1.1 x-ray tube

4.1.2 synchrotron

4.2 Neutrons

Notes given by Guorong Li [7]

Reactor. Thermal neutrons typical wavelength compared to atomic cross-section

4.3 Electrons
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Chapter 5

Ferroelectricity

5.1 A brief history of ferroelecricity

Evolved into an important field in condensed matter physics paving way for
innovations such as . . .

5.2 Rochelle salt

34



Figure 5.1
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Chapter 6

Data Analysis

6.1 Correction of diffraction data

Which aberrations are left after optics hutch?

Ununiformity resulting from Xray optics ( vignetting++ ), beam-properties etc

6.1.1 Dark current subtraction

6.1.2 Flat field

6.1.3 Sample absorption

correction due to different absorption in sample for different angles of scattering planes

Lorentz factor, polarization factor?

6.2 Crystal solution

6.2.1 Direct methods

6.2.2 Patherson method

6.3 Crystal refinement

Hammond[6]?
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Placement of heavy atoms -¿ other atoms -¿ anisotropy -¿ disorder -¿ h atoms

6.3.1 Least squares optimization

Reconstructing density and run optimization against known intensities

6.3.2 Averaging of structur factors

6.3.3 Disorder

Static disorder

Dynaimc disorder

6.3.4 Refinemet statistics

Statistical criterions for solution fitness / residuals including accepted ranges with references

See comments p19 of Nielsen’s project

ωR =
∑

ω2
o − F 2

c (6.1)
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Chapter 7

Experiment

7.1 Equipment

Crystal
growth

Choosing
the crystal

Data
collection

Data
processing

Structure
solution

Structure
refinement

Publication?

Figure 7.1: Flow of an X-ray diffraction study from crystal growth to publi-
cation. Structure refinement has been highlighted since this has
been the subject of the project thesis.

Setup at the ESRF
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7.2 Procedure

Mode of acquisition?

Software used to perform corrections. Refer to appendix

Lorentz-polarization factor. Sample absorption.
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Chapter 8

Results

We’ll see about this chapter

8.1 Crystal solution

Already determined? Cite reference

8.2 Data reduction

Correct laue group? Comment on systematic extinctions consistent with space group

8.3 Refinement
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Chapter 9

Discussion

Was cake good or too good?
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Chapter 10

Conclusion and Further
Work

Cake was good.

42



Appendices
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Appendix A

Test

Append everything to the cake!
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